US20070218136A1 - New mandelic acid derivatives and their use as thrombin inhibitors - Google Patents

New mandelic acid derivatives and their use as thrombin inhibitors Download PDF

Info

Publication number
US20070218136A1
US20070218136A1 US11/520,052 US52005206A US2007218136A1 US 20070218136 A1 US20070218136 A1 US 20070218136A1 US 52005206 A US52005206 A US 52005206A US 2007218136 A1 US2007218136 A1 US 2007218136A1
Authority
US
United States
Prior art keywords
compound
formula
mmol
aze
pab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/520,052
Other languages
English (en)
Inventor
Tord Inghardt
Anders Johansson
Arne Svensson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AstraZeneca AB
Original Assignee
AstraZeneca AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE0004458A external-priority patent/SE0004458D0/xx
Priority claimed from SE0100965A external-priority patent/SE0100965D0/xx
Priority claimed from SE0101239A external-priority patent/SE0101239D0/xx
Priority claimed from SE0102921A external-priority patent/SE0102921D0/xx
Priority claimed from US10/432,411 external-priority patent/US7129233B2/en
Application filed by AstraZeneca AB filed Critical AstraZeneca AB
Priority to US11/520,052 priority Critical patent/US20070218136A1/en
Publication of US20070218136A1 publication Critical patent/US20070218136A1/en
Priority to US12/491,456 priority patent/US20100087651A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/397Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/57Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C205/59Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton the carbon skeleton being further substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/01Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
    • C07C37/055Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/16Preparation of ethers by reaction of esters of mineral or organic acids with hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/004Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with organometalhalides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/673Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/70Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction with functional groups containing oxygen only in singly bound form
    • C07C45/71Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction with functional groups containing oxygen only in singly bound form being hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/52Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings
    • C07C47/56Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings containing hydroxy groups
    • C07C47/565Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings containing hydroxy groups all hydroxy groups bound to the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/52Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings
    • C07C47/575Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/84Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/42Unsaturated compounds containing hydroxy or O-metal groups
    • C07C59/48Unsaturated compounds containing hydroxy or O-metal groups containing six-membered aromatic rings
    • C07C59/50Mandelic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/42Unsaturated compounds containing hydroxy or O-metal groups
    • C07C59/56Unsaturated compounds containing hydroxy or O-metal groups containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/732Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids of unsaturated hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/738Esters of keto-carboxylic acids or aldehydo-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/04Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/58Benzoxazoles; Hydrogenated benzoxazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • This invention relates to novel pharmaceutically useful compounds, in particular compounds that are, and/or compounds that are metabolised to compounds which are, competitive inhibitors of trypsin-like serine proteases, especially thrombin, their use as medicaments, pharmaceutical compositions containing them and synthetic routes to their production.
  • Blood coagulation is the key process involved in both haemostasis (i.e. the prevention of blood loss from a damaged vessel) and thrombosis (i.e. the formation of a blood clot in a blood vessel, sometimes leading to vessel obstruction).
  • Coagulation is the result of a complex series of enzymatic reactions.
  • One of the ultimate steps in this series of reactions is the conversion of the proenzyme prothrombin to the active enzyme thrombin.
  • Thrombin is known to play a central role in coagulation. It activates platelets, leading to platelet aggregation, converts fibrinogen into fibrin monomers, which polymerise spontaneously into fibrin polymers, and activates factor XIII, which in turn crosslinks the polymers to form insoluble fibrin. Furthermore, thrombin activates factor V and factor VIII leading to a “positive feedback” generation of thrombin from prothrombin.
  • thrombotic activity By inhibiting the aggregation of platelets and the formation and crosslinking of fibrin, effective inhibitors of thrombin would be expected to exhibit antithrombotic activity. In addition, antithrombotic activity would be expected to be enhanced by effective inhibition of the positive feedback mechanism.
  • Thrombin inhibitors based on dipeptidyl derivatives with an ⁇ , ⁇ -aminoalkyl guanidine in the P1-position are known from U.S. Pat. No. 4,346,078 and International Patent Application WO 93/11152. Similar, structurally related, dipeptidyl derivatives have also been reported.
  • International Patent Application WO 94/29336 discloses compounds with, for example, aminomethyl benzamidines, cyclic aminoalkyl amidines and cyclic aminoalkyl guanidines in the P1-position (International Patent Application WO 97/23499 discloses prodrugs of certain of these compounds); European Patent Application 0 648 780, discloses compounds with, for example, cyclic aminoalkyl guanidines in the P1-position.
  • Thrombin inhibitors based on peptidyl derivatives, also having cyclic aminoalkyl guanidines (e.g. either 3- or 4-aminomethyl-1-amidino-piperidine) in the P1-position are known from European Patent Applications 0 468 231, 0 559 046 and 0 641 779.
  • Thrombin inhibitors based on tripeptidyl derivatives with arginine aldehyde in the P1-position were first disclosed in European Patent Application 0 185 390.
  • Inhibitors of serine proteases based on electrophilic ketones in the P1-position are also known.
  • European Patent Application 0 195 212 discloses peptidyl a-keto esters and amides, European Patent Application 0 362 002 fluoroalkylamide ketones, European Patent Application 0 364 344 ⁇ , ⁇ , ⁇ -triketocompounds, and European Patent Application 0 530 167 ⁇ -alkoxy ketone derivatives of arginine in the P1-position.
  • thrombin inhibitors based on peptidyl derivatives have been disclosed in European Patent Application 0 669 317 and International Patent Applications WO 95/35309, WO 95/23609, WO 96/25426, WO 97/02284, WO 97/46577, WO 96/32110, WO 96/31504, WO 96/03374, WO 98/06740, WO 97/49404, WO 98/57932, WO 99/29664, WO 00/35869 and WO 00/42059.
  • WO 97/02284 and WO 00/42059 disclose thrombin inhibitors with substituted mandelic acids in the P3 position.
  • R a represents —OH or —CH 2 OH
  • R 1 represents at least one optional halo substituent
  • R 2 represents one or two C 1-3 alkoxy substituents, the alkyl parts of which substituents are themselves substituted with one or more fluoro substituents (i.e.
  • R 2 represents one or two fluoroalkoxy(C 1-3 ) groups); Y represents —CH 2 — or —(CH 2 ) 2 —; and R 3 represents a structural fragment of formula I(i) or I(ii): wherein R 4 represents H or one or more fluoro substituents; and one or two of X 1 , X 2 , X 3 and X 4 represent —N— and the others represent —CH—, or a pharmaceutically-acceptable derivative thereof.
  • pharmaceutically-acceptable derivatives includes pharmaceutically-acceptable salts (e.g. acid addition salts). Abbreviations are listed at the end of this specification. The wavy lines on the bonds in the fragments of formulae I(i) and I(ii) signify the bond positions of the fragments.
  • Halo groups which R 1 may represent include, fluoro, chloro, bromo and iodo.
  • R 1 in representing at least one optional halo group, R 1 may either not be present (and thus be replaced by H, so that the rules of valency are adhered to) or it may represent one or more halo atoms.
  • R 3 represents a structural fragment of formula I(i) in which R 4 represents one or more fluoro substituents
  • preferred compounds of formula I include those in which R 4 represents a single fluoro substituent in the 2- or the 3-position, or two fluoro substituents in either the 2- and 5-positions or, more preferably, the 2- and 6-positions (wherein the substituent positions are determined in relation to the point of attachment of the structural fragment of formula I(i) to the rest of the molecule (i.e. to the —NHCH 2 -group)).
  • R 3 represents a structural fragment of formula I(ii)
  • preferred compounds of formula I include those in which either:
  • Preferred compounds of formula I include those in which:
  • R 1 represents a single fluoro, chloro or bromo substituent
  • R 2 represents C 1-2 alkoxy substituted by one or more fluoro substituents, such as —OCHF 2 , —OCF 3 , —OCH 2 CF 3 , —OCH 2 CHF 2 , —OCH 2 CH 2 F or —OCH(CH 2 F) 2 ;
  • R 3 represents a structural fragment of formula I(i);
  • R 4 represents H.
  • More preferred compounds of formula I include those in which:
  • R a represents OH
  • R 1 represents a single chloro substituent
  • R 2 represents —OCF 3 , preferably —OCH 2 CHF 2 , or more preferably —OCHF 2 , or —OCH 2 CH 2 F.
  • Preferred points of substitution of R 1 and R 2 on the relevant phenyl group of compounds of formula I include the two meta-positions relative to the point of attachment of that phenyl group to the rest of the molecule (i.e. at the 3- and/or the 5-position (preferably 3,5-substitution) relative to the carbon atom bearing the ⁇ - or ⁇ -hydroxy acid group).
  • R 2 represents one or two C 1-2 alkoxy substituents, the alkyl parts of which substituents are themselves substituted by one or more fluoro substituents;
  • R 2 represents one or two C 3 alkoxy substituents, the alkyl parts of which substituents are themselves substituted by one or more fluoro substituents.
  • a process for the preparation of a compound of formula I which comprises: (i) the coupling of a compound of formula II, wherein R a , R 1 and R 2 are as hereinbefore defined with a compound of formula III, wherein Y and R 3 are as hereinbefore defined, for example in the presence of a coupling agent (e.g. oxalyl chloride in DMF, EDC, DCC, HBTU, HATU, PyBOP or TBTU), an appropriate base (e.g. pyridine, DMAP, TEA, 2,4,6-collidine or DIPEA) and a suitable organic solvent (e.g.
  • a coupling agent e.g. oxalyl chloride in DMF, EDC, DCC, HBTU, HATU, PyBOP or TBTU
  • an appropriate base e.g. pyridine, DMAP, TEA, 2,4,6-collidine or DIPEA
  • a suitable organic solvent e.g.
  • ammonium acetate or ammonia gas under conditions known to those skilled in the art, such as by reaction of an ethylimidoate intermediate (formed by reaction of a compound of formula XVIA or XVIB with HCl(g) in ethanol) with ammonia gas in ethanol, or under those conditions described in Tetrahedron Lett. 40, 7067 (1999), the disclosures of which document are hereby incorporated by reference (for example, for preparation of compounds of formula I in which is R 3 represents a structural fragment of formula I(ii) in which X 2 or X 4 represents N, reaction of a corresponding compound of formula XVIB with ammonium acetate (e.g.
  • N-acetyl cysteine e.g. 1 to 30 equivalents of N-acetyl cysteine
  • an appropriate solvent e.g. a lower alkyl (e.g. C 1-6 ) alcohol such as methanol).
  • compounds of formula II in which R a represents OH may be prepared by reaction of an aldehyde of formula VI, wherein R 1 and R 2 are as hereinbefore defined with: (a) a compound of formula VII, R′′CN VII wherein R′′ represents H or (CH 3 ) 3 Si, for example at room, or elevated, temperature (e.g. below 100° C.) in the presence of a suitable organic solvent (e.g. chloroform or methylene chloride) and, if necessary, in the presence of a suitable base (e.g. TEA) and/or a suitable catalyst system (e.g. benzylammonium chloride or zinc iodide, or using a chiral catalyst, for example as described in Chem.
  • a suitable organic solvent e.g. chloroform or methylene chloride
  • a suitable base e.g. TEA
  • a suitable catalyst system e.g. benzylammonium chloride or zinc iodide, or using a
  • R a represents —CH 2 OH
  • R a represents —CH 2 OH
  • R 1 and R 2 are as hereinbefore defined, for example at room temperature or below in the presence of a suitable reducing agent (e.g. sodium borohydride) and an appropriate organic solvent (e.g. methanol, ethanol, THF or mixtures thereof), followed by hydrolysis of the resultant tropic acid ester intermediate of formula IXA, wherein R, R 1 and R 2 are as hereinbefore defined, under conditions that are well known to those skilled in the art, for example as described hereinafter.
  • a suitable reducing agent e.g. sodium borohydride
  • an appropriate organic solvent e.g. methanol, ethanol, THF or mixtures thereof
  • R a represents —OH
  • a suitable oxidising agent e.g. a combination of a suitable free radical oxidant (such as TEMPO) and an appropriate hypochlorite salt (such as sodium hypochlorite)
  • a suitable solvent e.g. water, acetone or a mixture thereof
  • an appropriate salt e.g. an alkali metal halide such as potassium bromide
  • a suitable base e.g. an alkali metal carbonate or hydrogen carbonate such as sodium hydrogen carbonate.
  • the enantiomeric forms of the compound of formula II in which R a represents —OH may be separated by an enantiospecific derivatisation step.
  • This may be achieved, for example by an enzymatic process.
  • Such enzymatic processes include, for example, transesterification of the ⁇ -OH group at between room and reflux temperature (e.g. at between 45 and 65° C.) in the presence of a suitable enzyme (e.g. Lipase PS Amano), an appropriate ester (e.g. vinyl acetate) and a suitable solvent (e.g. methyl tert-butyl ether).
  • the derivatised isomer may then be separated from the unreacted isomer by conventional separation techniques (e.g. chromatography).
  • Groups added to compounds of formula II in such a derivatisation step may be removed either before any further reactions or at any later stage in the synthesis of compounds of formula I.
  • the additional groups may be removed using conventional techniques (e.g. for esters of the ⁇ -OH group, hydrolysis under conditions known to those skilled in the art (e.g. at between room and reflux temperature in the presence of a suitable base (e.g. NaOH) and an appropriate solvent (e.g. MeOH, water or mixtures thereof))).
  • Compounds of formula III may be prepared by coupling a compound of formula X, wherein Y is as hereinbefore defined to a compound of formula V, as hereinbefore defined, for example under similar conditions to those described herein for preparation of compounds of formula I.
  • Compounds of formula IV may be prepared by coupling a compound of formula II as hereinbefore defined to a compound of formula X as hereinbefore defined, for example under similar conditions to those described herein for preparation of compounds of formula I.
  • Compounds of formula VIII are available using known and/or standard techniques. For example, they may be prepared by: (i) metallation (wherein the metal may be, for example, an alkali metal such as Li or, preferably, a divalent metal such as Mg) of a compound of formula XI.
  • Hal represents a halogen atom selected from Cl, Br and I and R 1 and R 2 are as hereinbefore defined, followed by reaction with a suitable source of the formyl group (such as N,N-dimethylformamide), for example under conditions described hereinafter; (ii) reduction of a compound of formula XII, wherein R 1 and R 2 are as hereinbefore defined in the presence of a suitable reducing agent (e.g. DIBAL-H); or (iii) oxidation of a compound of formula XIII, wherein R 1 and R 2 are as hereinbefore defined in the presence of a suitable oxidising agent (e.g. MnO 2 , pyridinium chlorochromate, a combination of DMSO and oxalyl chloride, or SO 3 pyridine complex in DMSO).
  • a suitable oxidising agent e.g. MnO 2 , pyridinium chlorochromate, a combination of DMSO and oxalyl chloride
  • Compounds of formula IX may be prepared from the corresponding phenylacetate (which may, for example, be obtained from the corresponding acetophenone, as described in J. Am. Chem. Soc. 98, 6750 (1976) or from the corresponding benzyl cyamide by standard hydrolytic procedures) by conventional techniques, for example analogously to those techniques described in J. Org. Chem. 54, 3831 (1989) and/or as described hereinafter.
  • Compounds of formula IXB may be prepared by dihydroxylation of a corresponding compound of formula XIIIA wherein R 1 and R 2 are as hereinbefore defined, in the presence of a suitable dihydroxylating agent (e.g. a reagent or reagent mixture that provides OsO 4 , such as AD-mix- ⁇ or, particularly, AD-mix- ⁇ ), for example under conditions known to those skilled in the art, such as at between ⁇ 10° C. and room temperature in the presence of an appropriate solvent (e.g. water, tert-butanol or a mixture thereof).
  • a suitable dihydroxylating agent e.g. a reagent or reagent mixture that provides OsO 4 , such as AD-mix- ⁇ or, particularly, AD-mix- ⁇
  • an appropriate solvent e.g. water, tert-butanol or a mixture thereof.
  • this method may be used to prepare compounds of formula IXB that have specific configurations of groups (i.e. R or S) about both of the C-atoms to which the primary and secondary hydroxyl groups are attached.
  • Compounds of formula XIIIA may be prepared by reaction of a corresponding compound of formula XI, as hereinbefore defined, with a suitable source of the vinyl anion (e.g. tributyl(vinyl)tin) under conditions known to those skilled in the art, for example at between room and reflux temperature (e.g. 50° C.) in the presence of an appropriate solvent (e.g. toluene), a suitable coupling agent (e.g. a palladium(0) co-ordination complex such as tetrakis(triphenylphosphine)palladium(0)) and optionally in the presence of an appropriate catalyst (e.g. 2,6-di-tert-butyl-4-methylphenol).
  • a suitable source of the vinyl anion e.g. tributyl(vinyl)tin
  • an appropriate solvent e.g. toluene
  • a suitable coupling agent e.g. a palladium(0) co-ordination complex such as tetra
  • Substituents on the phenyl ring in compounds of formulae I, II, III, IV, V, VI, IX, IXA, IXB, XI, XII, XIII and XIIIA may be introduced and/or interconverted using techniques well known to those skilled in the art by way of standard functional groups interconversions, in accordance with standard techniques, from readily available starting materials using appropriate reagents and reaction conditions.
  • compounds of formulae I, II, IV, VI, IXA, XI, XII and XIII may be prepared from corresponding, compounds of formulae XIVA, XIVB, XIVC, XIVD, XIVE, XIVF, XIVG and XIVH, respectively, wherein R a , R, R 1 , R 3 , Y and Hal (as appropriate) are as hereinbefore defined, for example:
  • compounds of formulae XIVA, XIVB, XIVC, XIVD, XIVE, XIVF, XIVG and XIVH may be obtained by deprotection of the corresponding protected phenols (where the protecting group may be, for example, methyl, allyl, benzyl or tert-butyl) under standard conditions.
  • compounds of formula XIVD in which R 1 is a single chloro substituent may be obtained from a di- or trihalo substituted benzene (e.g. 1-Br, 3-Cl, 5-F-benzene, by substitution of the fluorine atom with a methoxy group (e.g.
  • compounds of formula I in which R 1 is absent may be prepared from corresponding compounds of formula I (or via appropriate precursors thereof) in which R 1 represents halo (such as chloro), for example by hydrogenation under conditions known to those skilled in the art.
  • pharmaceutically acceptable derivatives of compounds of formula I also include “protected” derivatives, and/or compounds that act as prodrugs, of compounds of formula I.
  • R 3a represents a structural fragment of formula I(iii) or I(iv): wherein R 5 represents OR 6 or C(O)OR 7 ;
  • R 6 represents H, C 1-10 alkyl, C 1-3 alkylaryl or C 1-3 alkyloxyaryl (the alkyl parts of which latter two groups are optionally interrupted by one or more oxygen atoms, and the aryl parts of which latter two groups are optionally substituted by one or more substituents selected from halo, phenyl, methyl or methoxy, which latter three groups are also optionally substituted by one or more halo substituents);
  • R 7 represents C 1-10 alkyl (which latter group is optionally interrupted by one or more oxygen atoms), or C 1-3 alkylaryl or C 1-3 alkyloxyaryl (the alkyl parts of which latter two groups are optionally interrupted by one or more oxygen atoms, and the aryl
  • pharmaceutically-acceptable derivatives of compounds of formula Ia includes pharmaceutically-acceptable salts (e.g. acid addition salts).
  • Alkyloxyaryl groups that R 6 and R 7 may represent comprise an alkyl and an aryl group linked by way of an oxygen atom.
  • Alkylaryl and alkyloxyaryl groups are linked to the rest of the molecule via the alkyl part of those groups, which alkyl parts may (if there is a sufficient number (i.e. three) of carbon atoms) be branched-chain.
  • aryl parts of alkylaryl and alkyloxyaryl groups which R 6 and R 7 may represent, or be substituted by, include carbocyclic and heterocyclic aromatic groups, such as phenyl, naphthyl, pyridinyl, oxazolyl, isoxazolyl, thiadiazolyl, indolyl and benzofuranyl and the like.
  • Alkyl groups which R 6 and R 7 may represent may be straight-chain or, when there is a sufficient number (i.e. a minimum of three) of carbon atoms, be branched-chain and/or cyclic. Further, when there is a sufficient number (i.e. a minimum of four) of carbon atoms, such alkyl groups may also be part cyclic/acyclic. Such alkyl groups may also be saturated or, when there is a sufficient number (i.e. a minimum of two) of carbon atoms, be unsaturated.
  • Halo groups with which R 6 and R 7 may be substituted include fluoro, chloro, bromo and iodo.
  • R 7 groups include:
  • Preferred compounds of formula Ia include those in which R 5 represents OR 6 .
  • R 6 groups include:
  • Preferred compounds of formula Ia include those in which R 5 represents OR 6 and R 6 represents linear, branched (as appropriate), or cyclic (as appropriate), C 1-6 (e.g. C 1-4 ) alkyl, such as methyl, ethyl, n-propyl, i-propyl or cyclobutyl.
  • Compounds of formula Ia may be prepared by one or more of the following methods: (a) reaction of a corresponding compound of formula II as hereinbefore defined with a compound of formula XV, wherein Y and R 3a are as hereinbefore defined, for example under similar conditions to those described hereinbefore for synthesis of compounds of formula I; (b) reaction of a corresponding compound of formula IV as hereinbefore defined with a compound of formula XV 1 , R 3a CH 2 NH 2 XVI wherein R 3a is as hereinbefore defined, for example under similar conditions to those described hereinbefore for synthesis of compounds of formula I; (c) for compounds of formula Ia in which R 5 represents OH, reaction of a corresponding compound of formula XVIA or XVIB, wherein R a , R 1 , R 2 , R 4 , Y, X 1 , X 2 , X 3 and X 4 are as hereinbefore defined, with hydroxylamine, for example under conditions known to those skilled in the art
  • R 7 is as hereinbefore defined, for example at or around room temperature in the presence of suitable base (e.g. NaOH, for example in aqueous solution) and an appropriate organic solvent (e.g. methylene chloride); or (g) for compounds of formula Ia in which R 5 represents OCH 3 or OCH 2 CH 3 , reaction of a corresponding compound of formula Ia in which R 5 represents OH with dimethylsulfate or diethylsulfate, respectively, for example in the presence of a suitable base (e.g. an alkali metal hydroxide such as KOH (for example in aqueous solution at e.g. 50 wt. %)) and an appropriate catalyst (e.g. a quaternary ammonium halide such as benzyltrimethylammonium chloride (for example in CH 2 Cl 2 or THF solution at e.g. 10 wt. %)).
  • suitable base e.g. NaOH, for example in aqueous solution
  • an appropriate organic solvent
  • Compounds of formulae XVIA and XVIB may be prepared by reaction of a corresponding compound of formula II, as hereinbefore defined, with a compound of formula XIXA or XIXB, wherein R 4 , Y, X 1 , X 2 , X 3 and X 4 are as hereinbefore defined, for example under similar conditions to those described hereinbefore for synthesis of compounds of formula I.
  • compounds of formula XVII may be prepared by reaction of a corresponding compound of formula I with a compound corresponding to a compound of formula XIX in which, in place of R 7 , the group R b is present, in which R b is as hereinbefore defined, for example under conditions described above in respect of the preparation of compounds of formula Ia.
  • Preferred compounds of the invention thus include the compounds of the examples described hereinafter.
  • compounds of the invention that may be mentioned include:
  • the compounds of the invention may exhibit tautomerism. All tautomeric forms and mixtures thereof are included within the scope of the invention. Particular tautomeric forms that may be mentioned include those connected with the position of the double bond in the amidine functionality in a compound of formula Ia, and the position of the substituent R 5 .
  • Compounds of the invention also contain two or more asymmetric carbon atoms and may therefore exhibit optical and/or diastereoisomerism.
  • Diastereoisomers may be separated using conventional techniques, e.g. chromatography.
  • the various stereoisomers may be isolated by separation of a racemic or other mixture of the compounds using conventional, e.g. HPLC techniques.
  • the desired optical isomers may be made by reaction of the appropriate optically active starting materials under conditions which will not cause racemisation or epimerisation, or by derivatisation, for example with a homochiral acid followed by separation of the diastereomeric derivatives by conventional means (e.g. HPLC, chromatography over silica). All stereoisomers are included within the scope of the invention.
  • Preferred compounds of the invention include those in which the structural fragment is in the R-configuration when R a represents —OH or is in the S-configuration when R a represents —CH 2 OH.
  • Compounds of the invention that may further be mentioned include those that are not the specific compounds identified in the previous sentence.
  • Functional groups that it is desirable to protect include hydroxy, amino and carboxylic acid.
  • Suitable protecting groups for hydroxy include optionally substituted and/or unsaturated alkyl groups (e.g. methyl, allyl, benzyl or tert-butyl), trialkylsilyl or diarylalkylsilyl groups (e.g. t-butyldimethylsilyl, t-butyldiphenylsilyl or trimethylsilyl) and tetrahydropyranyl.
  • Suitable protecting groups for carboxylic acid include C 1-6 alkyl or benzyl esters.
  • Suitable protecting groups for amino and amidino include t-butyloxycarbonyl, benzyloxycarbonyl or 2-trimethylsilylethoxycarbonyl (Teoc). Amidino nitrogens may also be protected by hydroxy or alkoxy groups, and may be either mono- or diprotected.
  • the protection and deprotection of functional groups may take place before or after coupling, or before or after any other reaction in the above-mentioned schemes.
  • Protected derivatives of compounds of the invention may be converted chemically to compounds of the invention using standard deprotection techniques (e.g. hydrogenation).
  • standard deprotection techniques e.g. hydrogenation
  • certain compounds of formula Ia may also be referred to as being “protected derivatives” of compounds of formula I.
  • Compounds of the invention may possess pharmacological activity as such.
  • Compounds of the invention that may possess such activity include, but are not limited to, compounds of formula I.
  • compounds of the invention may not possess such activity, but may be administered parenterally or orally, and may thereafter be metabolised in the body to form compounds that are pharmacologically active (including, but not limited to, corresponding compounds of formula I).
  • Such compounds which also includes compounds that may possess some pharmacological activity, but that activity is appreciably lower than that of the “active” compounds to which they are metabolised), may therefore be described as “prodrugs” of the active compounds.
  • the compounds of the invention are useful because they possess pharmacological activity, and/or are metabolised in the body following oral or parenteral administration to form compounds which possess pharmacological activity.
  • the compounds of the invention are therefore indicated as pharmaceuticals.
  • compounds of the invention are potent inhibitors of thrombin either as such and/or (e.g. in the case of prodrugs), are metabolised following administration to form potent inhibitors of thrombin, for example as may be demonstrated in the tests described below.
  • prodrug of a thrombin inhibitor we include compounds that form a thrombin inhibitor, in an experimentally-detectable amount, and within a predetermined time (e.g. about 1 hour), following oral or parenteral administration (see, for example, Test E below) or, alternatively, following incubation in the presence of liver microsomes (see, for example, Test G below).
  • the compounds of the invention are thus expected to be useful in those conditions where inhibition of thrombin is required, and/or conditions where anticoagulant therapy is indicated, including the following:
  • hypercoagulability may lead to thrombo-embolic diseases.
  • Conditions associated with hypercoagulability and thrombo-embolic diseases include inherited or acquired activated protein C resistance, such as the factor V-mutation (factor V Leiden), and inherited or acquired deficiencies in antithrombin III, protein C, protein S, heparin cofactor II.
  • thrombo-embolic disease Other conditions known to be associated with hypercoagulability and thrombo-embolic disease include circulating antiphospholipid antibodies (Lupus anticoagulant), homocysteinemi, heparin induced thrombocytopenia and defects in fibrinolysis, as well as coagulation syndromes (e.g. disseminated intravascular coagulation (DIC)) and vascular injury in general (e.g. due to surgery).
  • DIC disseminated intravascular coagulation
  • venous thrombosis e.g. DVT
  • pulmonary embolism e.g. in myocardial infarction, unstable angina, thrombosis-based stroke and peripheral arterial thrombosis
  • systemic embolism usually from the atrium during atrial fibrillation (e.g. non-valvular atrial fibrillation) or from the left ventricle after transmural myocardial infarction, or caused by congestive heart failure; prophylaxis of re-occlusion (i.e. thrombosis) after thrombolysis, percutaneous trans-luminal angioplasty (PTA) and coronary bypass operations; the prevention of re-thrombosis after microsurgery and vascular surgery in general.
  • re-occlusion i.e. thrombosis
  • PTA percutaneous trans-luminal angioplasty
  • coronary bypass operations the prevention of re-thrombosis after microsurgery and vascular surgery in general.
  • Further indications include the therapeutic and/or prophylactic treatment of disseminated intravascular coagulation caused by bacteria, multiple trauma, intoxication or any other mechanism; anticoagulant treatment when blood is in contact with foreign surfaces in the body such as vascular grafts, vascular stents, vascular catheters, mechanical and biological prosthetic valves or any other medical device; and anticoagulant treatment when blood is in contact with medical devices outside the body such as during cardiovascular surgery using a heart-lung machine or in haemodialysis; the therapeutic and/or prophylactic treatment of idiopathic and adult respiratory distress syndrome, pulmonary fibrosis following treatment with radiation or chemotherapy, septic shock, septicemia, inflammatory responses, which include, but are not limited to, edema, acute or chronic atherosclerosis such as coronary arterial disease and the formation of atherosclerotic plaques, cerebral arterial disease, cerebral infarction, cerebral thrombosis, cerebral embolism, peripheral arterial disease, ischaemia, angina (including unstable angina), reperfusion damage,
  • the compounds of the invention are thus indicated both in the therapeutic and/or prophylactic treatment of these conditions.
  • a method of treatment of a condition where inhibition of thrombin is required comprises administration of a therapeutically effective amount of a compound of the invention to a person suffering from, or susceptible to, such a condition.
  • the compounds of the invention will normally be administered orally, intravenously, subcutaneously, buccally, rectally, dermally, nasally, tracheally, bronchially, by any other parenteral route or via inhalation, in the form of pharmaceutical preparations comprising compound of the invention either as a free base, or a pharmaceutically acceptable non-toxic organic or inorganic acid addition salt, in a pharmaceutically acceptable dosage form.
  • Preferred routes of administration of compounds of the invention are oral.
  • Preferred pharmaceutical preparations include modified release pharmaceutical compositions comprising compounds of the invention.
  • modified release pharmaceutical composition will be well understood by the skilled person to include any composition in which the onset and/or rate of release of drug (i.e. compound of the invention) is altered by galenic manipulations, and thus includes the definition provided in the United States Pharmacopeia (USP XXII) at pages xliii and xliv of the preface/preamble part, the relevant disclosure in which document is hereby incorporated by reference.
  • Suitable modified release formulations may thus be prepared by the skilled person in accordance with standard techniques in pharmacy (see, for example, Pharmaceutisch Weekblad Scientific Edition, 6, 57 (1984); Medical Applications of Controlled Release , Vol II, eds. Langer and Wise (1984) Bocaraton, Fla., at pages 1 to 34; Industrial Aspects of Pharmaceuticals , ed. Sandel, Swedish Pharmaceutical Press (1993) at pages 93 to 104; and pages 191 to 211 of “ Pharmaceutics: The Science of Dosage Form Design ”, ed. M. E. Aulton (1988) (Churchill Livingstone)).
  • Preferred modified release formulations thus include those in which an appropriate compound of the invention is embedded in a polymer matrix.
  • formulations including compounds of the invention are provided for oral administration in the form of a so-called “swelling” modified-release system, or a “gelling matrix” modified-release system, in which compound of the invention is provided together with a polymer that swells in an aqueous medium (i.e. a “hydrophilic gelling component”).
  • the compounds of the invention are formulated together in a gelling matrix composition comprising iota-carrageenan and one or more neutral gelling polymers.
  • Iota-carrageenan is preferably present in such a preferred preparation at a level of more that 15% by weight.
  • Preferred grades of iota-carrageenan include pharmaceutical grade iota-carrageenan (available from FMC Biopolymer), which has a viscosity of not less than 5 centipoise (cps), preferably in the range 5-10 cps (for a 1.5% solution warmed to 82° C., after which the viscosity is measured at 75° C.
  • the neutral gelling polymer may be a single, or a mixture of more than one, neutral erodable polymer(s) having gelling properties and having substantially pH-independent solubility.
  • the neutral gelling polymer is, preferably, present in the formulation at a level of more that 10% but preferably more than 20% by weight.
  • Suitable neutral gelling polymers include polyethylene oxide (PEO), derivatives and members of the PEO family (for example, polyethylene glycol (PEG), preferably existing naturally in the solid state, of suitable molecular weight or viscosity). If used as a single neutral gelling polymer, a PEO preferably has a MW of >4 million (4M), corresponding to an aqueous solution viscosity range of 1650-5500 mPa ⁇ s (or 1650-5500 cps; measured for a 1% aqueous solution at 25° C., using a Brookfield RVF viscometer, with No. 2 spindle, at 2 rpm).
  • PEO polyethylene oxide
  • PEG polyethylene glycol
  • a PEO preferably has a MW of >4 million (4M), corresponding to an aqueous solution viscosity range of 1650-5500 mPa ⁇ s (or 1650-5500 cps; measured for a 1% aqueous solution at 25° C., using
  • PEOs include a PEO of MW around 5 million (5M), corresponding to an aqueous solution viscosity range of 5500-7500 mPa ⁇ s, or a PEO MW around 8 million (8M), corresponding to an aqueous solution viscosity range of 10000-15000 mPa ⁇ s. This range covers the value for typical solution viscosity (in cps) measured at 25° C., quoted for this polymer, in the USP 24/NF 19, 2000 edition, pp. 2285-2286.
  • PEG is used as a single neutral gelling polymer it preferably has a high molecular weight, for example, a MW of around 20000, corresponding to a viscosity range of 2700-3500 mPa ⁇ s (or 2700-3500 cps), measured using a 50% aqueous solution (w/w) at 20° C., using a capillary viscometer (Ubbelohde or equivalent).
  • a MW of around 20000 corresponding to a viscosity range of 2700-3500 mPa ⁇ s (or 2700-3500 cps) measured using a 50% aqueous solution (w/w) at 20° C., using a capillary viscometer (Ubbelohde or equivalent).
  • Suitable gelling polymers include cellulose derivatives such as hydroxypropylmethyl cellulose (HPMC) or hydroxyethylcellulose (HEC) with suitably high viscosities (for example “HPMC 10000 cps”, “HPMC 15000 cps”, “HEC type HH” or “HEC type H”).
  • HPMC 10000 cps hydroxypropylmethyl cellulose
  • HPMC 15000 cps HPMC type HH”
  • hydroxyethylcellulose polymer for example, “Natrosol 250 Pharma, type HH”, from Hercules Incorporated (Aqualon), shows typically a Brookfield viscosity of about 20,000 mPa ⁇ s using a Brookfield Synchro-Lectric Model LVF instrument, at the conditions 1% solution concentration, spindle no. 4, spindle speed 30 rpm, factor 200, 25° C. (See Natrosol Physical and Chemical Properties booklet, 33.007-E6 (1993), p. 21).
  • compositions that may be mentioned include those in which compound of the invention is formulated together with iota-carageenan and HPMC (10,000 cps) in a 50:50 (wt %) ratio, or together with iota-carageenan and PEO 4M in a 50:50 (wt %) ratio.
  • Preferred additional excipients in such formulations include lubricants, such as sodium stearyl fumarate.
  • the compounds of the invention may also be combined and/or co-administered with any antithrombotic agent(s) with a different mechanism of action, such as one or more of the following: the antiplatelet agents acetylsalicylic acid, ticlopidine and clopidogrel; thromboxane receptor and/or synthetase inhibitors; fibrinogen receptor antagonists; prostacyclin mimetics; phosphodiesterase inhibitors; ADP-receptor (P 2 T) antagonists; and inhibitors of carboxypeptidase U (CPU).
  • any antithrombotic agent(s) with a different mechanism of action, such as one or more of the following: the antiplatelet agents acetylsalicylic acid, ticlopidine and clopidogrel; thromboxane receptor and/or synthetase inhibitors; fibrinogen receptor antagonists; prostacyclin mimetics; phosphodiesterase inhibitors; ADP-receptor (P 2 T)
  • the compounds of the invention may further be combined and/or co-administered with thrombolytics such as one or more of tissue plasminogen activator (natural, recombinant or modified), streptokinase, urokinase, prourokinase, anisoylated plasminogen-streptokinase activator complex (APSAC), animal salivary gland plasminogen activators, and the like, in the treatment of thrombotic diseases, in particular myocardial infarction.
  • tissue plasminogen activator naturally, recombinant or modified
  • streptokinase urokinase
  • prourokinase prourokinase
  • anisoylated plasminogen-streptokinase activator complex APSAC
  • animal salivary gland plasminogen activators and the like
  • Suitable daily doses of the compounds of the invention in therapeutic treatment of humans are about 0.001-100 mg/kg body weight at peroral administration and 0.001-50 mg/kg body weight at parenteral administration.
  • the inhibitor solution (25 ⁇ L) is incubated with plasma (25 ⁇ L) for three minutes.
  • Human thrombin (T 6769; Sigma Chem. Co or Hematologic Technologies) in buffer solution, pH 7.4 (25 ⁇ L, 4.0 NIH units/mL), is then added and the clotting time measured in an automatic device (KC 10; Amelung).
  • the thrombin clotting time is expressed as absolute values (seconds) as well as the ratio of TT without inhibitor (TT 0 ) to TT with inhibitor (TT i ).
  • the thrombin inhibitor potency is measured with a chromogenic substrate method, in a Plato 3300 robotic microplate processor (Rosys AG, CH-8634 Hombrechtikon, Switzerland), using 96-well, half volume microtitre plates (Costar, Cambridge, Mass., USA; Cat No 3690).
  • Stock solutions of test substance in DMSO (72 ⁇ L), 0.1-1 mmol/L, are diluted serially 1:3 (24+48 ⁇ L) with DMSO to obtain ten different concentrations, which are analysed as samples in the assay.
  • K i -determinations are made using a chromogenic substrate method, performed at 37° C. on a Cobas Bio centrifugal analyser (Roche, Basel, Switzerland). Residual enzyme activity after incubation of human ⁇ -thrombin with various concentrations of test compound is determined at three different substrate concentrations, and is measured as the change in optical absorbance at 405 nm.
  • Test compound solutions (100 ⁇ L; normally in buffer or saline containing BSA 1.0 g/L) are mixed with 200 ⁇ L of human ⁇ -thrombin (Sigma Chemical Co) in assay buffer (0.05 mol/L Tris-HCl pH 7.4, ionic strength 0.15 adjusted with NaCl) containing BSA (10 g/L), and analysed as samples in the Cobas Bio.
  • assay buffer 0.05 mol/L Tris-HCl pH 7.4, ionic strength 0.15 adjusted with NaCl
  • the final concentrations of S-2238 are 16, 24 and 50 ⁇ mol/L and of thrombin 0.125 NIH U/mL.
  • the steady state reaction rate is used to construct Dixon plots, i.e. diagrams of inhibitor concentration vs. 1/( ⁇ A/min).
  • Dixon plots i.e. diagrams of inhibitor concentration vs. 1/( ⁇ A/min).
  • APTT is determined in pooled normal human citrated plasma with the reagent PTT Automated 5 manufactured by Stago. The inhibitors are added to the plasma (10 ⁇ L inhibitor solution to 90 ⁇ L plasma) and incubated with the APTT reagent for 3 minutes followed by the addition of 100 ⁇ L of calcium chloride solution (0.025 M) and APTT is determined by use of the coagulation analyser KC10 (Amelung) according to the instructions of the reagent producer.
  • the clotting time is expressed as absolute values (seconds) as well as the ratio of APTT without inhibitor (APTT 0 ) to APTT with inhibitor (APTT i ).
  • thrombin inhibitor 50 ⁇ L of plasma samples are precipitated with 100 ⁇ L of cold acetonitrile. The samples are centrifuged for 10 minutes at 4000 rpm. 75 ⁇ L of the supernatant is diluted with 75 ⁇ L of 0.2% formic acid. 10 ⁇ L volumes of the resulting solutions are analysed by LC-MS/MS and the concentrations of thrombin inhibitor are determined using standard curves.
  • Plasma clearance is estimated in male Sprague Dawley rats. The compound is dissolved in water and administered as a subcutaneous bolus injection at a dose of 4 ⁇ mol/kg. Blood samples are collected at frequent intervals up to 5 hours after drug administration. Blood samples are centrifuged and plasma is separated from the blood cells and transferred to vials containing citrate (10% final concentration). 50 ⁇ L of plasma samples are precipitated with 100 ⁇ L of cold acetonitrile. The samples are centrifuged for 10 minutes at 4000 rpm. 75 ⁇ L of the supernatant is diluted with 75 ⁇ L of 0.2% formic acid.
  • Liver microsomes are prepared from Sprague-Dawley rats and human liver samples according to internal SOPs.
  • the compounds are incubated at 37° C. at a total microsome protein concentration of 3 mg/mL in a 0.05 mol/L TRIS buffer at pH 7.4, in the presence of the cofactors NADH (2.5 mmol/L) and NADPH (0.8 mmol/L).
  • the initial concentration of compound is 5 or 10 ⁇ mol/L.
  • Samples are taken for analysis up to 60 minutes after the start of the incubation.
  • the enzymatic activity in the collected sample is immediately stopped by adding 20% myristic acid at a volume corresponding to 3.3% of the total sample volume.
  • % of degraded thrombin inhibitor is calculated as: 100 ⁇ % ⁇ [ START ⁇ ⁇ CONC ] - [ FINAL ⁇ ⁇ CONC ] [ START ⁇ ⁇ CONC ] Test H Arterial Thrombosis Model
  • Rats are anaesthetised with an intraperitoneal injection of sodium pentobarbital (80 mg/kg; Apoteksbolaget; Ume ⁇ , Sweden), followed by continuous infusion (12 mg/kg/h) throughout the experiment.
  • Rat body temperature is maintained at 38° C. throughout the experiment by external heating. The experiment starts with a 5 minutes control period.
  • human 125 I-fibrinogen 80 kBq; IM53; Amersham International, Buckinghamshire, UK
  • the proximal end of the carotid artery segment is placed in a plastic tube (6 mm; Silastic®; Dow Corning, Mich., USA) opened lengthways, containing FeCl 3 -soaked (2 ⁇ L; 55% w/w; Merck, Darmstadt, Germany) filter paper (diameter 3 mm; 1F; Munktell, Grycksbo, Sweden).
  • the left carotid artery is exposed to FeCl 3 for 10 minutes and is then removed from the plastic tube and soaked in saline. Fifty minutes later, the carotid artery is removed and rinsed in saline.
  • Reference blood samples are also taken for determination of blood 125 I-activity, 10 minutes after the injection of 125 I-fibrinogen, and at the end of the experiment.
  • the 125 I-activity in the reference blood samples and the vessel segment are measured in a gamma counter (1282 Compugamma; LKB Wallac Oy, Turku, Finland) on the same day as the experiment is performed.
  • the thrombus size is determined as the amount of 125 I-activity incorporated in the vessel segment in relation to the 125 I-activity in the blood (cpm/mg).
  • TLC TLC was performed on silica gel. Chiral HPLC analysis was performed using a 46 mm ⁇ 250 mm Chiralcel OD column with a 5 cm guard column. The column temperature was maintained at 35° C. A flow rate of 1.0 mL/min was used. A Gilson 115 UV detector at 228 nm was used. The mobile phase consisted of hexanes, ethanol and trifluoroacetic acid and the appropriate ratios are listed for each compound. Typically, the product was dissolved in a minimal amount of ethanol and this was diluted with the mobile phase.
  • LC-MS/MS was performed using a HP-1100 instrument equipped with a CTC-PAL injector and a 5 ⁇ m, 4 ⁇ 100 mm ThermoQuest, Hypersil BDS-C18 column.
  • An API-3000 (Sciex) MS detector was used. The flow rate was 1.2 mL/min and the mobile phase (gradient) consisted of 10-90% acetonitrile with 90-10% of 4 mM aq. ammonium acetate, both containing 0.2% formic acid.
  • Ph(3-Cl)(5-OCHF 2 )—(R)CH(OH)C(O)-Aze-Pab(Teoc) (0.051 g, 0.08 mmol; see step (ix) above), was dissolved in 3 mL of acetonitrile and 0.062 g (0.5 mmol) of O-cyclobutylhydroxylamine hydrochloride was added. The mixture was heated at 70° C. for 4.5 h. The solvent was evaporated and the residue was partitioned between water and ethyl acetate. The aqueous phase was extracted two more times with ethyl acetate and the combined organic phase washed with water, brine, dried (Na 2 SO 4 ), filtered and evaporated. Yield: 0.054 g (95%).
  • Ph(3-Cl)(5-OCHF 2 )—(R)CH(OH)C(O)-Aze-Pab(Teoc) (0.148 g, 0.24 mmol; see Example 1 (ix) above), was dissolved in 9 mL of acetonitrile and 0.101 g (1.45 mmol) of hydroxylamine hydrochloride was added. The mixture was heated at 70° C. for 2.5 h, filtered through Celite® and evaporated. The crude product (0.145 g; 75% pure) was used directly in the next step without further purification.
  • Hypophosphorous acid (221.5 mL of 50 wt % in H 2 O, 291.2 g, 2.20 mol) was added slowly via an addition funnel. The solution was stirred at 0° C. for 1.5 hours, then warmed to room temperature (gas evolution observed) and stirred for 18 hours. The crude solution was transferred to a separating funnel and extracted with Et 2 O (4 ⁇ ). The combined organics were extracted with aqueous NaHCO 3 (3 ⁇ ). The basic aqueous layer was cautiously acidified with 6N HCl and extracted with CH 2 Cl 2 (3 ⁇ ).
  • Trifluoroacetic acid (1.0 mL) was added to a stirred ice/water-cooled solution of Ph(3-Cl)(5-OCF 3 )—(R)CH(OH)C(O)-Aze-Pab(Teoc) (101 mg; 160 ⁇ mol; see step (x) above), in methylene chloride (10 mL). The cooling bath was removed after 1 hour. After 1.5 hours at room temperature, acetonitrile (30 mL) was added and the solvents were carefully removed under reduced pressure. The residue was dissolved in water and freeze dried to afford 90 mg (92%) of the title compound as its TFA salt.
  • the combined liquid fractions were concentrated in a vacuum centrifuge.
  • the residue was partitioned between water (0.4 mL) and ethyl acetate (0.4 mL). After liquid-liquid extraction was finished, everything was filtered through a column of HydromatrixTM. After washing three times with ethyl acetate, the combined filtrates were concentrated in a vacuum centrifuge. Deprotection was performed by addition of methylene chloride (0.1 mL) and trifluoroacetic acid (0.3 mL). After stirring at room temperature for 3 hours, the solvents were removed in vacuo. The residue was partitioned between aqueous saturated sodium hydrogen carbonate (0.5 mL) and ethyl, acetate (0.5 mL).
  • Magnesium turnings (Fluka purum for Grignard reactions) were pre-treated in the following way: The turnings were placed in a glass sintered funnel and 0.1 M of hydrochloric acid was poured onto them. The turnings were stirred with a glass rod for a few seconds and then the acid washed away with 3 portions of water. Finally, the turnings were washed with 2 portions of acetone and bottled. Tetrahydrofuran (100 mL, 99.95%) was dried by adding RedAl (1 g, 70% wt. in toluene). Pre-treated magnesium turnings (5 g, 200 mmol) were placed in a round bottomed flask, and were flushed with nitrogen 3 times.
  • Ph(3-Cl)(5-OCF 3 )—(R)CH(OH)C(O)-Aze-Pab ⁇ TFA 34 mg, 0.057 mmol, from Example 6) was dissolved in 5 mL of ethanol and 20 mg of 10% Pd/C was added. The mixture was hydrogenated at atmospheric pressure overnight. The mixture was filtered through Celite®, evaporated, and freeze dried from water/acetonitrile.
  • the compound is faintly uv-visible on TLC. It can be visualised by staining the TLC with bromocresol green.
  • reaction mixture was concentrated in vacuo and flash chromatographed twice on silica gel, eluting first with CHCl 3 :EtOH (9:1) and second with EtOAc:EtOH (20:1) to afford the sub-title compound (0.23 g, 26%) as a crushable white foam.
  • Ph(3-Cl)(5-OCH 2 F)—(R)CH(OH)C(O)-Aze-Pab(Teoc) (0.051 g, 0.086 mmol; see step (vii) above), was dissolved in 3 mL of TFA and allowed to react for 20 min. TFA was evaporated and the residue was freeze dried from water/acetonitrile. The product was 95% pure with 5% of defluoromethylated material. Attempts to purify it by preparative RPLC with CH 3 CN:0.1M NH 4 OAc failed, and the material, partially as an acetate, was dissolved in 5 mL of TFA, evaporated and freeze dried to yield 26 mg (51%) of the title compound as its TFA salt. Purity: 95%.
  • reaction mixture was concentrated in vacuo and flash chromatographed three times on silica gel, eluting first with CHCl 3 :EtOH (9:1) and then twice with EtOAc:EtOH (20:1) to afford the title compound (0.22 g, 26%) as a crushable white foam.
  • the combined organic extracts were washed with 2N HCl (250 mL) and H 2 O (3 ⁇ 250 mL). To the organic layer was added 15% KOH (500 mL), and the layers were separated. The organic layer was further extracted with 2 N KOH (2 ⁇ 70 mL). The combined aqueous layers were washed with CH 2 Cl 2 (3 ⁇ 100 mL) and then acidified with 4N HCl. The aqueous layer was extracted with Et 2 O (3 ⁇ 125 mL) then, the combined Et 2 O extracts were dried (Na 2 SO 4 ), filtered and concentrated in vacuo to afford the sub-title compound (69.0 g, 92%) as a brown oil that was used without further purification.
  • Tri(butyl)vinylstannane (7.0 g, 22.2 mmol) was added to a suspension of 1-bromo-3-fluoro-5-difluoromethoxybenzene (4.9 g, 20.2 mmol; see step (iii) above), dichlorobis(triphenylphosphine)palladium(II) (1.42 g, 2.02 mmol) and anhydrous lithium chloride (0.90 g, 20.2 mmol) in THF (40 mL) under nitrogen at 65° C. and the mixture was stirred for 5 h. The reaction mixture was cooled to 0° C. and 1N NaOH (90 mL) was added.
  • Sodium hypochlorite (5.25%, 30 mL) was then added dropwise over a period of 20 min while the mixture was vigorously stirred and maintained at 0° C. After 1 h, additional sodium hypochlorite (30 mL) and 5% NaHCO 3 solution (35 mL) were added and stirring was continued at 0° C. for 2 h. The acetone was removed in vacuo. The aqueous layer washed with Et 2 O (4 ⁇ 40 mL). The aqueous layer was acidified to pH 3.5 with 10% citric acid and extracted with EtOAc (4 ⁇ 50 mL).
  • Ph(3-F)(5-OCHF 2 )—(R)CH(OH)C(d)-Aze-Pab(Teoc) (0.053 g, 0.089 mmol; see step (xi) above), was dissolved in 3 mL of TFA and allowed to react for 80 min while cooled on an ice bath. TFA was evaporated and the residue was freeze dried from water/acetonitrile to yield 0.042 g (80%) of the title compound as its TFA salt.
  • Aluminium chloride (11.7 g, 87.6 mmol) was added in portions to a solution of 1,3-dibromo-5-benzyloxybenzene (10.0 g, 29.2 mmol; see step (i) above) and N,N-dimethylaniline (35.4 g, 292 mmol) in CH 2 Cl 2 (100 mL) at room temperature under a nitrogen atmosphere. After 30 min, the mixture was partitioned with 1N HCl (300 mL) and EtOAc (5 ⁇ 150 mL). The combined organic extracts were washed with saturated NaHCO 3 (150 mL) and brine (150 mL) then, dried (Na 2 SO 4 ), filtered and concentrated in vacuo. Flash chromatography on silica gel eluting with Hex:EtOAc (9:1) afforded the sub-title compound (6.1 g, 82%) as a white solid.
  • Tri(butyl)vinyltin (10.0 g, 31.4 mmol) was added dropwise to a solution of 1,3-dibromo-5-monofluoromethoxybenzene (8.5 g, 29.9 mmol; see step (iii) above), tetrakis(triphenylphosphine)palladium(0) (690 mg, 0.599 mmol), and 2,6-di-tert-butyl-4-methylphenol (spatula tip) in toluene (100 mL) under nitrogen. The mixture was stirred at 70° C. for 8 h. The mixture was cooled to 0° C. and 1N NaOH (70 mL) was added.
  • Ph(3-Br)(5-OCH 2 F)—(R)CH(OH)C(O)-Aze-Pab(Teoc) (0.073 g, 0.11 mmol; see step (x) above), was dissolved in 5 mL of TFA and allowed to react for 90 min while being cooled on an ice bath. TFA was evaporated and the residue purified by prep RPLC with CH 3 CN:0.1M NH 4 OAc (30:70). The pertinent fractions were evaporated and freeze dried from water/acetonitrile to yield 49 mg (77%) of the title compound as its acetate salt.
  • Tri(butyl)vinyltin (10.5 g, 33.1 mmol) was added dropwise to a solution of 1,3-dibromo-5-difluoromethoxybenzene (9.1 g, 30.1 mmol; see step (i) above), tetrakis(triphenylphosphine)palladium(0) (700 mg, 0.60 mmol), and 2,6-di-tert-butyl-4-methylphenol (spatula tip) in toluene (125 mL) under nitrogen. The mixture was stirred at 50° C. overnight. The mixture was cooled to 0° C. and 1N NaOH (70 mL) was added.
  • Sodium hypochlorite (5.25%, 19 mL) was then added dropwise over a period of 10 min while the mixture was vigorously stirred and maintained at 0° C. After 1 h, additional sodium hypochlorite (17 mL) and NaHCO 3 solution (34 mL) were added and stirring was continued at 0° C. for an additional 4 h. The acetone was removed on a rotary evaporator. The aqueous layer was diluted with 10% NaHCO 3 solution (30 mL) and washed with Et 2 O (3 ⁇ 20 mL). The aqueous layer was acidified to pH 3.5 with 10% citric acid and extracted with EtOAc (3 ⁇ 40 mL).
  • Boc-Aze-Pab(Z) (see international patent application WO 97/02284, 92 mg, 0.197 mmol) was dissolved in 10 mL of EtOAc saturated with HCl(g) and allowed to react for 10 min. The solvent was evaporated and the residue was mixed with Ph(3-Cl)(5-OCH 2 CHF 2 )—(R)CH(OH)C(O)OH (50 mg, 0.188 mmol; see Example 17(v) above), PyBOP (109 mg, 0.209 mmol) and finally diisopropylethyl amine (96 mg, 0.75 mmol) in 2 mL of DMF.
  • Boc-Pro-Pab(Z) (see international patent application WO 97/02284, 15.0 g, 0.0321 mol) was dissolved in 150 mL of ethanol and 200 mg 10% Pd/C (50% moisture) was added. The mixture was stirred and hydrogenated at atmospheric pressure for 2 h, filtered through Hyflo and concentrated.
  • Boc-Pro-Pab(Teoc) (107 mg, 0.218 mmol; see step (i) above) was dissolved in 10 mL of EtOAc saturated with HCl(g) and allowed to react for 10 min. The solvent was evaporated and the residue was mixed with Ph(3-Cl)(5-OCHF 2 )—(R)CH(OH)C(O)OH (50 mg, 0.198 mmol; see Example 1(viii) above) in 3 mL of DMF, PyBOP (115 mg, 0.218 mmol) and finally diisopropylethyl amine (104 mg, 0.80 mmol). The mixture was stirred for 2 h and then poured into 75 mL of water and extracted three times with EtOAc. The combined organic phase washed with water, dried (Na 2 SO 4 ) and evaporated. The crude product was flash chromatographed on silica gel with EtOAc:MeOH (95:5). Yield: 89 mg (72%).
  • Boc-Pro-Pab(OMe) (9.7 g, 0.026 mol; see step (iii) above) was dissolved in 250 mL of EtOAc. The ice cooled solution was saturated with HCl(g) by bubbling for 5 min. The product precipitated immediately and 125 mL of absolute ethanol was added. The mixture was sonicated until most of the material had solidified. Diethyl ether (200 mL) was added and the suspension was filtered. A few lumps that had not solidified were again treated with absolute ethanol and diethyl ether. The solid was dried. Yield: 7.57 g (86%).
  • Boc-NH—CH 2 -(2-(amino(trimethylsilylethylimino)methyl)-5-pyridinyl) (0.23 g, 0.58 mmol; see step (iii) above) was dissolved in 25 mL of EtOAc saturated with HCl(g) and stirred for 30 min. The solvent was evaporated and the product used without further purification. Yield: 0.21 g (98%).
  • Boc-Aze-NH—CH 2 -(2-(amino(trimethylsilylethylimino)methyl)-5-pyridinyl) (170 mg, 0.356 mmol; see step (v) above) was dissolved in 25 mL of EtOAc saturated with HCl(g) and stirred for 30 min. The solvent was evaporated and the product used without further purification. Yield: 160 mg (100%).
  • Ph(3-Cl)(5-OCHF 2 )—(R)CH(OH)C(O)-Aze-NH—CH 2 -(2-(methoxyamino(tri-methylsilylethylimino)methyl)-5-pyridinyl) (44 mg, 0.069 mmol; see step (viii) above) was dissolved in 2 mL of TFA and allowed to react for 1 h. The TFA was evaporated and the residue was partitioned between EtOAc and aqueous sodium bicarbonate. The aqueous layer was extracted with EtOAc and the combined organic phase washed with water, dried (Na 2 SO 4 ) and evaporated. Yield: 30 mg (88%). Purity: >95%.
  • N-Boc-aminoacetonitrile (40.2 g, 257.4 mmol) and N-acetylcysteine (42.0 g, 257.4 mmol) were dissolved in methanol (300 mL) at 60° C. and ammonia was passed through for 18 b. The solvent was removed in vacuo. After ion exchange chromatography (Amberlite IRA-400 (AcOH)) and recrystallisation from acetone, 28.4 g (53%) of the sub-title compound was obtained as a white solid.
  • Boc-NH—CH 2 -(5-cyano)-2-pyrimidine (1.14 g, 4.87 mmol; see step (iii) above) was dissolved in 50 mL of EtOAc saturated with HCl(g) and allowed to react for 1 h and concentrated. The residue was dissolved in 20 mL of DMF and cooled in an ice bath. Diisopropylethyl amine (3.5 mL, 0.020 mol), Boc-Aze-OH (1.08 g, 5.37 mmol) and HATU (2.80 g, 5.38 mmol) were added and the reaction mixture was stirred at room temperature overnight.
  • Boc-Aze-NH—CH 2 -[(5-(amino(trimethylsilylethylimino)methyl))-2-pyrimidinyl] (0.209 g, 0.437 mmol; see step (vi) above) was dissolved in 25 mL of EtOAc saturated with HCl(g) and allowed to react for 15 min. The solvent was evaporated and the remainder was dissolved in 4 mL of DMF.
  • Ph(3-Cl)(5-OCHF 2 )—(R)CH(OH)C(O)-Aze-NH—CH 2 -[(5-(amino(trimethyl-silylethylimino)methyl))-2-pyrimidinyl] (21 mg, 0.034 mmol; see step (vii) above) was dissolved in 0.5 mL of methylene chloride and cooled in an ice bath. TFA (2 mL) was added and the mixture was stirred for 60 min and then concentrated. The product was freeze-dried from water and acetonitrile. Yield: 20 mg (100%). Purity: 100%.
  • Ph(3-Cl)(5-OCHF 2 )—(R)CH(OH)C(O)-Aze-NH—CH 2 -[(5-(methoxyamino-(trimethylsilylethylimino)methyl))-2-pyrimidinyl] (33 mg, 0.052 mmol; see step (i) above) was dissolved in 0.5 mL of methylene chloride and cooled in an ice bath. TFA (2 mL) was added and the mixture was stirred for 2 h and then concentrated. The product was freeze dried from water and acetonitrile. Yield: 31 mg (81%); Purity: 100%.
  • Boc-Aze-NHCH 2 -Ph(3-F, 4-CN) (0.118 g, 0.354 mmol; from step (vi) above) was dissolved in 30 mL of EtOAc saturated with HCl(g). The reaction was stirred for 20 min and evaporated. The resulting dihydrochloride and HATU (0.152 g, 0.400 mmol) were dissolved in 5 mL of DMF. That solution was added to an ice cooled solution of Ph(3-Cl)(5-OCHF 2 )—(R)CH(OH)C(O)OH (0.101 g, 0.400 mmol; see Example 1(viii) above) in 5 mL of DMF. The reaction was stirred overnight at ambient temperature. The solvent was evaporated and the product was purified by preparative RPLC with CH 3 CN: 0.1M NH 4 OAc (50:50). Freeze-drying gave 0.130 g (77%) of the desired sub-title compound.
  • the signal from the fluorinated carbons at 162.7 ppm exhibited the expected coupling pattern with two coupling constants in the order of 260 Hz and 6.3 Hz respectively corresponding to an ipso and a meta coupling from the fluorine atoms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)
  • Peptides Or Proteins (AREA)
US11/520,052 2000-12-01 2006-09-13 New mandelic acid derivatives and their use as thrombin inhibitors Abandoned US20070218136A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/520,052 US20070218136A1 (en) 2000-12-01 2006-09-13 New mandelic acid derivatives and their use as thrombin inhibitors
US12/491,456 US20100087651A1 (en) 2000-12-01 2009-06-25 New mandelic acid derivatives and their use as thrombin inhibitors

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
SE0004458-6 2000-12-01
SE0004458A SE0004458D0 (sv) 2000-12-01 2000-12-01 Pharmaceutically useful compounds
SE0100965-3 2001-03-19
SE0100965A SE0100965D0 (sv) 2001-03-19 2001-03-19 Pharmaceutically-useful compounds
SE0101239-2 2001-04-06
SE0101239A SE0101239D0 (sv) 2001-04-06 2001-04-06 Pharmaceutically useful compounds
SE0102921A SE0102921D0 (sv) 2001-08-30 2001-08-30 Pharmaceutically useful compounds
SE0102921-4 2001-08-30
PCT/SE2001/002657 WO2002044145A1 (fr) 2000-12-01 2001-11-30 Nouveaux derives d'acide mandelique et leur utilisation comme inhibiteurs de thrombine
US10/432,411 US7129233B2 (en) 2000-12-01 2001-11-30 Mandelic acid derivatives and their use as thrombin inhibitors
US11/520,052 US20070218136A1 (en) 2000-12-01 2006-09-13 New mandelic acid derivatives and their use as thrombin inhibitors

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/SE2001/002657 Division WO2002044145A1 (fr) 2000-12-01 2001-11-30 Nouveaux derives d'acide mandelique et leur utilisation comme inhibiteurs de thrombine
US10/432,411 Division US7129233B2 (en) 2000-12-01 2001-11-30 Mandelic acid derivatives and their use as thrombin inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/491,456 Continuation US20100087651A1 (en) 2000-12-01 2009-06-25 New mandelic acid derivatives and their use as thrombin inhibitors

Publications (1)

Publication Number Publication Date
US20070218136A1 true US20070218136A1 (en) 2007-09-20

Family

ID=27484527

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/520,063 Expired - Fee Related US7803954B2 (en) 2000-12-01 2006-09-13 Mandelic acid derivatives and their use as thrombin inhibitors
US11/520,052 Abandoned US20070218136A1 (en) 2000-12-01 2006-09-13 New mandelic acid derivatives and their use as thrombin inhibitors
US11/797,656 Expired - Fee Related US7645751B2 (en) 2000-12-01 2007-05-04 Mandelic acid derivatives and their use as thrombin inhibitors
US12/491,456 Abandoned US20100087651A1 (en) 2000-12-01 2009-06-25 New mandelic acid derivatives and their use as thrombin inhibitors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/520,063 Expired - Fee Related US7803954B2 (en) 2000-12-01 2006-09-13 Mandelic acid derivatives and their use as thrombin inhibitors

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/797,656 Expired - Fee Related US7645751B2 (en) 2000-12-01 2007-05-04 Mandelic acid derivatives and their use as thrombin inhibitors
US12/491,456 Abandoned US20100087651A1 (en) 2000-12-01 2009-06-25 New mandelic acid derivatives and their use as thrombin inhibitors

Country Status (30)

Country Link
US (4) US7803954B2 (fr)
EP (2) EP2186800A1 (fr)
JP (3) JP4177101B2 (fr)
KR (4) KR100914016B1 (fr)
CN (1) CN1291975C (fr)
AR (2) AR035216A1 (fr)
AT (1) ATE461171T1 (fr)
AU (2) AU2007203520B2 (fr)
BG (1) BG66261B1 (fr)
BR (1) BR0115861A (fr)
CA (1) CA2436220C (fr)
CY (1) CY1113487T1 (fr)
CZ (1) CZ303708B6 (fr)
DE (1) DE60141603D1 (fr)
DK (1) DK1347955T3 (fr)
EE (1) EE05382B1 (fr)
ES (1) ES2341318T3 (fr)
HK (1) HK1057214A1 (fr)
HU (1) HU228814B1 (fr)
IL (1) IL156096A0 (fr)
IS (1) IS2755B (fr)
MX (1) MXPA03004794A (fr)
MY (1) MY136133A (fr)
NO (3) NO325228B1 (fr)
NZ (1) NZ526205A (fr)
PL (1) PL207045B1 (fr)
PT (1) PT1347955E (fr)
SI (1) SI1347955T1 (fr)
SK (1) SK287692B6 (fr)
WO (1) WO2002044145A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202174A1 (en) * 2000-12-01 2007-08-30 Astrazeneca Ab New mandelic acid derivatives and their use as thrombin inhibitors
US20080050437A1 (en) * 2003-05-27 2008-02-28 Astrazeneca Ab Modified release pharmaceutical formulation
US20080269176A1 (en) * 2002-05-31 2008-10-30 Astrazeneca Ab New Salts
US20080314255A1 (en) * 2007-06-21 2008-12-25 Wen-Ching Lee Coffee or tea maker
US20090061000A1 (en) * 2007-08-31 2009-03-05 Astrazeneca Ab Pharmaceutical formulation use 030
US7700582B2 (en) 2001-06-21 2010-04-20 Astrazeneca Ab Pharmaceutical formulation
US7820645B2 (en) 2006-12-06 2010-10-26 Astrazeneca Ab Crystalline forms

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0201662D0 (sv) * 2002-05-31 2002-05-31 Astrazeneca Ab Pharmaceutical combination
SE0201658D0 (sv) * 2002-05-31 2002-05-31 Astrazeneca Ab Immediate release pharmaceutical formulation
SE0201659D0 (sv) * 2002-05-31 2002-05-31 Astrazeneca Ab Modified release pharmaceutical formulation
JP4697962B2 (ja) 2003-02-13 2011-06-08 ウェルスタット セラピューティクス コーポレイション 代謝性障害の処置のための化合物
GB0306615D0 (en) * 2003-03-22 2003-04-30 Astrazeneca Ab New use
SE0303220D0 (sv) * 2003-11-28 2003-11-28 Astrazeneca Ab New process
US7550499B2 (en) 2004-05-12 2009-06-23 Bristol-Myers Squibb Company Urea antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
ATE499370T1 (de) 2005-01-19 2011-03-15 Bristol Myers Squibb Co 2-phenoxy-n-(1,3,4-thiadizol-2-yl)pyridin-3- aminderivate und verwandte verbindungen als p2y1- rezeptor-hemmer zur behandlung thromboembolischer erkrankungen
GB0503672D0 (en) * 2005-02-23 2005-03-30 Astrazeneca Ab New process
GB0510546D0 (en) * 2005-05-24 2005-06-29 Astrazeneca Ab New process
DE602006020871D1 (de) 2005-06-27 2011-05-05 Bristol Myers Squibb Co Lineare harnstoffmimetika-antagonisten des p2y1-rezeptors zur behandlung von thromboseleiden
ES2352796T3 (es) 2005-06-27 2011-02-23 Bristol-Myers Squibb Company Antagonistas cíclicos unidos a c del receptor p2y1 útiles en el tratamiento de afecciones trombóticas.
US7714002B2 (en) 2005-06-27 2010-05-11 Bristol-Myers Squibb Company Carbocycle and heterocycle antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
US7728008B2 (en) 2005-06-27 2010-06-01 Bristol-Myers Squibb Company N-linked heterocyclic antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
WO2007087505A2 (fr) 2006-01-25 2007-08-02 Wellstat Therapeutics Corporation Composés destinés au traitement des troubles du métabolisme
WO2007087504A2 (fr) 2006-01-25 2007-08-02 Wellstat Therapeutics Corporation Composés destinés au traitement des troubles du métabolisme
CA2639939A1 (fr) 2006-02-02 2007-08-16 Wellstat Therapeutics Corporation Composes pour le traitement de troubles metaboliques
US8044242B2 (en) 2006-03-09 2011-10-25 Bristol-Myers Squibb Company 2-(aryloxy) acetamide factor VIIa inhibitors useful as anticoagulants
CN101500993A (zh) 2006-06-08 2009-08-05 百时美施贵宝公司 作为凝血因子Ⅶa抑制剂用作抗凝血药的2-氨基羰基苯基氨基-2-苯基乙酰胺
DE102006033572A1 (de) 2006-07-20 2008-01-24 Bayer Cropscience Ag N'-Cyano-N-halogenalkyl-imidamid Derivate
US7960569B2 (en) 2006-10-17 2011-06-14 Bristol-Myers Squibb Company Indole antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
CN101605779B (zh) 2006-12-15 2013-11-20 百时美施贵宝公司 作为凝血因子xia抑制剂的芳基丙酰胺、芳基丙烯酰胺、芳基丙炔酰胺或芳基甲基脲类似物
PE20081775A1 (es) 2006-12-20 2008-12-18 Bristol Myers Squibb Co Compuestos macrociclicos como inhibidores del factor viia
AU2008241091B2 (en) 2007-04-23 2013-05-09 Sanofi-Aventis Quinoline-carboxamide derivatives as P2Y12 antagonists
WO2009080226A2 (fr) 2007-12-26 2009-07-02 Sanofis-Aventis Pyrazole-carboxamides hétérocycliques utilisés en tant qu'antagonistes du récepteur p2y12
JP5841547B2 (ja) 2010-02-11 2016-01-13 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company 第xia因子阻害剤としてのマクロ環
TW201319068A (zh) 2011-08-05 2013-05-16 必治妥美雅史谷比公司 作為xia因子抑制劑之環狀p1接合劑
TW201311689A (zh) 2011-08-05 2013-03-16 必治妥美雅史谷比公司 作為因子xia抑制劑之新穎巨環化合物
EP2899183B1 (fr) 2011-10-14 2018-09-19 Bristol-Myers Squibb Company Composés de tétrahydroisiquinoline substitués en tant qu'inhibiteurs du facteur Xia
IN2014CN02805A (fr) 2011-10-14 2015-07-03 Bristol Myers Squibb Co
TWI586651B (zh) 2011-10-14 2017-06-11 必治妥美雅史谷比公司 作為因子xia抑制劑之經取代四氫異喹啉化合物
HUE031582T2 (en) 2012-08-03 2017-07-28 Bristol Myers Squibb Co Dihydropyridone as xia factor inhibitors
PL2880026T3 (pl) 2012-08-03 2017-08-31 Bristol-Myers Squibb Company Dihydropirydon P1 jako inhibitory czynnika XIA
GB2510407A (en) * 2013-02-04 2014-08-06 Kalvista Pharmaceuticals Ltd Aqueous suspensions of kallikrein inhibitors for parenteral administration
US9738655B2 (en) 2013-03-25 2017-08-22 Bristol-Myers Squibb Company Tetrahydroisoquinolines containing substituted azoles as factor XIa inhibitors
NO2760821T3 (fr) 2014-01-31 2018-03-10
CN110845498B (zh) 2014-01-31 2023-02-17 百时美施贵宝公司 作为因子xia抑制剂的具有杂环p2′基团的大环化合物
NO2721243T3 (fr) 2014-10-01 2018-10-20
JP6742348B2 (ja) 2015-06-19 2020-08-19 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company 第xia因子阻害剤としてのジアミド大員環
ES2871111T3 (es) 2015-07-29 2021-10-28 Bristol Myers Squibb Co Inhibidores macrocíclicos del factor XIa que contienen un grupo P2' no aromático
EP3331872B1 (fr) 2015-08-05 2019-09-25 Bristol-Myers Squibb Company Nouveaux inhibiteurs de fxia dérivés de glycine substitués
CN105294520A (zh) * 2015-11-23 2016-02-03 大连九信生物化工科技有限公司 一种2-(2’,2’-二氟乙氧基)-6-三氟甲基苯基丙基硫醚的合成工艺
US10752641B2 (en) 2016-03-02 2020-08-25 Bristol-Myers Squibb Company Diamide macrocycles having factor XIa inhibiting activity
CN106674085B (zh) * 2016-12-20 2020-06-23 苏州汉德创宏生化科技有限公司 N-1,3-二氟异丙基-4-氨基哌啶类化合物的合成方法
US20210403462A1 (en) 2018-11-05 2021-12-30 Syngenta Participations Ag Pesticidally active azole-amide compounds
WO2021028645A1 (fr) 2019-08-09 2021-02-18 Kalvista Pharmaceuticals Limited Inhibiteurs de la kallicréine plasmatique

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346078A (en) * 1979-06-12 1982-08-24 Richter Gedeon Vegyeszeti Gyar Rt. Novel anticoagulant agmatine derivatives and process for the preparation thereof
US4792452A (en) * 1987-07-28 1988-12-20 E. R. Squibb & Sons, Inc. Controlled release formulation
US5498724A (en) * 1994-06-28 1996-03-12 Aktiebolaget Astra Pyrazoleamidine compounds
US5538847A (en) * 1989-07-17 1996-07-23 Tropix, Inc. Chemiluminescent 1,2-dioxetanes
US5559232A (en) * 1993-09-07 1996-09-24 Hoffmann-La Roche Inc. Carboxamides
US5602253A (en) * 1993-06-03 1997-02-11 Aktiebolaget Astra Peptides derivatives
US5659071A (en) * 1993-06-03 1997-08-19 Astra Aktiebolag Process for the production of aminoalkylguanidines
US5705487A (en) * 1994-03-04 1998-01-06 Eli Lilly And Company Antithrombotic agents
US5707966A (en) * 1994-03-04 1998-01-13 Eli Lilly And Company Antithrombotic agents
US5710130A (en) * 1995-02-27 1998-01-20 Eli Lilly And Company Antithrombotic agents
US5744487A (en) * 1994-01-27 1998-04-28 Mitsubishi Chemical Corporation Prolineamide derivatives
US5780631A (en) * 1993-06-03 1998-07-14 Astra Aktiebolag Starting materials in the synthesis of thrombin and kininogenase inhibitors
US5965692A (en) * 1995-12-21 1999-10-12 Astra Ab Prodrugs of thrombin inhibitors
US6030972A (en) * 1995-02-17 2000-02-29 Basf Aktiengesellschaft Dipeptide amidines as thrombin inhibitors
US6051568A (en) * 1995-07-06 2000-04-18 Astra Aktiebolag Thrombin inhibitors, their preparation and use
US6221898B1 (en) * 1996-07-04 2001-04-24 Astra Aktiebolag Amidino derivatives and their use as thrombin inhibitors
US6225287B1 (en) * 1998-09-03 2001-05-01 Astra Aktiebolag Crystalline forms
US6255301B1 (en) * 1996-06-07 2001-07-03 Astrazeneca Ab Amino acid derivatives and their use as thrombin inhibitors
US6265397B1 (en) * 1997-06-19 2001-07-24 Astrazeneca Ab Amidino derivatives and their use as thrombin inhibitors
US6337394B2 (en) * 1997-12-05 2002-01-08 Astrazeneca Ab Compounds
US6337346B1 (en) * 1998-06-05 2002-01-08 University Of North Carolina At Chapel Hill Naphtho- and dihydrobenzo-thiophene derivatives as cytotoxic antitumor agents
US6433186B1 (en) * 2000-08-16 2002-08-13 Astrazeneca Ab Amidino derivatives and their use as thormbin inhibitors
US6440937B1 (en) * 1996-08-14 2002-08-27 Abbott Laboratories Dipeptide benzamidine as a kininogenase inhibitor
US6455971B1 (en) * 1999-02-16 2002-09-24 Aesop, Inc. Method of winding motors and other electric machines to reduce AC losses
US6479078B1 (en) * 1999-07-02 2002-11-12 Astrazeneca Ab Substantially crystalline form of melagatran
US6521253B1 (en) * 1998-09-03 2003-02-18 Astrazeneca Ab Immediate release tablet
US6576245B1 (en) * 1998-09-01 2003-06-10 Astrazeneca Ab Stability for injection solutions
US6599894B1 (en) * 1999-01-13 2003-07-29 AstŕaZeneca AB Amidinobenzylamine derivatives and their use as thrombin inhibitors
US20040019033A1 (en) * 2000-12-01 2004-01-29 Tord Inghardt Mandelic acid derivatives and their use as throbin inhibitors
US6716834B2 (en) * 2000-05-16 2004-04-06 Astrazeneca Ab Thiochromane derivatives and their use as thrombin inhibitors
US6750243B1 (en) * 1998-12-14 2004-06-15 AstraZeneća AB Amidino derivatives and their use as thrombin inhibitors
US20040242492A1 (en) * 2001-08-30 2004-12-02 Tord Inghardt Mandelic acid derivatives and their use as thrombin inhibitors
US6984627B1 (en) * 1993-06-03 2006-01-10 Astrazeneca Ab Peptide derivatives

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149217A (en) 1981-03-11 1982-09-14 Kaken Pharmaceut Co Ltd Slow-releasing pharmaceutical preparation
HU192646B (en) 1984-12-21 1987-06-29 Gyogyszerkutato Intezet Process for preparing new n-alkyl-peptide aldehydes
AU600226B2 (en) 1985-02-04 1990-08-09 Merrell Pharmaceuticals Inc. Novel peptidase inhibitors
US5187157A (en) 1987-06-05 1993-02-16 Du Pont Merck Pharmaceutical Company Peptide boronic acid inhibitors of trypsin-like proteases
EP0362002B1 (fr) 1988-09-01 1995-07-26 Merrell Dow Pharmaceuticals Inc. Inhibiteurs de protease HIV
ZA897514B (en) 1988-10-07 1990-06-27 Merrell Dow Pharma Novel peptidase inhibitors
IT1229491B (it) 1988-12-28 1991-09-03 Roussel Maestretti S P A Ora R Derivati della 1,2,5,6-tetraidropiridina, loro procedimento di preparazione e loro impiego come sostanze medicinali
TW201303B (fr) 1990-07-05 1993-03-01 Hoffmann La Roche
CA2075154A1 (fr) 1991-08-06 1993-02-07 Neelakantan Balasubramanian Aldehydes peptidiques utilises comme agents antithrombotiques
SE9102462D0 (sv) 1991-08-28 1991-08-28 Astra Ab New isosteric peptides
US5169638A (en) 1991-10-23 1992-12-08 E. R. Squibb & Sons, Inc. Buoyant controlled release powder formulation
CZ333492A3 (en) 1991-11-12 1993-09-15 Lilly Co Eli Dipeptide of l-azetidine-2-carboxylic acids and l-argininaldehyde, process of its preparation and pharmaceutical preparation in which said dipeptide is comprised
SE9103612D0 (sv) 1991-12-04 1991-12-04 Astra Ab New peptide derivatives
CA2131367A1 (fr) 1992-03-04 1993-09-16 Sandor Bajusz Nouveaux derives peptidiques anticoagulants et compositions pharmaceutiques en contenant; procede de fabrication
TW223629B (fr) 1992-03-06 1994-05-11 Hoffmann La Roche
EP0648780A1 (fr) 1993-08-26 1995-04-19 Bristol-Myers Squibb Company Inhibiteurs hétérocycliques de thrombine
ZA951617B (en) 1994-03-04 1997-02-27 Lilly Co Eli Antithrombotic agents.
US5561146A (en) 1994-06-10 1996-10-01 Bristol-Myers Squibb Company Modified guanidino and amidino thrombin inhibitors
DE4421052A1 (de) 1994-06-17 1995-12-21 Basf Ag Neue Thrombininhibitoren, ihre Herstellung und Verwendung
US5510369A (en) 1994-07-22 1996-04-23 Merck & Co., Inc. Pyrrolidine thrombin inhibitors
US5874298A (en) * 1995-02-17 1999-02-23 Nps Pharmaceuticals, Inc. Insecticidal toxins from Bracon hebetor nucleic acid encoding said toxin and methods of use
US5695781A (en) 1995-03-01 1997-12-09 Hallmark Pharmaceuticals, Inc. Sustained release formulation containing three different types of polymers
US6083532A (en) 1995-03-01 2000-07-04 Duramed Pharmaceuticals, Inc. Sustained release formulation containing three different types of polymers and tablet formed therefrom
EP0820453A4 (fr) 1995-04-04 2001-08-29 Merck & Co Inc Inhibiteurs de thrombine
US5629324A (en) 1995-04-10 1997-05-13 Merck & Co., Inc. Thrombin inhibitors
SE9601556D0 (sv) 1996-04-24 1996-04-24 Astra Ab New pharmaceutical formulation of a thrombin inhibitor for parenteral use
WO1997049404A1 (fr) 1996-06-25 1997-12-31 Eli Lilly And Company Agents anticoagulants
SE9603724D0 (sv) 1996-10-11 1996-10-11 Astra Ab New pharmaceutical parenteral formulation of a thrombin inhibitor
IT1297461B1 (it) 1997-10-29 1999-12-17 Ciocca Maurizio Preparazione di compresse a rilascio controllato a base di complessi tra carragenano e farmaci basici solubili
SE9704401D0 (sv) 1997-11-28 1997-11-28 Astra Ab Matrix pellets for greasy, oily or sticky drug substances
AR035216A1 (es) 2000-12-01 2004-05-05 Astrazeneca Ab Derivados de acido mandelico ,derivados farmaceuticamente aceptables, uso de estos derivados para la fabricacion de medicamentos, metodos de tratamiento ,procesos para la preparacion de estos derivados, y compuestos intermediarios
US6287599B1 (en) 2000-12-20 2001-09-11 Shire Laboratories, Inc. Sustained release pharmaceutical dosage forms with minimized pH dependent dissolution profiles
AR034517A1 (es) * 2001-06-21 2004-02-25 Astrazeneca Ab Formulacion farmaceutica
US6811794B2 (en) 2001-12-20 2004-11-02 Shire Laboratories, Inc. Sustained release pharmaceutical dosage forms with minimized pH dependent dissolution profiles
SE0201658D0 (sv) 2002-05-31 2002-05-31 Astrazeneca Ab Immediate release pharmaceutical formulation
SE0201659D0 (sv) 2002-05-31 2002-05-31 Astrazeneca Ab Modified release pharmaceutical formulation
SE0201661D0 (sv) 2002-05-31 2002-05-31 Astrazeneca Ab New salts
US7781424B2 (en) 2003-05-27 2010-08-24 Astrazeneca Ab Modified release pharmaceutical formulation
SE0303220D0 (sv) 2003-11-28 2003-11-28 Astrazeneca Ab New process
GB0503672D0 (en) 2005-02-23 2005-03-30 Astrazeneca Ab New process
GB0510546D0 (en) 2005-05-24 2005-06-29 Astrazeneca Ab New process
TW200827336A (en) 2006-12-06 2008-07-01 Astrazeneca Ab New crystalline forms

Patent Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346078A (en) * 1979-06-12 1982-08-24 Richter Gedeon Vegyeszeti Gyar Rt. Novel anticoagulant agmatine derivatives and process for the preparation thereof
US4792452A (en) * 1987-07-28 1988-12-20 E. R. Squibb & Sons, Inc. Controlled release formulation
US5538847A (en) * 1989-07-17 1996-07-23 Tropix, Inc. Chemiluminescent 1,2-dioxetanes
US5659071A (en) * 1993-06-03 1997-08-19 Astra Aktiebolag Process for the production of aminoalkylguanidines
US5602253A (en) * 1993-06-03 1997-02-11 Aktiebolaget Astra Peptides derivatives
US5783563A (en) * 1993-06-03 1998-07-21 Astra Aktiebolag Method for treatment or prophylaxis of venous thrombosis
US6984627B1 (en) * 1993-06-03 2006-01-10 Astrazeneca Ab Peptide derivatives
US5939392A (en) * 1993-06-03 1999-08-17 Astra Aktiebolag Method of thrombin inhibition
US5856307A (en) * 1993-06-03 1999-01-05 Astra Aktiebolag Peptide derivatives as kininogenase inhibitors
US5723444A (en) * 1993-06-03 1998-03-03 Astra Ab Starting materials in the synthesis of thrombin and kinogenase inhibitors
US5780631A (en) * 1993-06-03 1998-07-14 Astra Aktiebolag Starting materials in the synthesis of thrombin and kininogenase inhibitors
US5559232A (en) * 1993-09-07 1996-09-24 Hoffmann-La Roche Inc. Carboxamides
US5744487A (en) * 1994-01-27 1998-04-28 Mitsubishi Chemical Corporation Prolineamide derivatives
US5705487A (en) * 1994-03-04 1998-01-06 Eli Lilly And Company Antithrombotic agents
US5707966A (en) * 1994-03-04 1998-01-13 Eli Lilly And Company Antithrombotic agents
US5498724A (en) * 1994-06-28 1996-03-12 Aktiebolaget Astra Pyrazoleamidine compounds
US6444817B1 (en) * 1995-02-17 2002-09-03 Abbott Laboratories Thrombin inhibitors
US6030972A (en) * 1995-02-17 2000-02-29 Basf Aktiengesellschaft Dipeptide amidines as thrombin inhibitors
US5710130A (en) * 1995-02-27 1998-01-20 Eli Lilly And Company Antithrombotic agents
US6051568A (en) * 1995-07-06 2000-04-18 Astra Aktiebolag Thrombin inhibitors, their preparation and use
US6617320B2 (en) * 1995-07-06 2003-09-09 Astrazeneca Ab Amino acid derivatives
US6921758B2 (en) * 1995-07-06 2005-07-26 Astrazeneca Ab Amino acid derivatives
US6262028B1 (en) * 1995-12-21 2001-07-17 Astrazeneca Ab Prodrugs of thrombin inhibitors
US5965692A (en) * 1995-12-21 1999-10-12 Astra Ab Prodrugs of thrombin inhibitors
US6255301B1 (en) * 1996-06-07 2001-07-03 Astrazeneca Ab Amino acid derivatives and their use as thrombin inhibitors
US6838478B2 (en) * 1996-06-07 2005-01-04 Astrazeneca Ab Amino acid derivatives and their use as thrombin inhibitors
US6221898B1 (en) * 1996-07-04 2001-04-24 Astra Aktiebolag Amidino derivatives and their use as thrombin inhibitors
US6440937B1 (en) * 1996-08-14 2002-08-27 Abbott Laboratories Dipeptide benzamidine as a kininogenase inhibitor
US6265397B1 (en) * 1997-06-19 2001-07-24 Astrazeneca Ab Amidino derivatives and their use as thrombin inhibitors
US6576657B2 (en) * 1997-06-19 2003-06-10 Astrazeneca Ab Amidino derivatives and their use as thrombin inhibitors
US6337394B2 (en) * 1997-12-05 2002-01-08 Astrazeneca Ab Compounds
US6337346B1 (en) * 1998-06-05 2002-01-08 University Of North Carolina At Chapel Hill Naphtho- and dihydrobenzo-thiophene derivatives as cytotoxic antitumor agents
US6576245B1 (en) * 1998-09-01 2003-06-10 Astrazeneca Ab Stability for injection solutions
US6998136B2 (en) * 1998-09-01 2006-02-14 Astrazeneca Ab Stability for injection solutions
US6660279B2 (en) * 1998-09-01 2003-12-09 Astrazeneca Ab Stability for injection solutions
US6875446B2 (en) * 1998-09-03 2005-04-05 Astrazeneca Ab Method for prophylaxis and/or treatment of thromboembolism
US6521253B1 (en) * 1998-09-03 2003-02-18 Astrazeneca Ab Immediate release tablet
US6225287B1 (en) * 1998-09-03 2001-05-01 Astra Aktiebolag Crystalline forms
US6440939B2 (en) * 1998-09-03 2002-08-27 Astrazeneca Ab Crystalline forms
US6888007B2 (en) * 1998-09-03 2005-05-03 Astrazeneca Ab Crystalline forms of EtO2C-Ch2-(R)Cgi-Aze-Pab-OH
US6750243B1 (en) * 1998-12-14 2004-06-15 AstraZeneća AB Amidino derivatives and their use as thrombin inhibitors
US6599894B1 (en) * 1999-01-13 2003-07-29 AstŕaZeneca AB Amidinobenzylamine derivatives and their use as thrombin inhibitors
US6455971B1 (en) * 1999-02-16 2002-09-24 Aesop, Inc. Method of winding motors and other electric machines to reduce AC losses
US6479078B1 (en) * 1999-07-02 2002-11-12 Astrazeneca Ab Substantially crystalline form of melagatran
US6716834B2 (en) * 2000-05-16 2004-04-06 Astrazeneca Ab Thiochromane derivatives and their use as thrombin inhibitors
US6433186B1 (en) * 2000-08-16 2002-08-13 Astrazeneca Ab Amidino derivatives and their use as thormbin inhibitors
US20040019033A1 (en) * 2000-12-01 2004-01-29 Tord Inghardt Mandelic acid derivatives and their use as throbin inhibitors
US7129233B2 (en) * 2000-12-01 2006-10-31 Astrazeneca Ab Mandelic acid derivatives and their use as thrombin inhibitors
US20040242492A1 (en) * 2001-08-30 2004-12-02 Tord Inghardt Mandelic acid derivatives and their use as thrombin inhibitors
US7056907B2 (en) * 2001-08-30 2006-06-06 Astrazeneca Ab Mandelic acid derivatives and their use as thrombin inhibitors

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202174A1 (en) * 2000-12-01 2007-08-30 Astrazeneca Ab New mandelic acid derivatives and their use as thrombin inhibitors
US7645751B2 (en) 2000-12-01 2010-01-12 Astrazeneca Mandelic acid derivatives and their use as thrombin inhibitors
US7803954B2 (en) * 2000-12-01 2010-09-28 Astrazeneca Ab Mandelic acid derivatives and their use as thrombin inhibitors
US7700582B2 (en) 2001-06-21 2010-04-20 Astrazeneca Ab Pharmaceutical formulation
US20080269176A1 (en) * 2002-05-31 2008-10-30 Astrazeneca Ab New Salts
US7763597B2 (en) 2002-05-31 2010-07-27 Astrazeneca Ab Salts
US20080050437A1 (en) * 2003-05-27 2008-02-28 Astrazeneca Ab Modified release pharmaceutical formulation
US7781424B2 (en) 2003-05-27 2010-08-24 Astrazeneca Ab Modified release pharmaceutical formulation
US7820645B2 (en) 2006-12-06 2010-10-26 Astrazeneca Ab Crystalline forms
US20080314255A1 (en) * 2007-06-21 2008-12-25 Wen-Ching Lee Coffee or tea maker
US20090061000A1 (en) * 2007-08-31 2009-03-05 Astrazeneca Ab Pharmaceutical formulation use 030

Also Published As

Publication number Publication date
EP1347955A1 (fr) 2003-10-01
IS2755B (is) 2011-09-15
KR20030051894A (ko) 2003-06-25
DK1347955T3 (da) 2010-06-07
SK6512003A3 (en) 2003-11-04
NO20032465L (no) 2003-07-25
PL362917A1 (en) 2004-11-02
NZ526205A (en) 2005-04-29
US7803954B2 (en) 2010-09-28
KR100914537B1 (ko) 2009-09-02
PT1347955E (pt) 2010-05-21
EE05382B1 (et) 2011-02-15
JP4177101B2 (ja) 2008-11-05
AU2007203520B2 (en) 2010-12-09
EP1347955B1 (fr) 2010-03-17
SI1347955T1 (sl) 2010-07-30
MXPA03004794A (es) 2003-09-10
EE200300259A (et) 2003-08-15
BG66261B1 (bg) 2012-10-31
US20100087651A1 (en) 2010-04-08
NO325228B1 (no) 2008-03-03
CY1113487T1 (el) 2016-06-22
KR100914016B1 (ko) 2009-08-28
ATE461171T1 (de) 2010-04-15
KR20080059681A (ko) 2008-06-30
ES2341318T3 (es) 2010-06-18
CA2436220A1 (fr) 2002-06-06
CZ303708B6 (cs) 2013-03-27
US20070202174A1 (en) 2007-08-30
IL156096A0 (en) 2003-12-23
IS6828A (is) 2003-05-27
AU2007203520A1 (en) 2007-08-16
CN1487919A (zh) 2004-04-07
AR072331A2 (es) 2010-08-25
JP2008138009A (ja) 2008-06-19
KR20090023745A (ko) 2009-03-05
KR100947296B1 (ko) 2010-03-16
WO2002044145A1 (fr) 2002-06-06
AU2002218618A1 (en) 2002-06-11
AR035216A1 (es) 2004-05-05
HUP0302487A2 (hu) 2003-11-28
JP2008156362A (ja) 2008-07-10
NO20032465D0 (no) 2003-05-30
CN1291975C (zh) 2006-12-27
NO20080031L (no) 2003-07-25
CZ20031514A3 (cs) 2003-08-13
US7645751B2 (en) 2010-01-12
KR20080064204A (ko) 2008-07-08
HK1057214A1 (en) 2004-03-19
HUP0302487A3 (en) 2009-08-28
SK287692B6 (sk) 2011-06-06
AU2007203509A1 (en) 2007-08-16
EP2186800A1 (fr) 2010-05-19
BG107825A (bg) 2004-02-27
US20080090800A1 (en) 2008-04-17
DE60141603D1 (de) 2010-04-29
HU228814B1 (hu) 2013-05-28
JP2004520290A (ja) 2004-07-08
NO20080030L (no) 2003-07-25
KR100914535B1 (ko) 2009-09-02
MY136133A (en) 2008-08-29
BR0115861A (pt) 2003-09-23
PL207045B1 (pl) 2010-10-29
CA2436220C (fr) 2010-04-13

Similar Documents

Publication Publication Date Title
US7803954B2 (en) Mandelic acid derivatives and their use as thrombin inhibitors
US7129233B2 (en) Mandelic acid derivatives and their use as thrombin inhibitors
US7056907B2 (en) Mandelic acid derivatives and their use as thrombin inhibitors
AU2002218618B2 (en) New mandelic acid derivatives and their use as throbin inhibitors
RU2300521C2 (ru) Новые производные миндальной кислоты и их применение в качестве ингибиторов тромбина
AU2002324410B2 (en) New mandelic acid derivatives and their use as thrombin inhibitors
AU2002324410A1 (en) New mandelic acid derivatives and their use as thrombin inhibitors
TW200306975A (en) New mandelic acid derivatives and their use as thrombin inhibitors

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION