US20070287823A1 - Coating agent composition and use thereof - Google Patents

Coating agent composition and use thereof Download PDF

Info

Publication number
US20070287823A1
US20070287823A1 US11/777,532 US77753207A US2007287823A1 US 20070287823 A1 US20070287823 A1 US 20070287823A1 US 77753207 A US77753207 A US 77753207A US 2007287823 A1 US2007287823 A1 US 2007287823A1
Authority
US
United States
Prior art keywords
isocyanate
coating agent
agent composition
polyol
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/777,532
Other languages
English (en)
Inventor
Hiroshi Wada
Tomeyoshi Ohori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Assigned to ASAHI GLASS COMPANY, LIMITED reassignment ASAHI GLASS COMPANY, LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OHORI, TOMEYOSHI, WADA, HIROSHI
Publication of US20070287823A1 publication Critical patent/US20070287823A1/en
Priority to US12/337,286 priority Critical patent/US8841402B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/227Catalysts containing metal compounds of antimony, bismuth or arsenic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the present invention relates to a coating agent composition, an article having a coating film obtained from the coating agent composition, and a film obtained from the coating agent composition.
  • a moisture-permeable material which comprises a porous base, e.g., a fabric, having a substantially non-porous layer of a hydrophilic polyurethane resin on a surface thereof and which is suitable for use as a material for garments, etc. is known.
  • the layer of a hydrophilic polyurethane resin absorbs moisture from the high-humidity side and releases moisture to the low-humidity side. The layer thus functions to transmit moisture.
  • the main raw materials for the layer of a hydrophilic polyurethane resin comprise a polyol having high hydrophilicity and an isocyanate compound.
  • a two-pack type coating agent composition comprising a combination of an isocyanate-group-containing prepolymer obtained by reacting a polyol having high hydrophilicity with an isocyanate compound and a curing agent is used for forming the layer of a hydrophilic polyurethane resin.
  • coating agent compositions Proposed as such coating agent compositions are: a coating agent composition forming a coating film or film which retains the flexibility and elongation of hydrophilic polyurethane resins in at least some degree and has high mechanical strength (patent document 1); a coating agent composition forming a coating film or film which has high elongation and high moisture permeability (patent document 2); and a coating agent composition which is satisfactory in mechanical properties such as tensile strength and abrasion properties, does not swell in water, and has satisfactory laundering durability (patented document 3).
  • the coating films obtained from the related-art coating agent compositions have a problem that they change in color to yellow by the action of sunlight or NO x because an aromatic polyisocyanate was used as a raw-material isocyanate compound for the isocyanate-group-containing prepolymer, that is, the coating films have poor yellowing resistance (light resistance and NO x resistance).
  • an aliphatic polyisocyanate brings about a low cohesive force, it is difficult to obtain a coating film which retains laundering durability and resistance to sweat deterioration.
  • Resistance to sweat deterioration means resistance to the higher fatty acids, in particular oleic acid, which are a component of human sweat.
  • coating films are desired to suffer neither swelling in nor deterioration by oleic acid and to have sufficient laundering durability. So far, an aromatic polyisocyanate has had to be used as a raw material for the isocyanate-group-containing prepolymer.
  • an organotin compound e.g., dibutyltin dilaurate
  • an organotin compound e.g., dibutyltin dilaurate
  • Patent Document 1 JP-A-62-57467
  • Patent Document 2 JP-A-3-229773
  • Patent Document 3 JP-A-2002-69370
  • the invention provides a coating agent composition for forming a substantially non-porous polyurethane resin coating film or film which has moisture permeability, is excellent in mechanical properties such as tensile strength, elongation, and abrasion resistance, has a low degree of swelling with water, has laundering durability, and has such sweat deterioration resistance that it neither swells nor deteriorates with sweat components, and which retains excellent yellowing resistance over a long period even when exposed to sunlight or NO x and contains no organotin compounds.
  • the coating agent composition of the invention comprises an isocyanate-group-containing prepolymer obtained by reacting a polyol comprising a polyoxyalkylene polyol having 2-4 hydroxyl groups on average, an oxyethylene group content of 85-100% by mass based on all oxyalkylene groups (100% by mass), and an arithmetic-average molecular weight of 800-2,500 with an isocyanate compound comprising an alicyclic isocyanate and/or an aliphatic isocyanate in the presence of an organic acid bismuth salt catalyst, the isocyanate compound being used in such an amount as to result in an isocyanate index of 150-300.
  • the polyoxyalkylene polyol preferably is a polyoxyethylene polyol having 2-4 hydroxyl groups on average and/or a polyoxyethylene-polyoxypropylene polyol having 2-4 hydroxyl groups on average.
  • the isocyanate compound preferably is isophorone diisocyanate.
  • the organic acid bismuth salt catalyst preferably is a bismuth salt of an aliphatic carboxylic acid having 6-20 carbon atoms.
  • the amount of the organic acid bismuth salt catalyst be 5-100 ppm relative to the total amount of all polyols and the isocyanate compound.
  • the invention further provides an article having a coating film obtained from the coating agent composition of the invention.
  • the invention furthermore provides a film obtained from the coating agent composition of the invention.
  • a coating film or film which is excellent in mechanical properties such as tensile strength, elongation, and abrasion resistance while retaining sufficient moisture permeability, has a low degree of swelling with water, has laundering durability, and has such sweat deterioration resistance that it neither swells nor deteriorates with sweat components, and which retains excellent yellowing resistance over a long period even when exposed to sunlight or NO x and contains no organotin compounds.
  • the article having a coating film obtained from the coating agent composition of the invention has advantages that the coating film is excellent in mechanical properties and yellowing resistance while retaining sufficient moisture permeability, has laundering durability and resistance to sweat deterioration, and contains no organotin compounds.
  • the film of the invention is excellent in mechanical properties and yellowing resistance while retaining sufficient moisture permeability, has laundering durability and resistance to sweat deterioration, and contains no organotin compounds.
  • the coating agent composition of the invention comprises an isocyanate-group-containing prepolymer obtained by reacting a polyol comprising a polyoxyalkylene polyol with an isocyanate compound in the presence of a urethane formation catalyst. It is a coating agent composition for forming a hydrophilic polyurethane resin coating film or film which has moisture permeability and is substantially non-porous.
  • the polyoxyalkylene polyol to be used in the invention preferably is one obtained by the ring-opening addition polymerization of an alkylene oxide in the presence of a ring-opening addition polymerization catalyst and an initiator.
  • the initiator preferably is a compound which has functional groups capable of adding alkylene oxides, such as hydroxyl, amino, imino, and carboxyl groups, and in which the functional groups have 2-8, especially 2-4 active hydrogen atoms.
  • the initiator include polyhydric alcohols, alkanolamines, and polyamines.
  • polyhydric alcohols such as ethylene glycol, propylene glycol, glycerol, trimethylolpropane, 1,2,6-hexanetriol, pentaerythritol, diglycerol, dextrose, and sucrose; alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine; polyamines such as ethylenediamine and propylenediamine; and alkylene oxide adducts of these.
  • Preferred initiators are di- to tetrahydric alcohols.
  • ethylene glycol, propylene glycol, glycerol, pentaerythritol, and trimethylolpropane One initiator may be used alone, or two or more initiators may be used in combination.
  • alkylene oxides examples include ethylene oxide, propylene oxide, 1,2-butylene oxide, and 2,3-butylene oxide. It is especially preferred to use ethylene oxide alone or a combination of ethylene oxide and propylene oxide as the alkylene oxide(s).
  • ring-opening addition polymerization catalyst examples include alkali metal compound catalysts and composite metal cyanide complex catalysts.
  • the polyoxyalkylene polyol may be one which comprises an initiator and ethylene oxide, propylene oxide, etc. bonded thereto in block arrangement by ring-opening addition polymerization or bonded thereto in random arrangement by ring-opening addition polymerization, or may be one comprising the two.
  • the polyoxyalkylene polyol preferably is a polyoxyethylene polyol or a polyoxyethylene-polyoxypropylene polyol or a mixture of these.
  • the oxyethylene group content of the polyoxyalkylene polyol is 85-100% by mass based on all oxyalkylene groups (100% by mass).
  • oxyalkylene groups means the groups formed by the ring-opening addition polymerization of an alkylene oxide.
  • an alkylene oxide adduct of a polyhydric alcohol or the like was used as an initiator to polymerize an alkylene oxide by ring-opening addition polymerization, the oxyalkylene groups in the initiator are also included.
  • a polyoxyalkylene polyol having an oxyethylene group content of 85% by mass or higher in combination with an isocyanate compound comprising an alicyclic isocyanate and/or an aliphatic isocyanate enables the coating film to be equal in laundering durability and resistance to sweat deterioration to the coating films obtained from related-art coating agent compositions prepared using an aromatic isocyanate as a raw-material isocyanate compound.
  • the arithmetic-average molecular weight of the polyoxyalkylene polyol is 800-2,500.
  • One polyoxyalkylene polyol alone or a mixture of two or more polyoxyalkylene polyols may be used.
  • the term “arithmetic-average molecular weight” in the invention means the hydroxyl-value-converted molecular weight itself calculated using the following equation from a hydroxyl value determined in accordance with JIS K 1557.
  • the arithmetic-average molecular weight thereof is calculated from the hydroxyl-value-converted molecular weights of the respective polyoxyalkylene polyols calculated using the following equation and from the molar fractions thereof.
  • a coating film is obtained which has sufficient moisture permeability and gives a soft feeling without having an increased modulus.
  • a coating film is obtained which has a reduced degree of swelling with water to thereby has satisfactory laundering durability and which is reduced in the property of swelling with oleic acid and thereby has satisfactory resistance to sweat deterioration.
  • the hydroxyl-value-converted molecular weight of each polyoxyalkylene polyol is preferably 500-5,000, especially preferably 800-4,000.
  • the polyoxyalkylene polyol has 2-4, preferably 2.3-3 hydroxyl groups on average.
  • a coating film is obtained which has sufficient properties concerning mechanical properties, resistance to sweat deterioration, and laundering durability.
  • a coating film is obtained which has sufficient moisture permeability and gives a soft feeling without having an increased modulus.
  • the composition containing this polyoxyalkylene polyol shows reduced reactivity, is less apt to foam, and gives a satisfactory coating film.
  • the number of hydroxyl groups in each polyoxyalkylene polyol is equal to the number of active hydrogen atoms in the initiator used in producing the polyoxyalkylene polyol.
  • this mixture preferably is a mixture of from 20% by mole to less than 100% by mole polyoxyalkylene polyol having 2-4 (more preferably 2-3) hydroxyl groups and a hydroxyl-value-converted molecular weight of from 500 to less than 2,000 and from more than 0% by mole to 80% by mole polyoxyalkylene polyol having 2-4 (more preferably 2-3) hydroxyl groups and a hydroxyl-value-converted molecular weight of from 2,000 to 5,000.
  • Especially preferred is a mixture of 50-90% by mole the former and 10-50% by mole the latter. It is also preferred that at least either has three hydroxyl groups.
  • a mixture of a polyoxyalkylene polyol having two hydroxyl groups and a hydroxyl-value-converted molecular weight of 800-2,500 and a polyoxyalkylene polyol having three hydroxyl groups and a hydroxyl-value-converted molecular weight of 800-2,500 is preferred.
  • a mixture of from more than 0% by mole to 80% by mole the former and from 20% by mole to less than 100% by mole the latter is preferred.
  • Polyols other than polyoxyalkylene polyols may also be used in the invention.
  • the other polyols include polyhydric alcohols.
  • the polyhydric alcohols include dihydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, and 1,6-hexanediol.
  • the proportion of the polyoxyalkylene polyol in all polyols (100% by mass) is preferably 80% by mass or higher, more preferably 90% by mass or higher, especially preferably substantially 100% by mass.
  • the isocyanate compound in the invention comprises an alicyclic isocyanate and/or an aliphatic isocyanate.
  • an alicyclic isocyanate and/or an aliphatic isocyanate By using an alicyclic isocyanate and/or an aliphatic isocyanate, a coating film having excellent yellowing resistance is obtained.
  • alicyclic isocyanate examples include isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 2,5-norbornane diisocyanate, 2,6-norbornane diisocyanate, and a mixture of 2,5-norbornane diisocyanate and 2,6-norbornane diisocyanate.
  • aliphatic isocyanate examples include 1,6-hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate.
  • the isocyanate compound preferably is an alicyclic isocyanate because this isocyanate is excellent in yellowing resistance, mechanical properties, and laundering durability and is inexpensive. Isophorone diisocyanate is especially preferred.
  • an organic acid bismuth salt catalyst which less exerts an influence on the environment.
  • An organic acid bismuth salt catalyst is preferred also because it accelerates urethane formation reactions even when used in a relatively small amount and imparts stable reactivity.
  • Examples of the organic acid bismuth salt catalyst include bismuth salts of aliphatic carboxylic acids having 6-20 carbon atoms and bismuth salts of resin acids having 6-20 carbon atoms.
  • Examples of the resin acid bismuth salts include bismuth salts of alicyclic carboxylic acids having 6-20 carbon atoms, such as abietic acid, neoabietic acid, d-pimaric acid, iso-d-pimaric acid, and podocarpic acid; and bismuth salts of aromatic carboxylic acids having 6-20 carbon atoms, such as benzoic acid, cinnamic acid, and p-hydroxycinnamic acid.
  • Examples of the bismuth salts of aliphatic carboxylic acids having 6-20 carbon atoms include the bismuth salts of aliphatic monocarboxylic acids having 6-20 carbon atoms, such as octylic acid, neodecanoic acid, and neododecanoic acid.
  • the organic acid bismuth salt catalyst preferably is a bismuth salt of an aliphatic carboxylic acid having 6-20 carbon atoms because this salt has high reactivity and a small temperature dependence.
  • the bismuth salt of octylic acid is especially preferred.
  • the amount of the organic acid bismuth salt catalyst to be added is preferably 5-100 ppm, especially preferably 10-50 ppm, relative to the total amount of all polyols and the isocyanate compound.
  • the isocyanate-group-containing prepolymer is one obtained by reacting a polyol comprising the polyoxyalkylene polyol with the isocyanate compound in the presence of a urethane formation catalyst.
  • the reaction temperature is preferably 40-150° C.
  • the polyols comprising the polyoxyalkylene polyol and the isocyanate compound are used in such a proportion as to result in an isocyanate index of 150-300, preferably 160-290.
  • an isocyanate index of 150-300, preferably 160-290.
  • a coating film having sufficient resistance to sweat deterioration and sufficient laundering durability is obtained.
  • a coating film is obtained which has sufficient moisture permeability and gives a soft feeling without having an increased modulus.
  • Isocyanate index is a value which is 100 times the proportion of the equivalent amount of isocyanate group of the isocyanate compound to the equivalent amount of hydroxyl group of all polyols.
  • a curing agent may be used in order to cure the isocyanate-group-containing prepolymer.
  • the coating agent composition of the invention may be a two-ingredient system composed of a main ingredient comprising the isocyanate-group-containing prepolymer and a curing agent ingredient.
  • the curing agent examples include compounds having two or more active-hydrogen-containing functional groups.
  • Preferred are polyols, alkanolamines, and polyamines each having a relatively low molecular weight.
  • a diol or diamine having a molecular weight of 400 or lower.
  • the molecular weight of the diol or diamine is more preferably 300 or lower, especially preferably 200 or lower.
  • the curing agent examples include dihydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, and 1,6-hexanediol; and polyamines such as ethylenediamine, 1,2-propylenediamine, 1,3-propylenediamine, 1,4-tetramethylenediamine, 1,6-hexamethylenediamine, isophoronediamine, 4,4′-cyclohexanediamine, and N-methyldiethanolamine.
  • dihydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanedio
  • the curing agent is used preferably in such an amount that the amount of the active-hydrogen-containing functional groups of the curing agent is 0.6-1.6 mol per mol of the isocyanate groups of the isocyanate-group-containing prepolymer, especially preferably in such an amount that the amount of the active-hydrogen-containing functional groups of the curing agent is 0.8-1.4 mol.
  • the coating agent composition of the invention may be cured with the moisture in air, polyamine vapor, etc. in place of a curing agent.
  • an amine catalyst e.g., triethylamine, triethylenediamine, or 2,2′-dimorpholinodiethyl ether
  • an amine catalyst e.g., triethylamine, triethylenediamine, or 2,2′-dimorpholinodiethyl ether
  • ingredients such as an antioxidant, light stabilizer, ultraviolet absorber, flame retardant, filler, colorant, and plasticizer may be incorporated into the coating agent composition of the invention according to need.
  • the article of the invention is one which has a coating film obtained from the coating agent composition of the invention. Specifically, it may be an article having a coating film formed by applying the coating agent composition of the invention to a porous base, e.g., a fabric, and curing the composition. Examples of the article of the invention include sports garments, tents, and industrial materials each having moisture permeability.
  • the film of the invention is one obtained from the coating agent composition of the invention. Specifically, it may be a film obtained by applying the coating agent composition of the invention to a releasing substrate, curing the composition to form a coating film, and stripping the coating film from the releasing substrate.
  • the coating film or film obtained is to be used as a water-impermeable and moisture-permeable material, it preferably is substantially non-porous. Consequently, it is preferred that a curing method for forming a porous film, e.g., the wet coagulation method, should not be employed.
  • the coating film or film obtained may be in the form of a foam having cells. Namely, it may be a coating film or film in the form of a foam which is substantially air-impermeable. It is, however, preferred that the coating film or film obtained from the coating agent composition of the invention be a coating film or film which is substantially non-cellular, i.e., substantially solid.
  • the coating agent composition of the invention comprises an isocyanate-group-containing prepolymer obtained using an alicyclic isocyanate and/or an aliphatic isocyanate as an isocyanate compound. Because of this, it is superior in the yellowing resistance of coating films to the related-art coating agent compositions comprising an isocyanate-group-containing prepolymer obtained using an aromatic isocyanate.
  • the coating film obtained has reduced laundering durability and reduced resistance to sweat deterioration.
  • the coating agent composition of the invention gives a coating film retaining sufficient laundering durability and sufficient resistance to sweat deterioration, because it comprises an isocyanate-group-containing prepolymer obtained using a polyol comprising a polyoxyalkylene polyol having 2-4 hydroxyl groups on average, an oxyethylene group content of 85-100% by mass based on all oxyalkylene groups (100% by mass), and an arithmetic-average molecular weight of 800-2,500.
  • the isocyanate-group-containing prepolymer obtained generally has an increased viscosity and, hence, the resultant coating agent composition may solidify or be difficult to apply.
  • the coating film obtained therefrom has reduced mechanical properties and reduced permeability (see, for example, the Comparative Examples 2 and 3 in patent document 1).
  • the isocyanate-group-containing prepolymer obtained is inhibited from having an increased viscosity because an alicyclic isocyanate and/or an aliphatic isocyanate was used as an isocyanate compound.
  • the coating film obtained from this coating agent composition which comprises the isocyanate-group-containing prepolymer obtained from a polyol comprising a polyoxyalkylene polyol having an oxyethylene group content of 85% by mass or higher and an alicyclic isocyanate and/or aliphatic isocyanate, has moisture permeability and excellent mechanical properties.
  • the coating agent composition of the invention comprises the isocyanate-group-containing prepolymer obtained by reacting the polyols with the isocyanate compound in the presence of an organic acid bismuth salt catalyst, a coating film or film which contains no organotin compounds is obtained therefrom.
  • This coating film or film less influences the environment.
  • IPDI Isophorone diisocyanate (Desmodur I, manufactured by Sumika Bayer Urethane Co., Ltd.).
  • MDI 4,4′-Diphenylmethane diisocyanate (Millionate MT, manufactured by Nippon Polyurethane Industry Co., Ltd.).
  • T-1000-100 A polyoxyalkylene triol obtained by the ring-opening addition polymerization of ethylene oxide using a potassium hydroxide catalyst in the presence of glycerol as an initiator, the polyoxyalkylene triol having a hydroxyl value of 166 mg-KOH/g (hydroxyl-value-converted molecular weight, 1,014), three hydroxyl groups, and an oxyethylene group content of 100% by mass based on all oxyalkylene groups.
  • T-3500-80 A polyoxyalkylene triol obtained by the ring-opening addition polymerization of a mixture of ethylene oxide and propylene oxide (mass ratio, 80:20) using a potassium hydroxide catalyst in the presence of glycerol as an initiator, the polyoxyalkylene triol having a hydroxyl value of 47.0 mg-KOH/g (hydroxyl-value-converted molecular weight, 3,581), three hydroxyl groups, and an oxyethylene group content of 80% by mass based on all oxyalkylene groups.
  • D-2000-80 A polyoxyalkylene diol obtained by the ring-opening addition polymerization of a mixture of ethylene oxide and propylene oxide (mass ratio, 80:20) using a potassium hydroxide catalyst in the presence of propylene glycol as an initiator, the polyoxyalkylene diol having a hydroxyl value of 56.3 mg-KOH/g (hydroxyl-value-converted molecular weight, 1,993), two hydroxyl groups, and an oxyethylene group content of 80% by mass based on all oxyalkylene groups.
  • D-1000-100 PEG #1000U, manufactured by NOF Corporation; a polyoxyalkylene diol having a hydroxyl value of 113 mg-KOH/g (hydroxyl-value-converted molecular weight, 993), two hydroxyl groups, and an oxyethylene group content of 100% by mass based on all oxyalkylene groups.
  • An isocyanate-group-containing prepolymer was obtained in the same manner as in Example 1, except that the mixing ratio of T-1000-100 and T-3500-80 and the isocyanate index were changed to the values shown in Table 1.
  • An isocyanate-group-containing prepolymer was obtained in the same manner as in Example 1, except that the mixing ratio of T-1000-100 and T-3500-80 and the isocyanate index were changed to the values shown in Table 1.
  • An isocyanate-group-containing prepolymer was obtained in the same manner as in Example 1, except that T-1000-100 was used as the only polyol in the amount shown in Table 1 and the isocyanate index was changed to the value shown in Table 1.
  • An isocyanate-group-containing prepolymer was obtained in the same manner as in Example 1, except that T-1000-100 and D-1000-100 were used as polyols in the amounts shown in Table 1 (the mixture had 2.3 hydroxyl groups on average) and the isocyanate index was changed to the value shown in Table 1.
  • An isocyanate-group-containing prepolymer was obtained in the same manner as in Example 1, except that IPDI was replaced with MDI and that the mixing ratio of the polyols was changed as shown in Table 2 so that the arithmetic-average molecular weight of the polyols became 1,500.
  • An isocyanate-group-containing prepolymer was obtained in the same manner as in Example 1, except that, while referring to patent document 1, IPDI was replaced with MDI, T-3500-80 and D-2000-80 were used as polyols in the amounts shown in Table 2, and the isocyanate index was changed to the value shown in Table 2.
  • An isocyanate-group-containing prepolymer was obtained in the same manner as in Example 1, except that IPDI was replaced with MDI, T-3500-80 was used as a polyol in the amount shown in Table 2, and the isocyanate index was changed to the value shown in Table 2, as in the Example 3 given in patent document 3.
  • An isocyanate-group-containing prepolymer was obtained in the same manner as in Example 1, except that the mixing ratio of T-1000-100 to T-3500-80 and the isocyanate index were changed to the values shown in Table 2.
  • the isocyanate group contents (% by mass) of the isocyanate-group-containing prepolymers obtained in the Examples and Comparative Examples were determined in accordance with JIS K 7301. Furthermore, the viscosities (mPa ⁇ s) at 25° C. of the isocyanate-group-containing prepolymers were measured with viscometer Type RE80, manufactured by Toki Sangyo Co., Ltd., in accordance with JIS K 1603. The results are shown in Table 1 and Table 2.
  • the isocyanate-group-containing prepolymers of Examples 1 to 5 and Comparative Examples 1 to 4 were cured with moisture to obtain molded sheets.
  • IPDI in which IPDI had been used as the isocyanate compound, 2,2′-dimorpholinodiethyl ether was added in an amount of 0.5% by mass in order to accelerate the moisture-curing reaction.
  • Each isocyanate-group-containing prepolymer was applied onto a biaxially oriented polypropylene film and then allowed to stand for 5 days in a 20° C. atmosphere having a relative humidity of 60% to obtain a film having a thickness of 50 ⁇ m. Furthermore, films having a thickness of 100 ⁇ m were obtained in the same manner.
  • the films having a thickness of 100 ⁇ m were used for the evaluations other than moisture permeability evaluation. With respect to moisture permeability, the films having a thickness of 100 ⁇ m were used for comparing the Examples and Comparative Examples. With respect to part of the Examples and Comparative Examples, the films having a thickness of 50 ⁇ m also were examined for moisture permeability; that film thickness is close to practical use.
  • the elongation (%), tensile strength (MPa), and 100% modulus M100 (MPa) of each film were determined in accordance with JIS K 7311.
  • Moisture permeability (g/m 2 ⁇ 24 hr) was measured by method B-2 as provided for in JIS L 1099.
  • the measured value of moisture permeability was converted to moisture permeability per 24 hours.
  • a disk having a diameter of 35 mm was cut out of each film, immersed in 80° C. oleic acid for 150 hours, and then examined for mass.
  • Examples 1 to 5 were satisfactory in all of moisture permeability, tensile properties, degree of swelling with water, degree of swelling with oleic acid, light resistance, and NO x resistance.
  • Comparative Example 1 in which MDI had been used in place of the isocyanate compound used in Example 1, had exceedingly poor moisture permeability and was poor also in light resistance and NO x resistance.
  • Comparative Example 2 and Comparative Example 3 which correspond to the coating agent compositions described in patent document 1 and patent document 3, are poor in light resistance and NO x resistance although they satisfy moisture permeability, tensile properties, and degree of swelling with water.
  • Comparative Example 4 is poor in degree of swelling with oleic acid.
  • the coating agent composition of the invention can form a coating film or film which has excellent mechanical properties while retaining sufficient moisture permeability, has laundering durability and resistance to sweat deterioration, has excellent yellowing resistance, and contains no organotin compounds. It is exceedingly useful as a moisture-permeable coating not only for sports garments but for tents, industrial materials, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
US11/777,532 2005-01-13 2007-07-13 Coating agent composition and use thereof Abandoned US20070287823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/337,286 US8841402B2 (en) 2005-01-13 2008-12-17 Coating agent composition and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPP.2005-006196 2005-01-13
JP2005006196 2005-01-13
JPPCT/JP06/00386 2006-01-13

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
JPPCT/JP06/00386 Continuation 2005-01-13 2006-01-13
PCT/JP2006/300386 Continuation WO2006075710A1 (ja) 2005-01-13 2006-01-13 コーティング剤組成物およびその用途

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/337,286 Division US8841402B2 (en) 2005-01-13 2008-12-17 Coating agent composition and use thereof
US12/337,286 Continuation US8841402B2 (en) 2005-01-13 2008-12-17 Coating agent composition and use thereof

Publications (1)

Publication Number Publication Date
US20070287823A1 true US20070287823A1 (en) 2007-12-13

Family

ID=36677733

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/777,532 Abandoned US20070287823A1 (en) 2005-01-13 2007-07-13 Coating agent composition and use thereof
US12/337,286 Expired - Fee Related US8841402B2 (en) 2005-01-13 2008-12-17 Coating agent composition and use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/337,286 Expired - Fee Related US8841402B2 (en) 2005-01-13 2008-12-17 Coating agent composition and use thereof

Country Status (7)

Country Link
US (2) US20070287823A1 (ko)
EP (1) EP1837382B1 (ko)
JP (1) JP5176324B2 (ko)
KR (1) KR101259193B1 (ko)
CN (1) CN101103084B (ko)
TW (1) TW200641074A (ko)
WO (1) WO2006075710A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922572A (zh) * 2015-08-11 2018-04-17 巴斯夫涂料有限公司 基于Bi催化剂和芳族羧酸的涂覆剂体系
US10294390B2 (en) 2012-06-26 2019-05-21 AGC Inc. Coating agent, and coating layer and film using same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2660877B1 (en) 2008-07-09 2018-09-05 Borealis AG Photovoltaic module comprising insulation layer with silane groups
KR102089650B1 (ko) 2012-11-19 2020-03-16 옴니셀 인코포레이티드 다수의 rfid 리더를 이용한 저장 캐비넷
JP6316138B2 (ja) * 2013-08-08 2018-04-25 積水化学工業株式会社 難燃性塗料組成物
CN103694881A (zh) * 2013-11-27 2014-04-02 青岛海洋先进材料工程技术中心有限公司 一种单组份潮气固化的脂肪族聚氨酯涂料及其制备方法
RU2536690C1 (ru) * 2013-12-23 2014-12-27 Владимир Павлович Лобко Защитный состав для покрытия и пропитки поверхностей бетонных, металлических, деревянных, пластмассовых и стеклянных конструкционных материалов
CN107810243B (zh) * 2015-06-15 2020-04-10 巴斯夫涂料有限公司 聚氨酯涂覆试剂组合物及其用于制备多层涂漆体系的用途
CN105670492A (zh) * 2016-03-18 2016-06-15 湖州国信物资有限公司 一种防汗型水性聚氨酯复合涂料及其制备方法
RU2690116C1 (ru) * 2018-12-10 2019-05-30 федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ") Полиуретановая защитная композиция

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945149A (en) * 1985-09-06 1990-07-31 Asahi Glass Company Ltd. Coating composition a non-porous moisture-permeable coating layer or film of a hydrophilic polyurethane resin
US5075408A (en) * 1987-09-02 1991-12-24 Toyo Tire & Rubber Co., Ltd. Polyurethane polymers
US5239037A (en) * 1992-07-16 1993-08-24 Surface Coatings, Inc. Waterproof breathable polyurethane membranes and porous substrates protected therewith
US5238732A (en) * 1992-07-16 1993-08-24 Surface Coatings, Inc. Waterproof breathable polyurethane membranes and porous substrates protected therewith
US5239036A (en) * 1992-07-16 1993-08-24 Surface Coatings, Inc. Waterproof breathable polyurethane membranes and porous substrates protected therewith
US6057416A (en) * 1993-04-22 2000-05-02 Bayer Corporation Catalyst package for use in RIM systems containing acidic additives
US6720401B2 (en) * 2000-06-12 2004-04-13 Asahi Glass Company, Limited Coating composition
US20040147626A1 (en) * 2003-01-29 2004-07-29 Hohl Peter Charles Low acid organometallic catalyst for the production of flexible, semi-flexible and rigid polyurethane foams

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228210A (ja) * 1988-04-26 1990-01-30 Asahi Glass Co Ltd プレポリマー組成物,その製造方法,およびその用途
EP0339435B1 (en) * 1988-04-26 1993-08-18 Asahi Glass Company Ltd. Prepolymer composition, process for its production, and its use
JP2954631B2 (ja) * 1990-02-05 1999-09-27 旭硝子株式会社 コーティング剤組成物
JP3109528B2 (ja) * 1991-02-27 2000-11-20 大日本インキ化学工業株式会社 防水布
US5869593A (en) * 1991-07-01 1999-02-09 H. B. Fuller Licensing & Financing, Inc. High moisture vapor transmission hot melt moisture cure polyurethane adhesive
US5698656A (en) * 1994-12-07 1997-12-16 The Yokohama Rubber Co., Ltd. Moisture-curing urethane adhesive composition
JPH08253547A (ja) * 1995-03-16 1996-10-01 Asahi Glass Co Ltd ポリウレタン溶液組成物
JPH11222513A (ja) * 1998-02-05 1999-08-17 Seikoh Chem Co Ltd 親水性ポリウレタン樹脂とそれを用いた記録体用組成物
JPH11228653A (ja) * 1998-02-18 1999-08-24 Nippon Polyurethane Ind Co Ltd 水系ポリイソシアネート組成物並びにこれを用いた水系塗料及び接着剤
JP3410378B2 (ja) * 1999-01-29 2003-05-26 三洋化成工業株式会社 布帛用無孔質膜型透湿防水性コーティング剤および透湿防水布帛
DE10312063A1 (de) * 2003-03-18 2004-10-07 Otto Bock Schaumsysteme Gmbh Polyurethanmasse für die Herstellung von Folien
JP4283577B2 (ja) * 2003-03-28 2009-06-24 日華化学株式会社 無孔質膜型透湿性防水布帛、該無孔質膜型透湿性防水布帛用の水性ポリウレタン樹脂組成物並びに該組成物を含有するコーティング剤
JP3987003B2 (ja) * 2003-05-20 2007-10-03 オート化学工業株式会社 一液湿気硬化型の硬化性組成物及びシーリング材組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945149A (en) * 1985-09-06 1990-07-31 Asahi Glass Company Ltd. Coating composition a non-porous moisture-permeable coating layer or film of a hydrophilic polyurethane resin
US5075408A (en) * 1987-09-02 1991-12-24 Toyo Tire & Rubber Co., Ltd. Polyurethane polymers
US5239037A (en) * 1992-07-16 1993-08-24 Surface Coatings, Inc. Waterproof breathable polyurethane membranes and porous substrates protected therewith
US5238732A (en) * 1992-07-16 1993-08-24 Surface Coatings, Inc. Waterproof breathable polyurethane membranes and porous substrates protected therewith
US5239036A (en) * 1992-07-16 1993-08-24 Surface Coatings, Inc. Waterproof breathable polyurethane membranes and porous substrates protected therewith
US6057416A (en) * 1993-04-22 2000-05-02 Bayer Corporation Catalyst package for use in RIM systems containing acidic additives
US6720401B2 (en) * 2000-06-12 2004-04-13 Asahi Glass Company, Limited Coating composition
US20040147626A1 (en) * 2003-01-29 2004-07-29 Hohl Peter Charles Low acid organometallic catalyst for the production of flexible, semi-flexible and rigid polyurethane foams

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294390B2 (en) 2012-06-26 2019-05-21 AGC Inc. Coating agent, and coating layer and film using same
CN107922572A (zh) * 2015-08-11 2018-04-17 巴斯夫涂料有限公司 基于Bi催化剂和芳族羧酸的涂覆剂体系
US20180230329A1 (en) * 2015-08-11 2018-08-16 Basf Coatings Gmbh Coating agent system based on bi-catalysts and aromatic carboxylic acids

Also Published As

Publication number Publication date
US20090104451A1 (en) 2009-04-23
EP1837382B1 (en) 2014-07-16
TW200641074A (en) 2006-12-01
KR101259193B1 (ko) 2013-04-29
EP1837382A4 (en) 2013-04-03
JPWO2006075710A1 (ja) 2008-06-12
KR20070094914A (ko) 2007-09-27
EP1837382A1 (en) 2007-09-26
US8841402B2 (en) 2014-09-23
CN101103084A (zh) 2008-01-09
WO2006075710A1 (ja) 2006-07-20
CN101103084B (zh) 2010-09-29
JP5176324B2 (ja) 2013-04-03

Similar Documents

Publication Publication Date Title
US8841402B2 (en) Coating agent composition and use thereof
US7691940B2 (en) Aqueous polyurethane resin and method for producing aqueous polyurethane resin and film
US10882943B2 (en) Polyurethane
EP1937743B1 (en) Thermoplastic polyurethane containing structural units of polyester and polyether diols
US20060100411A1 (en) Organometallic-free polyurethanes having low extractables
TW200418895A (en) Polyurethane dispersion and articles prepared therefrom
US20080097068A1 (en) Isocyanate-Terminated Prepolymer Composition and a Polyurethane or Polyurea Elastomer Produced Therefrom
JP5877131B2 (ja) ポリウレタン樹脂形成性組成物及びポリウレタン樹脂
KR20200128396A (ko) 열가소성 폴리우레탄 조성물
JP5891126B2 (ja) 吹き付け塗装用のポリウレタン樹脂形成性組成物及びポリウレタン樹脂
WO2014150714A1 (en) Process for the production of spray polyurethane elastomers and the elastomers produced by this process
JP5938283B2 (ja) ポリオール組成物、ポリウレタン樹脂形成性組成物及びポリウレタン樹脂
KR20210014836A (ko) 이소시아네이트 프리폴리머, 습기 경화형 폴리우레탄 및 이를 포함하는 친환경 접착제 조성물
KR20210019036A (ko) 이소시아네이트 프리폴리머, 습기 경화형 폴리우레탄 및 이를 포함하는 친환경 접착제 조성물
JP2023146310A (ja) 2液硬化型ポリウレア樹脂組成物
US20150112010A1 (en) Sealant compositions with a polyurethane dispersion and a hydroxy-functional compound
JP2021155564A (ja) 2液硬化型接着剤組成物
EP4206399A1 (en) Polyurethane resin, synthetic leather, and ink
WO2007092572A2 (en) Moisture cure adhesive for bonding structural wood

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASAHI GLASS COMPANY, LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WADA, HIROSHI;OHORI, TOMEYOSHI;REEL/FRAME:019743/0443

Effective date: 20070723

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION