US20070282522A1 - Portable navigation device - Google Patents

Portable navigation device Download PDF

Info

Publication number
US20070282522A1
US20070282522A1 US11/712,564 US71256407A US2007282522A1 US 20070282522 A1 US20070282522 A1 US 20070282522A1 US 71256407 A US71256407 A US 71256407A US 2007282522 A1 US2007282522 A1 US 2007282522A1
Authority
US
United States
Prior art keywords
navigation device
display
ambient lighting
signal
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/712,564
Inventor
Pieter Geelen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TomTom International BV
Original Assignee
TomTom International BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0604710A external-priority patent/GB0604710D0/en
Priority claimed from GB0604708A external-priority patent/GB0604708D0/en
Priority claimed from GB0604706A external-priority patent/GB0604706D0/en
Priority claimed from GB0604704A external-priority patent/GB0604704D0/en
Priority claimed from GB0604709A external-priority patent/GB0604709D0/en
Application filed by TomTom International BV filed Critical TomTom International BV
Assigned to TOMTOM INTERNATIONAL BV reassignment TOMTOM INTERNATIONAL BV ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GEELEN, PLETER
Publication of US20070282522A1 publication Critical patent/US20070282522A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • G01C21/367Details, e.g. road map scale, orientation, zooming, illumination, level of detail, scrolling of road map or positioning of current position marker
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/448Execution paradigms, e.g. implementations of programming paradigms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/08Payment architectures
    • G06Q20/10Payment architectures specially adapted for electronic funds transfer [EFT] systems; specially adapted for home banking systems
    • G06Q20/102Bill distribution or payments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids
    • G09B29/102Map spot or coordinate position indicators; Map reading aids using electrical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/62Establishing a time schedule for servicing the requests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level

Definitions

  • the present invention relates to a portable navigation device, including functionality for automatically adjusting display settings to suit various ambient lighting conditions.
  • GPS based navigation devices are well known and are widely employed as in-car navigation devices. Reference may be made to devices that integrate a GPS receiver into a computing device programmed with a map database and that can generate navigation instructions on a display, such as the TOMTOM GO device. These portable, integrated devices are often mounted on or in the dashboard of a vehicle using a suction mount or a docking mechanism.
  • the term ‘navigation device’ refers to a device that enables a user to navigate to a pre-defined destination.
  • the device may have an internal system for receiving location data, such as a GPS receiver, or may merely be connectable to a receiver that can receive location data.
  • the device may compute a route itself, or communicate with a remote server that computes the route and provides navigation information to the device, or a hybrid device in which the device itself and a remote server both play a role in the route computation process.
  • Portable GPS navigation devices are not permanently integrated into a vehicle but instead are devices that can readily be mounted in or docked or otherwise used inside a vehicle. Generally (but not necessarily), they are fully self-contained—i.e. include an internal GPS antenna, navigation software and maps and can hence plot and display a route to be taken.
  • the software can determine at regular intervals the position of the navigation device or PDA (typically mounted on the dashboard of a vehicle) and can display the current position of the vehicle on a map and display (and speak) appropriate navigation instructions (e.g. ‘turn left in 100 m’) on the screen.
  • PDA typically mounted on the dashboard of a vehicle
  • appropriate navigation instructions e.g. ‘turn left in 100 m’
  • Graphics depicting the actions to be accomplished can be displayed in a status bar and also be superimposed over the applicable junctions/turnings etc in the roads shown in the map itself.
  • the display of the navigation device may consist of a liquid crystal display LCD for showing user location on a map and any information related to surroundings and a planned route.
  • One example is the SAMSUNG LTE400WQ-E01 active matrix LCD module with integrated touch panel and backlight.
  • the set of colors for displaying a map or showing menu items on the screen of the navigation device might be pre-defined and various sets of colors might be stored as color schemes.
  • the user may also control the backlight level of the display, which might range from full backlight level to switching off backlight completely.
  • One common approach is for a user to manually change the brightness settings of the display when ambient lights change, e.g. to increase brightness when using the navigation device or PDA under direct sunlight or decrease background illumination in low light situations, e.g. during the night or when driving in a tunnel.
  • the default brightness setting might not be appropriate because the display might be either too dark or too bright for the given lighting conditions.
  • Lower backlight levels might also be desired for lower power consumption and an extended battery life.
  • a navigation device or PDA it is also possible to configure a navigation device or PDA to use pre-defined color schemes for menus, maps and navigation screens. Some color schemes utilize colors with high contrast that remain visible even under direct sunlight, other color schemes are suitable for color-blind persons, and it is also known to utilize color schemes that are more suited for low light environments or when using the navigation device or PDA during the night.
  • the present invention provides means for changing display settings to suit current ambient light levels and for providing user selectable preferences for automatic adjustment of display settings when ambient light levels change.
  • the invention is a navigation device comprising a processor arranged to monitor signals indicative of ambient lighting conditions and to select display settings allocated to current ambient lighting conditions.
  • the invention is also a method for automatically adjusting display settings of a portable navigation device in accordance to current ambient lighting conditions.
  • FIG. 1 is a block diagram depicting elements of a navigation device implementing the present invention
  • FIG. 2 is a screen shot from a navigation device; the screen shot shows a three dimensional like navigation view appropriate for daytime usage and a status bar running along the bottom of the display;
  • FIG. 3 is a screen shot from a navigation device; the screen shot shows a three dimensional like navigation view appropriate for nighttime usage and a status bar running along the bottom of the display;
  • FIG. 4 is a flowchart illustrating an implementation of the invention
  • FIG. 5 is a screen shot from a navigation device, the screen shot shows a preferences screen with buttons for changing map colors and display brightness,
  • FIG. 6 is screen shot from a portable navigation device, the screen shot shows a brightness preferences screen
  • FIG. 7 is a screen shot from a portable navigation device, the screen shot shows a preferences screen with a button to manually switch between day and night views,
  • FIG. 8 is a diagram for transition between day and night views according to one embodiment of the invention.
  • FIG. 9 is a diagram for transition between day and night views according to another embodiment of the invention.
  • FIG. 1 is a block diagram showing various elements of a navigation device according to the invention.
  • the main components of the navigation device are enclosed in a portable housing 1 .
  • the navigation device comprises a memory 10 , the type of which might be internal (such as a hard disk, flash memory, random access memory, read only memory or similar) or removable (such as a memory card, memory stick, compact disc, digital versatile disc or similar).
  • the navigation device may comprise both internal and removable memories at the same time.
  • Location of the navigation device is calculated using position (e.g. GPS) data 9 that is obtained from a GPS receiver 12 .
  • the GPS receiver 12 might be internal or external, connected to the navigation device with wires or wirelessly.
  • the navigation device contains a processor 4 for carrying out navigation related tasks according to programmed instructions and user interaction.
  • the processor 4 communicates with various elements of the navigation device through a data bus 6 .
  • Map data 7 , user data 8 , GPS data 9 can be accessed by the processor 4 through the data bus either directly or through other elements that are outside the scope of the present invention.
  • the navigation device comprises a display 2 showing a map and navigation instructions, and providing user access to various functions of the navigation device via a graphical menu system.
  • the colors and the contents displayed on the screen are controlled by the processor 4 in accordance with the programmed functions, planned route and location of the navigation device.
  • a separate image processor might be utilized for graphical tasks.
  • the display 2 comprises a light source 3 for backlight.
  • the light source 3 might provide different output levels such as light emitting diodes with pulse width modulation.
  • Backlight levels are controlled by the processor 4 or the separate image processor.
  • Color schemes 11 are also stored in the memory 10 or in other dedicated areas of the navigation device.
  • a color scheme might be stored as a plug-in file.
  • a plug-in file is a special piece of software that interacts with a main application, in this case with the main software of the navigation device, for performing a specific task.
  • the plug-in file may implement (e.g. store, retrieve, control) color association and color conversion.
  • the user of the navigation device may control the navigation device using various buttons (not shown) or a tactile user interface such as a touch screen or touch pad or via spoken instructions.
  • a tactile user interface such as a touch screen or touch pad or via spoken instructions.
  • the user may interact with the navigation device using the touch screen display 2 , which is also connected to the data bus 6 .
  • FIG. 2 is a screen shot from a personal navigation device.
  • the screen shot shows a typical three dimensional navigation view 1 and a status bar 2 along the bottom of the screen. Roads, blocks of buildings, parks, and water areas are shown using various colors. The overall appearance is hence similar to a paper map.
  • An arrow 3 indicating the current position of the device is shown in the center of the screen.
  • the navigation view 1 is regularly updated by map scrolling and turning such that the arrow 3 indicating the current position remains in a center area of the screen, pointing upwards.
  • a center area of the screen is located at the lower half of the screen; at equal distance from the left and right edge of the viewable map area.
  • the user of the navigation device follows route 4 in order to reach a desired destination (not shown in the figure).
  • the status bar 2 provides information on the details of the journey in area 7 .
  • the next instruction icon 8 indicates what the next maneuver is that the user should make and how far the current location from the place of the maneuver is, so that the user has enough time to prepare for a next maneuver.
  • the next instruction icon 8 may be accompanied by appropriately timed voice instructions played through a speaker of the navigation device or via external audio playback devices such as headphones or a car audio system.
  • the status bar 2 character types with appropriate size, color, and placement are used over a background of contrasting color to facilitate reading of the contents under most lighting conditions.
  • white fonts are used over a dark blue background.
  • different combinations of colors may be used providing sufficient legibility for the user of the navigation device.
  • Such combination of colors include yellow, white, green, or light grey text over a black, dark grey, brown, or dark blue background.
  • text and background colors might be swapped or inverted.
  • Streets 5 and main roads 10 are drawn using light colors, such as white and yellow, while street names 6 are displayed in black to ensure a sufficient contrast. Further color combinations might be possible, as discussed above.
  • the next action is also marked on the map with an arrow 9 .
  • arrow 9 is drawn in green color that remains visible when superimposed over the streets 5 and main roads 10 . It is also possible to use any other color, which is different than the colors below arrow 9 .
  • a set of colors to be used in navigation view is called a color scheme.
  • a color scheme contains information regarding types of map elements and colors associated with them. Beside map elements, a color scheme might also contain information regarding colors to be used in the status bar 2 and colors to be used for other elements, shown in the navigation view 1 , such as: zoom buttons 11 and 12 ; current position marker 3 ; street names 5 ; water 6 ; arrow 9 for next action; and any other elements on screen, also the ones not shown on FIG. 2 such as tunnels, bridges, highways, pedestrian streets, railways, private roads, service roads, roundabouts, bus lanes, etc.
  • FIG. 3 is a screen shot from a navigation device.
  • the screen shot shows the same three dimensional navigation view 1 and status bar 2 as in FIG. 2 but using a different color scheme that is suited for dark environments, where the harsh, contrasting colors on FIG. 2 might be disturbing for the user of the navigation device.
  • the brightest color is used to indicate the planned route 4
  • the other elements are drawn using relatively dark colors.
  • Some elements such as the river 12 shown in FIG. 2 are almost completely dissolved in the background of the image, and the greens of the park area 13 at the top edge of the screen are completely dark, to represent an almost realistic nighttime view of the environment surrounding the navigation device.
  • the color scheme used in FIG. 3 helps the user of the navigation device identify those elements that are more likely to be relevant during the night. Additionally, there is less variation of colors compared to FIG. 2 , hence street names 6 , route 4 , and information 9 on next action stand out from an almost even colored background consisting of other map elements. Such a color scheme would result in a lower amount of screen flickering and less distraction to a user of the navigation device during the night while it would still allow sufficient visibility as opposed to color schemes with brighter, more varied and more vivid colors. The same or a similar color scheme might be advantageous when the user of the device enters a tunnel or other areas with considerably lower lighting conditions than during normal day use.
  • FIG. 4 is a flowchart illustrating the present invention.
  • the navigation device stores in its memory various data that is required to perform navigation related functions.
  • the data might comprise map data, satellite data, user data, sound and text files, software for navigation and related operations, also configuration files, preference settings and operating system files.
  • the memory can be one of a random access memory, a hard disk, a flash memory, a removable memory card, and any suitable volatile or non-volatile storage means.
  • the processor of the navigation device is connected to the memory and performs various operations as and when they are required based on programmed instructions and/or user interaction.
  • the processor may carry out read and write operations.
  • the processor is able to delete, move and modify data in any manner that is required for the operation of the navigation device.
  • the processor of the navigation device monitors for a signal indicative of ambient lighting conditions.
  • the signal is received from a light sensor mounted on a printed circuit of the navigation device.
  • a light sensor is a photosensitive diode or transistor producing an output signal that is a function of the amount of light impinging the surface of the diode.
  • the relation between the amount of light on the diode and the corresponding output signal is known, it is possible to reliably distinguish between various lighting conditions such as daylight and night or, optionally, to use a finer granularity for further distinguishing between an arbitrary number of transitional lighting conditions between daylight and night.
  • Manufacturers of light sensors publish respective operating characteristics of diodes such as the TOSHIBA TPS851 model, which may be used in this implementation of the invention.
  • the light sensor is coupled externally to the navigation device, and it is also possible that the sensor is only capable of distinguishing between two conditions and providing an output signal indicating one of the two conditions.
  • Other sensors indicative of current lighting conditions might be used, such as a headlight status indicator to give a good estimation that outside light levels have decreased when the vehicle headlights are on.
  • the processor of the navigation device monitors a signal indicative of current lighting conditions.
  • the processors performs an evaluation of the signal and then proceeds to selecting an appropriate display setting that has been allocated for the current lighting condition.
  • the processor proceeds to changing current display settings to the selected display setting after it has determined that the current display setting differs from the setting allocated to the current lighting condition.
  • the allocated display setting might comprise one of the color schemes that has been discussed above, and might also comprise pre-set backlight levels, and optionally showing or hiding details on the screen.
  • a display setting suited for daylight conditions may comprise a screen backlight level set to a maximum value, and a color scheme using realistic day-like colors, and showing map information in a similar fashion than on paper maps.
  • Another display setting for use during the night may comprise a lowered backlight level which can be in the lower half of the backlight range, e.g. set to 15 percent, in combination with the same color scheme as above or another color scheme using colors that are similar to a view of the area surrounding the user at night. It is also possible that the color scheme for nighttime usage employs inverted colors of the color scheme for daytime usage.
  • a night view indicates objects that are not visible during the day, e.g. stars, streetlight, and it is also possible to configure a night view to disable some objects or functions that are more likely to be relevant during the day and enable functions that might be relevant to the user of the navigation device during the night or in dark environments.
  • a day or night view might show different pieces of information, which might include at least one of a star map, points of interests, information on map items or planned route, and menu items.
  • a day or night view might also enable or disable some functions of the navigation device, which might be at least one of a speed limit warning, a driving break warning, and updating of traffic or weather information. Therefore, when switching to a day or night view, the navigation device will retrieve information on road conditions, such as congestion or road temperatures and similar.
  • FIGS. 4, 5 , and 6 that describe various configuration options for the user of the navigation device.
  • FIG. 5 is a screen shot from a preferences menu of a navigation device.
  • the menu is based on various icons and text labels, each of the icons representing a different configuration option.
  • configuration options can be reached through a menu based purely on text.
  • Icon 51 in the lower left hand corner is labeled “Change map colours” and by selecting it, the user of the navigation device can select map colors that are most appropriate for the current operating environment or other parameters, like the personal preference of the user.
  • Some color schemes have been designed to create a more realistic representation of the actual view, while others are adopted for color blind persons, and still others are designed around various themes, such as the official colors of a country's national soccer team. Certain color schemes conform to regional differences in color coding of paper maps and road infrastructure objects.
  • color associations in a color scheme might be pre-defined and fixed, or it might be possible for the user of the navigation device to select colors for individual map objects and elements displayed on the screen.
  • certain map colors are more suited for daytime use, and others are suited for nighttime use.
  • the user can manually link one color scheme to daytime use and link a different color scheme to nighttime use, or the appropriate day and night color schemes can be stored as a factory preset in the memory of the navigation device.
  • Icon 52 in the lower center area of the preferences menu opens up a brightness preferences screen that will be described in more detail in FIG. 6 .
  • FIG. 6 depicts a screen shot of a brightness preferences menu of a navigation device according to the invention.
  • the screen shot indicates a first slider 61 for selecting a backlight level to be used during daytime, and slider 62 for selecting another backlight level to be used during nighttime.
  • the backlight levels can be selected independently from each other or as a ratio of each other.
  • daytime backlight level is at 90 percent of the available range
  • nighttime backlight level is at 15 percent of the range.
  • the user may indicate a desired ratio, e.g. daytime brightness 90 percent of the available range, and a nighttime brightness being 15 percent of selected daytime brightness.
  • the user of the navigation device wishes to use a higher backlight level during the night than during the day. It is possible by setting sliders 61 and 62 accordingly.
  • checkboxes 63 and 64 have been indicated.
  • Checkbox 63 is marked when the user wishes to rely on the navigation device to adjust backlight of the display between the two levels as may be selected by sliders 61 and 62 . When checkbox 63 is deselected, the user will be able to set backlight levels manually.
  • Checkbox 64 is marked when the user of the navigation device wishes to rely on the navigation device to switch between day and night color schemes according to a mechanism illustrated in FIGS. 8 and 9 . When the user deselects checkbox 64 , the navigation device keeps using the current color scheme independently of the lighting conditions.
  • FIG. 7 illustrates the configuration menu of a navigational device, wherein the user can manually switch between day and night colors using button 71 .
  • button 71 When a nighttime display setting is selected by pressing this button, checkboxes 63 and 64 (of FIG. 6 ) will not be taken into account by the navigation device.
  • FIG. 8 is a transition diagram illustrating various display settings of the navigation device in response to different lighting conditions.
  • the horizontal axis 1 represents the level of the input signal received from a light sensor.
  • the navigation device uses a night color scheme and a nighttime display setting.
  • the input from the light sensor indicates daytime lighting conditions, i.e. signal level is higher than threshold 2
  • the navigation device uses a day color scheme and a daytime display setting.
  • Threshold 2 has been set to a value corresponding to an ambient light level, below which the average user would be using a night color scheme. Threshold 2 can be factory preset or it can be set by the users of the navigation device according to their personal preferences.
  • the vertical axis 4 represents the screen brightness between 0 to 100 percents.
  • daytime brightness 5 is set to 100 percent
  • nighttime brightness 6 is set to approximately 25 percent.
  • Nighttime brightness 6 is used as long as the light sensor input is below threshold 2
  • daytime brightness 5 is used when the light sensor input is above threshold 3 .
  • threshold 2 and threshold 3 are identical, i.e. co-located at a point on horizontal axis 1 .
  • the display settings instantly change from nighttime brightness to daytime brightness when the signal indicative of ambient lighting conditions rises above the combined threshold 2 and 3 .
  • the signal indicative of ambient lighting conditions falls below the combined threshold 2 and 3 , display settings instantly change from daytime brightness to nighttime brightness.
  • FIG. 8 depicts a smooth transition along line 7 between levels for nighttime brightness 6 and daytime brightness 5 while the light sensor input is between threshold 2 and threshold 3 that are set to different values of the horizontal axis 1 .
  • further display settings might be allocated to different parts of the transition line 7 .
  • the further display settings might be created using daytime color schemes and gradually changing backlight levels; or nighttime color schemes and gradually changing backlight levels.
  • 5 different backlight levels are allocated evenly between the levels for nighttime brightness 6 and daytime brightness 5 , without changing the color scheme.
  • This arrangement provides a gradual dimming of display backlight in response to the decreasing ambient light levels.
  • four points 2 -A, 2 B, 2 C, and 2 D are shown on the horizontal axis 1 between threshold 2 and threshold 3 . There might be a different number of points, the points might be placed arbitrarily between thresholds 2 and 3 or they may be evenly distributed.
  • screen brightness is decreased to a value associated with threshold 2 D, which lays proportionally between the value of daytime brightness 5 and nighttime brightness 6 (in this example, 100 and 25 percents respectively). Screen brightness remains at the value associated with threshold 2 D until the decreasing signal actually reaches threshold 2 D. At threshold 2 D, screen brightness changes to the value associated with threshold 2 C; and screen brightness remains unchanged until the decreasing signal actually reaches threshold 2 C. Similarly, at threshold 2 C, screen brightness changes to the value associated with threshold 2 B; and at threshold 2 B, screen brightness changes to the value associated with threshold 2 A.
  • threshold 2 A screen brightness changes to the value associated with threshold 2 , which is the value of nighttime brightness 6 ; and screen brightness remains unchanged as long as the signal is below threshold 2 .
  • Changing from daytime colors to nighttime colors can occur at one of thresholds 2 , 2 A, 2 B, 2 C, 2 D, and 3 , depending on factory or user configuration.
  • the navigation device when the signal level on the horizontal axis 1 rises in response to increasing ambient light levels, the navigation device is configured to change from nighttime color schemes to daytime color schemes at threshold 2 , and to gradually increase display backlight from nighttime brightness level to daytime brightness level along line 7 until light sensor input indicative of ambient lighting conditions reaches threshold 3 .
  • the detailed procedure is the following.
  • Screen brightness remains at the level of nighttime brightness 6 as long as the signal indicative of ambient lighting conditions is below point 2 A, or alternatively threshold 2 .
  • threshold 2 A screen brightness changes to a level allocated to this given point, which is a proportional value and can be read from the vertical axis 2 , somewhere between nighttime brightness 6 and daytime brightness 5 (in this example, 25 and 100 percents respectively).
  • threshold 2 B screen brightness increases to a level allocated to this given point and thereafter it remains unchanged until the signal reaches threshold 2 C.
  • Screen brightness keeps changing in a similar manner at thresholds 2 C and 2 D.
  • daytime brightness 5 is used, which is equal to 100 percent in this example.
  • daytime display settings are used unless the user of the navigation device manually selects a different display setting, e.g. by pressing button 1 on FIG. 7 to use night colors, or by disabling checkboxes 3 and 4 on FIG. 6 .
  • different configuration options might be available for manually disabling the switching between day and night color schemes. The user might simply select the same color scheme and same backlight level for daytime and nighttime usage in order to disable any automatic change.
  • FIG. 9 indicates an altered transition diagram compared to FIG. 8 .
  • the level of daytime brightness 5 has been lowered to a new daytime brightness 5 ′, the difference is indicated by arrow 9 .
  • Nighttime brightness 6 has been changed to a new nighttime brightness 6 ′, the difference is indicated by arrow 10 .
  • the new configuration can be compared to the previously discussed transition line 7 as seen on new transition line 7 ′. Using new transition line 7 ′, the steps between new nighttime brightness 6 ′ and new daytime brightness 5 ′ are smaller but the transition is still a smooth, gradual one as long as threshold 2 and 3 are not the same.
  • ambient lighting conditions are measured using a light sensor coupled to the processor of the navigation device.
  • the light sensor can be an integral part of the navigation device or it may be an external sensor attached to a suitable connector of the navigation device or its docking unit.
  • the external sensor might transmit radio signals such as Bluetooth or Infra-Red signals indicative of ambient lighting conditions.
  • a radio signal transmitter might be directly or indirectly connected to an in-vehicle light sensor or headlight sensor and configured to transmit radio signals to the navigation device, the signals being indicative of ambient lighting conditions.
  • the proper installation of a Bluetooth or Infra-Red transmitter unit is known to a person skilled in the art and it is outside the scope of the invention.
  • a Bluetooth or Infra-Red enabled navigation device may monitor radio signals indicative of ambient lighting conditions and implement the invention according to the appended claims.
  • the software on the navigation device may also monitor the current position of the navigation device and compare it to the map data for the purposes set out above. By matching map data to current position, the software of the navigation device may indicate that the current position is in a tunnel or in an underground car park, which is interpreted as a signal indicative of low ambient lighting conditions. Lack of position data (i.e. loss of GPS signal) might also indicate that the current location is in a tunnel or underground car park.
  • indication of ambient lighting conditions does not require a hardware component implemented on or coupled to the navigation device.
  • the signal indicative of lighting conditions can be generated using software means such as at least one of a map data, user data, time data and configuration data.
  • the navigation device might ask for a confirmation from the user before or after changing between day and night color schemes upon determination that current display setting is not the display setting allocated to current ambient lighting conditions.
  • a selection screen or a confirmation dialog may be presented to the user of the navigation device for changing display settings.
  • the user may select further options, which comprise at least one of a confirmation of undocking, a selection whether or not to monitor a signal indicative of lighting conditions, selection of color scheme to be used, and selection of backlight level to be used.
  • further options comprise at least one of a confirmation of undocking, a selection whether or not to monitor a signal indicative of lighting conditions, selection of color scheme to be used, and selection of backlight level to be used.

Abstract

A navigation device is configured to allocate display setting such as color schemes and screen contents to at least one ambient lighting condition, monitors and evaluates a signal indicative of ambient lighting conditions and determines whether display settings for the current ambient lighting conditions are already in use and to change display settings so that they suit current ambient lighting conditions if needed.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application claims priority from UK patent applications with serial numbers 0604709.6, 0604708.8, 0604710.4, 0604704.7, and 0604706.2. The aforementioned patent applications are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a portable navigation device, including functionality for automatically adjusting display settings to suit various ambient lighting conditions.
  • 2. Description of the Prior Art
  • Global Positioning System GPS based navigation devices are well known and are widely employed as in-car navigation devices. Reference may be made to devices that integrate a GPS receiver into a computing device programmed with a map database and that can generate navigation instructions on a display, such as the TOMTOM GO device. These portable, integrated devices are often mounted on or in the dashboard of a vehicle using a suction mount or a docking mechanism.
  • Reference may also be made to the Navigator series software from the present assignee, TomTom International B.V. This software, when running on a Personal Digital Assistant PDA with GPS receiver (such as a COMPAQ IPAQ) or connected to an external GPS receiver, enables a user to input to the PDA a start and destination address. The software then calculates the best route between the two end-points and displays instructions on how to navigate that route.
  • The term ‘navigation device’ refers to a device that enables a user to navigate to a pre-defined destination. The device may have an internal system for receiving location data, such as a GPS receiver, or may merely be connectable to a receiver that can receive location data. The device may compute a route itself, or communicate with a remote server that computes the route and provides navigation information to the device, or a hybrid device in which the device itself and a remote server both play a role in the route computation process. Portable GPS navigation devices are not permanently integrated into a vehicle but instead are devices that can readily be mounted in or docked or otherwise used inside a vehicle. Generally (but not necessarily), they are fully self-contained—i.e. include an internal GPS antenna, navigation software and maps and can hence plot and display a route to be taken.
  • By using the positional information derived from the integrated or external GPS receiver, the software can determine at regular intervals the position of the navigation device or PDA (typically mounted on the dashboard of a vehicle) and can display the current position of the vehicle on a map and display (and speak) appropriate navigation instructions (e.g. ‘turn left in 100 m’) on the screen.
  • Graphics depicting the actions to be accomplished (e.g. a left arrow indicating a left turn ahead) can be displayed in a status bar and also be superimposed over the applicable junctions/turnings etc in the roads shown in the map itself. The display of the navigation device may consist of a liquid crystal display LCD for showing user location on a map and any information related to surroundings and a planned route. One example is the SAMSUNG LTE400WQ-E01 active matrix LCD module with integrated touch panel and backlight.
  • The set of colors for displaying a map or showing menu items on the screen of the navigation device might be pre-defined and various sets of colors might be stored as color schemes. The user may also control the backlight level of the display, which might range from full backlight level to switching off backlight completely.
  • One common approach is for a user to manually change the brightness settings of the display when ambient lights change, e.g. to increase brightness when using the navigation device or PDA under direct sunlight or decrease background illumination in low light situations, e.g. during the night or when driving in a tunnel. In these situations, the default brightness setting might not be appropriate because the display might be either too dark or too bright for the given lighting conditions. Lower backlight levels might also be desired for lower power consumption and an extended battery life.
  • It is also possible to configure a navigation device or PDA to use pre-defined color schemes for menus, maps and navigation screens. Some color schemes utilize colors with high contrast that remain visible even under direct sunlight, other color schemes are suitable for color-blind persons, and it is also known to utilize color schemes that are more suited for low light environments or when using the navigation device or PDA during the night.
  • However, it is not known to gradually change display brightness of a portable navigation device depending on current ambient lighting conditions and user selectable options. It is also not possible to make automatic adjustments to display brightness and/or color schemes without user interaction where and when it is most desired.
  • The present invention provides means for changing display settings to suit current ambient light levels and for providing user selectable preferences for automatic adjustment of display settings when ambient light levels change.
  • SUMMARY OF THE INVENTION
  • The invention is a navigation device comprising a processor arranged to monitor signals indicative of ambient lighting conditions and to select display settings allocated to current ambient lighting conditions. The invention is also a method for automatically adjusting display settings of a portable navigation device in accordance to current ambient lighting conditions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be described with reference to the accompanying drawings, in which FIG. 1 is a block diagram depicting elements of a navigation device implementing the present invention;
  • FIG. 2 is a screen shot from a navigation device; the screen shot shows a three dimensional like navigation view appropriate for daytime usage and a status bar running along the bottom of the display;
  • FIG. 3 is a screen shot from a navigation device; the screen shot shows a three dimensional like navigation view appropriate for nighttime usage and a status bar running along the bottom of the display;
  • FIG. 4 is a flowchart illustrating an implementation of the invention,
  • FIG. 5 is a screen shot from a navigation device, the screen shot shows a preferences screen with buttons for changing map colors and display brightness,
  • FIG. 6 is screen shot from a portable navigation device, the screen shot shows a brightness preferences screen,
  • FIG. 7 is a screen shot from a portable navigation device, the screen shot shows a preferences screen with a button to manually switch between day and night views,
  • FIG. 8 is a diagram for transition between day and night views according to one embodiment of the invention,
  • FIG. 9 is a diagram for transition between day and night views according to another embodiment of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.
  • FIG. 1 is a block diagram showing various elements of a navigation device according to the invention. The main components of the navigation device are enclosed in a portable housing 1. The navigation device comprises a memory 10, the type of which might be internal (such as a hard disk, flash memory, random access memory, read only memory or similar) or removable (such as a memory card, memory stick, compact disc, digital versatile disc or similar). The navigation device may comprise both internal and removable memories at the same time.
  • Location of the navigation device is calculated using position (e.g. GPS) data 9 that is obtained from a GPS receiver 12. The GPS receiver 12 might be internal or external, connected to the navigation device with wires or wirelessly.
  • The navigation device contains a processor 4 for carrying out navigation related tasks according to programmed instructions and user interaction. The processor 4 communicates with various elements of the navigation device through a data bus 6. Map data 7, user data 8, GPS data 9 can be accessed by the processor 4 through the data bus either directly or through other elements that are outside the scope of the present invention.
  • The navigation device comprises a display 2 showing a map and navigation instructions, and providing user access to various functions of the navigation device via a graphical menu system. The colors and the contents displayed on the screen are controlled by the processor 4 in accordance with the programmed functions, planned route and location of the navigation device. In other implementations, a separate image processor might be utilized for graphical tasks.
  • The display 2 comprises a light source 3 for backlight. The light source 3 might provide different output levels such as light emitting diodes with pulse width modulation. Backlight levels are controlled by the processor 4 or the separate image processor.
  • Color schemes 11 are also stored in the memory 10 or in other dedicated areas of the navigation device. A color scheme might be stored as a plug-in file. A plug-in file is a special piece of software that interacts with a main application, in this case with the main software of the navigation device, for performing a specific task. The plug-in file may implement (e.g. store, retrieve, control) color association and color conversion.
  • The user of the navigation device may control the navigation device using various buttons (not shown) or a tactile user interface such as a touch screen or touch pad or via spoken instructions. In this example, the user may interact with the navigation device using the touch screen display 2, which is also connected to the data bus 6.
  • The navigation device might comprise an onboard light sensor 5 a or might have an interface to an external light sensor 5 b. A light sensor is a specially constructed diode or transistor producing an output signal in accordance with current ambient lighting conditions. The processor 4 receives a signal indicative of ambient lighting conditions from sensors 5 a or 5 b. The signal from the sensor 5 a or 5 b is taken into account by the processor 4 for selecting and changing display settings of the navigation device. The signal indicative of ambient lighting conditions may not be taken into account immediately in order to filter sudden, temporary changes in ambient lighting conditions. A buffer between 10 seconds and 150 seconds might be used to prevent unwanted changes between display modes due to temporary changes in ambient lighting conditions.
  • FIG. 2 is a screen shot from a personal navigation device. The screen shot shows a typical three dimensional navigation view 1 and a status bar 2 along the bottom of the screen. Roads, blocks of buildings, parks, and water areas are shown using various colors. The overall appearance is hence similar to a paper map. An arrow 3 indicating the current position of the device is shown in the center of the screen. As the user of the navigation device or a vehicle wherein the navigation device is mounted, travels along a route 4, the navigation view 1 is regularly updated by map scrolling and turning such that the arrow 3 indicating the current position remains in a center area of the screen, pointing upwards. A center area of the screen is located at the lower half of the screen; at equal distance from the left and right edge of the viewable map area. The user of the navigation device follows route 4 in order to reach a desired destination (not shown in the figure).
  • The status bar 2 provides information on the details of the journey in area 7. The next instruction icon 8 indicates what the next maneuver is that the user should make and how far the current location from the place of the maneuver is, so that the user has enough time to prepare for a next maneuver. The next instruction icon 8 may be accompanied by appropriately timed voice instructions played through a speaker of the navigation device or via external audio playback devices such as headphones or a car audio system.
  • It is to be noted that in the status bar 2, character types with appropriate size, color, and placement are used over a background of contrasting color to facilitate reading of the contents under most lighting conditions. In this example, white fonts are used over a dark blue background. Alternatively, different combinations of colors may be used providing sufficient legibility for the user of the navigation device. Such combination of colors include yellow, white, green, or light grey text over a black, dark grey, brown, or dark blue background. Optionally, text and background colors might be swapped or inverted.
  • Streets 5 and main roads 10 are drawn using light colors, such as white and yellow, while street names 6 are displayed in black to ensure a sufficient contrast. Further color combinations might be possible, as discussed above. The next action is also marked on the map with an arrow 9. In this example, arrow 9 is drawn in green color that remains visible when superimposed over the streets 5 and main roads 10. It is also possible to use any other color, which is different than the colors below arrow 9.
  • A set of colors to be used in navigation view is called a color scheme. A color scheme contains information regarding types of map elements and colors associated with them. Beside map elements, a color scheme might also contain information regarding colors to be used in the status bar 2 and colors to be used for other elements, shown in the navigation view 1, such as: zoom buttons 11 and 12; current position marker 3; street names 5; water 6; arrow 9 for next action; and any other elements on screen, also the ones not shown on FIG. 2 such as tunnels, bridges, highways, pedestrian streets, railways, private roads, service roads, roundabouts, bus lanes, etc.
  • It is also possible to increase the backlight of the display of the navigation device, especially when it is used under direct sunlight, and to decrease the backlight when used in a dark environment to provide good readability in various lighting conditions in addition to using various sets of colors.
  • FIG. 3 is a screen shot from a navigation device. The screen shot shows the same three dimensional navigation view 1 and status bar 2 as in FIG. 2 but using a different color scheme that is suited for dark environments, where the harsh, contrasting colors on FIG. 2 might be disturbing for the user of the navigation device. In this example, the brightest color is used to indicate the planned route 4, while the other elements are drawn using relatively dark colors. Some elements such as the river 12 shown in FIG. 2 are almost completely dissolved in the background of the image, and the greens of the park area 13 at the top edge of the screen are completely dark, to represent an almost realistic nighttime view of the environment surrounding the navigation device.
  • It is also possible to draw a schematic representation of the night sky at the area close to the top of the screen where relevant map and routing information is not displayed. This would compensate for the loss of details compared to the view on FIG. 2. Stars on the night sky might be rendered using white, yellow or light grey colored dots of the size of 1 or 2 pixels in the upper third of the viewable area in order to create a better feeling of space even though fewer details are shown than on the view depicted on FIG. 2.
  • The color scheme used in FIG. 3 helps the user of the navigation device identify those elements that are more likely to be relevant during the night. Additionally, there is less variation of colors compared to FIG. 2, hence street names 6, route 4, and information 9 on next action stand out from an almost even colored background consisting of other map elements. Such a color scheme would result in a lower amount of screen flickering and less distraction to a user of the navigation device during the night while it would still allow sufficient visibility as opposed to color schemes with brighter, more varied and more vivid colors. The same or a similar color scheme might be advantageous when the user of the device enters a tunnel or other areas with considerably lower lighting conditions than during normal day use.
  • FIG. 4 is a flowchart illustrating the present invention. The navigation device stores in its memory various data that is required to perform navigation related functions. The data might comprise map data, satellite data, user data, sound and text files, software for navigation and related operations, also configuration files, preference settings and operating system files. The memory can be one of a random access memory, a hard disk, a flash memory, a removable memory card, and any suitable volatile or non-volatile storage means. The processor of the navigation device is connected to the memory and performs various operations as and when they are required based on programmed instructions and/or user interaction. The processor may carry out read and write operations. The processor is able to delete, move and modify data in any manner that is required for the operation of the navigation device.
  • In the first step of FIG. 4, the processor of the navigation device monitors for a signal indicative of ambient lighting conditions. In this embodiment, the signal is received from a light sensor mounted on a printed circuit of the navigation device.
  • A light sensor is a photosensitive diode or transistor producing an output signal that is a function of the amount of light impinging the surface of the diode. When the relation between the amount of light on the diode and the corresponding output signal is known, it is possible to reliably distinguish between various lighting conditions such as daylight and night or, optionally, to use a finer granularity for further distinguishing between an arbitrary number of transitional lighting conditions between daylight and night. Manufacturers of light sensors publish respective operating characteristics of diodes such as the TOSHIBA TPS851 model, which may be used in this implementation of the invention. In other implementations, it is also possible that the light sensor is coupled externally to the navigation device, and it is also possible that the sensor is only capable of distinguishing between two conditions and providing an output signal indicating one of the two conditions. Other sensors indicative of current lighting conditions might be used, such as a headlight status indicator to give a good estimation that outside light levels have decreased when the vehicle headlights are on.
  • In the first step, the processor of the navigation device monitors a signal indicative of current lighting conditions. In the next step, the processors performs an evaluation of the signal and then proceeds to selecting an appropriate display setting that has been allocated for the current lighting condition. The processor proceeds to changing current display settings to the selected display setting after it has determined that the current display setting differs from the setting allocated to the current lighting condition.
  • The allocated display setting might comprise one of the color schemes that has been discussed above, and might also comprise pre-set backlight levels, and optionally showing or hiding details on the screen.
  • A display setting suited for daylight conditions may comprise a screen backlight level set to a maximum value, and a color scheme using realistic day-like colors, and showing map information in a similar fashion than on paper maps.
  • Another display setting for use during the night may comprise a lowered backlight level which can be in the lower half of the backlight range, e.g. set to 15 percent, in combination with the same color scheme as above or another color scheme using colors that are similar to a view of the area surrounding the user at night. It is also possible that the color scheme for nighttime usage employs inverted colors of the color scheme for daytime usage.
  • It is also possible that a night view indicates objects that are not visible during the day, e.g. stars, streetlight, and it is also possible to configure a night view to disable some objects or functions that are more likely to be relevant during the day and enable functions that might be relevant to the user of the navigation device during the night or in dark environments. Thus, besides using a pre-defined set of colors for displaying screen contents, a day or night view might show different pieces of information, which might include at least one of a star map, points of interests, information on map items or planned route, and menu items. A day or night view might also enable or disable some functions of the navigation device, which might be at least one of a speed limit warning, a driving break warning, and updating of traffic or weather information. Therefore, when switching to a day or night view, the navigation device will retrieve information on road conditions, such as congestion or road temperatures and similar.
  • In the following, attention is drawn to FIGS. 4, 5, and 6 that describe various configuration options for the user of the navigation device.
  • FIG. 5 is a screen shot from a preferences menu of a navigation device. The menu is based on various icons and text labels, each of the icons representing a different configuration option. On some navigation devices, configuration options can be reached through a menu based purely on text.
  • Icon 51 in the lower left hand corner is labeled “Change map colours” and by selecting it, the user of the navigation device can select map colors that are most appropriate for the current operating environment or other parameters, like the personal preference of the user. Some color schemes have been designed to create a more realistic representation of the actual view, while others are adopted for color blind persons, and still others are designed around various themes, such as the official colors of a country's national soccer team. Certain color schemes conform to regional differences in color coding of paper maps and road infrastructure objects.
  • It is common in color schemes of the present invention that any objects that might be displayed on the screen have an association with a color. The color associations in a color scheme might be pre-defined and fixed, or it might be possible for the user of the navigation device to select colors for individual map objects and elements displayed on the screen.
  • According to this embodiment of the invention, certain map colors are more suited for daytime use, and others are suited for nighttime use. The user can manually link one color scheme to daytime use and link a different color scheme to nighttime use, or the appropriate day and night color schemes can be stored as a factory preset in the memory of the navigation device. Icon 52 in the lower center area of the preferences menu opens up a brightness preferences screen that will be described in more detail in FIG. 6.
  • FIG. 6 depicts a screen shot of a brightness preferences menu of a navigation device according to the invention. The screen shot indicates a first slider 61 for selecting a backlight level to be used during daytime, and slider 62 for selecting another backlight level to be used during nighttime. The backlight levels can be selected independently from each other or as a ratio of each other. In the example shown on FIG. 6, daytime backlight level is at 90 percent of the available range, and nighttime backlight level is at 15 percent of the range. Alternatively, the user may indicate a desired ratio, e.g. daytime brightness 90 percent of the available range, and a nighttime brightness being 15 percent of selected daytime brightness. It is also possible that the user of the navigation device wishes to use a higher backlight level during the night than during the day. It is possible by setting sliders 61 and 62 accordingly.
  • On the lower part of FIG. 6, checkboxes 63 and 64 have been indicated. Checkbox 63 is marked when the user wishes to rely on the navigation device to adjust backlight of the display between the two levels as may be selected by sliders 61 and 62. When checkbox 63 is deselected, the user will be able to set backlight levels manually. Checkbox 64 is marked when the user of the navigation device wishes to rely on the navigation device to switch between day and night color schemes according to a mechanism illustrated in FIGS. 8 and 9. When the user deselects checkbox 64, the navigation device keeps using the current color scheme independently of the lighting conditions.
  • FIG. 7 illustrates the configuration menu of a navigational device, wherein the user can manually switch between day and night colors using button 71. When a nighttime display setting is selected by pressing this button, checkboxes 63 and 64 (of FIG. 6) will not be taken into account by the navigation device.
  • FIG. 8 is a transition diagram illustrating various display settings of the navigation device in response to different lighting conditions. The horizontal axis 1 represents the level of the input signal received from a light sensor. When the input signal indicates low ambient lighting conditions, i.e. the input is below a threshold 2, the navigation device uses a night color scheme and a nighttime display setting. When the input from the light sensor indicates daytime lighting conditions, i.e. signal level is higher than threshold 2, the navigation device uses a day color scheme and a daytime display setting. Threshold 2 has been set to a value corresponding to an ambient light level, below which the average user would be using a night color scheme. Threshold 2 can be factory preset or it can be set by the users of the navigation device according to their personal preferences.
  • The vertical axis 4 represents the screen brightness between 0 to 100 percents. In this example, daytime brightness 5 is set to 100 percent, and nighttime brightness 6 is set to approximately 25 percent. Nighttime brightness 6 is used as long as the light sensor input is below threshold 2, and daytime brightness 5 is used when the light sensor input is above threshold 3.
  • In another embodiment, threshold 2 and threshold 3 are identical, i.e. co-located at a point on horizontal axis 1. In this case, the display settings instantly change from nighttime brightness to daytime brightness when the signal indicative of ambient lighting conditions rises above the combined threshold 2 and 3. Similarly, when the signal indicative of ambient lighting conditions falls below the combined threshold 2 and 3, display settings instantly change from daytime brightness to nighttime brightness.
  • FIG. 8 depicts a smooth transition along line 7 between levels for nighttime brightness 6 and daytime brightness 5 while the light sensor input is between threshold 2 and threshold 3 that are set to different values of the horizontal axis 1. In this case, further display settings might be allocated to different parts of the transition line 7. The further display settings might be created using daytime color schemes and gradually changing backlight levels; or nighttime color schemes and gradually changing backlight levels.
  • In the preferred implementation, 5 different backlight levels are allocated evenly between the levels for nighttime brightness 6 and daytime brightness 5, without changing the color scheme. This arrangement provides a gradual dimming of display backlight in response to the decreasing ambient light levels. In this example, four points 2-A, 2B, 2C, and 2D are shown on the horizontal axis 1 between threshold 2 and threshold 3. There might be a different number of points, the points might be placed arbitrarily between thresholds 2 and 3 or they may be evenly distributed.
  • When the signal indicative of ambient lighting conditions falls to threshold 3 on the horizontal axis 1, screen brightness is decreased to a value associated with threshold 2D, which lays proportionally between the value of daytime brightness 5 and nighttime brightness 6 (in this example, 100 and 25 percents respectively). Screen brightness remains at the value associated with threshold 2D until the decreasing signal actually reaches threshold 2D. At threshold 2D, screen brightness changes to the value associated with threshold 2C; and screen brightness remains unchanged until the decreasing signal actually reaches threshold 2C. Similarly, at threshold 2C, screen brightness changes to the value associated with threshold 2B; and at threshold 2B, screen brightness changes to the value associated with threshold 2A. Finally, at threshold 2A, screen brightness changes to the value associated with threshold 2, which is the value of nighttime brightness 6; and screen brightness remains unchanged as long as the signal is below threshold 2. Changing from daytime colors to nighttime colors can occur at one of thresholds 2, 2A, 2B, 2C, 2D, and 3, depending on factory or user configuration.
  • Similarly, when the signal level on the horizontal axis 1 rises in response to increasing ambient light levels, the navigation device is configured to change from nighttime color schemes to daytime color schemes at threshold 2, and to gradually increase display backlight from nighttime brightness level to daytime brightness level along line 7 until light sensor input indicative of ambient lighting conditions reaches threshold 3. The detailed procedure is the following.
  • Screen brightness remains at the level of nighttime brightness 6 as long as the signal indicative of ambient lighting conditions is below point 2A, or alternatively threshold 2. When a raising signal reaches threshold 2A, screen brightness changes to a level allocated to this given point, which is a proportional value and can be read from the vertical axis 2, somewhere between nighttime brightness 6 and daytime brightness 5 (in this example, 25 and 100 percents respectively). At threshold 2B, screen brightness increases to a level allocated to this given point and thereafter it remains unchanged until the signal reaches threshold 2C. Screen brightness keeps changing in a similar manner at thresholds 2C and 2D. Finally, at and above threshold 3, daytime brightness 5 is used, which is equal to 100 percent in this example.
  • In the above examples, there are four transition points between nighttime brightness 6 and daytime brightness 5, providing a good granularity without the need to store a high number of settings. In other implementations, any larger or smaller number of transitional steps can be used or there can be a step less, continuous transition as well.
  • Above threshold 3, daytime display settings are used unless the user of the navigation device manually selects a different display setting, e.g. by pressing button 1 on FIG. 7 to use night colors, or by disabling checkboxes 3 and 4 on FIG. 6. In other implementations, different configuration options might be available for manually disabling the switching between day and night color schemes. The user might simply select the same color scheme and same backlight level for daytime and nighttime usage in order to disable any automatic change.
  • FIG. 9 indicates an altered transition diagram compared to FIG. 8. On FIG. 9, the level of daytime brightness 5 has been lowered to a new daytime brightness 5′, the difference is indicated by arrow 9. Nighttime brightness 6 has been changed to a new nighttime brightness 6′, the difference is indicated by arrow 10. The new configuration can be compared to the previously discussed transition line 7 as seen on new transition line 7′. Using new transition line 7′, the steps between new nighttime brightness 6′ and new daytime brightness 5′ are smaller but the transition is still a smooth, gradual one as long as threshold 2 and 3 are not the same.
  • In the above examples, ambient lighting conditions are measured using a light sensor coupled to the processor of the navigation device. The light sensor can be an integral part of the navigation device or it may be an external sensor attached to a suitable connector of the navigation device or its docking unit.
  • In other arrangements, the external sensor might transmit radio signals such as Bluetooth or Infra-Red signals indicative of ambient lighting conditions. For example, a radio signal transmitter might be directly or indirectly connected to an in-vehicle light sensor or headlight sensor and configured to transmit radio signals to the navigation device, the signals being indicative of ambient lighting conditions. The proper installation of a Bluetooth or Infra-Red transmitter unit is known to a person skilled in the art and it is outside the scope of the invention. A Bluetooth or Infra-Red enabled navigation device may monitor radio signals indicative of ambient lighting conditions and implement the invention according to the appended claims.
  • In the absence of a signal from a light sensor or a similar hardware component, or in addition to it, the software on the navigation device may also monitor the current position of the navigation device and compare it to the map data for the purposes set out above. By matching map data to current position, the software of the navigation device may indicate that the current position is in a tunnel or in an underground car park, which is interpreted as a signal indicative of low ambient lighting conditions. Lack of position data (i.e. loss of GPS signal) might also indicate that the current location is in a tunnel or underground car park.
  • In that case, indication of ambient lighting conditions does not require a hardware component implemented on or coupled to the navigation device. The signal indicative of lighting conditions can be generated using software means such as at least one of a map data, user data, time data and configuration data.
  • In a further embodiment, the navigation device might ask for a confirmation from the user before or after changing between day and night color schemes upon determination that current display setting is not the display setting allocated to current ambient lighting conditions. A selection screen or a confirmation dialog may be presented to the user of the navigation device for changing display settings.
  • When the navigation device is removed from the vehicle, i.e. when it is detected that the device has been undocked, the user may select further options, which comprise at least one of a confirmation of undocking, a selection whether or not to monitor a signal indicative of lighting conditions, selection of color scheme to be used, and selection of backlight level to be used. A similar selection is possible when docking the navigation device in the vehicle.
  • The invention has been described with reference to certain preferred embodiments. It will be understood, however, that modifications and variations are possible within the scope of the appended claims.

Claims (30)

1. A method for automatically adjusting visibility of a portable navigation device display, the method comprising the steps of:
allocating display settings for at least one ambient lighting condition,
monitoring a signal indicative of current ambient lighting condition,
evaluating said signal,
selecting a display setting allocated to said current ambient lighting condition,
determining if a current display setting is the selected display setting, and
changing said current display setting to said selected display setting if said current setting is not said selected display setting.
2. The method according to claim 1, wherein said at least one ambient lighting conditions comprises at least two ambient lighting conditions.
3. The method according to claim 1, wherein said step of allocating display view settings comprises selecting at least one of an appropriate view, a backlight level, and a color scheme.
4. The method according to claim 3, wherein one of said display settings is a day view.
5. The method according to claim 3, wherein one of said display settings is a night view.
6. The method according to claim 3, wherein one of said display settings comprises a three dimensional view of a map; and schematic representation of the sky at daytime.
7. The method according to claim 3, wherein one of said display settings comprises a three dimensional view of a map; and a schematic representation of the sky at nighttime.
8. The method according to claim 3, wherein one of said display settings comprises a high backlight level and a color scheme using brighter colors.
9. The method according to claim 3, wherein one of said display settings comprises a low backlight level and a color scheme using darker colors.
10. The method according to claim 3, wherein one of said display settings comprises a color scheme using inverted colors.
11. The method according to claim 3, wherein said color scheme is stored as a plugin.
12. The method according to claim 1, wherein the step of changing further comprises gradually changing backlight levels from a current backlight level to a level allocated to said selected display setting.
13. The method according to claim 12, wherein the step of gradually changing backlight level comprises a predefined number of incremental jumps ranging from a backlight level for current display mode to another backlight level for said selected display mode.
14. The method according to claim 13, wherein said gradually changing backlight level comprises five incremental jumps.
15. The method according to claim 1, wherein said step of monitoring further comprises receiving a signal from a light sensor.
16. The method according to claim 15, wherein said step of monitoring further comprises buffering said signal to filter temporary changes in ambient lighting conditions.
17. The method according to claim 16, wherein said light sensor is located on a printed circuit board of said portable navigation device.
18. The method according to claim 1, wherein said step of monitoring further comprises receiving a signal from a headlight sensor.
19. The method according to claim 18, wherein said headlight sensor is wired to said portable navigation device directly or through its docking unit.
20. The method according to claim 19, further comprising the step of confirming connection of said portable navigation device to said signal.
21. The method according to claim 18, wherein said headlight sensor is wirelessly connected to said navigation device.
22. The method according to claim 1, wherein said step of monitoring further comprises receiving a signal from a map matching function.
23. The method according to claim 22, wherein said map matching function indicates current location of said navigation device is in a tunnel.
24. The method according to claim 22, wherein said map matching function indicates loss of positioning signal.
25. The method according to claim 1, wherein said display is a touch screen display with light emitting diode backlight.
26. The method according to claim 1, wherein said step of changing further comprises presenting a confirmation dialog to the user of said portable navigation device.
27. The method according to claim 26, wherein said step of changing is delayed until a confirmation is given by the user of said navigation device.
28. The method according to claim 1, wherein said step of selecting a display setting is performed manually by the user of said navigation device.
29. The method according to claim 1, wherein said step of changing comprises the step of enabling or disabling at least one function of said navigation device.
30. The method according to claim 29, wherein said at least one function comprises one of a star map, points of interests, information relating to map items or a planned route, warning about speed limits, warning about driving breaks, displaying traffic information, displaying weather information, menu items, and menu color schemes.
US11/712,564 2006-03-08 2007-03-01 Portable navigation device Abandoned US20070282522A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
GB0604710A GB0604710D0 (en) 2006-03-08 2006-03-08 APN Wizard
GB0604708A GB0604708D0 (en) 2006-03-08 2006-03-08 In-dash interface
GB0604706.2 2006-03-08
GB0604704.7 2006-03-08
GB0604710.4 2006-03-08
GB0604706A GB0604706D0 (en) 2006-03-08 2006-03-08 CK5000 host software interface specification
GB0604708.8 2006-03-08
GB0604709.6 2006-03-08
GB0604704A GB0604704D0 (en) 2006-03-08 2006-03-08 Wireless internet setup
GB0604709A GB0604709D0 (en) 2006-03-08 2006-03-08 TomTom go

Publications (1)

Publication Number Publication Date
US20070282522A1 true US20070282522A1 (en) 2007-12-06

Family

ID=38335541

Family Applications (22)

Application Number Title Priority Date Filing Date
US11/711,851 Abandoned US20070275733A1 (en) 2006-03-03 2007-02-28 Method for providing certain information
US11/711,875 Abandoned US20070266177A1 (en) 2006-03-08 2007-02-28 Communication device with indirect command distribution
US11/711,850 Abandoned US20070266239A1 (en) 2006-03-08 2007-02-28 Method for providing a cryptographically signed command
US11/711,852 Abandoned US20070239353A1 (en) 2006-03-03 2007-02-28 Communication device for updating current navigation contents
US11/712,571 Abandoned US20080005734A1 (en) 2006-03-08 2007-03-01 Navigation device and method of updating information on a navigation device
US11/712,561 Abandoned US20070271030A1 (en) 2006-03-08 2007-03-01 Navigation device and method for sequential map display
US11/712,573 Abandoned US20070265769A1 (en) 2006-03-08 2007-03-01 Navigation device and method for storing and utilizing a last docked location
US11/712,603 Abandoned US20070210938A1 (en) 2006-03-08 2007-03-01 Navigation device, server, and method for communicating therebetween
US11/712,564 Abandoned US20070282522A1 (en) 2006-03-08 2007-03-01 Portable navigation device
US11/712,562 Abandoned US20080046176A1 (en) 2006-03-08 2007-03-01 Method and device for providing preferences during route travel calculation on a navigation device
US11/712,578 Active 2031-12-09 US8700311B2 (en) 2006-03-08 2007-03-01 Method and device for map switching
US11/712,565 Abandoned US20070239846A1 (en) 2006-03-08 2007-03-01 Navigation device and method of activating information on a navigation device
US11/712,602 Abandoned US20070288163A1 (en) 2006-03-08 2007-03-01 Mobile station and method of a navigation system
US11/712,572 Active 2030-07-21 US8473193B2 (en) 2006-03-08 2007-03-01 Method and device for utilizing selectable location marker for relational display of point of interest entries
US11/712,563 Active 2029-02-26 US8554471B2 (en) 2006-03-08 2007-03-01 Navigation device and method for conveying information relationships
US11/713,089 Abandoned US20070250842A1 (en) 2006-03-08 2007-03-02 Methods of customizing navigation systems
US11/713,090 Active 2028-08-25 US8670727B2 (en) 2006-03-08 2007-03-02 Automatic discovery of wireless communication settings
US11/715,493 Abandoned US20070271328A1 (en) 2006-03-08 2007-03-08 Buddy system for navigation devices
US11/715,494 Abandoned US20070265772A1 (en) 2006-03-08 2007-03-08 Portable navigation device
US12/736,557 Abandoned US20110161006A1 (en) 2006-03-08 2007-03-08 Navigation device and method of implementing audio features in a navigation device
US12/224,673 Abandoned US20090068950A1 (en) 2006-03-08 2007-03-08 System Comprising a Navigation Device and an Electronic Device
US12/929,065 Abandoned US20110137554A1 (en) 2006-03-08 2010-12-28 Navigation device and method for conveying information relationships

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US11/711,851 Abandoned US20070275733A1 (en) 2006-03-03 2007-02-28 Method for providing certain information
US11/711,875 Abandoned US20070266177A1 (en) 2006-03-08 2007-02-28 Communication device with indirect command distribution
US11/711,850 Abandoned US20070266239A1 (en) 2006-03-08 2007-02-28 Method for providing a cryptographically signed command
US11/711,852 Abandoned US20070239353A1 (en) 2006-03-03 2007-02-28 Communication device for updating current navigation contents
US11/712,571 Abandoned US20080005734A1 (en) 2006-03-08 2007-03-01 Navigation device and method of updating information on a navigation device
US11/712,561 Abandoned US20070271030A1 (en) 2006-03-08 2007-03-01 Navigation device and method for sequential map display
US11/712,573 Abandoned US20070265769A1 (en) 2006-03-08 2007-03-01 Navigation device and method for storing and utilizing a last docked location
US11/712,603 Abandoned US20070210938A1 (en) 2006-03-08 2007-03-01 Navigation device, server, and method for communicating therebetween

Family Applications After (13)

Application Number Title Priority Date Filing Date
US11/712,562 Abandoned US20080046176A1 (en) 2006-03-08 2007-03-01 Method and device for providing preferences during route travel calculation on a navigation device
US11/712,578 Active 2031-12-09 US8700311B2 (en) 2006-03-08 2007-03-01 Method and device for map switching
US11/712,565 Abandoned US20070239846A1 (en) 2006-03-08 2007-03-01 Navigation device and method of activating information on a navigation device
US11/712,602 Abandoned US20070288163A1 (en) 2006-03-08 2007-03-01 Mobile station and method of a navigation system
US11/712,572 Active 2030-07-21 US8473193B2 (en) 2006-03-08 2007-03-01 Method and device for utilizing selectable location marker for relational display of point of interest entries
US11/712,563 Active 2029-02-26 US8554471B2 (en) 2006-03-08 2007-03-01 Navigation device and method for conveying information relationships
US11/713,089 Abandoned US20070250842A1 (en) 2006-03-08 2007-03-02 Methods of customizing navigation systems
US11/713,090 Active 2028-08-25 US8670727B2 (en) 2006-03-08 2007-03-02 Automatic discovery of wireless communication settings
US11/715,493 Abandoned US20070271328A1 (en) 2006-03-08 2007-03-08 Buddy system for navigation devices
US11/715,494 Abandoned US20070265772A1 (en) 2006-03-08 2007-03-08 Portable navigation device
US12/736,557 Abandoned US20110161006A1 (en) 2006-03-08 2007-03-08 Navigation device and method of implementing audio features in a navigation device
US12/224,673 Abandoned US20090068950A1 (en) 2006-03-08 2007-03-08 System Comprising a Navigation Device and an Electronic Device
US12/929,065 Abandoned US20110137554A1 (en) 2006-03-08 2010-12-28 Navigation device and method for conveying information relationships

Country Status (10)

Country Link
US (22) US20070275733A1 (en)
EP (17) EP2013577A2 (en)
JP (16) JP2009536723A (en)
KR (17) KR20080105061A (en)
CN (1) CN103292815A (en)
AU (16) AU2007222544A1 (en)
BR (16) BRPI0707999A2 (en)
CA (17) CA2643752A1 (en)
ES (1) ES2611702T3 (en)
WO (25) WO2007101719A2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080291015A1 (en) * 2007-05-25 2008-11-27 Charles Steven T Ambient Light Sensor to Adjust Display Brightness
US20160275816A1 (en) * 2015-03-18 2016-09-22 Aditi B. Harish Wearable device to guide a human being with at least a partial visual impairment condition around an obstacle during locomotion thereof
US20170047019A1 (en) * 2015-08-13 2017-02-16 Xiaomi Inc. Method and apparatus for mode switching
US20170115947A1 (en) * 2007-06-04 2017-04-27 Adrian Velicescu Methods and systems of large scale video display
US20170217367A1 (en) * 2016-02-01 2017-08-03 Magna Electronics Inc. Vehicle adaptive lighting system
EP2911389B1 (en) * 2014-02-19 2018-05-30 Televic Rail NV System for controlling a colour scheme on a display
US10113877B1 (en) * 2015-09-11 2018-10-30 Philip Raymond Schaefer System and method for providing directional information
US20190212815A1 (en) * 2018-01-10 2019-07-11 Samsung Electronics Co., Ltd. Method and apparatus to determine trigger intent of user
US11175816B2 (en) * 2019-11-18 2021-11-16 Monday.Com Digital processing systems and methods for automatic user time zone updates in collaborative work systems
US11277361B2 (en) 2020-05-03 2022-03-15 Monday.com Ltd. Digital processing systems and methods for variable hang-time for social layer messages in collaborative work systems
US11277452B2 (en) 2020-05-01 2022-03-15 Monday.com Ltd. Digital processing systems and methods for multi-board mirroring of consolidated information in collaborative work systems
US11301623B2 (en) 2020-02-12 2022-04-12 Monday.com Ltd Digital processing systems and methods for hybrid scaling/snap zoom function in table views of collaborative work systems
US11307753B2 (en) 2019-11-18 2022-04-19 Monday.Com Systems and methods for automating tablature in collaborative work systems
US11392556B1 (en) 2021-01-14 2022-07-19 Monday.com Ltd. Digital processing systems and methods for draft and time slider for presentations in collaborative work systems
US11410129B2 (en) 2010-05-01 2022-08-09 Monday.com Ltd. Digital processing systems and methods for two-way syncing with third party applications in collaborative work systems
US11436359B2 (en) 2018-07-04 2022-09-06 Monday.com Ltd. System and method for managing permissions of users for a single data type column-oriented data structure
US11698890B2 (en) 2018-07-04 2023-07-11 Monday.com Ltd. System and method for generating a column-oriented data structure repository for columns of single data types
US11741071B1 (en) 2022-12-28 2023-08-29 Monday.com Ltd. Digital processing systems and methods for navigating and viewing displayed content
US11829953B1 (en) 2020-05-01 2023-11-28 Monday.com Ltd. Digital processing systems and methods for managing sprints using linked electronic boards
US11886683B1 (en) 2022-12-30 2024-01-30 Monday.com Ltd Digital processing systems and methods for presenting board graphics
US11893381B1 (en) 2023-02-21 2024-02-06 Monday.com Ltd Digital processing systems and methods for reducing file bundle sizes

Families Citing this family (252)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100241342A1 (en) * 2009-03-18 2010-09-23 Ford Global Technologies, Llc Dynamic traffic assessment and reporting
US7650230B1 (en) 2003-03-26 2010-01-19 Garmin Ltd. Navigational device for mounting on a support pillar of a vehicle and a method for doing same
JP4503410B2 (en) * 2004-01-20 2010-07-14 クラリオン株式会社 Map data update method, map data update system, authentication key generation device and navigation device for in-vehicle navigation device
US8064841B2 (en) * 2004-02-18 2011-11-22 Qualcomm Incorporated Asset apparency method and apparatus
US8453065B2 (en) 2004-06-25 2013-05-28 Apple Inc. Preview and installation of user interface elements in a display environment
US20060277555A1 (en) * 2005-06-03 2006-12-07 Damian Howard Portable device interfacing
US7742857B2 (en) * 2005-12-07 2010-06-22 Mazda Motor Corporation Automotive information display system
US20070275733A1 (en) * 2006-03-03 2007-11-29 David Vismons Method for providing certain information
US7783471B2 (en) * 2006-03-08 2010-08-24 David Vismans Communication device for emulating a behavior of a navigation device
US20080215234A1 (en) * 2007-03-01 2008-09-04 Pieter Geelen Portable navigation device
US20080147321A1 (en) * 2006-12-18 2008-06-19 Damian Howard Integrating Navigation Systems
US8315233B2 (en) 2006-07-07 2012-11-20 Skyhook Wireless, Inc. System and method of gathering WLAN packet samples to improve position estimates of WLAN positioning device
US7856234B2 (en) 2006-11-07 2010-12-21 Skyhook Wireless, Inc. System and method for estimating positioning error within a WLAN-based positioning system
US20080147308A1 (en) * 2006-12-18 2008-06-19 Damian Howard Integrating Navigation Systems
JP5230652B2 (en) * 2007-01-10 2013-07-10 トムトム インターナショナル ベスローテン フエンノートシャップ Method, computer program and navigation system for indicating traffic delay
US9157760B2 (en) * 2007-01-12 2015-10-13 Aol Inc. Community mapping and direction indicating
JP4946511B2 (en) * 2007-02-28 2012-06-06 株式会社Jvcケンウッド Navigation device
US8229458B2 (en) 2007-04-08 2012-07-24 Enhanced Geographic Llc Systems and methods to determine the name of a location visited by a user of a wireless device
US8515818B2 (en) * 2007-04-26 2013-08-20 Nokia Corporation Method, user interface, apparatus, server, system, and computer program for providing a map view
US9423996B2 (en) * 2007-05-03 2016-08-23 Ian Cummings Vehicle navigation user interface customization methods
US8302033B2 (en) 2007-06-22 2012-10-30 Apple Inc. Touch screen device, method, and graphical user interface for providing maps, directions, and location-based information
US8204684B2 (en) 2007-06-28 2012-06-19 Apple Inc. Adaptive mobile device navigation
US8311526B2 (en) 2007-06-28 2012-11-13 Apple Inc. Location-based categorical information services
US8774825B2 (en) 2007-06-28 2014-07-08 Apple Inc. Integration of map services with user applications in a mobile device
US8290513B2 (en) 2007-06-28 2012-10-16 Apple Inc. Location-based services
US8275352B2 (en) 2007-06-28 2012-09-25 Apple Inc. Location-based emergency information
US9066199B2 (en) 2007-06-28 2015-06-23 Apple Inc. Location-aware mobile device
US8463238B2 (en) 2007-06-28 2013-06-11 Apple Inc. Mobile device base station
US8332402B2 (en) 2007-06-28 2012-12-11 Apple Inc. Location based media items
US8108144B2 (en) 2007-06-28 2012-01-31 Apple Inc. Location based tracking
US8175802B2 (en) * 2007-06-28 2012-05-08 Apple Inc. Adaptive route guidance based on preferences
US20090005964A1 (en) * 2007-06-28 2009-01-01 Apple Inc. Intelligent Route Guidance
US8762056B2 (en) 2007-06-28 2014-06-24 Apple Inc. Route reference
US8180379B2 (en) 2007-06-28 2012-05-15 Apple Inc. Synchronizing mobile and vehicle devices
US8385946B2 (en) 2007-06-28 2013-02-26 Apple Inc. Disfavored route progressions or locations
US9109904B2 (en) 2007-06-28 2015-08-18 Apple Inc. Integration of map services and user applications in a mobile device
US8843312B2 (en) * 2007-09-20 2014-09-23 Omnitracs, Llc Routing drivers to trailers effectively
US8127246B2 (en) 2007-10-01 2012-02-28 Apple Inc. Varying user interface element based on movement
US20090096573A1 (en) * 2007-10-10 2009-04-16 Apple Inc. Activation of Cryptographically Paired Device
US8977294B2 (en) 2007-10-10 2015-03-10 Apple Inc. Securely locating a device
US8503989B2 (en) * 2007-10-22 2013-08-06 Cisco Technology, Inc. Dynamic contact list
US7925438B2 (en) * 2007-10-30 2011-04-12 Alpine Electronics, Inc. Method and apparatus for displaying route guidance list for navigation system
WO2009061423A2 (en) * 2007-11-05 2009-05-14 Doubleshot, Inc. Methods and systems for navigation and terrain change detection
US7931505B2 (en) * 2007-11-15 2011-04-26 Bose Corporation Portable device interfacing
IL187485A0 (en) * 2007-11-19 2008-02-09 Danny Knafou Designed console for providing a variety of cellular services to a driver of a motor vehicle and his environment
US8401776B2 (en) * 2007-11-29 2013-03-19 Saab Sensis Corporation Automatic determination of aircraft holding locations and holding durations from aircraft surveillance data
US8145415B2 (en) * 2007-11-29 2012-03-27 Saab Sensis Corporation Automatic determination of aircraft holding locations and holding durations from aircraft surveillance data
JP2009145234A (en) * 2007-12-14 2009-07-02 Sony Corp Guide information providing system, guide information providing method, server device, terminal device
KR101442544B1 (en) * 2007-12-18 2014-09-23 엘지전자 주식회사 Mobile terminal and its method for displaying radio device
JP5034931B2 (en) 2007-12-26 2012-09-26 ソニー株式会社 Display device, program, and recording medium
US8355862B2 (en) 2008-01-06 2013-01-15 Apple Inc. Graphical user interface for presenting location information
US8327272B2 (en) 2008-01-06 2012-12-04 Apple Inc. Portable multifunction device, method, and graphical user interface for viewing and managing electronic calendars
US8452529B2 (en) 2008-01-10 2013-05-28 Apple Inc. Adaptive navigation system for estimating travel times
AU2009214247A1 (en) * 2008-02-15 2009-08-20 Tomtom International B.V. Navigation device, system & method with over the air search module
DE102008011711A1 (en) * 2008-02-28 2009-09-03 Continental Automotive Gmbh Navigation system operating method for determining route for vehicle, involves executing navigation specific queries by data base management module by accessing to data base, and sending processed data to communication module
CN101246493A (en) * 2008-03-10 2008-08-20 柯文生 Method for electronic map implementing communication linking
US20090259397A1 (en) * 2008-04-10 2009-10-15 Richard Stanton Navigation system with touchpad remote
US8856671B2 (en) * 2008-05-11 2014-10-07 Navteq B.V. Route selection by drag and drop
US9250092B2 (en) 2008-05-12 2016-02-02 Apple Inc. Map service with network-based query for search
US8644843B2 (en) 2008-05-16 2014-02-04 Apple Inc. Location determination
US8478337B2 (en) 2008-05-30 2013-07-02 Mitsubishi Electric Corporation Navigation device and adaptively-controlled communication system
US8369867B2 (en) 2008-06-30 2013-02-05 Apple Inc. Location sharing
US9026095B2 (en) * 2008-06-30 2015-05-05 Nokia Corporation Delivery of assistance data for signal reception
CN102027329B (en) * 2008-07-11 2013-10-16 电子地图有限公司 Apparatus for and method of junction view display
ES2612731T3 (en) 2008-08-19 2017-05-18 Janssen Pharmaceutica Nv Menthol cold receptor antagonists
US8359643B2 (en) 2008-09-18 2013-01-22 Apple Inc. Group formation using anonymous broadcast information
US20100082693A1 (en) * 2008-09-25 2010-04-01 Ethan Hugg Organization of a contact list based on social network context
US8164801B2 (en) * 2008-10-16 2012-04-24 International Buisness Machines Corporation Providing updated versions of printed documents from two-dimensional barcodes associated with the updated versions
CN101727468A (en) * 2008-10-20 2010-06-09 鸿富锦精密工业(深圳)有限公司 Electronic device and picture management method thereof
US20150160023A1 (en) * 2008-10-21 2015-06-11 Google Inc. Personalized Traffic Alerts
US8060582B2 (en) 2008-10-22 2011-11-15 Google Inc. Geocoding personal information
JP5200858B2 (en) * 2008-10-29 2013-06-05 カシオ計算機株式会社 Emulator management system and program
US8260320B2 (en) 2008-11-13 2012-09-04 Apple Inc. Location specific content
US9746335B2 (en) 2008-12-30 2017-08-29 Tomtom Global Content B.V. Method and system for transmitting and/or receiving at least one location reference, enhanced by at least one focusing factor
US20110257810A1 (en) * 2008-12-30 2011-10-20 Renault Trucks Onboard vehicle system and method for configuring vehicle functionalities
CN102257545A (en) * 2008-12-30 2011-11-23 电子地图北美公司 A method and system for transmitting and/or receiving at least one location reference, enhanced by at least one focusing factor
JP5682851B2 (en) * 2009-01-13 2015-03-11 ヤマハ株式会社 Electronic music apparatus, electronic music system, electronic music apparatus and server constituting the electronic music system
KR101552309B1 (en) * 2009-02-11 2015-09-11 삼성전자주식회사 Method for offering user interface of portable terminal
US20100217482A1 (en) * 2009-02-20 2010-08-26 Ford Global Technologies, Llc Vehicle-based system interface for personal navigation device
US8413217B2 (en) * 2009-03-04 2013-04-02 Qualcomm Incorporated Systems and methods for controlling operation of a mobile station
GB2469086A (en) * 2009-04-01 2010-10-06 Naseem Bari Providing a forced navigation route via a portable navigation device
US9479895B2 (en) * 2009-04-23 2016-10-25 International Business Machines Corporation Location-oriented services
US8660530B2 (en) 2009-05-01 2014-02-25 Apple Inc. Remotely receiving and communicating commands to a mobile device for execution by the mobile device
US8666367B2 (en) 2009-05-01 2014-03-04 Apple Inc. Remotely locating and commanding a mobile device
US8670748B2 (en) 2009-05-01 2014-03-11 Apple Inc. Remotely locating and commanding a mobile device
EP2427729A4 (en) * 2009-05-04 2014-08-27 Tomtom North America Inc Method and system for reducing shape points in a geographic data information system
US8098205B2 (en) * 2009-05-05 2012-01-17 Flextronics Automotive Inc. GPS, GSM, and wireless LAN antenna for vehicle applications
JP5438377B2 (en) * 2009-05-18 2014-03-12 任天堂株式会社 Information processing program and information processing apparatus
DE102009023639A1 (en) * 2009-05-29 2010-12-09 Bury Sp.Z.O.O Electronic logbook
US20110004523A1 (en) * 2009-07-06 2011-01-06 Ford Global Technologies, Llc Method and Apparatus for Preferential Determination and Display of Points of Interest
JP2011015324A (en) * 2009-07-06 2011-01-20 Toyota Motor Corp In-vehicle device and system, and data communication setting method
US8022877B2 (en) 2009-07-16 2011-09-20 Skyhook Wireless, Inc. Systems and methods for using a satellite positioning system to detect moved WLAN access points
CN104951647B (en) 2009-09-08 2018-06-22 艾伯特糖尿病护理公司 The method and product of safety-critical application program are accommodated on uncontrolled data processing equipment
TWI395925B (en) * 2009-10-09 2013-05-11 Mitac Int Corp Method for adjusting size of an icon and related handheld device
TWI395926B (en) * 2009-10-26 2013-05-11 Mitac Int Corp Methods of wirelessly adding navigational content to a personal navigation device
US8478528B2 (en) * 2009-11-05 2013-07-02 Mitac International Corp. Methods of wirelessly adding navigational content to a personal navigation device
JP2011106849A (en) * 2009-11-13 2011-06-02 J&K Car Electronics Corp Portable navigation device and program
US8811900B2 (en) * 2009-11-13 2014-08-19 Honda Motor Co., Ltd. System and method for hands free connect application for the automobile environment
DE102009054138A1 (en) 2009-11-20 2011-05-26 Bayerische Motoren Werke Aktiengesellschaft Method for operating display unit in vehicle, involves producing measuring signal by brightness sensor, and activating night-display-view or day-display-view of display device in dependent of measuring signal of brightness sensor
KR101612789B1 (en) * 2009-12-01 2016-04-18 엘지전자 주식회사 Navigation method of mobile terminal and apparatus thereof
FR2953590B1 (en) * 2009-12-03 2012-08-03 Mobile Devices Ingenierie INFORMATION DEVICE FOR VEHICLE DRIVER AND METHOD FOR CONTROLLING SUCH A DEVICE.
US20110137808A1 (en) 2009-12-04 2011-06-09 3Pd Analyzing survey results
US9304005B2 (en) * 2009-12-04 2016-04-05 GM Global Technology Operations LLC Application programming interface (API) for navigation applications that merges incremental updates with existing map database
US8862576B2 (en) 2010-01-06 2014-10-14 Apple Inc. Device, method, and graphical user interface for mapping directions between search results
US20110237234A1 (en) 2010-03-23 2011-09-29 Fujitsu Limited System and methods for remote maintenance in an electronic network with multiple clients
US8527132B2 (en) 2010-03-30 2013-09-03 Honda Motor Co., Ltd. Energy maps and method of making
US8423273B2 (en) * 2010-03-30 2013-04-16 Honda Motor Co., Ltd. Minimum energy route for a motor vehicle
US20110258581A1 (en) * 2010-04-14 2011-10-20 Wei-Han Hu Method for adjusting size of an icon and related handheld device
JP5012957B2 (en) * 2010-05-31 2012-08-29 株式会社デンソー Vehicle input system
US10066948B2 (en) 2010-06-04 2018-09-04 Nokia Technologies Oy Method and apparatus for generating map-based snippets
US9846046B2 (en) 2010-07-30 2017-12-19 Ford Global Technologies, Llc Vehicle navigation method and system
TW201208395A (en) * 2010-08-02 2012-02-16 Hon Hai Prec Ind Co Ltd Audio player and audio playing method thereof
US8335643B2 (en) 2010-08-10 2012-12-18 Ford Global Technologies, Llc Point of interest search, identification, and navigation
US8521424B2 (en) * 2010-09-29 2013-08-27 Ford Global Technologies, Llc Advanced map information delivery, processing and updating
US8849552B2 (en) 2010-09-29 2014-09-30 Ford Global Technologies, Llc Advanced map information delivery, processing and updating
US9429445B2 (en) 2010-11-02 2016-08-30 Telenav, Inc. Navigation system with communication identification based destination guidance mechanism and method of operation thereof
KR101932688B1 (en) 2010-11-29 2018-12-28 삼성전자주식회사 Portable Device and Method for Providing User Interface Mode thereof
TWI442353B (en) * 2010-12-06 2014-06-21 Mitac Int Corp Method for providing a navigation route according to point of interest on the navigation route and device thereof
JP5620253B2 (en) * 2010-12-21 2014-11-05 株式会社ナビタイムジャパン Navigation system, navigation server, navigation method, and program
GB2483318B (en) * 2011-01-24 2013-06-26 Realvnc Ltd Software activation systems
JP2012217130A (en) * 2011-03-25 2012-11-08 Denso Corp Portable terminal and apparatus cooperation system
US20120260284A1 (en) * 2011-04-07 2012-10-11 Sony Corporation User interface for audio video display device such as tv personalized for multiple viewers
US9341493B2 (en) * 2011-04-18 2016-05-17 Volkswagen Ag Method and apparatus for providing a user interface, particularly in a vehicle
WO2012154870A2 (en) 2011-05-09 2012-11-15 Zoll Medical Corporation Systems and methods for ems navigation user interface
US8688321B2 (en) 2011-07-11 2014-04-01 Ford Global Technologies, Llc Traffic density estimation
US9439051B2 (en) 2011-09-01 2016-09-06 Toyota Motor Engineering & Manufacturing North America, Inc. System for providing Internet access to an automotive vehicle having a multimedia device
US9185066B2 (en) * 2011-09-01 2015-11-10 Sony Corporation Enabling wireless device communication
US8948698B2 (en) * 2011-09-02 2015-02-03 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle multimedia head unit with two bluetooth antennas and two receivers
US8682307B2 (en) 2011-09-06 2014-03-25 General Motors Llc Device-interoperability notification method and system, and method for assessing an interoperability of an electronic device with a vehicle
US9230232B2 (en) 2011-09-20 2016-01-05 Telogis, Inc. Vehicle fleet work order management system
US8388450B1 (en) * 2011-09-26 2013-03-05 Zynga Inc. Expanding the gaming social network with unrelated players
US20130085881A1 (en) * 2011-10-01 2013-04-04 Panzara Inc. Mobile and Web Commerce Platform for delivery of Business Information and Service Status Management.
US8732810B2 (en) * 2011-10-27 2014-05-20 Cellco Partnership IP push platform and connection protocol in a push notification framework
US8838385B2 (en) 2011-12-20 2014-09-16 Ford Global Technologies, Llc Method and apparatus for vehicle routing
CN104160246A (en) 2011-12-30 2014-11-19 英特尔公司 Managing navigation changes
US8731822B2 (en) * 2012-01-17 2014-05-20 Motorola Mobility Llc Systems and methods for interleaving navigational directions with additional audio in a mobile device
EP2807454A4 (en) * 2012-01-26 2015-08-19 Telecomm Systems Inc Navigational lane guidance
US20130197807A1 (en) * 2012-01-31 2013-08-01 Wei Du System, method and computer program product for quantifying hazard risk
US8756012B2 (en) 2012-02-03 2014-06-17 Honeywell International Inc. System and method for displaying performance based range and time scales on a navigation display
US9171327B2 (en) 2012-03-23 2015-10-27 Ebay Inc. Systems and methods for in-vehicle navigated shopping
US9547872B2 (en) 2012-02-22 2017-01-17 Ebay Inc. Systems and methods for providing search results along a corridor
KR101901720B1 (en) * 2012-04-02 2018-11-13 삼성전자주식회사 Method for interworing with dummy device and an electronic device thereof
CN102655554B (en) * 2012-04-19 2016-08-17 惠州Tcl移动通信有限公司 Control method in wireless telecommunications system and navigation thereof
SE537183C2 (en) * 2012-05-03 2015-02-24 Scania Cv Ab Method and system for controlling vehicles
US8908879B2 (en) 2012-05-23 2014-12-09 Sonos, Inc. Audio content auditioning
US9052197B2 (en) 2012-06-05 2015-06-09 Apple Inc. Providing navigation instructions while device is in locked mode
US9418672B2 (en) 2012-06-05 2016-08-16 Apple Inc. Navigation application with adaptive instruction text
US9997069B2 (en) 2012-06-05 2018-06-12 Apple Inc. Context-aware voice guidance
US9482296B2 (en) 2012-06-05 2016-11-01 Apple Inc. Rendering road signs during navigation
US20130321400A1 (en) 2012-06-05 2013-12-05 Apple Inc. 3D Map Views for 3D Maps
US9146125B2 (en) 2012-06-05 2015-09-29 Apple Inc. Navigation application with adaptive display of graphical directional indicators
US10156455B2 (en) 2012-06-05 2018-12-18 Apple Inc. Context-aware voice guidance
US9886794B2 (en) 2012-06-05 2018-02-06 Apple Inc. Problem reporting in maps
US10176633B2 (en) 2012-06-05 2019-01-08 Apple Inc. Integrated mapping and navigation application
US9159153B2 (en) 2012-06-05 2015-10-13 Apple Inc. Method, system and apparatus for providing visual feedback of a map view change
US20130339266A1 (en) 2012-06-15 2013-12-19 Telogis, Inc. Vehicle fleet routing system
WO2013188097A2 (en) * 2012-06-15 2013-12-19 Telogis, Inc. Vehicle fleet routing system
US9091562B2 (en) * 2012-06-27 2015-07-28 International Business Machines Corporation Navigation system efficiently utilizes power by providing instructions to the driver for only the driver selected portion(s) of route
US9535653B2 (en) * 2012-08-31 2017-01-03 Google Inc. Adjusting audio volume of multimedia when switching between multiple multimedia content
JP6145597B2 (en) * 2012-09-04 2017-06-14 株式会社ユピテル Car electronics
US10359294B2 (en) * 2012-10-29 2019-07-23 Google Llc Interactive digital map on a portable device
WO2014089163A2 (en) * 2012-12-04 2014-06-12 Shaleapps, Llc System, method, and apparatus for managing fluid transportation
EP2747000B1 (en) * 2012-12-20 2017-11-22 ABB Schweiz AG System and method for automatic allocation of mobile resources to tasks
CN103047997B (en) * 2012-12-26 2016-01-20 北京工业大学 Based on the 3D acceleration of bluetooth and angular velocity Real-time Collection with send sensing module
WO2014119935A1 (en) * 2013-01-31 2014-08-07 Joung Han Uk Electronic device for playing back music in navigation service and method for same
US9542172B2 (en) * 2013-02-05 2017-01-10 Apple Inc. Automatic updating of applications
US9344869B2 (en) 2013-02-12 2016-05-17 Motorola Solutions, Inc. Method and apparatus for enhanced navigation in a dispatch communication system
US9713963B2 (en) 2013-02-18 2017-07-25 Ford Global Technologies, Llc Method and apparatus for route completion likelihood display
US9863777B2 (en) 2013-02-25 2018-01-09 Ford Global Technologies, Llc Method and apparatus for automatic estimated time of arrival calculation and provision
US9047774B2 (en) 2013-03-12 2015-06-02 Ford Global Technologies, Llc Method and apparatus for crowd-sourced traffic reporting
US8977479B2 (en) 2013-03-12 2015-03-10 Ford Global Technologies, Llc Method and apparatus for determining traffic conditions
US9210357B1 (en) * 2013-03-13 2015-12-08 Google Inc. Automatically pairing remote
US9874452B2 (en) 2013-03-14 2018-01-23 Ford Global Technologies, Llc Method and apparatus for enhanced driving experience including dynamic POI identification
US9404766B2 (en) 2013-06-08 2016-08-02 Apple Inc. Navigation peek ahead and behind in a navigation application
US9536325B2 (en) * 2013-06-09 2017-01-03 Apple Inc. Night mode
US9500494B2 (en) 2013-06-09 2016-11-22 Apple Inc. Providing maneuver indicators on a map
US9273980B2 (en) 2013-06-09 2016-03-01 Apple Inc. Direction list
EP2824480A1 (en) 2013-07-09 2015-01-14 The European Union, represented by the European Commission Digitally-signed satellite radio-navigation signals
CN105579867A (en) * 2013-09-06 2016-05-11 兰德马克绘图国际公司 Method for using geographical positioning system data to sketch the site for scouting job
US10054463B2 (en) * 2013-09-26 2018-08-21 Google Llc Systems and methods for providing navigation data to a vehicle
US20150088411A1 (en) * 2013-09-26 2015-03-26 Google Inc. Providing Digital Images to an External Device During Navigation
US9958289B2 (en) * 2013-09-26 2018-05-01 Google Llc Controlling navigation software on a portable device from the head unit of a vehicle
US9109917B2 (en) 2013-09-26 2015-08-18 Google Inc. Systems and methods for providing input suggestions via the head unit of a vehicle
US9439239B2 (en) 2013-10-22 2016-09-06 William H. Jennings Selective transmission storage and playback for communication device
US10963951B2 (en) 2013-11-14 2021-03-30 Ebay Inc. Shopping trip planner
US20150142251A1 (en) * 2013-11-21 2015-05-21 International Business Machines Corporation Vehicle control based on colors representative of navigation information
US20150149545A1 (en) * 2013-11-28 2015-05-28 Hyundai Motor America Apparatus and method for sharing of location information using social network service
JP6309628B2 (en) * 2013-12-06 2018-04-11 オーチス エレベータ カンパニーOtis Elevator Company Service requests using wireless programmable devices
US9820103B2 (en) * 2014-01-22 2017-11-14 Lenovo (Singapore) Pte. Ltd. Direction assistance based on personal experience
JP6230439B2 (en) * 2014-02-17 2017-11-15 三菱電機株式会社 In-vehicle information equipment
JP6379533B2 (en) * 2014-03-11 2018-08-29 株式会社リコー Output device and output system
KR20150141827A (en) * 2014-06-10 2015-12-21 주식회사 티노스 Control apparatus for changing the screen and audio of audio system, video system, and navigation system
US20160048799A1 (en) 2014-08-15 2016-02-18 Xpo Last Mile, Inc. Cascading call notification system and method
US9826045B2 (en) * 2014-09-26 2017-11-21 Oracle International Corporation Efficient means to test server generated applications on mobile device
US10290133B2 (en) 2014-09-26 2019-05-14 Oracle International Corporation High fidelity interactive screenshots for mobile applications
US20160104370A1 (en) 2014-10-14 2016-04-14 Logitech Europe S.A Method of controlling an electronic device
KR20160061466A (en) 2014-11-21 2016-06-01 현대자동차주식회사 Avn terminal and control method thereof
TWI534634B (en) * 2015-01-29 2016-05-21 台達電子工業股份有限公司 Active data push system and active data push method
US10012508B2 (en) 2015-03-04 2018-07-03 Lenovo (Singapore) Pte. Ltd. Providing directions to a location in a facility
WO2016144385A1 (en) * 2015-03-08 2016-09-15 Apple Inc. Sharing user-configurable graphical constructs
JP2016191670A (en) * 2015-03-31 2016-11-10 株式会社トヨタマップマスター Navigation device, navigation method, computer program, and recording medium for recording the computer program
US9978284B2 (en) * 2015-06-05 2018-05-22 Here Global B.V. Method and apparatus for generating vehicle maneuver plans
US10197409B2 (en) * 2015-06-07 2019-02-05 Apple Inc. Frequency based transit trip characterizations
KR101704567B1 (en) * 2015-08-27 2017-02-08 현대자동차주식회사 Method, apparutus and systme for managing vehicle interlock application
DE102015011566B4 (en) * 2015-09-02 2019-08-08 Audi Ag Task-oriented motor vehicle navigation
US9395384B1 (en) * 2015-10-07 2016-07-19 State Farm Mutual Automobile Insurance Company Systems and methods for estimating vehicle speed and hence driving behavior using accelerometer data during periods of intermittent GPS
CN106612369A (en) * 2015-10-27 2017-05-03 华为终端(东莞)有限公司 Positioning information processing method and device
MX2018005633A (en) * 2015-11-09 2019-04-29 Ford Global Tech Llc U-turn event tagging and vehicle routing.
AU2016357751B2 (en) * 2015-11-19 2021-04-01 Robert Bosch Gmbh Secure access control to an embedded device through a networked computer
CN105704214A (en) * 2016-01-08 2016-06-22 北京小米移动软件有限公司 Information sending method and device
DE102016202968A1 (en) * 2016-02-25 2017-08-31 Bayerische Motoren Werke Aktiengesellschaft Acoustic reproduction of a digital audio medium in a motor vehicle
DE102016202966A1 (en) * 2016-02-25 2017-08-31 Bayerische Motoren Werke Aktiengesellschaft Acoustic reproduction of a digital audio medium in a motor vehicle
US10331314B2 (en) * 2016-03-11 2019-06-25 Denso International America, Inc. User interface including recyclable menu
CN105973260A (en) * 2016-05-04 2016-09-28 深圳市凯立德科技股份有限公司 Navigation display method and device thereof
US10299074B2 (en) 2016-05-09 2019-05-21 Microsoft Technology Licensing, Llc Offline map download
CN107643954B (en) * 2016-07-20 2020-08-04 平安科技(深圳)有限公司 SDK access system and method
US9812011B1 (en) * 2016-07-28 2017-11-07 Here Global B.V. Dangerous driving weather messages
WO2018044297A1 (en) * 2016-08-31 2018-03-08 Ford Global Technologies, Llc Wheelchair with weather shield
US10024671B2 (en) 2016-11-16 2018-07-17 Allstate Insurance Company Multi-stop route selection system
WO2018097814A1 (en) * 2016-11-22 2018-05-31 Ford Motor Company Vehicle assistance
US10220784B2 (en) * 2016-11-29 2019-03-05 Ford Global Technologies, Llc Luminescent windshield display
RU173728U1 (en) * 2017-02-07 2017-09-07 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") User Mapping Interface
JP6432030B2 (en) * 2017-03-07 2018-12-05 株式会社ユピテル Car electronics
CN110431056B (en) 2017-03-08 2023-04-04 福特全球技术公司 Vehicle-mounted aerial unmanned aerial vehicle container
US10408624B2 (en) * 2017-04-18 2019-09-10 Microsoft Technology Licensing, Llc Providing familiarizing directional information
US10796484B2 (en) * 2017-06-14 2020-10-06 Anand Babu Chitavadigi System and method for interactive multimedia and multi-lingual guided tour/panorama tour
US11100535B2 (en) 2017-07-11 2021-08-24 International Business Machines Corporation Group recommendations based on external factors
US10275451B2 (en) * 2017-07-11 2019-04-30 International Business Machines Corporation Counterintuitive recommendations based upon temporary conditions
US11308540B2 (en) 2017-07-11 2022-04-19 International Business Machines Corporation Real time recommendation engine
JP7029247B2 (en) * 2017-08-09 2022-03-03 オムロンヘルスケア株式会社 How to set user terminals, server devices, and communication parameters
CN107566410B (en) * 2017-10-20 2020-01-03 国信嘉宁数据技术有限公司 Data security message request processing method and device
CN108534794A (en) * 2018-03-02 2018-09-14 百度在线网络技术(北京)有限公司 Display methods, device, equipment and the medium of logo in a kind of navigation
CN108898869A (en) * 2018-05-07 2018-11-27 阿里巴巴集团控股有限公司 Arrival reminding method, apparatus and system
CN109543639B (en) * 2018-11-29 2021-12-24 上海芯爱智能科技有限公司 Information display method, system, server and storage medium
US11049196B2 (en) * 2018-12-28 2021-06-29 Datalogic I.P. Tech S.R.L. Drive-through automated supermarket
CN110118571A (en) * 2019-04-19 2019-08-13 芜湖智久机器人有限公司 A kind of method of the setting angle error of laser sensor in acquisition mobile device
CN110399040B (en) * 2019-07-23 2023-05-12 芋头科技(杭州)有限公司 Multi-mode interaction method, user terminal equipment, server and system
KR20210029591A (en) * 2019-09-06 2021-03-16 엘지전자 주식회사 Robot and controlling method thereof
US11568640B2 (en) 2019-09-30 2023-01-31 Lenovo (Singapore) Pte. Ltd. Techniques for providing vibrations at headset
USD926097S1 (en) * 2019-10-04 2021-07-27 Volkswagen Aktiengesellschaft Instrument panel for media and navigation system
JP6991186B2 (en) * 2019-11-06 2022-01-12 本田技研工業株式会社 Equipment operation device, equipment operation method, and program
USD926096S1 (en) * 2019-11-08 2021-07-27 Volkswagen Aktiengesellschaft Instrument panel for media and navigation system
KR20210102063A (en) * 2020-02-11 2021-08-19 현대자동차주식회사 Method and apparatus for performing confirmed-based operation in machine to machine system
JP2021132353A (en) * 2020-02-21 2021-09-09 キヤノン株式会社 Imaging device, control method of imaging device, program, and recording medium
JP7325131B2 (en) * 2020-02-25 2023-08-14 株式会社ユピテル Driving support system and program
US11685398B2 (en) * 2020-02-27 2023-06-27 Baidu Usa Llc Lane based routing system for autonomous driving vehicles
US11144759B1 (en) * 2020-05-12 2021-10-12 Lenovo (Singapore) Pte. Ltd. Presentation of graphical objects on display based on input from rear-facing camera
USD937165S1 (en) * 2020-08-26 2021-11-30 Atieva Inc. Retractable, vehicular, center console display screen
US11468990B2 (en) 2020-10-12 2022-10-11 Kyndryl, Inc. Prevention of computer vision syndrome using explainable artificial intelligence
EP4323992A1 (en) 2021-05-15 2024-02-21 Apple Inc. User interfaces for group workouts
US20230214171A1 (en) * 2021-12-30 2023-07-06 Harman International Industries, Incorporated In-vehicle multi-occupant media management
CN115512479B (en) * 2022-09-09 2024-04-09 北海市冠标智慧声谷科技有限责任公司 Method for managing reception information and back-end equipment

Family Cites Families (301)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153874A (en) 1977-08-26 1979-05-08 Kaestner Erwin A Mobile perpetually self-correcting estimated time of arrival calculator
US4550317A (en) 1982-09-29 1985-10-29 Toyota Jidosha Kabushiki Kaisha Drive guide display system for motor vehicle
CN2033144U (en) 1988-06-02 1989-02-22 汲波 Overspeed warning and recording device for automotive vehicle
US5058201A (en) * 1988-06-07 1991-10-15 Oki Electric Industry Co., Ltd. Mobile telecommunications system using distributed miniature zones
JPH0269616A (en) * 1988-09-06 1990-03-08 Toshiba Corp Car navigation system
US4919545A (en) * 1988-12-22 1990-04-24 Gte Laboratories Incorporated Distributed security procedure for intelligent networks
US5046082A (en) * 1990-05-02 1991-09-03 Gte Mobile Communications Service Corporation Remote accessing system for cellular telephones
JPH04187851A (en) 1990-11-20 1992-07-06 Toyota Motor Corp Cylinder direct-injection type spark ignition engine
US5155689A (en) * 1991-01-17 1992-10-13 By-Word Technologies, Inc. Vehicle locating and communicating method and apparatus
EP0587892B1 (en) * 1991-06-05 1997-11-19 TSUYUKI, Toshio Navigation apparatus and navigation method
JP2780521B2 (en) * 1991-07-11 1998-07-30 三菱電機株式会社 Map display control device
US5515284A (en) * 1991-09-25 1996-05-07 Zexel Corporation Storage medium for map information for navigation system and system for offering map information for navigation system
JPH05119701A (en) 1991-10-29 1993-05-18 Clarion Co Ltd Map display device for car navigation
US6295449B1 (en) * 1992-01-27 2001-09-25 @Track Communications, Inc. Data messaging in a communications network using a feature request
DE69324713T2 (en) * 1992-02-18 1999-09-09 Pioneer Electronic Corp Navigation device with improved position display function
DE4205979A1 (en) * 1992-02-27 1993-09-02 Bosch Gmbh Robert NAVIGATION DEVICE FOR AGRICULTURAL VEHICLES
JPH0634384A (en) 1992-07-16 1994-02-08 Zexel Corp Vehicular navigation device
DE69333933T2 (en) * 1992-08-19 2006-06-29 Aisin AW Co., Ltd., Anjo Car navigation system
JP3027899B2 (en) * 1993-05-12 2000-04-04 松下電器産業株式会社 Recommended route guidance device
JP2503909B2 (en) 1993-09-13 1996-06-05 日本電装株式会社 Road map display
TW249877B (en) * 1993-11-23 1995-06-21 Bellsouth Int Inc
WO1995019030A1 (en) * 1994-01-05 1995-07-13 Pois, Inc. Apparatus and method for a personal onboard information system
US5438614A (en) * 1994-05-25 1995-08-01 U.S. Robotics, Inc. Modem management techniques
US6321158B1 (en) * 1994-06-24 2001-11-20 Delorme Publishing Company Integrated routing/mapping information
US5784059A (en) * 1994-09-16 1998-07-21 Aisin Aw Co., Ltd. Vehicle navigation system with destination selection using hierarchical menu arrangement with selective level skipping
CA2157623C (en) * 1994-09-20 1999-12-21 Lars Stig Sorensen Method and apparatus for dynamic radio communication menu
EP1233250A3 (en) * 1994-09-22 2002-11-06 Aisin Aw Co., Ltd. Navigation system
JPH08105753A (en) * 1994-10-03 1996-04-23 Alpine Electron Inc Route guidance system for mounting on vehicle
US5727057A (en) * 1994-12-27 1998-03-10 Ag Communication Systems Corporation Storage, transmission, communication and access to geographical positioning data linked with standard telephony numbering and encoded for use in telecommunications and related services
JPH08201088A (en) * 1995-01-24 1996-08-09 Pioneer Electron Corp Car navigation system having route searching function
US5887269A (en) * 1995-04-07 1999-03-23 Delco Elecronics Corporation Data product authorization control for GPS navigation system
JP3430715B2 (en) * 1995-05-29 2003-07-28 株式会社エクォス・リサーチ Vehicle driving support device
GB2301987B (en) * 1995-06-05 2000-01-12 Nokia Mobile Phones Ltd Radio telephone text transmission system
US6768944B2 (en) * 2002-04-09 2004-07-27 Intelligent Technologies International, Inc. Method and system for controlling a vehicle
US5680312A (en) 1995-06-07 1997-10-21 Zexel Corporation Method and apparatus for selecting a destination in a vehicle navigation system
JPH097087A (en) 1995-06-16 1997-01-10 Aqueous Res:Kk Guidance device
JP2853978B2 (en) 1995-07-26 1999-02-03 富士通テン株式会社 Drive simulation device
CA2228014C (en) * 1995-07-31 2008-07-22 Verifone, Inc. Method and apparatus for operating resources under control of a security module or other secure processor
JP3483672B2 (en) * 1995-09-06 2004-01-06 三菱電機株式会社 Navigation device
JPH09147295A (en) 1995-09-20 1997-06-06 Toshiba Corp On-vehicle navigation device
JP3594374B2 (en) * 1995-09-29 2004-11-24 松下電器産業株式会社 Navigation device
US5790800A (en) * 1995-10-13 1998-08-04 Digital Equipment Corporation Client application program mobilizer
EP0777206A1 (en) 1995-11-30 1997-06-04 Aisin Aw Co., Ltd. Vehicular navigation apparatus
JP3125669B2 (en) * 1996-01-31 2001-01-22 トヨタ自動車株式会社 Travel planning equipment
JPH09304107A (en) 1996-05-13 1997-11-28 Kenwood Corp Navigator
JPH09325038A (en) * 1996-06-04 1997-12-16 Nec Home Electron Ltd Method and apparatus for searching for route in car navigation system
KR100260760B1 (en) * 1996-07-31 2000-07-01 모리 하루오 Information display system with touch panel
JP3876463B2 (en) 1996-11-18 2007-01-31 ソニー株式会社 Map information providing apparatus and method
JP3876462B2 (en) * 1996-11-18 2007-01-31 ソニー株式会社 Map information providing apparatus and method
US20010050990A1 (en) * 1997-02-19 2001-12-13 Frank Wells Sudia Method for initiating a stream-oriented encrypted communication
US5936553A (en) * 1997-02-28 1999-08-10 Garmin Corporation Navigation device and method for displaying navigation information in a visual perspective view
JPH10312307A (en) * 1997-05-13 1998-11-24 Toshiba Corp Emulator for computer system
JPH1185647A (en) * 1997-07-10 1999-03-30 Ricoh Co Ltd Network electronic equipment and network electronic equipment system
JPH1138872A (en) 1997-07-17 1999-02-12 Toyota Motor Corp Map data delivery system and map data acquisition apparatus suitable for this system
JPH1139592A (en) 1997-07-23 1999-02-12 Toyota Motor Corp Vehicle traveling controller
US5951621A (en) * 1997-10-30 1999-09-14 Lear Automotive Dearborn, Inc. Proximity indicator display
JPH11149244A (en) 1997-11-17 1999-06-02 Casio Comput Co Ltd Map display device, operation assisting device, information informing method, operation assisting method, and recording medium
JP3546680B2 (en) * 1998-01-26 2004-07-28 トヨタ自動車株式会社 Navigation device
FR2774166B1 (en) 1998-01-27 2000-03-31 Philips Electronics Nv VEHICLE GUIDANCE APPARATUS FOR ROUTE SCANNING
US6085097A (en) * 1998-02-12 2000-07-04 Savery; Winsor T. Cellular communications tracking system using a multitude of assigned call-numbers
US6006269A (en) * 1998-03-11 1999-12-21 Hewlett-Packard Company Admission control system with messages admitted or deferred for re-submission at a later time on a priority basis
DE69908121T2 (en) * 1998-03-23 2004-04-01 Microsoft Corp., Redmond APPLICATION PROGRAMMING INTERFACE IN AN OPERATING SYSTEM
FR2778240B1 (en) * 1998-04-29 2000-07-21 Peugeot ASSISTANCE SYSTEM FOR DRIVING A MOTOR VEHICLE
US6049755A (en) * 1998-05-05 2000-04-11 Magellan Dis, Inc. Navigation system vehicle location display
EP1078225B1 (en) * 1998-05-05 2003-10-22 Magellan Dis Inc. Navigation system with user interface
ES2237930T3 (en) * 1998-05-22 2005-08-01 Hans-Detlef Brust DEVICE AND PROCEDURE FOR FINDING A PARKED VEHICLE.
JP2000009479A (en) * 1998-06-22 2000-01-14 Mitsubishi Electric Corp Navigation system
JP3410028B2 (en) 1998-08-26 2003-05-26 トヨタ自動車株式会社 Travel plan creation device
US20020062451A1 (en) * 1998-09-01 2002-05-23 Scheidt Edward M. System and method of providing communication security
GB2341523B (en) * 1998-09-12 2003-10-29 Ibm Apparatus and method for establishing communication in a computer network
JP2000098882A (en) 1998-09-25 2000-04-07 Jatco Corp Map display device
WO2000022593A1 (en) * 1998-10-14 2000-04-20 Siemens Automotive Corporation Driver information system
US6438561B1 (en) * 1998-11-19 2002-08-20 Navigation Technologies Corp. Method and system for using real-time traffic broadcasts with navigation systems
DE19955799A1 (en) * 1998-11-19 2000-05-31 Hitachi Ltd Arrangement for controlling automatic gearboxes has controller that changes initial working pressure value in agreement with drive force during transition period between coupling states
TW388817B (en) * 1998-11-20 2000-05-01 Via Tech Inc Method reducing latency of writing data in memory
US6295643B1 (en) * 1998-12-10 2001-09-25 International Business Machines Corporation Method and apparatus for improving java virtual machine performance using persistent execution information
CN1591646A (en) 1998-12-14 2005-03-09 皇家菲利浦电子有限公司 Record carrier apparatus and method for playing back a record carrier with video and image item using user feedback
JP2000209699A (en) * 1999-01-14 2000-07-28 Nissan Motor Co Ltd Audio output controller
US6360167B1 (en) * 1999-01-29 2002-03-19 Magellan Dis, Inc. Vehicle navigation system with location-based multi-media annotation
DE19906863A1 (en) * 1999-02-18 2000-10-19 Nokia Mobile Phones Ltd Procedure for navigating an object
US7053824B2 (en) * 2001-11-06 2006-05-30 Global Locate, Inc. Method and apparatus for receiving a global positioning system signal using a cellular acquisition signal
US6314283B1 (en) * 1999-04-28 2001-11-06 Nec America, Inc. Cellular phone subsidy lock
US6389278B1 (en) * 1999-05-17 2002-05-14 Ericsson Inc. Systems and methods for identifying a service provider from a wireless communicator based on categories of service providers that are called
EP1194903B1 (en) * 1999-05-26 2013-11-13 Johnson Controls Technology Company Wireless communications system and method
US6910068B2 (en) * 1999-06-11 2005-06-21 Microsoft Corporation XML-based template language for devices and services
US6507810B2 (en) * 1999-06-14 2003-01-14 Sun Microsystems, Inc. Integrated sub-network for a vehicle
US20040148097A1 (en) * 1999-07-02 2004-07-29 Magellan Dis, Inc. Transmission of vehicle position relative to map database
DE19932724A1 (en) * 1999-07-17 2001-01-18 Rolf Strothmann Route guidance system has mobile devices which acquire guidance information as required from central server
DE19939631A1 (en) * 1999-08-20 2001-02-22 Nokia Mobile Phones Ltd Multimedia unit with removable operator control for installation in vehicle, uses operator-control surface as touch-sensitive display operating together with processor system
US6442748B1 (en) * 1999-08-31 2002-08-27 Accenture Llp System, method and article of manufacture for a persistent state and persistent object separator in an information services patterns environment
JP2001116578A (en) * 1999-10-14 2001-04-27 Yazaki Corp On-vehicle navigation system and recording medium recorded with processing program in on-vehicle navigation system
DE19950156C5 (en) * 1999-10-19 2010-03-04 Robert Bosch Gmbh Method for automatically adjusting the display of a combination instrument
US6828992B1 (en) * 1999-11-04 2004-12-07 Koninklijke Philips Electronics N.V. User interface with dynamic menu option organization
NO20004375L (en) * 1999-12-06 2001-06-07 Ziad Badarneh System and method for displaying and assisting manipulation movements in operating a control device lined with functional equipment
US20020055351A1 (en) * 1999-11-12 2002-05-09 Elsey Nicholas J. Technique for providing personalized information and communications services
US6315298B1 (en) * 1999-11-22 2001-11-13 United Technologies Corporation Turbine disk and blade assembly seal
DE19956113A1 (en) * 1999-11-22 2001-05-23 Mannesmann Vdo Ag Illuminated display device e.g. for motor vehicles, has sensor for detecting ambient brightness and has display brightness divided into three ranges depending on ambient brightness level
JP2001175596A (en) * 1999-12-14 2001-06-29 Nec Corp Device and method for processing command and recording medium with program recorded thereon
US6317684B1 (en) * 1999-12-22 2001-11-13 At&T Wireless Services Inc. Method and apparatus for navigation using a portable communication device
WO2001059601A1 (en) * 2000-02-11 2001-08-16 Grounds Thomas L Device and method for transmitting vehicle position
AU2001238027A1 (en) * 2000-02-18 2001-08-27 Summedia.Com, Inc. Cellular coupon system
US6278940B1 (en) * 2000-03-09 2001-08-21 Alpine Electronics, Inc. Input method for selecting destination, navigation system using the same, and information storage medium for use therewith
US6587782B1 (en) * 2000-03-14 2003-07-01 Navigation Technologies Corp. Method and system for providing reminders about points of interests while traveling
DE50014708D1 (en) * 2000-03-30 2007-11-22 Siemens Ag Method and system for activating an encrypted file
AU5059701A (en) * 2000-04-27 2001-11-07 Aran Communications Limited A communication method and apparatus
JP3783525B2 (en) * 2000-05-18 2006-06-07 株式会社デンソー Average vehicle speed calculation device and recording medium
EP1162102A3 (en) 2000-06-05 2002-01-30 John Bruce Howard Speed indication using navigation unit
US6718258B1 (en) * 2000-06-08 2004-04-06 Navigation Technologies Corp Method and system for obtaining user feedback regarding geographic data
US7013345B1 (en) * 2000-06-12 2006-03-14 Metric Systems Corporation Method and apparatus for wireless networking
JP5118793B2 (en) * 2000-06-29 2013-01-16 ソニー株式会社 Service provision system
JP2002027028A (en) * 2000-07-07 2002-01-25 Pioneer Electronic Corp Information communication equipment
US20020103622A1 (en) * 2000-07-17 2002-08-01 Burge John R. Decision-aid system based on wirelessly-transmitted vehicle crash sensor information
US20020032771A1 (en) * 2000-07-20 2002-03-14 Trond Gledje Event-based advertisements
JP2002049766A (en) * 2000-08-03 2002-02-15 Kddi Corp Contents-providing method
US6735516B1 (en) * 2000-09-06 2004-05-11 Horizon Navigation, Inc. Methods and apparatus for telephoning a destination in vehicle navigation
US6374180B1 (en) * 2000-09-18 2002-04-16 Magellan Dis, Inc. Points of interest for a navigation system
US6768942B1 (en) * 2000-09-18 2004-07-27 Navigation Technologies Corp. Navigation system with decryption functions and secure geographic database
US6978021B1 (en) * 2000-09-18 2005-12-20 Navteq North America, Llc Encryption method for distribution of data
US6857016B1 (en) * 2000-09-25 2005-02-15 Ricoh Company Limited Method and system of data collection and mapping from a remote position reporting device
US7203598B1 (en) * 2000-09-26 2007-04-10 Nortel Networks Limited Traffic information and automatic route guidance
US7036113B1 (en) * 2000-10-26 2006-04-25 International Business Machines Corporation Detection of resource exceptions
US6950850B1 (en) * 2000-10-31 2005-09-27 International Business Machines Corporation System and method for dynamic runtime partitioning of model-view-controller applications
US6560534B2 (en) * 2001-06-06 2003-05-06 Global Locate, Inc. Method and apparatus for distributing satellite tracking information
US6438468B1 (en) * 2000-11-28 2002-08-20 Honeywell International Inc. Systems and methods for delivering data updates to an aircraft
US6762741B2 (en) * 2000-12-22 2004-07-13 Visteon Global Technologies, Inc. Automatic brightness control system and method for a display device using a logarithmic sensor
US20020124236A1 (en) * 2000-12-27 2002-09-05 Ruths Derek Augustus Samuel Method of manipulating a distributed system of computer-implemented objects
US6812942B2 (en) * 2000-12-28 2004-11-02 International Business Machines Corporation Context-responsive in-vehicle display system
JP4119088B2 (en) * 2000-12-28 2008-07-16 パイオニア株式会社 Navigation information update system and navigation information distribution apparatus
JP4566413B2 (en) * 2001-01-10 2010-10-20 三菱電機株式会社 Map information processing device
CA2368404C (en) * 2001-01-18 2005-08-09 Research In Motion Limited Unified messaging system and method
WO2002058414A1 (en) * 2001-01-20 2002-07-25 Samsung Electronics Co., Ltd System and method for remotely controlling a mobile terminal
US6456207B1 (en) * 2001-02-20 2002-09-24 John Yen Intelligent taxi total service system
EP1234735A1 (en) * 2001-02-27 2002-08-28 Telefonaktiebolaget L M Ericsson (Publ) A portable apparatus for locating a parked vehicle
JP3776805B2 (en) 2001-02-27 2006-05-17 アルパイン株式会社 Mobile phone selection wireless communication device
JP2002267467A (en) * 2001-03-09 2002-09-18 Mitsubishi Electric Corp Navigation system
JP4359004B2 (en) * 2001-03-19 2009-11-04 株式会社日立製作所 Remote control system, remote control method, remote control adapter and service device
US7003569B2 (en) * 2001-03-20 2006-02-21 Cypress Semiconductor Corp. Follow-up notification of availability of requested application service and bandwidth between client(s) and server(s) over any network
JP4474783B2 (en) * 2001-03-26 2010-06-09 株式会社デンソー Navigation device
DE20106468U1 (en) * 2001-04-10 2001-11-29 Kunadt Klaus Display of traffic signs and / or regulations that are valid at the respective object position and / or direction of travel in moving objects (e.g. motor vehicles)
JP3863383B2 (en) 2001-04-17 2006-12-27 三菱電機株式会社 Navigation device
US6691128B2 (en) * 2001-04-19 2004-02-10 Navigation Technologies Corp. Navigation system with distributed computing architecture
US6826477B2 (en) * 2001-04-23 2004-11-30 Ecole Polytechnique Federale De Lausanne (Epfl) Pedestrian navigation method and apparatus operative in a dead reckoning mode
JP5109212B2 (en) * 2001-05-01 2012-12-26 ソニー株式会社 Navigation device, information display device, object generation method, and storage medium
KR100454944B1 (en) * 2001-05-03 2004-11-09 삼성전자주식회사 Navigation system
JP2002340596A (en) * 2001-05-14 2002-11-27 Clarion Co Ltd Navigation system and method and software for navigation
JP2002340605A (en) * 2001-05-15 2002-11-27 Yamaha Corp Portable communication device, navigation server and navigation system
EP1263146B1 (en) * 2001-05-28 2006-03-29 Matsushita Electric Industrial Co., Ltd. In-vehicle communication device and communication control method
JP2002350153A (en) 2001-05-30 2002-12-04 Motivation Follow Office Kk Advertisement information display device and program thereof
US7123933B2 (en) * 2001-05-31 2006-10-17 Orative Corporation System and method for remote application management of a wireless device
KR100433734B1 (en) * 2001-06-18 2004-06-04 이재욱 Automatic Connecting Service Method For Taxi By a Communication Network
EP1438669B1 (en) * 2001-06-27 2014-01-22 SKKY Incorporated Improved media delivery platform
US20030088511A1 (en) * 2001-07-05 2003-05-08 Karboulonis Peter Panagiotis Method and system for access and usage management of a server/client application by a wireless communications appliance
JP4437633B2 (en) * 2001-08-10 2010-03-24 富士通株式会社 Mobile device
JP2003058996A (en) * 2001-08-15 2003-02-28 Takayasu Sugiyama Caution display device for information on limited speed excession, frequent accident occurrence spot/frequent accident occurrence zone and danger on route by utilizing car navigation
DE10146789A1 (en) * 2001-09-22 2003-04-24 Bosch Gmbh Robert Method for determining a route from a start to a target point using a vehicle navigation system takes into account the remaining fuel, thus ensuring a driver does not run out of fuel
US7286857B1 (en) * 2001-09-25 2007-10-23 At Road, Inc. Enhanced in-vehicle wireless communication system handset operation
JP2003109185A (en) * 2001-09-27 2003-04-11 Fujitsu Ten Ltd On-vehicle information communication device
US7225260B2 (en) * 2001-09-28 2007-05-29 Symbol Technologies, Inc. Software method for maintaining connectivity between applications during communications by mobile computer terminals operable in wireless networks
JP2003106845A (en) 2001-09-28 2003-04-09 Pioneer Electronic Corp Navigation system, traveling member navigation apparatus and communication navigation apparatus as well as information server, method for navigation, method for navigating traveling member and method for communication navigating as well as method for processing server, navigation program, traveling member navigation program and communication navigation program as well as server processing program and information recording medium
JP3948602B2 (en) * 2001-10-09 2007-07-25 アルパイン株式会社 Navigation display device
JP2003130663A (en) 2001-10-25 2003-05-08 Kenwood Corp Navigation device and program
JP4475851B2 (en) * 2001-10-30 2010-06-09 パイオニア株式会社 Road condition data provision system
JP2003141691A (en) 2001-10-31 2003-05-16 Equos Research Co Ltd Nearby vehicle detecting device, nearby vehicle detecting method, and program thereof
US6708110B2 (en) * 2001-11-01 2004-03-16 General Motors Corporation Method of providing vehicle instructions to a non-navigable point of interest
EP1308694B1 (en) * 2001-11-01 2015-04-22 Nissan Motor Company Limited Navigation system, data server, travelling route establishing method and information providing method
JP3889268B2 (en) 2001-11-09 2007-03-07 アルパイン株式会社 Peripheral facility search method and in-vehicle navigation device
JP2003153341A (en) 2001-11-12 2003-05-23 Denso Corp In-vehicle communication terminal, server, and method of registering in-vehicle communication terminal in server
DE10155485B4 (en) * 2001-11-13 2018-05-09 Robert Bosch Gmbh Information carrier, driver information device and method for activating data
US6973384B2 (en) * 2001-12-06 2005-12-06 Bellsouth Intellectual Property Corporation Automated location-intelligent traffic notification service systems and methods
WO2003050557A2 (en) * 2001-12-07 2003-06-19 Dashsmart Investments, Llc Portable navigation and communication systems
US20030115288A1 (en) * 2001-12-14 2003-06-19 Ljubicich Philip A. Technique for effective management of information and communications using a mobile device
US20030112269A1 (en) * 2001-12-17 2003-06-19 International Business Machines Corporation Configurable graphical element for monitoring dynamic properties of a resource coupled to a computing environment
JP2003207348A (en) * 2002-01-16 2003-07-25 Sharp Corp Navigation device and navigation system
JP4019787B2 (en) 2002-01-17 2007-12-12 日産自動車株式会社 Vehicle information communication system and vehicle information communication device
US7146273B2 (en) * 2002-02-07 2006-12-05 Sanyo Electric Co., Ltd. Navigation system, navigation apparatus, and server apparatus
JP3698106B2 (en) * 2002-02-14 2005-09-21 日産自動車株式会社 Information providing apparatus and method
US20030220781A1 (en) * 2002-02-25 2003-11-27 Oak Technology, Inc. Communication architecture utilizing emulator interface
US6778074B1 (en) * 2002-03-18 2004-08-17 Giuseppe A. Cuozzo Speed limit indicator and method for displaying speed and the relevant speed limit
US6873905B2 (en) * 2002-03-19 2005-03-29 Opnext Japan, Inc. Communications type navigation device
DE20309282U1 (en) * 2002-03-21 2003-10-02 Poellet Wilfried Device for locating a parked object, in particular a parked vehicle, from a current location
US20040146048A1 (en) * 2003-01-29 2004-07-29 Web.De Ag Web site having a caller recognition element
JP4080785B2 (en) * 2002-04-30 2008-04-23 パイオニア株式会社 Information providing apparatus and information providing method
US6691028B2 (en) * 2002-06-07 2004-02-10 Motorola, Inc. Server-based navigation system and method of operating same
US7367044B2 (en) * 2002-06-14 2008-04-29 Clink Systems, Ltd. System and method for network operation
JP2004046570A (en) * 2002-07-12 2004-02-12 Denso Corp Onboard overspeed alarm/report device
JP4409431B2 (en) * 2002-07-17 2010-02-03 株式会社ザナヴィ・インフォマティクス Navigation method, navigation device, and computer program
JP2004061236A (en) 2002-07-26 2004-02-26 Denso Corp Car navigation apparatus
TWM241734U (en) * 2002-07-26 2004-08-21 Sin Etke Technology Co Ltd Customized driving environment setting-apparatus
FR2843223A1 (en) * 2002-08-01 2004-02-06 Roger Gerard Joseph Boulot Equipment for indicating speed ranges obtaining on public roads, comprises white, green, orange, and red lamps for 0-50 Km/h, 50-90 Km/h, 90-130 Km/h and speeds greater than 130 Km/h
EP1387145A1 (en) 2002-08-02 2004-02-04 ComRoad AG Differential dynamic navigation system for off-board car navigation
US6934705B2 (en) * 2002-08-12 2005-08-23 Alpine Electronics, Inc Data sorting method and navigation method and system using the sorting method
JP3952288B2 (en) 2002-08-30 2007-08-01 アルパイン株式会社 Navigation device
JP2004101366A (en) * 2002-09-10 2004-04-02 Hitachi Ltd Portable communication terminal and navigation system using the same
US6721404B1 (en) * 2002-09-12 2004-04-13 Plantronics, Inc. Remotely controlled diagnostic telephone system with modem
JP3984897B2 (en) * 2002-09-18 2007-10-03 トヨタ自動車株式会社 Obstacle detection device for vehicles
US7013216B2 (en) * 2002-09-18 2006-03-14 Garmin Ltd. Methods and systems to interface navigation operations
US7158080B2 (en) * 2002-10-02 2007-01-02 Global Locate, Inc. Method and apparatus for using long term satellite tracking data in a remote receiver
US20040083467A1 (en) * 2002-10-29 2004-04-29 Sharp Laboratories Of America, Inc. System and method for executing intermediate code
US6975959B2 (en) * 2002-12-03 2005-12-13 Robert Bosch Gmbh Orientation and navigation for a mobile device using inertial sensors
US6853955B1 (en) * 2002-12-13 2005-02-08 Garmin Ltd. Portable apparatus with performance monitoring and audio entertainment features
JP2004212295A (en) 2003-01-07 2004-07-29 Mitsubishi Electric Corp Navigation system
JP4052125B2 (en) 2003-01-21 2008-02-27 株式会社デンソー Navigation device
US20040176040A1 (en) * 2003-02-26 2004-09-09 Motorola, Inc. Performance statistics collection for wireless service providers
EP1604277A2 (en) * 2003-02-28 2005-12-14 Lockheed Martin Corporation Hardware accelerator personality compiler
DE10310115A1 (en) * 2003-03-06 2004-09-23 Siemens Ag Arrangement and interface module for connecting different mobile radio telephones to operating components in a motor vehicle
KR100513009B1 (en) 2003-04-04 2005-09-05 삼성전자주식회사 Navigation system for providing warning restrictedly, apparatus and method for providing warning restrictedly in navigation system
JP2004310316A (en) * 2003-04-04 2004-11-04 Inkurimento P Kk Vehicle allocation processor, its system, its method, its program and recording medium with its program recorded thereon
JP4138561B2 (en) 2003-04-09 2008-08-27 パイオニア株式会社 Navigation device, navigation method, and route data generation program
JP4198510B2 (en) 2003-04-14 2008-12-17 三菱電機株式会社 Mobile navigation device
JP2004320462A (en) * 2003-04-16 2004-11-11 Denso Corp Vehicle mounted system, automatic dimmer, automatic light controller
JP2004320582A (en) 2003-04-18 2004-11-11 Toyota Motor Corp On-vehicle interrupt signal output device
US7243059B2 (en) * 2003-04-24 2007-07-10 International Business Machines Corporation Simulation of hardware based on smart buffer objects
JP4165700B2 (en) * 2003-04-25 2008-10-15 パイオニア株式会社 Route search system and method, navigation system, and computer program
US20040215534A1 (en) * 2003-04-25 2004-10-28 Apple Computer, Inc. Method and system for network-based allowance control
JP2004330950A (en) * 2003-05-09 2004-11-25 Honda Motor Co Ltd Travel safety device for vehicle
US7076365B2 (en) * 2003-05-12 2006-07-11 Circumnav Networks, Inc. Enhanced dead reckoning method
US7188026B2 (en) * 2003-05-12 2007-03-06 Dash Navigation, Inc. Hierarchical floating car data network
JP4203354B2 (en) * 2003-05-19 2008-12-24 パナソニック株式会社 Content distribution apparatus and content reception apparatus
KR20040099863A (en) * 2003-05-20 2004-12-02 삼성전자주식회사 Method for controling potable terminal being remote site
DE10323936A1 (en) * 2003-05-24 2005-01-27 Jentro Technologies Gmbh Navigation system and method
US7119716B2 (en) * 2003-05-28 2006-10-10 Legalview Assets, Limited Response systems and methods for notification systems for modifying future notifications
US20040243307A1 (en) * 2003-06-02 2004-12-02 Pieter Geelen Personal GPS navigation device
JP2004361188A (en) 2003-06-03 2004-12-24 Sony Corp Map display device and map updating method
JP4221658B2 (en) 2003-06-06 2009-02-12 ソニー株式会社 Navigation device and guide method in navigation device
JP4309707B2 (en) * 2003-06-26 2009-08-05 パナソニック株式会社 In-vehicle display device
JP2005043949A (en) * 2003-07-22 2005-02-17 Reile:Kk Learning system through network
JP4111885B2 (en) * 2003-07-23 2008-07-02 アルパイン株式会社 Map search and display method and apparatus
US7240201B2 (en) * 2003-08-01 2007-07-03 Hewlett-Packard Development Company, L.P. Method and apparatus to provide secure communication between systems
US20050049979A1 (en) * 2003-08-26 2005-03-03 Collins Timothy J. Method, apparatus, and system for determining a fraudulent item
JP2005084253A (en) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd Sound processing apparatus, method, program and storage medium
US20050097179A1 (en) * 2003-09-16 2005-05-05 Orme Gregory M. Spam prevention
US7268703B1 (en) * 2003-09-18 2007-09-11 Garmin Ltd. Methods, systems, and devices for cartographic alerts
US7865907B2 (en) * 2003-09-25 2011-01-04 Fisher-Rosemount Systems, Inc. Method and apparatus for providing automatic software updates
US7342516B2 (en) * 2003-10-08 2008-03-11 Hitachi, Ltd. Method and apparatus for communicating map and route guidance information for vehicle navigation
JP2005115720A (en) * 2003-10-09 2005-04-28 Sony Corp Information processor and program for use in the same
US7418340B2 (en) 2003-10-10 2008-08-26 Denso Corporation Navigation device
JP4244179B2 (en) 2003-10-14 2009-03-25 アルパイン株式会社 In-vehicle device and communication method thereof
JP2005128708A (en) * 2003-10-22 2005-05-19 Denso Corp Input processing system
DE10349673A1 (en) * 2003-10-24 2005-05-25 Bayerische Motoren Werke Ag Motor vehicle data input device for use with a head-up display has a touch sensitive data input screen configured either as a hand-writing recognition unit or a menu-driven input device with soft-key display areas
US20050099547A1 (en) * 2003-11-07 2005-05-12 Vitito Christopher J. Automobile entertainment system
US7257469B1 (en) * 2003-11-25 2007-08-14 Garmin International, Inc. Delivering data updates to an avionics device
US20050114023A1 (en) * 2003-11-26 2005-05-26 Williamson Walton R. Fault-tolerant system, apparatus and method
US20050136837A1 (en) * 2003-12-22 2005-06-23 Nurminen Jukka K. Method and system for detecting and using context in wireless networks
JP2005189040A (en) 2003-12-25 2005-07-14 Pioneer Electronic Corp Apparatus and method for transmitting information, its program, and recording medium recording the program
TWM253165U (en) * 2004-01-16 2004-12-11 Aviquest Technology Co Ltd Integrated multi-media micro computer
US7323970B1 (en) * 2004-01-21 2008-01-29 Numerex Corporation Method and system for remote interaction with a vehicle via wireless communication
JP2005214693A (en) * 2004-01-28 2005-08-11 Alpine Electronics Inc Navigation system for mounting in vehicle and its screen displaying method
FI20040280A0 (en) * 2004-02-23 2004-02-23 Nokia Corp A method for performing packet switched handover in a mobile communication system
JP4774729B2 (en) * 2004-02-26 2011-09-14 株式会社デンソー Map display device
JP4226491B2 (en) * 2004-02-26 2009-02-18 株式会社ザナヴィ・インフォマティクス Search data update system and navigation device
ES2543337T3 (en) * 2004-03-15 2015-08-18 Tomtom International B.V. Navigation device that displays dynamic travel information
GB0405794D0 (en) * 2004-03-15 2004-04-21 Tomtom Bv Dock for a portable navigation device
GB0405795D0 (en) * 2004-03-15 2004-04-21 Tom Tom B V Navigation device displaying travel information
JP3836472B2 (en) * 2004-03-30 2006-10-25 東芝ソリューション株式会社 Communication jamming server, communication jamming program, communication jamming method, information communication system, and information communication method
US7594022B2 (en) * 2004-04-21 2009-09-22 Microsoft Corporation Regulating client requests in an electronic messaging environment
US7346370B2 (en) * 2004-04-29 2008-03-18 Cellport Systems, Inc. Enabling interoperability between distributed devices using different communication link technologies
JP4519515B2 (en) 2004-05-06 2010-08-04 三菱電機株式会社 Peripheral facility search device
JP4436186B2 (en) * 2004-05-12 2010-03-24 アルパイン株式会社 Navigation device and map display method
JP4554986B2 (en) 2004-05-18 2010-09-29 クラリオン株式会社 Bus operation status display device, bus operation status display device control method, control program, and recording medium
JP2005337744A (en) * 2004-05-24 2005-12-08 Oki Joho Systems:Kk Car navigation system
US7505929B2 (en) * 2004-06-01 2009-03-17 Angert Charles D Method, system and computer product for auction of deliverable prepared food via the internet
JP4469665B2 (en) 2004-06-29 2010-05-26 アルパイン株式会社 Navigation device and its vehicle position display method
WO2006020088A1 (en) * 2004-07-17 2006-02-23 Shahriar Sarkeshik Location codes for destination routing
KR100651479B1 (en) * 2004-07-22 2006-11-29 삼성전자주식회사 Method for data save and read in the mobile terminal
DE102004036564A1 (en) * 2004-07-28 2006-03-23 Robert Bosch Gmbh navigation device
DE102004037233A1 (en) 2004-07-31 2006-02-16 Robert Bosch Gmbh Navigation system with map display and method for adapting a map display in a navigation system
US20060036356A1 (en) * 2004-08-12 2006-02-16 Vladimir Rasin System and method of vehicle policy control
TWI246306B (en) 2004-08-30 2005-12-21 Partner Tech Corp Hands-free system of car stereo combining MP3 player, and method thereof
JP4793676B2 (en) * 2004-08-30 2011-10-12 株式会社デンソー Item search device
EP1632828A1 (en) * 2004-09-02 2006-03-08 Axalto SA DRM system for device communicating with a portable device
US7289039B2 (en) * 2004-09-10 2007-10-30 Xanavi Informatics Corporation Apparatus and method for processing and displaying traffic information in an automotive navigation system
US7439878B2 (en) * 2004-09-10 2008-10-21 Xanavi Informatics Corporation Apparatus and method for processing and displaying traffic information in an automotive navigation system
US7630724B2 (en) * 2004-09-21 2009-12-08 Advanced Ground Information Systems, Inc. Method of providing a cellular phone/PDA communication system
US20060089754A1 (en) * 2004-10-27 2006-04-27 Andrew Mortenson An installed Vehicle Personal Computing (VPC) system with touch interaction, voice interaction or sensor interaction(s) that provides access to multiple information sources and software applications such as internet connected data applications, dynamic traffic-aware navigational routing, vehicle tracking, emergency accident dispatching, business applications, office applications, music and video player(s), personal info portal, vehicle monitoring, alarm and camera security and recording.
US20060116818A1 (en) * 2004-12-01 2006-06-01 Televigation, Inc. Method and system for multiple route navigation
US7426689B2 (en) * 2004-12-15 2008-09-16 Ford Motor Company System and method of processing text based entries
US7908020B2 (en) * 2004-12-24 2011-03-15 Donald Pieronek Architecture for control systems
US7908080B2 (en) * 2004-12-31 2011-03-15 Google Inc. Transportation routing
KR100716882B1 (en) * 2005-01-07 2007-05-09 주식회사 현대오토넷 System and method for sharing positioning information using mobile communication system
EP1681657A1 (en) * 2005-01-14 2006-07-19 HighGain Antenna Co., Ltd. Multifunctional On-board-equipment (OBE) for intelligent transport systems (ITS)
US20090163140A1 (en) * 2005-01-25 2009-06-25 Packham Donald L Biochip electroporator and its use in multi-site, single-cell electroporation
US7468692B1 (en) * 2005-03-15 2008-12-23 Garmin Ltd. Method and apparatus for interconnecting navigation components using a multi-pin connector
US20060225107A1 (en) * 2005-04-01 2006-10-05 Microsoft Corporation System for running applications in a resource-constrained set-top box environment
US7353034B2 (en) * 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US7607129B2 (en) * 2005-04-07 2009-10-20 International Business Machines Corporation Method and apparatus for using virtual machine technology for managing parallel communicating applications
US20060271870A1 (en) * 2005-05-31 2006-11-30 Picsel Research Limited Systems and methods for navigating displayed content
US7589643B2 (en) * 2005-06-30 2009-09-15 Gm Global Technology Operations, Inc. Vehicle speed monitoring system
US20070035412A1 (en) * 2005-08-12 2007-02-15 Dvorak Joseph L Application of profiles in a wireless device to control a remote control apparatus
US7380000B2 (en) * 2005-08-16 2008-05-27 Toshiba America Research, Inc. IP network information database in mobile devices for use with media independent information server for enhanced network
US8229914B2 (en) * 2005-09-14 2012-07-24 Jumptap, Inc. Mobile content spidering and compatibility determination
US20070073719A1 (en) * 2005-09-14 2007-03-29 Jorey Ramer Physical navigation of a mobile search application
WO2007035959A2 (en) * 2005-09-23 2007-03-29 Grape Technology Group Inc. Enhanced directory assistance system and method including location and search functions
US20070072631A1 (en) * 2005-09-23 2007-03-29 Motorola, Inc. Method and apparatus of gauging message freshness in terms of context
US7397365B2 (en) * 2005-11-21 2008-07-08 Lucent Technologies Inc. Vehicle speeding alert system for GPS enabled wireless devices
US20070179750A1 (en) * 2006-01-31 2007-08-02 Digital Cyclone, Inc. Information partner network
US7802097B2 (en) * 2006-02-13 2010-09-21 Research In Motion Limited Secure method of termination of service notification
US20070275733A1 (en) * 2006-03-03 2007-11-29 David Vismons Method for providing certain information
US9195428B2 (en) * 2006-04-05 2015-11-24 Nvidia Corporation Method and system for displaying data from auxiliary display subsystem of a notebook on a main display of the notebook
GB2440958A (en) * 2006-08-15 2008-02-20 Tomtom Bv Method of correcting map data for use in navigation systems
US20080082225A1 (en) * 2006-08-15 2008-04-03 Tomtom International B.V. A method of reporting errors in map data used by navigation devices
US20090143078A1 (en) * 2007-11-30 2009-06-04 Palm, Inc. Techniques to manage a radio based on location information

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080291015A1 (en) * 2007-05-25 2008-11-27 Charles Steven T Ambient Light Sensor to Adjust Display Brightness
US10191710B2 (en) * 2007-06-04 2019-01-29 Standardvision Llc Methods and systems of large scale video display
US20170115947A1 (en) * 2007-06-04 2017-04-27 Adrian Velicescu Methods and systems of large scale video display
US20180189016A1 (en) * 2007-06-04 2018-07-05 Standardvision Llc Methods and systems of large scale video display
US11410129B2 (en) 2010-05-01 2022-08-09 Monday.com Ltd. Digital processing systems and methods for two-way syncing with third party applications in collaborative work systems
EP2911389B1 (en) * 2014-02-19 2018-05-30 Televic Rail NV System for controlling a colour scheme on a display
US20160275816A1 (en) * 2015-03-18 2016-09-22 Aditi B. Harish Wearable device to guide a human being with at least a partial visual impairment condition around an obstacle during locomotion thereof
US9953547B2 (en) * 2015-03-18 2018-04-24 Aditi B. Harish Wearable device to guide a human being with at least a partial visual impairment condition around an obstacle during locomotion thereof
US11100872B2 (en) * 2015-08-13 2021-08-24 Xiaomi Inc. Method and apparatus for display mode switching based on ambient light
US20170047019A1 (en) * 2015-08-13 2017-02-16 Xiaomi Inc. Method and apparatus for mode switching
US10113877B1 (en) * 2015-09-11 2018-10-30 Philip Raymond Schaefer System and method for providing directional information
US10906463B2 (en) * 2016-02-01 2021-02-02 Magna Electronics Inc. Vehicle adaptive lighting system
US11305690B2 (en) 2016-02-01 2022-04-19 Magna Electronics Inc. Vehicular adaptive lighting control system
US20170217367A1 (en) * 2016-02-01 2017-08-03 Magna Electronics Inc. Vehicle adaptive lighting system
US20190212815A1 (en) * 2018-01-10 2019-07-11 Samsung Electronics Co., Ltd. Method and apparatus to determine trigger intent of user
US11436359B2 (en) 2018-07-04 2022-09-06 Monday.com Ltd. System and method for managing permissions of users for a single data type column-oriented data structure
US11698890B2 (en) 2018-07-04 2023-07-11 Monday.com Ltd. System and method for generating a column-oriented data structure repository for columns of single data types
US11526661B2 (en) 2019-11-18 2022-12-13 Monday.com Ltd. Digital processing systems and methods for integrated communications module in tables of collaborative work systems
US11507738B2 (en) 2019-11-18 2022-11-22 Monday.Com Digital processing systems and methods for automatic updates in collaborative work systems
US11727323B2 (en) 2019-11-18 2023-08-15 Monday.Com Digital processing systems and methods for dual permission access in tables of collaborative work systems
US11775890B2 (en) 2019-11-18 2023-10-03 Monday.Com Digital processing systems and methods for map-based data organization in collaborative work systems
US11175816B2 (en) * 2019-11-18 2021-11-16 Monday.Com Digital processing systems and methods for automatic user time zone updates in collaborative work systems
US11307753B2 (en) 2019-11-18 2022-04-19 Monday.Com Systems and methods for automating tablature in collaborative work systems
US11361156B2 (en) 2019-11-18 2022-06-14 Monday.Com Digital processing systems and methods for real-time status aggregation in collaborative work systems
US11301623B2 (en) 2020-02-12 2022-04-12 Monday.com Ltd Digital processing systems and methods for hybrid scaling/snap zoom function in table views of collaborative work systems
US11410128B2 (en) 2020-05-01 2022-08-09 Monday.com Ltd. Digital processing systems and methods for recommendation engine for automations in collaborative work systems
US11531966B2 (en) 2020-05-01 2022-12-20 Monday.com Ltd. Digital processing systems and methods for digital sound simulation system
US11354624B2 (en) 2020-05-01 2022-06-07 Monday.com Ltd. Digital processing systems and methods for dynamic customized user experience that changes over time in collaborative work systems
US11348070B2 (en) 2020-05-01 2022-05-31 Monday.com Ltd. Digital processing systems and methods for context based analysis during generation of sub-board templates in collaborative work systems
US11367050B2 (en) 2020-05-01 2022-06-21 Monday.Com, Ltd. Digital processing systems and methods for customized chart generation based on table data selection in collaborative work systems
US11954428B2 (en) 2020-05-01 2024-04-09 Monday.com Ltd. Digital processing systems and methods for accessing another's display via social layer interactions in collaborative work systems
US11397922B2 (en) 2020-05-01 2022-07-26 Monday.Com, Ltd. Digital processing systems and methods for multi-board automation triggers in collaborative work systems
US11907653B2 (en) 2020-05-01 2024-02-20 Monday.com Ltd. Digital processing systems and methods for network map visualizations of team interactions in collaborative work systems
US11301811B2 (en) 2020-05-01 2022-04-12 Monday.com Ltd. Digital processing systems and methods for self-monitoring software recommending more efficient tool usage in collaborative work systems
US11301813B2 (en) 2020-05-01 2022-04-12 Monday.com Ltd. Digital processing systems and methods for hierarchical table structure with conditional linking rules in collaborative work systems
US11416820B2 (en) 2020-05-01 2022-08-16 Monday.com Ltd. Digital processing systems and methods for third party blocks in automations in collaborative work systems
US11301812B2 (en) 2020-05-01 2022-04-12 Monday.com Ltd. Digital processing systems and methods for data visualization extrapolation engine for widget 360 in collaborative work systems
US11886804B2 (en) 2020-05-01 2024-01-30 Monday.com Ltd. Digital processing systems and methods for self-configuring automation packages in collaborative work systems
US11829953B1 (en) 2020-05-01 2023-11-28 Monday.com Ltd. Digital processing systems and methods for managing sprints using linked electronic boards
US11475408B2 (en) 2020-05-01 2022-10-18 Monday.com Ltd. Digital processing systems and methods for automation troubleshooting tool in collaborative work systems
US11755827B2 (en) 2020-05-01 2023-09-12 Monday.com Ltd. Digital processing systems and methods for stripping data from workflows to create generic templates in collaborative work systems
US11501255B2 (en) 2020-05-01 2022-11-15 Monday.com Ltd. Digital processing systems and methods for virtual file-based electronic white board in collaborative work systems
US11501256B2 (en) 2020-05-01 2022-11-15 Monday.com Ltd. Digital processing systems and methods for data visualization extrapolation engine for item extraction and mapping in collaborative work systems
US11301814B2 (en) 2020-05-01 2022-04-12 Monday.com Ltd. Digital processing systems and methods for column automation recommendation engine in collaborative work systems
US11282037B2 (en) 2020-05-01 2022-03-22 Monday.com Ltd. Digital processing systems and methods for graphical interface for aggregating and dissociating data from multiple tables in collaborative work systems
US11277452B2 (en) 2020-05-01 2022-03-15 Monday.com Ltd. Digital processing systems and methods for multi-board mirroring of consolidated information in collaborative work systems
US11347721B2 (en) 2020-05-01 2022-05-31 Monday.com Ltd. Digital processing systems and methods for automatic application of sub-board templates in collaborative work systems
US11537991B2 (en) 2020-05-01 2022-12-27 Monday.com Ltd. Digital processing systems and methods for pre-populating templates in a tablature system
US11587039B2 (en) 2020-05-01 2023-02-21 Monday.com Ltd. Digital processing systems and methods for communications triggering table entries in collaborative work systems
US11675972B2 (en) 2020-05-01 2023-06-13 Monday.com Ltd. Digital processing systems and methods for digital workflow system dispensing physical reward in collaborative work systems
US11687706B2 (en) 2020-05-01 2023-06-27 Monday.com Ltd. Digital processing systems and methods for automatic display of value types based on custom heading in collaborative work systems
US11275742B2 (en) 2020-05-01 2022-03-15 Monday.com Ltd. Digital processing systems and methods for smart table filter with embedded boolean logic in collaborative work systems
US11277361B2 (en) 2020-05-03 2022-03-15 Monday.com Ltd. Digital processing systems and methods for variable hang-time for social layer messages in collaborative work systems
US11449668B2 (en) 2021-01-14 2022-09-20 Monday.com Ltd. Digital processing systems and methods for embedding a functioning application in a word processing document in collaborative work systems
US11928315B2 (en) 2021-01-14 2024-03-12 Monday.com Ltd. Digital processing systems and methods for tagging extraction engine for generating new documents in collaborative work systems
US11481288B2 (en) 2021-01-14 2022-10-25 Monday.com Ltd. Digital processing systems and methods for historical review of specific document edits in collaborative work systems
US11531452B2 (en) 2021-01-14 2022-12-20 Monday.com Ltd. Digital processing systems and methods for group-based document edit tracking in collaborative work systems
US11782582B2 (en) 2021-01-14 2023-10-10 Monday.com Ltd. Digital processing systems and methods for detectable codes in presentation enabling targeted feedback in collaborative work systems
US11475215B2 (en) 2021-01-14 2022-10-18 Monday.com Ltd. Digital processing systems and methods for dynamic work document updates using embedded in-line links in collaborative work systems
US11726640B2 (en) 2021-01-14 2023-08-15 Monday.com Ltd. Digital processing systems and methods for granular permission system for electronic documents in collaborative work systems
US11687216B2 (en) 2021-01-14 2023-06-27 Monday.com Ltd. Digital processing systems and methods for dynamically updating documents with data from linked files in collaborative work systems
US11893213B2 (en) 2021-01-14 2024-02-06 Monday.com Ltd. Digital processing systems and methods for embedded live application in-line in a word processing document in collaborative work systems
US11392556B1 (en) 2021-01-14 2022-07-19 Monday.com Ltd. Digital processing systems and methods for draft and time slider for presentations in collaborative work systems
US11397847B1 (en) 2021-01-14 2022-07-26 Monday.com Ltd. Digital processing systems and methods for display pane scroll locking during collaborative document editing in collaborative work systems
US11741071B1 (en) 2022-12-28 2023-08-29 Monday.com Ltd. Digital processing systems and methods for navigating and viewing displayed content
US11886683B1 (en) 2022-12-30 2024-01-30 Monday.com Ltd Digital processing systems and methods for presenting board graphics
US11893381B1 (en) 2023-02-21 2024-02-06 Monday.com Ltd Digital processing systems and methods for reducing file bundle sizes

Also Published As

Publication number Publication date
US20070271328A1 (en) 2007-11-22
WO2007101727A3 (en) 2007-12-21
BRPI0707503A2 (en) 2011-05-10
WO2007101715A3 (en) 2007-11-15
AU2007222545A1 (en) 2007-09-13
EP1991827A2 (en) 2008-11-19
BRPI0708281A2 (en) 2011-05-24
JP2009536755A (en) 2009-10-15
BRPI0708222A2 (en) 2011-05-17
BRPI0708506A2 (en) 2011-05-31
CA2644546A1 (en) 2007-09-13
JP2009536794A (en) 2009-10-15
WO2007101714A3 (en) 2007-11-08
EP2013578A2 (en) 2009-01-14
EP2013575A2 (en) 2009-01-14
CA2644973A1 (en) 2007-09-13
JP2009536757A (en) 2009-10-15
EP1991974B1 (en) 2016-05-11
US20090068950A1 (en) 2009-03-12
JP2009529817A (en) 2009-08-20
CA2643724A1 (en) 2007-09-13
JP2009538413A (en) 2009-11-05
WO2007101724A3 (en) 2007-11-22
WO2007101709A3 (en) 2008-09-25
US8700311B2 (en) 2014-04-15
US20070265772A1 (en) 2007-11-15
BRPI0708102A2 (en) 2011-05-17
US8554471B2 (en) 2013-10-08
CA2644542A1 (en) 2007-09-13
AU2007222558B2 (en) 2011-08-04
JP2009536724A (en) 2009-10-15
US20070271030A1 (en) 2007-11-22
US20080046176A1 (en) 2008-02-21
WO2007101722A2 (en) 2007-09-13
CA2644893A1 (en) 2007-09-13
US20110161006A1 (en) 2011-06-30
WO2007101718A3 (en) 2007-12-21
WO2007101716A2 (en) 2007-09-13
AU2007222539A1 (en) 2007-09-13
WO2007101721A2 (en) 2007-09-13
CN103292815A (en) 2013-09-11
EP2013577A2 (en) 2009-01-14
WO2007101720A2 (en) 2007-09-13
EP1991832A2 (en) 2008-11-19
EP2013583A2 (en) 2009-01-14
KR20080106535A (en) 2008-12-08
WO2007101718A2 (en) 2007-09-13
WO2007101700A2 (en) 2007-09-13
US20070266177A1 (en) 2007-11-15
WO2007101713A2 (en) 2007-09-13
AU2007222528A1 (en) 2007-09-13
EP2333487B1 (en) 2016-12-14
KR20080100231A (en) 2008-11-14
WO2007101722A3 (en) 2007-12-13
WO2007101725A2 (en) 2007-09-13
AU2007222554A1 (en) 2007-09-13
BRPI0708302A2 (en) 2011-05-24
US20070239353A1 (en) 2007-10-11
BRPI0708100A2 (en) 2011-05-17
WO2007101729A3 (en) 2007-12-13
WO2007101711A3 (en) 2007-11-08
AU2007222558A1 (en) 2007-09-13
WO2007101731A2 (en) 2007-09-13
WO2007101729A2 (en) 2007-09-13
WO2007101713A3 (en) 2007-11-15
EP2014106A2 (en) 2009-01-14
EP2008063A2 (en) 2008-12-31
AU2007222553A1 (en) 2007-09-13
CA2644890A1 (en) 2007-09-13
KR20080098517A (en) 2008-11-10
KR20080106536A (en) 2008-12-08
KR20080100232A (en) 2008-11-14
US8670727B2 (en) 2014-03-11
WO2007101701A2 (en) 2007-09-13
WO2007101712A2 (en) 2007-09-13
JP2009533722A (en) 2009-09-17
JP2009537007A (en) 2009-10-22
WO2007101720A3 (en) 2009-02-12
WO2007101709A2 (en) 2007-09-13
WO2007101715A2 (en) 2007-09-13
US20070255491A1 (en) 2007-11-01
AU2007222544A1 (en) 2007-09-13
JP2009536722A (en) 2009-10-15
WO2007101726A2 (en) 2007-09-13
AU2007222543A1 (en) 2007-09-13
KR20080105059A (en) 2008-12-03
US20070210938A1 (en) 2007-09-13
US20110137554A1 (en) 2011-06-09
US20070288161A1 (en) 2007-12-13
US20080005734A1 (en) 2008-01-03
WO2007101711A2 (en) 2007-09-13
EP1991833A2 (en) 2008-11-19
KR20080099311A (en) 2008-11-12
US20070265774A1 (en) 2007-11-15
US20070250842A1 (en) 2007-10-25
CA2643752A1 (en) 2007-09-13
WO2007101725A3 (en) 2007-11-08
CA2644891A1 (en) 2007-09-13
EP1991831A2 (en) 2008-11-19
WO2007101712A3 (en) 2007-11-01
ES2611702T3 (en) 2017-05-09
BRPI0708464A2 (en) 2011-05-31
AU2007222529A1 (en) 2007-09-13
WO2007101719A8 (en) 2008-09-12
US20070266239A1 (en) 2007-11-15
BRPI0708371A2 (en) 2011-05-31
JP2009537008A (en) 2009-10-22
WO2007101721A3 (en) 2007-12-21
KR20080099310A (en) 2008-11-12
WO2007101700A3 (en) 2008-01-17
WO2007101728A3 (en) 2007-10-25
US20070259674A1 (en) 2007-11-08
EP2008063B1 (en) 2016-12-14
US8473193B2 (en) 2013-06-25
AU2007222555A1 (en) 2007-09-13
AU2007222559A1 (en) 2007-09-13
BRPI0707205A2 (en) 2011-04-26
EP2013578B1 (en) 2012-12-19
WO2007101731A3 (en) 2007-11-08
WO2007101719A3 (en) 2007-11-08
KR20090003201A (en) 2009-01-09
EP2013573A2 (en) 2009-01-14
WO2007101728A2 (en) 2007-09-13
CA2643766A1 (en) 2007-09-13
BRPI0708244A2 (en) 2011-05-24
BRPI0708143A2 (en) 2011-05-17
EP2333487A1 (en) 2011-06-15
WO2007101717A2 (en) 2007-09-13
WO2007101702A3 (en) 2007-11-29
WO2007101716A3 (en) 2008-03-06
CA2644987A1 (en) 2007-09-13
EP2013575B1 (en) 2012-09-05
BRPI0707998A2 (en) 2011-05-17
US20070275733A1 (en) 2007-11-29
WO2007101724A2 (en) 2007-09-13
EP1991974A2 (en) 2008-11-19
US20070265769A1 (en) 2007-11-15
KR20080099308A (en) 2008-11-12
CA2645008A1 (en) 2007-09-13
CA2643753A1 (en) 2007-09-13
JP2009536720A (en) 2009-10-15
AU2007222549A1 (en) 2007-09-13
KR20080099312A (en) 2008-11-12
KR20080105060A (en) 2008-12-03
WO2007101730A3 (en) 2007-11-08
EP2013574A2 (en) 2009-01-14
JP2009536723A (en) 2009-10-15
AU2007222542A1 (en) 2007-09-13
BRPI0708228A2 (en) 2011-05-17
CA2643689A1 (en) 2007-09-13
US20070288163A1 (en) 2007-12-13
WO2007101723A2 (en) 2007-09-13
WO2007101723A3 (en) 2007-11-22
AU2007222548A1 (en) 2007-09-13
WO2007101730A2 (en) 2007-09-13
KR20080105058A (en) 2008-12-03
EP2008061A2 (en) 2008-12-31
JP2009536721A (en) 2009-10-15
WO2007101714A2 (en) 2007-09-13
US20070239846A1 (en) 2007-10-11
BRPI0708572A2 (en) 2011-05-31
WO2007101701A3 (en) 2008-01-10
KR20080106537A (en) 2008-12-08
WO2007101726A3 (en) 2007-10-25
KR20080105061A (en) 2008-12-03
JP2009536719A (en) 2009-10-15
CA2644538A1 (en) 2007-09-13
WO2007101717A3 (en) 2007-11-08
WO2007101719A2 (en) 2007-09-13
WO2007101727A2 (en) 2007-09-13
AU2007222550A1 (en) 2007-09-13
CA2644256A1 (en) 2007-09-13
KR20080109749A (en) 2008-12-17
CA2644895A1 (en) 2007-09-13
EP1991828A2 (en) 2008-11-19
JP2009536756A (en) 2009-10-15
BRPI0707999A2 (en) 2011-05-17
CA2644076A1 (en) 2007-09-13
EP1991830A2 (en) 2008-11-19
AU2007222547A1 (en) 2007-09-13
WO2007101702A2 (en) 2007-09-13
JP2010500533A (en) 2010-01-07
KR20080099309A (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US8954263B2 (en) Portable navigation device
US20070282522A1 (en) Portable navigation device
CN101375130B (en) Portable navigation device
US7801676B2 (en) Method and apparatus for displaying a map
US8368823B2 (en) On-vehicle display apparatus
TWI450227B (en) Navigation device and navigation method capable of presenting prompt information with different light effects by software
US20100274476A1 (en) Navigation device
JP4702537B2 (en) In-vehicle display device
RU2431802C2 (en) Portable navigation device
JP2009280142A (en) In-vehicle instrument panel image display apparatus
JP2007286170A (en) Display screen adjusting device, display screen adjusting method, display screen adjusting program and recording medium
JP4645960B2 (en) In-vehicle display device
JPH10250472A (en) Display device for vehicle
JP2007085864A (en) On-vehicle display device
JPH11184446A (en) On-vehicle display device
JP2009250892A (en) Speed limit guiding device
JP2008049925A (en) Display device for vehicle
JP2021179437A (en) System and program for vehicle
CN102208164A (en) Display apparatus and displaying method
JP2022052122A (en) Display device for vehicle
JP4624074B2 (en) Vehicle electronic device system and vehicle-mounted electronic device
JP3948602B2 (en) Navigation display device
KR100862817B1 (en) Audio video navigation system for performing convenience function for user based on sunrise and sunset
KR100703300B1 (en) Appratus and method for displaying map in navigation system
JP2011113579A (en) In-vehicle electronic apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOMTOM INTERNATIONAL BV, NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GEELEN, PLETER;REEL/FRAME:019780/0915

Effective date: 20070820

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION