US20070218012A1 - Pharmaceutical Compositions - Google Patents

Pharmaceutical Compositions Download PDF

Info

Publication number
US20070218012A1
US20070218012A1 US11/687,779 US68777907A US2007218012A1 US 20070218012 A1 US20070218012 A1 US 20070218012A1 US 68777907 A US68777907 A US 68777907A US 2007218012 A1 US2007218012 A1 US 2007218012A1
Authority
US
United States
Prior art keywords
agents
solvent
drug
mixture
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/687,779
Other languages
English (en)
Inventor
Kevin Bittorf
Jeffrey Katstra
Filipe Gaspar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertex Pharmaceuticals Inc
Original Assignee
Vertex Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vertex Pharmaceuticals Inc filed Critical Vertex Pharmaceuticals Inc
Priority to US11/687,779 priority Critical patent/US20070218012A1/en
Assigned to VERTEX PHARMACEUTICASLS, INC. reassignment VERTEX PHARMACEUTICASLS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GASPAR, FILIPE, BITTORF, KEVIN JOHN, KATSTRA, JEFFREY P.
Publication of US20070218012A1 publication Critical patent/US20070218012A1/en
Priority to US12/481,962 priority patent/US8853152B2/en
Priority to US14/196,509 priority patent/US20140183768A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/12Aerosols; Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • This invention relates to pharmaceutical compositions and methods of making the same.
  • Solid dispersions of a drug in a matrix can be prepared by forming a homogeneous solution or melt of the drug and matrix material followed by solidifying the mixture by cooling or removal of solvent. Such solid dispersions of drugs often show enhanced bioavailability when administered orally relative to oral compositions comprising undispersed drug.
  • Spray drying is the most widely used industrial process involving particle formation and drying and can be used to produce solid dispersions of drug compounds. It is highly suited for the continuous production of dry solids in either powder, granulate or agglomerate form from liquid feedstocks as solutions, emulsions and pumpable suspensions. Therefore, spray drying is an ideal process where the end-product must comply to precise quality standards regarding particle size distribution, residual moisture content, bulk density, and particle shape.
  • Spray drying generally involves the atomization of a liquid feedstock into a spray of droplets and contacting the droplets with hot air or gas in a drying chamber.
  • the sprays are generally produced by either rotary (wheel) or nozzle atomizers. Evaporation of moisture from the droplets and formation of dry particles proceed under controlled temperature and airflow conditions.
  • varying the solvent for example including a non-volatile or high boiling solvent, during spray drying of a drug (e.g., VX-950) or other therapeutic agent (e.g., a solid dispersion of the drug or therapeutic agent) can improve the properties of the resulting product (e.g., a solid dispersion such as an amorphous solid dispersion of the drug or therapeutic agent).
  • a drug e.g., VX-950
  • other therapeutic agent e.g., a solid dispersion of the drug or therapeutic agent
  • including a non-volatile or high boiling solvent as a component of a solvent mixture in the spray drying process can result in an increase in the amount of time required for the resulting particles to solidify and/or dry, thereby in some instances providing improved particles, e.g., particles that are larger and/or denser and/or more flowable than the same particles had they been obtained using a solvent system without a non-volatile or high boiling solvent.
  • including a non-volatile or high boiling solvent as a component of a solvent mixture in the spray drying process can help solubilize a component (e.g., a surfactant or polymer) that is present in the feed solution (e.g., the solution or suspension being spray dried).
  • Spray drying to generate a solid dispersion can be performed, e.g., on a homogeneous solution, melt, or suspension of the drug and matrix material followed by solidifying the mixture by cooling or removal of solvent.
  • the method includes a method of spray drying a drug (e.g., VX-950) or other therapeutic agent, the method comprising forming a mixture of the drug in a suitable solvent or combination of solvents where at least one solvent is a non-volatile or high boiling solvent to form a mixture of the drug and solvent, and then spray-drying the mixture to obtain amorphous drug product.
  • the resulting drug product can, for example, have a bulk density of about 0.25 to about 0.50, e.g., about 0.35 to about 0.45, e.g., about 0.37 or about 0.41.
  • the resulting drug product can, for example, have a d50 of about 35 to about 55, e.g., about 40 to about 50, e.g., about 43 or about 47.
  • the mixture can be either a solution or a suspension.
  • the method includes a method of spray drying a drug (e.g., VX-950) or other therapeutic agent, the method comprising forming a mixture of the drug in a suitable solvent or combination of solvents where at least one solvent is a non-volatile or high boiling solvent to form a mixture of the drug and solvent, and then spray-drying the mixture to obtain amorphous drug product, with the proviso that the drug is other than N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide.
  • a drug e.g., VX-950
  • the method comprising forming a mixture of the drug in a suitable solvent or combination of solvents where at least one solvent is a non-volatile or high boiling solvent to form a mixture of the drug and solvent, and then spray-drying the mixture to obtain amorphous drug product, with the proviso that the drug is other than N-[2,4-
  • the drug is a small molecule drug, for example a drug having a molecular weight of less than about 1000 daltons, e.g., less than about 750 daltons or less than about 500 daltons.
  • the drug is a poorly soluble drug.
  • the drug can be selected from one of the following classifications: analgesics, anti-inflammatory agents, antihelminthics, anti-arrhythmic agents, anti-bacterial agents, anti-viral agents, anti-coagulants, anti-depressants, anti-diabetics, anti-epileptics, anti-fungal agents, anti-gout agents, anti-hypertensive agents, anti-malarials, anti-migraine agents, anti-muscarinic agents, anti-neoplastic agents, erectile dysfunction improvement agents, immunosuppressants, anti-protozoal agents, anti-thyroid agents, anxiolytic agents, sedatives, hypnotics, neuroleptics, ⁇ -blockers, cardiac inotropic agents, corticosteroids, diuretics, anti-parkinsonian agents, gastro-intestinal agents, histamine receptor antagonists, keratolyptics, lipid regulating agents, anti-anginal agents, Cox-2 inhibitors, leukotriene inhibitors
  • the drug is an anti-viral agent, for example an antiviral agent used to treat Hepatitis C (HepC), such as a HepC protease inhibitor.
  • HepC Hepatitis C
  • the drug is VX-950:
  • the solvent is a combination of solvent components including at least one non-volatile solvent.
  • the solvent is a combination of components that includes both a volatile solvent and a non-volatile solvent.
  • suitable volatile solvents include those that dissolve or suspend the drug either alone or in combination with another co-solvent. In some preferred examples, the solvent or solvent combination completely dissolves the drug.
  • volatile solvents examples include methylene chloride, acetone, chloroform, and THF.
  • non-volatile solvents include organic acids such as glacial acetic acid, DMSO, DMF, and water.
  • the non-volatile solvent is a component in a solvent system.
  • the non-volatile solvent is present as a component in a solvent from about 0.1% to about 20% by wt (e.g., from about 0.5% to about 3%, from about 1% to about 5%, from about 3% to about 15%, from about 4% to about 12%, or from about 5% to about 10%).
  • the solvent system is a combination of a volatile solvent or combination of solvents such as methylene chloride and acetone with a non-volatile solvent such as glacial acetic acid.
  • the solvent system comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 0.1% to about 15% glacial acetic acid (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 3% to about 12% glacial acetic acid).
  • the solvent system comprises glacial acetic acid.
  • the solvent system comprises a combination of glacial acetic acid with at least one volatile solvent such as acetone and/or methylene chloride (e.g., a mixture of methylene chloride and acetone).
  • volatile solvent such as acetone and/or methylene chloride (e.g., a mixture of methylene chloride and acetone).
  • the mixture also includes a surfactant, for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • a surfactant for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • the solvent system is a combination of a volatile solvent or combination of solvents such as methylene chloride and acetone with a non-volatile solvent such as water.
  • the solvent system comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 0.1% to about 15% water (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 1% to about 5% water).
  • the solvent system comprises water.
  • the solvent system comprises a combination of water with at least one volatile solvent such as acetone and/or methylene chloride (e.g., a mixture of methylene chloride and acetone).
  • volatile solvent such as acetone and/or methylene chloride (e.g., a mixture of methylene chloride and acetone).
  • the mixture also includes a surfactant, for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • a surfactant for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • the method of spray drying includes forming a solid dispersion of a drug (e.g., VX-950) and one or more polymers comprising forming or providing a mixture of the drug and the polymer(s) in a suitable solvent or combination of solvents where at least one solvent is a non-volatile or high boiling solvent to form a mixture of the drug, polymer(s) and solvent, and then spray-drying the mixture to obtain a solid dispersion drug product.
  • the resulting drug product can, for example, have a bulk density of about 0.25 to about 0.50, e.g., about 0.35 to about 0.45, e.g., about 0.37 or about 0.41.
  • the resulting drug product can, for example, have a d50 of about 35 to about 55, e.g., about 40 to about 50, e.g., about 43 or about 47.
  • the mixture can be either a solution or a suspension.
  • the solid dispersion product is an amorphous solid dispersion.
  • polymers for the solid dispersion include one or more water-soluble polymer(s) or partially water-soluble polymer(s).
  • Water-soluble or partially water-soluble polymers include but are not limited to, cellulose derivatives (e.g., hydroxypropylmethylcellulose (HPMC; also known as hypromellose), hydroxypropylcellulose (HPC)) or ethylcellulose; polyvinylpyrrolidones (PVP); polyethylene glycols (PEG); polyvinyl alcohols (PVA); acrylates, such as polymethacrylate (e.g., Eudragit® E); cyclodextrins (e.g., ⁇ -cyclodextin) and copolymers and derivatives thereof, including for example PVP-VA (polyvinylpyrollidone-vinyl acetate).
  • HPMC hydroxypropylmethylcellulose
  • HPC hydroxypropylcellulose
  • PVP polyvinylpyrrolidones
  • PEG polyethylene glyco
  • the polymer is hydroxypropylmethylcellulose (HPMC), such as HMPC60SH50, HPMC E50 or HPMCE15.
  • HPMC hydroxypropylmethylcellulose
  • the polymer is a pH-dependent enteric polymer.
  • pH-dependent enteric polymers include, but are not limited to, cellulose derivatives (e.g., cellulose acetate phthalate (CAP)), hydroxypropyl methyl cellulose phthalates (HPMCP), hydroxypropyl methyl cellulose acetate succinate (HPMCAS; also known as hypromellose acetate succinate), carboxymethylcellulose (CMC) or a salt thereof (e.g., a sodium salt such as (CMC-Na)); cellulose acetate trimellitate (CAT), hydroxypropylcellulose acetate phthalate (HPCAP), hydroxypropylmethyl-cellulose acetate phthalate (HPMCAP), and methylcellulose acetate phthalate (MCAP), or polymethacrylates (e.g., Eudragit® S).
  • cellulose derivatives e.g., cellulose acetate phthalate (CAP)
  • HPMCP hydroxypropyl methyl cellulose phthalates
  • the polymer is hydroxypropyl methyl cellulose acetate succinate (HPMCAS), e.g., HMPC AS-HG.
  • HPMCAS hydroxypropyl methyl cellulose acetate succinate
  • the polymer(s) is an insoluble cross-linked polymer, for example a polyvinylpyrrolidone (e.g., Crospovidone).
  • a polyvinylpyrrolidone e.g., Crospovidone
  • the polymer(s) is polyvinylpyrrolidone (PVP).
  • the polymer is a mixture of two or more polymers (e.g., a combination of two cellulosic polymers such as HPMC and HPMCAS).
  • the polymer(s) is present in an amount of from about 30% to about 70% by weight in the solid dispersion.
  • the drug is a small molecule drug, for example a drug having a molecular weight of less than about 1000 daltons, e.g., less than about 750 daltons or less than about 500 daltons.
  • the drug is a poorly soluble drug.
  • the drug can be selected from one of the following classifications: analgesics, anti-inflammatory agents, antihelminthics, anti-arrhythmic agents, anti-bacterial agents, anti-viral agents, anti-coagulants, anti-depressants, anti-diabetics, anti-epileptics, anti-fungal agents, anti-gout agents, anti-hypertensive agents, anti-malarials, anti-migraine agents, anti-muscarinic agents, anti-neoplastic agents, erectile dysfunction improvement agents, immunosuppressants, anti-protozoal agents, anti-thyroid agents, anxiolytic agents, sedatives, hypnotics, neuroleptics, ⁇ -blockers, cardiac inotropic agents, corticosteroids, diuretics, anti-parkinsonian agents, gastro-intestinal agents, histamine receptor antagonists, keratolyptics, lipid regulating agents, anti-anginal agents, Cox-2 inhibitors, leukotriene inhibitors
  • the drug is an anti-viral agent, for example an antiviral agent used to treat HepC, such as a HepC protease inhibitor.
  • the drug is VX-950:
  • the solvent is a combination of solvent components including at least one non-volatile solvent.
  • the solvent is a combination of components that includes both a volatile solvent and a non-volatile solvent.
  • suitable volatile solvents include those that dissolve or suspend the drug either alone or in combination with another co-solvent. In some preferred examples, the solvent or solvent combination completely dissolves the drug.
  • volatile solvents examples include methylene chloride, acetone, chloroform, and THF.
  • non-volatile solvents include organic acids such as glacial acetic acid, DMSO, DMF, and water.
  • the non-volatile solvent is a component in a solvent system.
  • the non-volatile solvent is present as a component in a solvent from about 0.1% to about 20% by wt (e.g., from about 0.5% to about 3%, from about 1% to about 5%, from about 3% to about 15%, from about 4% to about 12%, or from about 5% to about 10%).
  • the solvent system is a combination of a volatile solvent or combination of solvents such as methylene chloride and acetone with a non volatile solvent such as glacial acetic acid.
  • the solvent system comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 0.1% to about 15% glacial acetic acid (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 3% to about 12% glacial acetic acid).
  • the mixture also includes a surfactant, for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • a surfactant for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • the solvent system is a combination of a volatile solvent or combination of solvents such as methylene chloride and acetone with a non volatile solvent such as water.
  • the solvent system comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 0.1% to about 15% water (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 1% to about 5% water).
  • the mixture also includes a surfactant, for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • a surfactant for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • the process includes
  • a poorly water soluble drug e.g., VX-950
  • a solvent system comprising at least one non-volatile solvent
  • the resulting dispersion can, for example, have a bulk density of about 0.25 to about 0.50, e.g., about 0.35 to about 0.45, e.g., about 0.37 or about 0.41.
  • the resulting dispersion can, for example, have a d50 of about 35 to about 55, e.g., about 40 to about 50, e.g., about 43 or about 47.
  • the drug is a small molecule drug, for example a drug having a molecular weight of less than about 1000 daltons, e.g., less than about 750 daltons or less than about 500 daltons.
  • the drug can be selected from one of the following classifications: analgesics, anti-inflammatory agents, antihelminthics, anti-arrhythmic agents, anti-bacterial agents, anti-viral agents, anti-coagulants, anti-depressants, anti-diabetics, anti-epileptics, anti-fungal agents, anti-gout agents, anti-hypertensive agents, anti-malarials, anti-migraine agents, anti-muscarinic agents, anti-neoplastic agents, erectile dysfunction improvement agents, immunosuppressants, anti-protozoal agents, anti-thyroid agents, anxiolytic agents, sedatives, hypnotics, neuroleptics, ⁇ -blockers, cardiac inotropic agents, corticosteroids, diuretics, anti-parkinsonian agents, gastro-intestinal agents, histamine receptor antagonists, keratolyptics, lipid regulating agents, anti-anginal agents, Cox-2 inhibitors, leukotriene inhibitors
  • the drug is an anti-viral agent, for example an antiviral agent used to treat HepC, such as a HepC protease inhibitor.
  • the drug is VX-950:
  • the solvent is a combination of solvents including at least one non-volatile solvent.
  • the solvent is a combination of components that includes both a volatile solvent and a non-volatile solvent.
  • suitable volatile solvents include those that dissolve or suspend the drug either alone or in combination with another co-solvent. In some preferred examples, the solvent or solvent combination completely dissolves the drug.
  • volatile solvents examples include methylene chloride, acetone, chloroform, THF.
  • non-volatile solvents examples include organic acids such as glacial acetic acid, DMSO, DMF, and water.
  • the non-volatile solvent is a component in a solvent system.
  • the non-volatile solvent is present as a component in a solvent from about 0.1% to about 20% by wt (e.g., from about 0.5% to about 3%, from about 1% to about 5%, from about 3% to about 15%, from about 4% to about 12%, or from about 5% to about 10%).
  • the solvent system is a combination of a volatile solvent or combination of solvents such as methylene chloride and acetone with a non volatile solvent such as glacial acetic acid.
  • the solvent system comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 0.1% to about 15% glacial acetic acid (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 3% to about 12% glacial acetic acid).
  • the solvent mixture comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 0.1% to about 15% water (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 1% to about 5% water).
  • the solvent mixture comprises a percent weight ratio of methylene chloride to acetone to non-volatile solvent is about 75:24:1.
  • the mixture also includes a surfactant, for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • a surfactant for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • polymers for the solid dispersion include one or more water-soluble polymer(s) or partially water-soluble polymer(s).
  • Water-soluble or partially water-soluble polymers include but are not limited to, cellulose derivatives (e.g., hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC)) or ethylcellulose; polyvinylpyrrolidones (PVP); polyethylene glycols (PEG); polyvinyl alcohols (PVA); acrylates, such as polymethacrylate (e.g., Eudragit® E); cyclodextrins (e.g., ⁇ -cyclodextin) and copolymers and derivatives thereof, including for example PVP-VA (polyvinylpyrollidone-vinyl acetate).
  • HPMC hydroxypropylmethylcellulose
  • HPC hydroxypropylcellulose
  • PVP polyvinylpyrrolidones
  • PEG polyethylene glycols
  • PVA polyviny
  • the polymer is hydroxypropylmethylcellulose (HPMC), such as HPMC60SH50, HPMC E50 or HPMCE15.
  • HPMC hydroxypropylmethylcellulose
  • the polymer is a pH-dependent enteric polymer.
  • pH-dependent enteric polymers include, but are not limited to, cellulose derivatives (e.g., cellulose acetate phthalate (CAP)), hydroxypropyl methyl cellulose phthalates (HPMCP), hydroxypropyl methyl cellulose acetate succinate (HPMCAS), carboxymethylcellulose (CMC) or a salt thereof (e.g., a sodium salt such as (CMC-Na)); cellulose acetate trimellitate (CAT), hydroxypropylcellulose acetate phthalate (HPCAP), hydroxypropylmethyl-cellulose acetate phthalate (HPMCAP), and methylcellulose acetate phthalate (MCAP), or polymethacrylates (e.g., Eudragit® S).
  • cellulose derivatives e.g., cellulose acetate phthalate (CAP)
  • HPMCP hydroxypropyl methyl cellulose phthalates
  • HPMCAS hydroxypropyl methyl cellulose
  • the polymer is hydroxypropyl methyl cellulose acetate succinate (HPMCAS), e.g., HPMC AS-HG.
  • HPPMCAS hydroxypropyl methyl cellulose acetate succinate
  • the polymer(s) is an insoluble cross-linked polymer, for example a polyvinylpyrrolidone (e.g., Crospovidone).
  • a polyvinylpyrrolidone e.g., Crospovidone
  • the polymer(s) is polyvinylpyrrolidone (PVP).
  • the polymer is a mixture of two or more polymers (e.g., a combination of two cellulosic polymers such as HPMC and HPMCAS).
  • the polymer(s) is present in an amount of from about 30% to about 90% by weight in the solid dispersion.
  • the mixture also includes a surfactant, for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • a surfactant for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • this disclosure provides a process for preparing a solid dispersion of VX-950 comprising:
  • the solvent comprises at least one non-volatile solvent component (e.g., glacial acetic acid);
  • the resulting dispersion can, for example, have a bulk density of about 0.25 to about 0.50, e.g., about 0.35 to about 0.45, e.g., about 0.37 or about 0.41.
  • the resulting dispersion can, for example, have a d50 of about 35 to about 55, e.g., about 40 to about 50, e.g., about 43 or about 47.
  • the polymer is HPMC, HPMCAS, or a mixture thereof. In some preferred embodiments, the polymer is HPMCAS or a mixture of HPMC and HPMCAS.
  • suitable volatile solvents include those that dissolve or suspend the drug either alone or in combination with another co-solvent. In some preferred examples, the solvent or solvent combination completely dissolves the drug.
  • volatile solvents examples include methylene chloride, acetone, chloroform, THF.
  • non-volatile solvents examples include organic acids such as glacial acetic acid, DMSO, DMF, and water.
  • the non-volatile solvent is a component in a solvent system.
  • the non-volatile solvent is present as a component in a solvent from about 0.1% to about 20% by wt (e.g., from about 0.5% to about 3%, from about 1% to about 5%, from about 3% to about 15%, from about 4% to about 12%, or from about 5% to about 10%).
  • the solvent system is a combination of a volatile solvent or combination of solvents such as methylene chloride and acetone with a non volatile solvent such as glacial acetic acid or water.
  • the solvent system comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 0.1% to about 15% glacial acetic acid (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 3% to about 12% glacial acetic acid).
  • the solvent system comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 0.1% to about 15% water (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 1% to about 5% water).
  • the mixture also includes a surfactant, for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • a surfactant for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • the solvent comprises a mixture of methylene chloride, acetone, and glacial acetic acid.
  • the solvent comprises a mixture of methylene chloride, acetone, and water.
  • this disclosure provides a process for preparing a solid dispersion of VX-950 comprising
  • the resulting dispersion can, for example, have a bulk density of about 0.25 to about 0.50, e.g., about 0.35 to about 0.45, e.g., about 0.37 or about 0.41.
  • the resulting dispersion can, for example, have a d50 of about 35 to about 55, e.g., about 40 to about 50, e.g., about 43 or about 47.
  • the polymer is HPMC, HPMCAS, or a mixture thereof. In some preferred embodiments, the polymer is HPMCAS or a mixture of HPMC and HPMCAS.
  • this disclosure provides a process for preparing a solid dispersion of VX-950 comprising
  • the resulting dispersion can, for example, have a bulk density of about 0.25 to about 0.50, e.g., about 0.35 to about 0.45, e.g., about 0.37 or about 0.41.
  • the resulting dispersion can, for example, have a d50 of about 35 to about 55, e.g., about 40 to about 50, e.g., about 43 or about 47.
  • the polymer is HPMC, HPMCAS, or a mixture thereof. In some preferred embodiments, the polymer is HPMCAS or a mixture of HPMC and HPMCAS.
  • the solvent also comprises a volatile solvent or combination of solvents that dissolve or suspend the drug and polymer. In some preferred examples, the solvent or solvent combination completely dissolves the drug and polymer.
  • the solvent includes a mixture of methylene chloride and acetone.
  • the glacial acetic acid is present as a component in a solvent from about 0.1% to about 20% by wt (e.g., from about 3% to about 15%, from about 4% to about 12%, or from about 5% to about 10%).
  • the solvent comprises a mixture of methylene chloride, acetone, and glacial acetic acid.
  • the solvent system comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 0.1% to about 15% glacial acetic acid (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 3% to about 12% glacial acetic acid).
  • glacial acetic acid e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 3% to about 12% glacial acetic acid.
  • the mixture also includes a surfactant, for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • a surfactant for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • the solvent includes a mixture of methylene chloride and acetone.
  • the water is present as a component in a solvent from about 0.1% to about 20% by wt (e.g., from about 3% to about 15%, from about 4% to about 12%, or from about 1% to about 10%).
  • the solvent comprises a mixture of methylene chloride, acetone, and water.
  • the solvent system comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 0.1% to about 15% water (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 1% to about 5% water).
  • the mixture also includes a surfactant, for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • a surfactant for example, sodium lauryl sulfate (SLS) or Vitamin E or a derivative thereof (e.g., Vitamin E TPGS).
  • the disclosure provides product made by a process described herein.
  • a solid dispersion of a drug e.g., VX-950
  • amorphous solid dispersion of a drug e.g., VX-590
  • an amorphous solid dispersion including a drug (e.g., VX-950), at least one polymer, and optionally one or more solubility enhancing surfactant e.g., SLS or Vitamin E TPGS.
  • the dispersion can enhance the aqueous solubility and bioavailability of the drug (e.g., VX-950) upon oral dosing of the solid dispersion to a mammal (e.g., a rat, dog or human).
  • a mammal e.g., a rat, dog or human.
  • at least a portion of the drug (e.g., VX-950) in the solid dispersion is in the amorphous state (e.g., at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or at least about 99%).
  • the solid dispersion is essentially or substantially free of crystalline drug (e.g., VX-950).
  • the solid dispersion made by a process described herein includes about 45% to about 85% VX-950, about 5% to about 25% of an HPMC polymer, such as HPMC60SH50, about 5% to about 30% of an HPMCAS polymer, such as HPMCAS-HG, and about 0.1% to about 10% of a surfactant, such as SLS or vitamin E or a derivative thereof (e.g., vitamin E TPGS), wherein the HPMC and HPMCAS together account for about 90%, about 95%, about 98%, about 99%, or about 100% of the total polymer present.
  • an HPMC polymer such as HPMC60SH50
  • HPMCAS-HG such as HPMCAS-HG
  • a surfactant such as SLS or vitamin E or a derivative thereof (e.g., vitamin E TPGS)
  • the solid dispersion made by a process described herein exhibits a predetermined level of physical and/or chemical stability.
  • the solid dispersion retains about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 98%, or about 99%, of amorphous VX-950 when stored at 25° C. in a closed water tight container, e.g., an amber glass vial or high density polyethylene (HDPE) container.
  • a closed water tight container e.g., an amber glass vial or high density polyethylene (HDPE) container.
  • HDPE high density polyethylene
  • spray drying may be done in the presence of an inert gas.
  • processes that involve spray drying may be done in the presence of a supercritical fluid involving carbon dioxide or a mixture of carbon dioxide.
  • a “poorly soluble drug” as used herein means drugs that are essentially totally water-insoluble or sparingly water-soluble.
  • the term applies to any beneficial therapeutic agent having a dose (mg) to aqueous solubility (mg/ml) ratio greater than 100 ml, where the drug solubility is that of the neutral (e.g., free base or free acid) form in unbuffered water.
  • This definition includes but is not limited to drugs that have essentially no aqueous solubility (less than 1.0 ⁇ g/ml).
  • FIG. 1 is a flowchart schematic of a spray drying manufacturing process, control, sampling, and testing.
  • FIG. 2 is a schematic of a spray drying process.
  • FIG. 3 is a table providing the properties of VX-950 solid dispersions that were spray dried in a solvent system that contained water.
  • FIG. 4 is a flowchart of manufacturing process, control, sampling, and testing.
  • a preferred embodiment of this invention involves an amorphous solid dispersion obtained by spray-drying where the solvent mixture of the starting material includes at least one non-volatile solvent (e.g., glacial acetic acid or water). Accordingly, in another embodiment, this invention provides drying the product obtained by spray drying to remove the solvent.
  • the solvent mixture of the starting material includes at least one non-volatile solvent (e.g., glacial acetic acid or water). Accordingly, in another embodiment, this invention provides drying the product obtained by spray drying to remove the solvent.
  • a pharmaceutical composition can be obtained by spray-drying a mixture comprising a drug (e.g., VX-950), a suitable polymer(s), and an appropriate solvent system.
  • Spray drying is a method that involves atomization of a liquid mixture containing, e.g., a solid and a solvent, and removal of the solvent. Atomization may be done, for example, through a nozzle or on a rotating disk.
  • Spray drying is a process that converts a liquid feed to a dried particulate form.
  • a secondary drying process such as fluidized bed drying or vacuum drying, may be used to reduce residual solvents to pharmaceutically acceptable levels.
  • spray-drying involves contacting a highly dispersed liquid suspension or solution, and a sufficient volume of hot air or gas to produce evaporation and drying of the liquid droplets.
  • the preparation to be spray dried can be any solution, suspension, coarse suspension, slurry, colloidal dispersion, or paste that may be atomized using the selected spray-drying apparatus.
  • the preparation is sprayed into a current of warm filtered air or gas that evaporates the solvent and conveys the dried product to a collector (e.g., a cyclone or directly to a membrane filter bag).
  • a collector e.g., a cyclone or directly to a membrane filter bag.
  • the spent air is then exhausted with the solvent, or alternatively the spent air is sent to a condenser to capture and potentially recycle the solvent.
  • Commercially available types of apparatus may be used to conduct the spray-drying.
  • commercial spray dryers are manufactured by Buchi Ltd. and Niro (e.g., the PSD line of spray driers manufactured by Niro) (see, US 2004/0105820; US 2003/0144257).
  • a pressure nozzle, a two-fluid electrosonic nozzle, a two-fluid nozzle, or a rotary atomizer can be used.
  • Spray-drying typically employs solids loads of material from about 0.5% to about 30%, (i.e., drug plus and excipients) preferably at least about 10%. In some embodiments, loads of less than 10% may result in light or porous dispersion or low bulk densities or unacceptably long run-times. In general, the upper limit of solids loads is governed by the viscosity of (e.g., the ability to pump) the resulting solution and the solubility of the components in the solution. Generally, the viscosity of the solution can determine the size of the particle in the resulting powder product.
  • the spray-drying is conducted with an inlet temperature of from about 40° C. to about 200° C., for example, from about 45° C. to about 150° C., preferably from about 50° C. to about 100° C., e.g., about 50° C.
  • the spray-drying is generally conducted with an outlet temperature of from about 15° C. to about 100° C., for example from about 20° C. to about 75° C., e.g., about 27° C.
  • Removal of the solvent may require a subsequent drying step, such as tray drying, fluid bed drying (e.g., from about room temperature to about 100° C., e.g., about 60° C.), vacuum drying, microwave drying, rotary drum drying or biconical vacuum drying (e.g., from about room temperature to about 100° C., e.g., about 60° C. or lower).
  • a subsequent drying step such as tray drying, fluid bed drying (e.g., from about room temperature to about 100° C., e.g., about 60° C.), vacuum drying, microwave drying, rotary drum drying or biconical vacuum drying (e.g., from about room temperature to about 100° C., e.g., about 60° C. or lower).
  • Fluidized Spray Drying Another preferred embodiment of this invention involves an amorphous solid dispersion obtained by fluidized spray drying where the solvent mixture of the starting material includes at least one non-volatile solvent (e.g., glacial acetic acid or water). Accordingly, in another embodiment, this invention provides drying the product obtained by fluidized spray drying to remove the solvent.
  • the solvent mixture of the starting material includes at least one non-volatile solvent (e.g., glacial acetic acid or water).
  • this invention provides drying the product obtained by fluidized spray drying to remove the solvent.
  • the process of fluidized spray drying combines spray drying and fluid bed drying technologies.
  • Agglomerated powders are obtained based on the integrated fluid bed or belt and a multi-stage process where moist powder, produced during the first drying stage, forms agglomerates, which are post-dried and cooled in the following stages.
  • a pressure nozzle, a two-fluid electrosonic nozzle, a two-fluid nozzle, or a rotary atomizer sprays the feed down into the spray dryer towards the fluid bed.
  • Agglomeration incorporating finer, recycled material takes place in the spray dryer, and agglomerated particles fall to the bed.
  • Exhaust air outlet is through the roof causing further agglomeration in the zone of spraying.
  • Sticky products can be dried successfully, and the process is ideal for drying heat sensitive products, and improved aroma retention is accomplished.
  • the process yields agglomerated, free-flowing powders with minimal fines.
  • feed is sprayed from the atomization nozzle mounted on top of the drying chamber into the drying air and down the spray chamber.
  • Particles of higher moisture content can be handled in the drying chamber due to the resulting powdering effect overcoming the problems of powder stickiness. Drying can be completed at lower powder and exhaust air temperatures, thus improving product quality while gaining from a higher thermal efficiency.
  • the degree of agglomeration and thus the particle size distribution can be influenced by changing the operation conditions and the location where fines are re-introduced into the drying chamber. By optimizing the operation conditions, a dispersion with properties favorable for downstream processing (e.g., direct compression), can be obtained.
  • a non-volatile solvent e.g., glacial acetic acid, DMSO, DMF, or water
  • DMSO dimethyl sulfoxide
  • DMF dimethyl sulfoxide
  • the particle size and density can be manipulated by varying the amount of time taken for the particle to solidify and/or dry. Accordingly, inclusion of a non-volatile (or high boiling) solvent into the mixture can provide for a particle product having improved properties.
  • a non-volatile (or high boiling) solvent into the mixture can provide for a particle product having improved properties.
  • the addition of glacial acetic acid or water into a solvent system comprising volatile organic solvents can provide larger and/or more dense particles than the particles produces without the glacial acetic acid or water.
  • the larger and/or more dense particles can have improved flow properties, which is desirable for downstream formulation of the particles, for example into an oral dosage form such as a tablet or capsule.
  • the solvent system provides particles that solidify after at least about 5 seconds, at least about 7 seconds, at least about 10 seconds, at least about 12 seconds, at least about 15 seconds, at least about 20 seconds, or more.
  • the solid dispersion is fluid-bed dried. Fluid-bed drying at about 40° C. to about 80° C., e.g., about 40° C. to about 60° C., e.g., about 45° C. for about 8 hours has been found effective in certain embodiments to provide optimal effects in certain solid dispersion of VX-950. In other embodiments, e.g., using HPMCAS as the polymer in the solid dispersion, fluid-bed drying at 45° C. for about 4 hours has been effective to provide acceptable levels of residual solvent in the final product.
  • the solvent includes a volatile solvent and a non-volatile solvent.
  • the solvent includes a mixture of volatile solvents.
  • Preferable solvents include those that can dissolve both VX-950 and the polymer (when present) and/or a surfactant (when present).
  • Suitable solvents include those described above, for example, methylene chloride, acetone, etc.
  • preferred solvents include a mixture of methylene chloride, acetone, and glacial acetic acid.
  • preferred solvents include a mixture of methylene chloride, acetone, and water.
  • a solvent may react with a material (e.g., compound of interest, e.g., drug or therapeutic agent) being spray dried. Therefore, in some embodiments, a solvent that does not react with the compound of interest is preferred when preparing a feed solution containing that compound.
  • a solvent that does not react with the compound of interest is preferred when preparing a feed solution containing that compound.
  • alcohols may react with the compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) to form ketals.
  • a solvent that does not react with the compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • a solvent should not contain an OH group or a similarly reactive moiety.
  • a preferred solvent for use in the solvent system in connection with this disclosure for the preparation of a feed solution containing such a compound is other than a polyethylene glycol (e.g., PEG 8000) (i.e., other than a polymer having free hydroxyl moieties).
  • the non-volatile solvent is water.
  • An exemplary percent weight ratio of methylene chloride to acetone to water is 75:24:1.
  • the non-volatile solvent e.g., water
  • a component e.g., a surfactant (e.g., SLS)
  • SLS surfactant
  • the non-volatile solvent e.g., water
  • the non-volatile solvent has a higher bulk density
  • the non-volatile solvent is a component in a solvent mixture.
  • the non-volatile solvent is present as a component in a solvent from about 1% to about 20% by weight (e.g., from about 1% to about 5%, from about 3% to about 15%, from about 4% to about 12%, or from about 5% to about 10%).
  • the non-volatile solvent e.g., water
  • the non-volatile solvent is present in an amount of between about 0% and about 5%, e.g., about 1%.
  • the solvent mixture is a combination of a volatile solvent or combination of solvents such as methylene chloride and acetone with a non-volatile solvent such as water or glacial acetic acid.
  • the solvent mixture comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 1% to about 15% glacial acetic acid (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 3% to about 12% glacial acetic acid).
  • the solvent mixture comprises from about 40% to about 80% methylene chloride, from about 20% to about 35% acetone, and from about 1% to about 15% water (e.g., from about 50% to about 70% methylene chloride, from about 25% to about 30% acetone, and from about 1% to about 5% water).
  • An exemplary percent weight ratio of methylene chloride to acetone to non-volatile solvent (e.g., water) is 75:24:1.
  • a preferred polymer in embodiments including VX-950 is other than a polyethylene glycol (e.g., PEG 8000) (i.e., other than a polymer having free hydroxyl moieties).
  • the solvent, particle size and the temperature drying range may be modified to prepare an optimal solid dispersion.
  • a small particle size would lead to faster solvent removal.
  • smaller particles can lead to fluffy particles that do not provide optimal solid dispersions for downstream processing such as tableting.
  • crystallization or chemical degradation of VX-950 may occur.
  • a sufficient amount of the solvent may not be removed.
  • Particle size distribution and densities can be optimized, e.g., by varying one or more of the following parameters: outlet temperature, and feed pressure.
  • the suitability of a parameter variation can be evaluated. For example, to evaluate the suitability of the outlet temperature, the temperature can be increased (e.g., to 30° C.) while keeping all other process parameters unchanged.
  • the properties (e.g., densities) of the dispersion obtained from spray drying using this increased temperature are compared to the properties of a dispersion made according to this disclosure (e.g., outlet temperature of 25° C.), and an evaluation can be made as to whether the temperature change was advantageous (e.g., if the change led to an increase in a desired property (e.g., increased bulk density), then the change may be advantageous).
  • Other parameters that can be varied and optimized (e.g., in an analogous manner) for the spray drying process include: choice of non-volatile solvent, percentage of non-volatile solvent used, choice of volatile solvent(s), percentage of volatile solvent(s) used (e.g., total percentage and/or ratio of each volatile solvent to the other if more than one volatile solvent is used), choice of surfactant, percentage of surfactant used, choice of polymer, percentage of polymer used, choice of atomizer, solution feedrate, cyclone pressure differential, order of solids addition, percentage of solids loading, and/or inlet temperature. If post-spray drying is performed, the following can be optimized: choice of drying process, duration of drying process, dryer rotation speed, drying temperature, drying pressure, and/or drying time.
  • the nature of the solvent can be modified to optimize particle size and density. For example, increasing the amount of a high boiling (or non volatile) solvent component in the solvent can increase the length of time required for solidification and/or drying of the resulting spray dried particles. Therefore, in instances where it is desirable to have larger and/or more dense particles, an increased amount of high boiling (or non-volatile) solvent is desirable.
  • the nature of the high boiling or non-volatile solvent can also be varied depending on the desired properties of the dispersed particle and/or the properties of the drug.
  • desirable high boiling or non-volatile solvents improve the solubility of the drug or other component (e.g., surfactant, e.g., SLS; or polymer) in the solution and do not chemically react with or contribute to the chemical degradation of the drug (or surfactant or polymer, if present).
  • organic acid solvent would not be appropriate for a drug that is acid sensitive or which has an acid labile moiety.
  • the methods herein provide a optimal particle size and an optimal drying temperature.
  • volatile solvents examples include ketones, alcohols, acetonitrile, methylene chloride, acetone, chloroform, and THF.
  • solvents depends, at least in part, on the solubility of the composition (e.g., drug or other therapeutic agent) in a solvent and/or the reactivity of the composition (e.g., functional group) with a particular solvent.
  • non-volatile solvents examples include organic acids such as toluene, glacial acetic acid, DMSO, DMF, and water.
  • organic acids such as toluene, glacial acetic acid, DMSO, DMF, and water.
  • the selection of solvents can depend, at least in part, on the solubility of the composition (e.g., drug or other therapeutic agent) in a solvent and/or the reactivity of the composition (e.g., functional group) with a particular solvent.
  • the term “non-volatile solvent” refers to a liquid that has a boiling point greater than 80° C. at 1 atm.
  • the choice of solvent can be changed while keeping all other process parameters unchanged.
  • the properties (e.g., densities) of the dispersion obtained from spray drying using this changed solvent are compared to the properties of a dispersion made according to this disclosure using a solvent described herein (e.g., water as a non-volatile solvent), and an evaluation can be made as to whether the solvent change was advantageous (e.g., if the change led to an increase in a desired property (e.g., increased bulk density), then the change may be advantageous).
  • a solvent described herein e.g., water as a non-volatile solvent
  • the amount used of a given solvent can also be evaluated, e.g., by comparing the resulting product to a product produced using a solvent described herein in an amount described herein, e.g., 1% water as a non-volatile solvent.
  • Products e.g., agglomerated products such as powders or granules
  • solid dispersions e.g., amorphous solid dispersions
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • a polymer or plurality of polymers or solid state carrier(s)).
  • Methods of spray drying and FSD utilizing a non-volatile solvent described herein may be used to prepare a solid dispersion (e.g., amorphous solid dispersion) that contains a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950).
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950.
  • the mixture that contains the solvents (e.g., volatile and non-volatile solvents) and compound of interest (e.g., drug) that will be dried may also contain a polymer or plurality of polymers (or solid state carrier(s)).
  • a polymer or plurality of polymers can be used as part of an amorphous solid dispersion system together with compound of interest.
  • a polymer(s) can be present in a feed solution (e.g., that will be dried by FSD) with a compound of interest (e.g., drug).
  • a compound of interest e.g., drug
  • the presence of a polymer can help prevent, decrease, or slow the amount or rate of crystallization of the compound of interest (e.g., drug) as compared to the amount or rate of crystallization that occurs in the absence of a polymer.
  • the amount of crystallization can be decreased by at least about 10%, by at least about 20%, by at least about 30%, by at least about 40%, by at least about 50%, by at least about 60%, by at least about 70%, by at least about 80%, by at least about 90%, by at least about 95%, or by at least about 99% compared to the amount of crystallization in the absence of a polymer.
  • a polymer or plurality of polymers can protect a drug against crystallization in an aqueous medium, such as gastric fluids and/or in intestinal fluids.
  • HPMC can help decrease the amount of crystallization (e.g., of a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950)) in low pH, such as in gastric fluids.
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • HPMC can provide protection in gastric fluids (e.g., fasted or fed gastric fluids), and simulated gastric fluids (“SGF”) (e.g., fasted or fed SGF).
  • gastric fluids e.g., fasted or fed gastric fluids
  • SGF simulated gastric fluids
  • HPMCAS can provide increased physical stability and decrease the amount of crystallization (e.g., a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950)) in intestinal fluids (e.g., fasted or fed intestinal fluids) and simulated intestinal fluids (“SIF”) (e.g., fasted or fed SIF).
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • intestinal fluids e.g., fasted or fed intestinal fluids
  • SIF simulated intestinal fluids
  • a polymer can increase the shelf stability of a composition, e.g., a dispersion obtained by spray drying or FSD or a solid form (e.g., a directly compressed form, e.g., a tablet), containing a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) relative to the stability of the composition when no polymer is used by at least about 10% (e.g., by at least about 20%, by at least about 30%, by at least about 40%, by at least about 50%, by at least about 60%, by at least about 70%, by at least about 80%, or by at least about 90%).
  • a composition e.g., a dispersion obtained by spray drying or FSD or a solid form (e.g., a directly compressed form, e.g., a tablet), containing a compound of interest (e.g., a drug, e.g., a poorly soluble drug,
  • the polymer can increase the stability of the solid dispersion (e.g., when stored at 4° C. or at room temperature) by at least about 10% (e.g., by at least about 20%, by at least about 30%, by at least about 40%, by at least about 50%, by at least about 60%, by at least about 70%, by at least about 80%, or by at least about 90%) as compared to a solid dispersion stored under identical conditions and in the absence of a polymer.
  • the presence of a plurality of polymers can help prevent, decrease, or slow the amount or rate of crystallization of the compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) as compared to the amount or rate of crystallization that occurs in the presence of one polymer.
  • a drug e.g., a poorly soluble drug, e.g., VX-950
  • the amount of crystallization can be decreased by at least about 10%, by at least about 20%, by at least about 30%, by at least about 40%, by at least about 50%, by at least about 60%, by at least about 70%, by at least about 80%, by at least about 90%, by at least about 95%, or by at least about 99% compared to the amount of crystallization in the presence of one polymer.
  • a plurality of polymers can protect a drug against crystallization in an aqueous medium, such as gastric fluids or in intestinal fluids.
  • a polymer e.g., HMPC or HPMCAS, or plurality of polymers, e.g., a mixture comprising HPMC and HPMCAS, can offer increased protection to a given dispersion of VX-950: for example, the HMPC can protect the VX-950 from crystallization in gastric fluids or SGF while the HPMCAS can protect the VX-950 from crystallization in intestinal fluids or in SIF.
  • a mixture can offer improved bioavailability, solubility, and/or absorption of a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950).
  • a plurality of polymers can increase the shelf stability of a composition, e.g., a solid form (e.g., a spray dried dispersion, a directly compressed dosage form, e.g., a tablet), containing a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) relative to the stability of the composition when no polymer is used by at least about 10% (e.g., by at least about 20%, by at least about 30%, by at least about 40%, by at least about 50%, by at least about 60%, by at least about 70%, by at least about 80%, or by at least about 90%).
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • the plurality of polymers can increase the stability of the solid dispersion (e.g., when stored at 4° C. or at room temperature) by at least about 10% (e.g., by at least about 20%, by at least about 30%, by at least about 40%, by at least about 50%, by at least about 60%, by at least about 70%, by at least about 80%, or by at least about 90%) as compared to a solid dispersion stored under identical conditions and containing no polymer.
  • the polymer or plurality of polymers can be used to provide a form of a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) such that, when administered, the area under curve (AUC) of the compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) would be substantially the same in fasted and fed subjects, e.g., reducing or substantially eliminating the food effect in the subject.
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • a polymer or plurality of polymers, or one or more of the polymers in a plurality of polymers of the present disclosure are able to dissolve in aqueous media.
  • the solubility of the polymer(s) may be pH-independent or pH-dependent.
  • the latter include one or more enteric polymers.
  • enteric polymer refers to a polymer that is preferentially soluble in the less acidic environment of the intestine relative to the more acid environment of the stomach, for example, a polymer that is insoluble in acidic aqueous media but soluble when the pH is above 5-6.
  • An appropriate polymer should be chemically and biologically inert.
  • the glass transition temperature (T g ) of the polymer or polymers should be as high as possible.
  • preferred polymers have a glass transition temperature at least equal to or greater than the glass transition temperature of the compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950).
  • Other preferred polymers have a glass transition temperature that is within about 10 to about 15° C. of the compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950).
  • suitable glass transition temperatures of the polymers include at least about 55° C., at least about 60° C., at least about 65° C., at least about 70° C., at least about 75° C., at least about 80° C., at least about 85° C., at least about 90° C., at least about 95° C., at least about 100° C., at least about 105° C., at least about 110° C., at least about 115° C., at least about 120° C., at least about 125° C., at least about 130° C., at least about 135° C., at least about 140° C., at least about 145° C., at least about 150° C., at least about 155° C., at least about 160° C., at least about 165° C., at least about 170° C., or at least about 175° C.
  • the hygroscopicity of the polymer should be as low as possible.
  • the hygroscopicity of a polymer, combination of polymers, or composition is characterized at about 60% relative humidity.
  • the polymer(s) has less than about 10% water absorption, for example less than about 9%, less than about 8%, less than about 7%, less than about 6%, less than about 5%, less than about 4%, less than about 3%, or less than about 2% water absorption.
  • Cellulosic polymers generally have about 3% water absorption whereas PVP generally has about 9% water absorption.
  • the hygroscopicity can also affect the physical stability of the solid dispersions.
  • moisture adsorbed in the polymers can greatly reduce the T g of the polymers as well as the resulting solid dispersions, which will further reduce the physical stability of the solid dispersions as described above.
  • a polymer or plurality of polymers, or one or more of the polymers in a plurality of polymers is one or more water-soluble polymer(s) or partially water-soluble polymer(s).
  • Water-soluble or partially water-soluble polymers include but are not limited to, cellulose derivatives (e.g., hydroxypropylmethylcellulose (HPMC; also known as hypromellose), hydroxypropylcellulose (HPC)) or ethylcellulose; polyvinylpyrrolidones (PVP); polyethylene glycols (PEG); polyvinyl alcohols (PVA); acrylates, such as polymethacrylate (e.g., EUDRAGIT® E); cyclodextrins (e.g., ⁇ -cyclodextin) and copolymers and derivatives thereof, including for example PVP-VA (polyvinylpyrollidone-vinyl acetate).
  • HPMC hydroxypropylmethylcellulose
  • HPC hydroxypropylcellulose
  • the polymer or one of the plurality of polymers is hydroxypropylmethylcellulose (HPMC), such as HPMC E50 (e.g., from Dow), HPMCE15, or HPMC 60SH 50 cP (e.g., Shin-Etsu Metolose, HPMC60SH50).
  • HPMC is available in a variety of types from Shin-Etsu, including SM, 60SH, 65SH, 90SH. Each of these types vary by viscosity grade and methoxyl and hydroxypropoxyl content.
  • a most preferred type for use in the spray dispersion is HPMC 60SH.
  • the polymer or plurality of polymers, or one or more of the polymers in a plurality of polymers are a pH-dependent enteric polymer.
  • pH-dependent enteric polymers include, but are not limited to, cellulose derivatives (e.g., cellulose acetate phthalate (CAP)), hydroxypropyl methyl cellulose phthalates (HPMCP), hydroxypropyl methyl cellulose acetate succinate (HPMCAS), hydroxypropyl methyl cellulose acetate (HPMCA), carboxymethylcellulose (CMC) or a salt thereof (e.g., a sodium salt such as (CMC-Na)); cellulose acetate trimellitate (CAT), hydroxypropylcellulose acetate phthalate (HPCAP), hydroxypropylmethyl-cellulose acetate phthalate (HPMCAP), and methylcellulose acetate phthalate (MCAP), or polymethacrylates (e.g., EUDRAGIT® S).
  • CAP cellulose derivatives
  • HPMCP
  • the polymer or one of the plurality of polymers is hydroxypropyl methyl cellulose acetate succinate (HPMCAS).
  • HPMCAS is available in a variety of grades from Shin-Etsu, including AS-LF, AS-MF, AS-HF, AS-LG, AS-MG, AS-HG. Each of these grades vary with the percent substitution of acetate and succinate.
  • a most preferred grade for use in the spray dispersion is AS-HG from Shin-Etsu.
  • HPMCAS polymers where the degree of substitution of succinoyl groups (DOS S ) and the degree of substitution of acetyl groups (DOS Ac ) on the HPMCAS are DOS S >about 0.02, DOS Ac >about 0.65, and DOS Ac +DOS S >about 0.85 can be used.
  • HPMCA polymers where the degree of substitution of acetyl groups (DOS Ac ) on the polymer is about 0.6 or less, or the degree of substitution of acetyl groups (DOS Ac ) on the polymer is at least about 0.15, can be used. In other embodiments, HPMCA polymers having a solubility parameter of about 24.0 (J/cm) or less can be used.
  • the polymer or one or more of the polymers in a plurality of polymers is an insoluble cross-linked polymer, for example a polyvinylpyrrolidone (e.g., Crospovidone).
  • a polyvinylpyrrolidone e.g., Crospovidone
  • a polymer may react with a compound of interest. Therefore, in some embodiments, a polymer that does not react with the compound of interest is preferred when preparing a feed solution containing that compound.
  • alcohols may react with the compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) to form ketals.
  • a polymer that does not react with the compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • a polymer that does not react with the compound of interest is preferred when preparing a feed solution containing that compound.
  • Such a polymer should not contain an OH group or a similarly reactive moiety. Because of the reactivity of certain compounds (e.g., VX-950), a preferred polymer for use in a plurality of polymers or as the polymer in connection with this disclosure for the preparation of a feed solution containing such a compound is other than a polyethylene glycol (e.g., PEG 8000) (i.e., other than a polymer having free hydroxyl moieties).
  • a polyethylene glycol e.g., PEG 8000
  • the compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • a solid dispersion e.g., agglomerated product
  • the total amount of polymer(s) relative to the total weight of the solid dispersion is typically at least about 5% (e.g., about 4% or 6%), at least about 10% (e.g., 9% or 11%), at least about 15% (e.g., 14% or 16%), at least about 20% (e.g., 19% or 21%), and preferably at least about 30% (e.g., about 29% or 31%), for example, at least about 35% (e.g., about 34% or 36%), at least about 40% (e.g., about 39% or 41%), at least about 45% (e.g., about 44% or
  • the amount is typically about 99% or less, and preferably about 80% or less, for example about 75% or less, about 70% or less, about 65% or less, about 60% or less, or about 55% or less.
  • the polymer(s) is in an amount of up to about 30% of the total weight of the dispersion (and even more specifically, between about 28% and 32%, such as about 29%). In one embodiment, the polymer(s) is in an amount of up to about 35% of the total weight of the dispersion (and even more specifically, between about 33% and 37%, such as about 34%).
  • the polymer(s) is in an amount of up to about 40% of the total weight of the dispersion (and even more specifically, between about 38% and 42%, such as about 39%). In one embodiment, the polymer(s) is in an amount of up to about 45% of the total weight of the dispersion (and even more specifically, between about 43% and 47%, such as about 44%).
  • the solid dispersions containing a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) can contain a plurality of polymers.
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • the plurality of polymers can include one or more than one cellulosic polymer.
  • a spray dried dispersion can include two cellulosic polymers, e.g., HPMC and HPMCAS.
  • the solid dispersion includes a mixture of HPMC and HPMCAS.
  • the amount of each polymer used in the dispersion can vary, and the ratio of the polymers to each other can also vary.
  • the dispersion can include from about 0% to about 100% by weight of a first polymer (e.g., HPMC) and from about 0% to about 100% by weight of a second polymer (e.g., HPMCAS) (wherein the percentages by weight of the two polymers add up to 100% of total polymer present in a dispersion).
  • a first polymer e.g., HPMC
  • HPMCAS e.g., HPMCAS
  • the first polymer is present in an amount of about 33% and the second polymer is present in an amount of about 67% of the total amount of polymer added.
  • the first polymer is present in an amount of about 55.5% and the second polymer is present in an amount of about 44.5% of the total amount of polymer added. In another example, the first polymer is present in an amount of about 63% and the second polymer is present in an amount of about 37% of the total amount of polymer added. In another example, the first polymer is present in an amount of about 50% and the second polymer is present in an amount of about 50% of the total amount of polymer added. In another example, the first polymer is present in an amount of about 100% and the second polymer is present in an amount of about 0% of the total amount of polymer added.
  • one of the polymers is polyvinylpyrrolidone (PVP) (e.g., PVP29/32).
  • PVP polyvinylpyrrolidone
  • the PVP can be present in an amount of up to about 35%, up to about 40%, up to about 45%, or up to about 50%.
  • a dispersion comprising about 50% (e.g., about 49.5%) PVP K29/32 is included within this disclosure.
  • the disclosure includes a solid dispersion (e.g., agglomerated product) of a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) and a cellulosic polymer, for example an HPMC or an HPMCAS polymer.
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • a cellulosic polymer for example an HPMC or an HPMCAS polymer.
  • the compound i.e., VX-950
  • the compound is present in an amount of at least about 50% of the dispersion, for example at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or even greater.
  • the drug is present in an amount between about 55% and about 90%, such as about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, or about 85%.
  • the amount of polymers is present in an amount of at least about 5%, at least about 10%, at least about 15%, and preferably at least about 20%, for example, at least about 25%, at least about 30%, at least about 35%, at least about 40%, or at least about 45%.
  • the amount is typically about 55% or less, and preferably about 50% or less, for example about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, about 20% or less, about 15% or less, or about 10% or less.
  • the disclosure includes a solid dispersion (e.g., agglomerated product) of a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) and at least two cellulosic polymers, for example an HPMC and/or an HPMCAS polymer.
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • the compound (I.e., VX-950) is present in an amount of at least about 50% of the dispersion, for example at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or even greater.
  • the drug is present in an amount between about 55% and about 70%, such as about 55%, about 60%, about 65%, or about 70%.
  • the total amount of polymers is present in an amount of at least about 15%, and preferably at least about 20%, for example, at least about 25%, at least about 30%, at least about 35%, at least about 40%, or at least about 45%.
  • the amount is typically about 55% or less, and preferably about 50% or less, for example about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, about 20% or less, about 15% or less, or about 10% or less.
  • the dispersion further includes other minor ingredients, such as a surfactant (e.g., SLS or Vitamin E TPGS).
  • a surfactant e.g., SLS or Vitamin E TPGS.
  • the surfactant is present in less than about 10% by weight of the dispersion, for example less than about 9% by weight, less than about 8% by weight, less than about 7% by weight, less than about 6% by weight, less than about 5% by weight, less than about 4% by weight, less than about 3% by weight, less than about 2% by weight, or about 1% by weight.
  • the dispersion includes about 49.5% VX-950, about 49.5% HPMCAS, and about 1% SLS.
  • the polymer or plurality of polymers should be present in an amount effective for stabilizing the solid dispersion.
  • Stabilizing includes inhibiting or decreasing the crystallization of a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950). Such stabilizing would inhibit the conversion of the compound from amorphous to crystalline form.
  • the polymer(s) would prevent at least a portion (e.g., about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, or greater) of the compound from going from an amorphous to a crystalline form.
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • Stabilization can be measured, for example, by measuring the glass transition temperature of the solid dispersion, measuring the rate of relaxation of the amorphous material, or by measuring the solubility or bioavailability of the compound.
  • a polymer or plurality of polymers can be used in a formulation with a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950).
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950.
  • One, more than one, or all of the polymers suitable for use in combination with the compound, for example to form a solid dispersion (e.g., agglomerated product) such as an amorphous solid dispersion, should have one or more of the following properties:
  • the glass transition temperature of the polymer or polymers in combination should have a temperature of no less than about 10-15° C. lower than the glass transition temperature of the compound.
  • the glass transition temperature of the polymer or polymers in combination is greater than the glass transition temperature of the compound, and in general at least 50° C. higher than the desired storage temperature of the drug product.
  • the polymer or polymers in combination should be relatively non-hygroscopic.
  • the polymers should, when stored under standard conditions, absorb less than about 10% water, for example, less than about 9%, less than about 8%, less than about 7%, less than about 6%, or less than about 5%, less than about 4%, or less than about 3% water.
  • the polymer or polymers will, when stored under standard conditions, be substantially free of absorbed water.
  • the polymer or polymers in combination should have similar or better solubility in solvents suitable for spray drying processes relative to that of the compound.
  • the polymer or polymers will dissolve in one or more of the same solvents or solvent systems as the compound. It is preferred that the polymer or polymers are soluble in at least one non-hydroxy containing solvent such as methylene chloride, acetone, or a combination thereof.
  • the polymer or polymers in combination when combined with the compound, for example in a solid dispersion, should increase the solubility of the compound in aqueous and physiologically relative media either relative to the solubility of the compound in the absence of polymers or relative to the solubility of the compound when combined with a reference polymer.
  • the polymer or polymers could increase the solubility of amorphous compound by reducing the amount of amorphous compound that converts to crystalline compound from a solid amorphous dispersion.
  • the polymer or polymers in combination should decrease the relaxation rate of the amorphous substance.
  • the polymer or polymers in combination should increase the physical and/or chemical stability of the compound.
  • the polymer or polymers in combination should improve the manufacturability of the compound.
  • the polymer or polymers in combination should improve one or more of the handling, administration or storage properties of the compound.
  • the polymer or polymers in combination should not interact unfavorably with other pharmaceutical components, for example excipients.
  • the suitability of candidate polymer(s) (or other component) can be tested using the FSD methods described herein to form a composition containing an amorphous compound.
  • the candidate composition can be compared in terms of stability, resistance to the formation of crystals, or other properties, and compared to a reference preparation, e.g., a preparation described herein, e.g., containing a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950).
  • a preparation of about 83% amorphous VX-950, about 17% HPMCAS, or crystalline VX-950 for example, a preparation of about 83% amorphous VX-950, about 17% HPMCAS, or crystalline VX-950.
  • a candidate composition could be tested to determine whether it inhibits the time to onset of solvent mediated crystallization, or the percent conversion at a given time under controlled conditions, by at least 50%, 75%, 100%, or 110% as well as the reference preparation, or a candidate composition could be tested to determine if it has improved bioavailability or solubility of VX-950 relative to crystalline VX-950.
  • Products e.g., agglomerated products such as powders or granules being spray dried or undergoing fluidized spray drying, such as solid dispersions (e.g., amorphous solid dispersions) including a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) and, optionally, a polymer or plurality of polymers (or solid state carrier(s)), may include a surfactant.
  • a surfactant or surfactant mixture would generally decrease the interfacial tension between the solid dispersion and an aqueous medium.
  • An appropriate surfactant or surfactant mixture may also enhance aqueous solubility and bioavailability of a compound of interest (e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950) from a solid dispersion.
  • a compound of interest e.g., a drug, e.g., a poorly soluble drug, e.g., VX-950
  • the surfactants for use in connection with the present disclosure include, but are not limited to, sorbitan fatty acid esters (e.g., SPANS®), polyoxyethylene sorbitan fatty acid esters (e.g., TWEENS®), polysorbates, sodium lauryl sulfate (SLS, also known as SDS or sodium dodecyl sulfate), sodium dodecylbenzene sulfonate (SDBS) dioctyl sodium sulfosuccinate (Docusate), dioxycholic acid sodium salt (DOSS), Sorbitan Monostearate, Sorbitan Tristearate, hexadecyltrimethyl ammonium bromide (HTAB), Sodium N-lauroylsarcosine, Sodium Oleate, Sodium Myristate, Sodium Stearate, Sodium Palmitate, Gelucire 44/14, ethylenediamine tetraacetic acid (EDTA), vitamin E or tocol deriv
  • surfactants that may be used in connection with this disclosure include, but are not limited to, Span 65, Span 25, Tween 20, Capryol 90, Pluronic F108, sodium lauryl sulfate (SLS), Vitamin E TPGS, pluronics and copolymers, phospholipids such as PC (phosphatidylcholine) (e.g., from egg or soy), PIs (phosphatidylinositol), PAs (phosphatidic acid), PEs (phosphatidylethanolamine), PGs (phosphatidylglycerol).
  • PC phosphatidylcholine
  • PIs phosphatidylinositol
  • PAs phosphatidic acid
  • PEs phosphatidylethanolamine
  • PGs phosphatidylglycerol
  • the surfactant could also be a lipid or fatty acid such as dipalmitoylphosphocholine (DPPC) or similar lipids (DAPC, DSPC, DPPG, etc.).
  • DPPC dipalmitoylphosphocholine
  • DAPC DSPC
  • DPPG DPPG
  • Such lipids can be obtained synthetically, e.g., from Genzyme or Avanti Polar Lipids. SLS (e.g., Sigma or Fischer) and Vitamin E TPGS are preferred.
  • the amount of the surfactant (e.g., SLS or Vitamin E TPGS) relative to the total weight of the solid dispersion may be between about 0.1-20%. Preferably, it is from about 1% to about 20%, about 1 to about 15%, about 1 to about 10%, more preferably from about 1% to about 5%, e.g., about 1%, about 2%, about 3%, about 4%, or about 5%.
  • the amount of the surfactant relative to the total weight of the solid dispersion is at least about 0.1%, preferably at least about 0.5%, and more preferably at least about 1% (e.g., about 1%).
  • the surfactant would be present in an amount of no more than about 20%, and preferably no more than about 15%, about 12%, about 11%, about 10%, about 9%, about 8%, about 7%, about 6%, about 5%, about 4%, about 3%, about 2% or about 1%.
  • Candidate surfactants (or other components) and candidate amounts can be tested for suitability for use in the disclosure in a manner similar to that described for testing solvents.
  • the solid dispersion can be formulated into a pharmaceutical composition, e.g., a tablet.
  • the solid dispersion is present in an amount effective to have a therapeutic effect in a patient.
  • a composition of this invention comprises another additional agent as described herein (e.g., to provide a combination therapy).
  • Each component may be present in individual compositions, combination compositions, or in a single composition.
  • compositions e.g., tablets, comprising the solid dispersion typically contain a pharmaceutically acceptable carrier, binder/diluent, surfactant, disintegrant, flow agent, lubricant, or vehicle (or carrier).
  • a solid dispersion prepared as described herein can be directly compressed into a dosage form.
  • the dispersion is blended with one or more excipients prior to compression.
  • direct compression of VX-950 is provided in the provisional application filed on Dec. 22, 2006, entitled DIRECTLY COMPRESSED DOSAGE FORMS, Attorney-Docket No. 19079-017P01.
  • compositions and processes of this invention may optionally include one or more excipients (see U.S. Pat. No. 6,720,003, U.S. Pub. App. No. 2004/0030151, and/or International Application WO 99/02542)).
  • An excipient is a substance used as a carrier or vehicle in a dosage form, or added to a pharmaceutical composition, to improve handling, storage, or preparation of a dosage form.
  • Excipients include, but are not limited to, diluents, disintegrants, adhesives, wetting agents, lubricants, glidants, crystallization inhibitors, surface modifying agents, agents to mask or counteract a disagreeable taste or odor, flavors, dyes, fragrances, fillers, binders, stabilizers and substances to improve the appearance of a composition.
  • compositions include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene polyoxypropylene block polymers, polyethylene glycol and wool fat.
  • ion exchangers alumina, aluminum stearate, lecithin
  • serum proteins such as human serum albumin
  • buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride
  • compositions e.g., a solid dispersion, e.g., a spray dried drug
  • a spray dispersion of a drug can be combined with a melt granulate, one or more diluents, and/or one or more disintegrants, and one or more lubricants, one or more other excipients, vehicles, carriers, and/or fillers, and compressed into a tableted form.
  • the resulting tablet can then be further processed, for example, the tablet can be coated with a substance, such as a film or shellac, to help maintain the stability or integrity of the tablet, to facilitate the oral administration of the tablet, to mask the taste of the tablet, to add a flavor, to color the tablet, to regulate the release of the drug contained in the tablet once ingested and/or to mask the taste of the tableted formulation.
  • a substance such as a film or shellac
  • Coatings suitable for this purpose e.g., shellac, enteric coatings to regulate release
  • certain sweetening, flavoring, or coloring agents may also be added, to the tablet or to the coating. Techniques and compositions for making tablets are described, e.g., in Remington's Pharmaceutical Sciences , Arthur Osol, editor, pp. 1553-1593 (1980).
  • compositions of this invention are formulated for pharmaceutical administration to a mammal, preferably a human being.
  • the invention also provides pharmaceutical packs and kits comprising a tableted formulation of amorphous VX-950, or a pharmaceutical composition according to any of the embodiments herein.
  • compositions may also be prescribed to the patient in “patient packs” containing more than one dose, and preferably the whole course of treatment, in a single package, (e.g., a blister pack).
  • Patient packs have an advantage over traditional prescriptions, where a pharmacist divides a patients supply of a pharmaceutical from a bulk supply, in that the patient always has access to the package insert contained in the patient pack, which is normally missing in traditional prescriptions.
  • the inclusion of a package insert has been shown to improve patient compliance with the physician's instructions.
  • the drug is in an oral dosage, e.g., tablet, form.
  • the pharmaceutical pack further comprises one or more of additional agents as described herein.
  • the additional agent or agents may be provided in the same pack or in separate packs.
  • a pack comprising at least any tableted form of the solid (e.g., spray dried) dispersion or any composition according to this disclosure, and an information insert containing directions on the use of the composition of the disclosure (or the use of a combination of the composition of this disclosure and an additional agent or agents described herein).
  • kits for the simultaneous or sequential administration of solid (e.g., spray dried) dispersion or any composition according to this disclosure (and optionally an additional agent) or derivatives thereof that are prepared in a conventional manner will comprise, e.g., a composition of each inhibitor and optionally the additional agent(s) in a pharmaceutically acceptable carrier (and in one or in a plurality of pharmaceutical formulations) and written instructions for the simultaneous or sequential administration.
  • the drug is in an oral dosage, e.g., tablet, form.
  • a packaged kit contains one or more dosage forms (preferably an oral dosage form) for self administration; a container means, preferably sealed, for housing the dosage forms during storage and prior to use; and instructions for a patient to carry out drug administration.
  • the instructions will typically be written instructions on a package insert, a label, and/or on other components of the kit, and the dosage form or forms are as described herein.
  • Each dosage form may be individually housed, as in a sheet of a metal foil-plastic laminate with each dosage form isolated from the others in individual cells or bubbles, or the dosage forms may be housed in a single container, as in a plastic bottle or a vial.
  • the present kits will also typically include means for packaging the individual kit components, i.e., the dosage forms, the container means, and the written instructions for use.
  • Such packaging means may take the form of a cardboard or paper box, a plastic or foil pouch, etc.
  • Embodiments of this disclosure may also involve additional agents. Therefore, a method of this disclosure may involve steps as administering such additional agents.
  • Dosage levels of from about 0.01 to about 100 mg/kg body weight per day, preferably from about 10 to about 100 mg/kg body weight per day of solid (e.g., spray dried) dispersion are useful for the prevention and treatment of the condition for which the subject is being treated.
  • dosage levels are from about 0.4 to about 10 g/day, for example from about 1 to about 4 g/day, preferably from about 2 to about 3.5 g/day, per person (based on the average size of a person calculated at about 70 kg) are included.
  • the pharmaceutical compositions of, and according to, this disclosure will be administered from about 1 to about 5 times per day, preferably from about 1 to about 3 times per day, or alternatively, as a continuous infusion.
  • solid (e.g., spray dried) dispersion or pharmaceutical composition comprising it is administered using a controlled release formulation. In some embodiments, this can help to provide relatively stable blood levels of the solid (e.g., spray dried) dispersion.
  • the dose of the solid (e.g., spray dried) dispersion can be a standard dose, e.g., about 1 g to about 5 g a day, more preferably about 2 g to about 4 g a day, more preferably about 2 g to about 3 g a day, e.g., about 2.25 g or about 2.5 g a day.
  • the dose can be administered e.g., as a spray dried dispersion or as a tablet.
  • Such administration can be used as a chronic or acute therapy.
  • the amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the subject treated and the particular mode of administration.
  • a typical preparation will contain from about 5% to about 95% active compound (w/w).
  • such preparations contain from about 20% to about 80%, from about 25% to about 70%, from about 30% to about 60% active compound.
  • compositions or methods of this disclosure involve a combination of the solid (e.g., spray dried) dispersion and one or more additional therapeutic or prophylactic agents
  • both the solid (e.g., spray dried) dispersion and the additional agent should be present at dosage levels of between about 10 to 100%, and more preferably between about 10 to 80% of the dosage normally administered in a monotherapy regimen.
  • a maintenance dose of a compound, composition or combination of this disclosure may be administered, if necessary.
  • the dosage or frequency of administration, or both may be reduced, e.g., to about 1 ⁇ 2 or 1 ⁇ 4 or less of the dosage or frequency of administration, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level, treatment should cease.
  • Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.
  • a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated.
  • the amount of active ingredients will also depend upon the particular described compound and the presence or absence and the nature of the additional anti-viral agent in the composition.
  • VX-950/HPMCAS-HG/SLS was combined in a ratio of 49.5/49.5/1 wt/wt and combined in a solvent system at a solid concentration of 10, where the solvent system included methylene chloride/acetone/glacial acetic acid in a ratio of 66.6/28.5/5 to provide a product having a d50 of 43.03 and a bulk density of 0.37.
  • VX-950/HPMCAS-HG/SLS was combined in a ratio of 49.5/49.5/1 wt/wt and combined in a solvent system at a solid concentration of 10, where the solvent system included methylene chloride/acetone/glacial acetic acid in a ratio of 63/27/10 to provide a product having a d50 of 47.02 and a bulk density of 0.41.
  • VX-950 Spray dried dispersions of VX-950 were prepared using with multiple VX-950 lots, HPMCAS-HG (Hypromellose Acetate Succinate, HG grade, Shin-Etsu Chemical Co.) polymer, and SLS (Sodium Lauryl Sulfate, Fisher) surfactant. Spray drying and subsequent post-drying in a biconical dryer were performed. Dry dispersion with low residual solvent levels and target powder properties were manufactured. Success criteria included having acceptable process yield (>80%), and meeting all target drug product specifications for purity, and matching the target properties within the range specified for physical characteristics (particle size and bulk density).
  • FIG. 1 A flowchart schematic of a manufacturing process is given in FIG. 1 .
  • VX-950 drug substance was charged into the main solution reactor (refer to Table 1).
  • the overall solids loading was at 13 wt %.
  • a sample was taken to verify the drug substance was dissolved by visual inspection.
  • HPMCAS-HG was charged into the main solution reactor (refer to Table 1).
  • the overall solids loading were at 13 wt %.
  • Dry particles were inertially separated from the process gas by a cyclone and collected within polyethylene bags. The process gas was then filtered for fine particles and condensed to remove process solvents.
  • An 8000-L industrial scale reactor equipped with a mechanical stirrer and thermal circuit was used for mixing of the initial solution.
  • An industrial scale spray dryer (Niro Pharmaceutical Spray Dryer FSD12.5CC) was used in normal co-current spray drying mode.
  • a pressure nozzle system (Spraying Systems Maximum Free Passage SK-MFP Series variety, orifice 48-54, core 21) was utilized.
  • a high performance pressure pump with solvent-compatible/resistant gaskets pumped the feed solution through the atomizer into the spray drying vessel.
  • An inertial cyclone separated the product from the process gas and solvent vapors.
  • a filter bag then collected the fine particles not separated by the cyclone. The resultant gas was condensed to remove process solvents and recycled back to the heater and spray dryer (closed cycle).
  • FIG. 2 was a schematic of the spray drying process.
  • the resultant product was transferred to a biconical vacuum dryer for drying of residual solvents.
  • Table 2 defines spray drying process parameters/metrics, settings/ranges, and target guidelines. TABLE 2 Spray drying variables, settings, and targets Variable Setting/Range Atomizer Installed Spray Systems SK-MFP Solution Feedrate 120-200 kg/hr Feed Pressure 20-50 bar Inlet Temperature 50-80° C. Outlet Temperature 25-31° C. Cyclone Pressure 10.5-13.5 cm H 2 0 Differential
  • Manufacture 2 used a process optimized for dispersion. Most notably this dispersion had larger particle size and bulk density than Manufacture 1, as needed for enhanced powder flowability and direct compression on a high-speed tablet press. Spray drying parameters were varied to make such powder. Variations were also made to tighten the process and to avoid possible deviations.
  • Spray dried dispersions of VX-950 were prepared using a solvent system that contained water, as described.
  • the solvent system contained 75% methylene chloride; 24% acetone; and 1% water (w/w/w).
  • the dispersions contained 49.5% VX-950; 49.5% HPMCAS-HG; and 1% SLS (w/w/w).
  • various combinations of outlet temperature, feed pressure, cyclone pressure, condenser setpoint temperature, nozzle type, solids loading, and solution feedrate were tested in the spray drying process.
  • varying these parameters varied the properties (particle size (PS)), span, bulk density, tap density, and levels of residual solvents) of the resulting dispersions.
  • PSD particle size
  • Dry dispersion with low residual solvent levels and target powder properties are manufactured. Success criteria include having acceptable process yield (>80%), and meeting all target drug product specifications for purity, and matching the target properties within the range specified for physical characteristics (particle size and bulk density).
  • FIG. 4 A flowchart schematic of the manufacturing process is given in FIG. 4 .
  • An 8000-L industrial scale reactor (R240) equipped with a mechanical stirrer and thermal circuit is used for mixing of the initial solution.
  • a reactor (R32) is used for the SLS and water mixture.
  • An industrial scale spray dryer (Niro Pharmaceutical Spray Dryer FSD12.5CC) is used in normal co-current spray drying mode.
  • a pressure nozzle system (Spraying Systems Maximum Free Passage SK-MFP Series variety, orifice 54, core 21) is utilized.
  • a high performance pressure pump with solvent-compatible/resistant gaskets pumps the feed solution through the atomizer into the spray drying vessel.
  • An inertial cyclone separates the product from the process gas and solvent vapors.
  • a filter bag then collects the fine particles not separated by the cyclone. The resultant gas is condensed to remove process solvents and recycled back to the heater and spray dryer (closed cycle).
  • FIG. 2 is a schematic of the spray drying process.
  • the resultant product is transferred to a biconical vacuum dryer (S901) for drying of residual solvents.
  • the dry product is sieved within a nitrogen swept glovebox and packaged.
  • Table 5 defines spray drying process parameters/metrics, settings/ranges, and target guidelines. TABLE 5 Spray drying variables, settings, and targets Variable Setting/Range Atomizer Installed Spray Systems SK-MFP Solution Feedrate 130-180 kg/hr Feed Pressure 40-65 bar Outlet Temperature 22-29° C. Cyclone Pressure 10.0-12.5 cm H 2 0 Differential

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
US11/687,779 2006-03-20 2007-03-19 Pharmaceutical Compositions Abandoned US20070218012A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/687,779 US20070218012A1 (en) 2006-03-20 2007-03-19 Pharmaceutical Compositions
US12/481,962 US8853152B2 (en) 2006-03-20 2009-06-10 Pharmaceutical compositions
US14/196,509 US20140183768A1 (en) 2006-03-20 2014-03-04 Pharmaceutical compositions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US78427506P 2006-03-20 2006-03-20
US87169206P 2006-12-22 2006-12-22
US11/687,779 US20070218012A1 (en) 2006-03-20 2007-03-19 Pharmaceutical Compositions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/481,962 Continuation US8853152B2 (en) 2006-03-20 2009-06-10 Pharmaceutical compositions

Publications (1)

Publication Number Publication Date
US20070218012A1 true US20070218012A1 (en) 2007-09-20

Family

ID=38523222

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/687,779 Abandoned US20070218012A1 (en) 2006-03-20 2007-03-19 Pharmaceutical Compositions
US12/481,962 Expired - Fee Related US8853152B2 (en) 2006-03-20 2009-06-10 Pharmaceutical compositions
US14/196,509 Abandoned US20140183768A1 (en) 2006-03-20 2014-03-04 Pharmaceutical compositions

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/481,962 Expired - Fee Related US8853152B2 (en) 2006-03-20 2009-06-10 Pharmaceutical compositions
US14/196,509 Abandoned US20140183768A1 (en) 2006-03-20 2014-03-04 Pharmaceutical compositions

Country Status (22)

Country Link
US (3) US20070218012A1 (de)
EP (1) EP2001497A4 (de)
JP (2) JP2009530416A (de)
KR (2) KR20140107691A (de)
CN (1) CN103272234A (de)
AR (1) AR063468A1 (de)
AU (2) AU2007226984B2 (de)
BR (1) BRPI0708957A2 (de)
CA (1) CA2646335A1 (de)
EA (1) EA018811B1 (de)
EC (1) ECSP088759A (de)
GE (1) GEP20125378B (de)
IL (1) IL194176A (de)
MX (1) MX2008011976A (de)
NO (1) NO20084334L (de)
NZ (1) NZ571934A (de)
PE (1) PE20080170A1 (de)
RS (1) RS20090406A (de)
SG (1) SG170087A1 (de)
TW (2) TWI428125B (de)
UY (1) UY30225A1 (de)
WO (1) WO2007109605A2 (de)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050197299A1 (en) * 2000-08-31 2005-09-08 Babine Robert E. Peptidomimetic protease inhibitors
US20090297665A1 (en) * 2008-03-20 2009-12-03 Bromley Philip J Compositions containing non-polar compounds
US20090297491A1 (en) * 2008-03-20 2009-12-03 Bromley Philip J Compositions containing non-polar compounds
WO2011025771A1 (en) * 2009-08-25 2011-03-03 Biogen Idec Ma Inc. Compositions for delivery of insoluble agents
US7964624B1 (en) 2005-08-26 2011-06-21 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
US7985762B2 (en) 2005-08-26 2011-07-26 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
US20110236364A1 (en) * 2010-03-23 2011-09-29 Bromley Philip J Compositions containing non-polar compounds
US8039475B2 (en) 2006-02-27 2011-10-18 Vertex Pharmaceuticals Incorporated Co-crystals and pharmaceutical compositions comprising the same
WO2012063246A1 (en) * 2010-11-11 2012-05-18 Mapi Pharma Ltd. Amorphous form of lurasidone hydrochloride
US8217048B2 (en) 2003-09-05 2012-07-10 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases, particularly HCV NS3-NS4A protease
US8247532B2 (en) 2006-03-16 2012-08-21 Vertex Pharmaceuticals Incorporated Deuterated hepatitis C protease inhibitors
US8314141B2 (en) 1996-10-18 2012-11-20 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases, particularly hepatitis C virus NS3 protease
US20130102588A1 (en) * 2010-06-25 2013-04-25 Jiangsu Hengrui Medicine Co., Ltd. Tolvaptan solid dispersion and its preparation method
US8492546B2 (en) 2007-08-30 2013-07-23 Vertex Pharmaceuticals Incorporated Co-crystals and pharmaceutical compositions comprising the same
US8575208B2 (en) 2007-02-27 2013-11-05 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
US8759353B2 (en) 2007-02-27 2014-06-24 Vertex Pharmaceuticals Incorporated Co-crystals and pharmaceutical compositions comprising the same
US8871904B2 (en) 2005-08-19 2014-10-28 Vertex Pharmaceuticals Incorporated Processes and intermediates
US8981095B2 (en) 2011-07-28 2015-03-17 Mapi Pharma Ltd. Intermediate compounds and process for the preparation of lurasidone and salts thereof
WO2015150763A1 (en) * 2014-03-31 2015-10-08 Hovione Intenational Ltd Improved spray drying process for production of powders with enhanced properties
US9351517B2 (en) 2013-03-15 2016-05-31 Virun, Inc. Formulations of water-soluble derivatives of vitamin E and compositions containing same
WO2016090240A1 (en) * 2014-12-04 2016-06-09 Astex Pharmaceuticals, Inc. Pharmaceutical compositions for increasing the bioavailability of poorly soluble drugs
US9861611B2 (en) 2014-09-18 2018-01-09 Virun, Inc. Formulations of water-soluble derivatives of vitamin E and soft gel compositions, concentrates and powders containing same
WO2018222172A1 (en) * 2017-05-30 2018-12-06 Taigen Biotechnology Co., Ltd. Solid dispersion formulation
US10155234B1 (en) * 2017-08-04 2018-12-18 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10252181B2 (en) 2017-08-04 2019-04-09 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10335385B2 (en) 2010-06-21 2019-07-02 Virun, Inc. Composition containing non-polar compounds
US10486173B2 (en) 2017-08-04 2019-11-26 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10569244B2 (en) 2018-04-28 2020-02-25 ZoomEssence, Inc. Low temperature spray drying of carrier-free compositions
US10874122B2 (en) 2012-02-10 2020-12-29 Virun, Inc. Beverage compositions containing non-polar compounds
WO2022069661A1 (en) 2020-10-02 2022-04-07 Bend Research, Inc. Acetic acid as processing aid in spray drying for basic drugs

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645789B2 (en) 2006-04-07 2010-01-12 Vertex Pharmaceuticals Incorporated Indole derivatives as CFTR modulators
HUE036165T2 (hu) 2006-04-07 2018-06-28 Vertex Pharma ATP-kötõ kazetta transzportereinek modulátorai
US10022352B2 (en) 2006-04-07 2018-07-17 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8563573B2 (en) 2007-11-02 2013-10-22 Vertex Pharmaceuticals Incorporated Azaindole derivatives as CFTR modulators
MX2009006806A (es) * 2006-12-22 2009-08-27 Vertex Pharma Secado por rocio fluidizado.
JP2012517478A (ja) 2009-02-12 2012-08-02 バーテックス ファーマシューティカルズ インコーポレイテッド ペグ化インターフェロン、リバビリンおよびテラプレビルを含む、hcv組合せ治療剤
TW201043269A (en) * 2009-04-14 2010-12-16 Bristol Myers Squibb Co Bioavailable compositions of amorphous alpha-(N-sulfonamido)acetamide compound
US20120076838A1 (en) 2009-05-27 2012-03-29 Samyang Biopharmaceuticals Corporation Poorly soluble drug containing microsphere with improved bioavailabilty and method of preparing the same
KR20120139699A (ko) 2010-01-29 2012-12-27 버텍스 파마슈티칼스 인코포레이티드 C형 간염 바이러스 감염의 치료 요법
AU2011230508B2 (en) * 2010-03-25 2016-04-28 Vertex Pharmaceuticals Incorporated Solid forms of (R)-1(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-N-(1-(2,3-dihyderoxypropyl)-6-fluoro-2- (1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl) cyclopropanecarboxamide
US8802868B2 (en) 2010-03-25 2014-08-12 Vertex Pharmaceuticals Incorporated Solid forms of (R)-1(2,2-difluorobenzo[D][1,3]dioxo1-5-yl)-N-(1-(2,3-dihydroxypropyl-6-fluoro-2-(1-hydroxy-2-methylpropan2-yl)-1H-Indol-5-yl)-Cyclopropanecarboxamide
KR20130056244A (ko) 2010-04-22 2013-05-29 버텍스 파마슈티칼스 인코포레이티드 시클로알킬카르복스아미도-인돌 화합물의 제조 방법
TW201208704A (en) 2010-07-14 2012-03-01 Vertex Pharma Palatable pharmaceutical composition
CA2815416A1 (en) 2010-10-21 2012-04-26 Vertex Pharmaceuticals Incorporated Biomarkers for hcv infected patients
WO2012109646A1 (en) 2011-02-11 2012-08-16 Vertex Pharmaceuticals Incorporated Treatment of hcv in hiv infection patients
US8466159B2 (en) 2011-10-21 2013-06-18 Abbvie Inc. Methods for treating HCV
AU2013201532B2 (en) 2011-10-21 2014-10-02 Abbvie Ireland Unlimited Company Methods for treating HCV
CH707029B1 (de) 2011-10-21 2015-03-13 Abbvie Inc Verfahren zur Behandlung von HCV, umfassend mindestens zwei direkt wirkende antivirale Wirkstoffe, Ribavirin, aber nicht Interferon.
US8492386B2 (en) 2011-10-21 2013-07-23 Abbvie Inc. Methods for treating HCV
KR20130069484A (ko) * 2011-12-15 2013-06-26 주식회사 삼양바이오팜 세레콕시브 함유 고체분산체 및 그 제조방법
WO2013116339A1 (en) 2012-01-31 2013-08-08 Vertex Pharmaceuticals Incorporated High potency formulations of vx-950
WO2014014841A1 (en) 2012-07-16 2014-01-23 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of (r)-1-(2,2-diflurorbenzo[d][1,3]dioxol-5-yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1h-indol-5-yl) cyclopropanecarboxamide and administration thereof
WO2014015217A1 (en) 2012-07-19 2014-01-23 Vertex Pharmaceuticals Incorporated Biomarkers for hcv infected patients
WO2014042945A1 (en) * 2012-09-11 2014-03-20 Bend Research, Inc. Methods for making pharmaceutical solid dosage forms of spray-dried dispersions
EP2948141A1 (de) 2013-01-22 2015-12-02 F. Hoffmann-La Roche AG Pharmazeutische zusammensetzung mit verbesserter bioverfügbarkeit
JP6387094B2 (ja) * 2013-11-22 2018-09-05 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. 非ヌクレオシド逆転写酵素阻害剤の組成物
KR20150112416A (ko) * 2014-03-28 2015-10-07 주식회사 일화 세레콕시브 고체분산체 및 그 제조방법
PL3925607T3 (pl) 2014-04-15 2023-10-30 Vertex Pharmaceuticals Incorporated Kompozycje farmaceutyczne do leczenia chorób, w których pośredniczy mukowiscydozowy przezbłonowy regulator przewodnictwa
US11192914B2 (en) 2016-04-28 2021-12-07 Emory University Alkyne containing nucleotide and nucleoside therapeutic compositions and uses related thereto
GB201609222D0 (en) 2016-05-25 2016-07-06 F2G Ltd Pharmaceutical formulation
WO2018159852A1 (ja) * 2017-03-03 2018-09-07 三栄源エフ・エフ・アイ株式会社 クルクミン含有製剤
US11819503B2 (en) 2019-04-23 2023-11-21 F2G Ltd Method of treating coccidioides infection
US20230293439A1 (en) 2020-07-24 2023-09-21 Lonza Bend Inc. Spray drying of supersaturated solutions of api with acetic acid
WO2023158616A1 (en) * 2022-02-18 2023-08-24 Viking Therapeutics, Inc. ORAL DOSAGE FORMS OF TRβ AGONIST VK2809 FOR THE TREATMENT OF LIVER DISORDERS AND METHODS OF PREPARING THE SAME

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308434B1 (en) * 1999-05-03 2001-10-30 Acusphere, Inc. Spray drying method
US6548555B1 (en) * 1999-02-09 2003-04-15 Pfizer Inc Basic drug compositions with enhanced bioavailability

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570636A (ja) * 1991-09-17 1993-03-23 Sumitomo Bakelite Co Ltd 熱可塑性樹脂組成物
ES2287971T3 (es) * 1997-08-11 2007-12-16 Pfizer Products Inc. Dispersiones farmaceuticas solidas con biodisponibilidad incrementada.
US20010053791A1 (en) 2000-03-16 2001-12-20 Babcock Walter C. Glycogen phosphorylase inhibitor
US6800297B2 (en) * 2000-06-15 2004-10-05 Acusphere, Inc. Porous COX-2 inhibitor matrices and methods of manufacture thereof
SV2003000617A (es) * 2000-08-31 2003-01-13 Lilly Co Eli Inhibidores de la proteasa peptidomimetica ref. x-14912m
DE10055857A1 (de) * 2000-11-10 2002-08-22 Creative Peptides Sweden Ab Dj Neue pharmazeutische Depotformulierung
KR100664822B1 (ko) * 2002-02-01 2007-01-04 화이자 프로덕츠 인코포레이티드 변형된 분무-건조 장치를 이용한 균질한 분무-건조된 고체비결정성 약물 분산액의 제조 방법
JP4550824B2 (ja) * 2003-03-05 2010-09-22 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング C型肝炎抑制化合物
TWI389688B (zh) * 2004-06-08 2013-03-21 Vertex Pharma Vx-950之形態與調配物及其製備方法與用途
JP5409010B2 (ja) * 2005-12-28 2014-02-05 バーテックス ファーマシューティカルズ インコーポレイテッド N−[2,4−ビス(1,1−ジメチルエチル)−5−ヒドロキシフェニル]−1,4−ジヒドロ−4−オキソキノリン−3−カルボキサミドの固体形態

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548555B1 (en) * 1999-02-09 2003-04-15 Pfizer Inc Basic drug compositions with enhanced bioavailability
US6308434B1 (en) * 1999-05-03 2001-10-30 Acusphere, Inc. Spray drying method

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314141B2 (en) 1996-10-18 2012-11-20 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases, particularly hepatitis C virus NS3 protease
US8252923B2 (en) 2000-08-31 2012-08-28 Vertex Pharmaceuticals Incorporated Peptidomimetic protease inhibitors
US20050197299A1 (en) * 2000-08-31 2005-09-08 Babine Robert E. Peptidomimetic protease inhibitors
US7820671B2 (en) 2000-08-31 2010-10-26 Vertex Pharmaceuticals Incorporated Peptidomimetic protease inhibitors
US8529882B2 (en) 2000-08-31 2013-09-10 Vertex Pharmaceuticals Incorporated Peptidomimetic protease inhibitors
US8217048B2 (en) 2003-09-05 2012-07-10 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases, particularly HCV NS3-NS4A protease
US8871904B2 (en) 2005-08-19 2014-10-28 Vertex Pharmaceuticals Incorporated Processes and intermediates
US7964624B1 (en) 2005-08-26 2011-06-21 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
US7985762B2 (en) 2005-08-26 2011-07-26 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
US8440706B2 (en) 2005-08-26 2013-05-14 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
US8372873B2 (en) 2005-08-26 2013-02-12 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
US8039475B2 (en) 2006-02-27 2011-10-18 Vertex Pharmaceuticals Incorporated Co-crystals and pharmaceutical compositions comprising the same
US8372846B2 (en) 2006-02-27 2013-02-12 Vertex Pharmaceuticals Incorporated Co-crystals and pharmaceutical compositions comprising the same
US8247532B2 (en) 2006-03-16 2012-08-21 Vertex Pharmaceuticals Incorporated Deuterated hepatitis C protease inhibitors
US8759353B2 (en) 2007-02-27 2014-06-24 Vertex Pharmaceuticals Incorporated Co-crystals and pharmaceutical compositions comprising the same
US8575208B2 (en) 2007-02-27 2013-11-05 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
US8492546B2 (en) 2007-08-30 2013-07-23 Vertex Pharmaceuticals Incorporated Co-crystals and pharmaceutical compositions comprising the same
US10668029B2 (en) 2008-03-20 2020-06-02 Virun, Inc. Compositions containing non-polar compounds
US20090297491A1 (en) * 2008-03-20 2009-12-03 Bromley Philip J Compositions containing non-polar compounds
US10220007B2 (en) 2008-03-20 2019-03-05 Virun, Inc. Compositions containing non-polar compounds
US8282977B2 (en) 2008-03-20 2012-10-09 Virun, Inc. Compositions containing non-polar compounds
US9788564B2 (en) 2008-03-20 2017-10-17 Virun, Inc. Compositions containing non-polar compounds
US20090297665A1 (en) * 2008-03-20 2009-12-03 Bromley Philip J Compositions containing non-polar compounds
US8765661B2 (en) 2008-03-20 2014-07-01 Virun, Inc. Compositions containing non-polar compounds
US8877746B2 (en) 2009-08-25 2014-11-04 Cardioklne, Inc Compositions for delivery of insoluble agents
WO2011025771A1 (en) * 2009-08-25 2011-03-03 Biogen Idec Ma Inc. Compositions for delivery of insoluble agents
US20110236364A1 (en) * 2010-03-23 2011-09-29 Bromley Philip J Compositions containing non-polar compounds
US9320295B2 (en) 2010-03-23 2016-04-26 Virun, Inc. Compositions containing non-polar compounds
US10335385B2 (en) 2010-06-21 2019-07-02 Virun, Inc. Composition containing non-polar compounds
US20130102588A1 (en) * 2010-06-25 2013-04-25 Jiangsu Hengrui Medicine Co., Ltd. Tolvaptan solid dispersion and its preparation method
US9408915B2 (en) * 2010-06-25 2016-08-09 Jiangsu Hengrui Medicine Co., Ltd. Tolvaptan solid dispersion and its preparation method
WO2012063246A1 (en) * 2010-11-11 2012-05-18 Mapi Pharma Ltd. Amorphous form of lurasidone hydrochloride
US8981095B2 (en) 2011-07-28 2015-03-17 Mapi Pharma Ltd. Intermediate compounds and process for the preparation of lurasidone and salts thereof
US10874122B2 (en) 2012-02-10 2020-12-29 Virun, Inc. Beverage compositions containing non-polar compounds
US9351517B2 (en) 2013-03-15 2016-05-31 Virun, Inc. Formulations of water-soluble derivatives of vitamin E and compositions containing same
US20170014346A1 (en) * 2014-03-31 2017-01-19 Hovione International Ltd Spray Drying Process for Production of Powders with Enhanced Properties
US10918603B2 (en) 2014-03-31 2021-02-16 Hovione Holding Limited Spray drying process for production of powders with enhanced properties
US10463621B2 (en) 2014-03-31 2019-11-05 Hovione Holding Limited Spray drying process for production of powders with enhanced properties
JP2017511323A (ja) * 2014-03-31 2017-04-20 ホビオネ インターナショナル エルティーディー 増強された特性を有する粉末を生産するための改良噴霧乾燥方法
WO2015150763A1 (en) * 2014-03-31 2015-10-08 Hovione Intenational Ltd Improved spray drying process for production of powders with enhanced properties
US9861611B2 (en) 2014-09-18 2018-01-09 Virun, Inc. Formulations of water-soluble derivatives of vitamin E and soft gel compositions, concentrates and powders containing same
US10285971B2 (en) 2014-09-18 2019-05-14 Virun, Inc. Formulations of water-soluble derivatives of vitamin E and soft gel compositions, concentrates and powders containing same
WO2016090240A1 (en) * 2014-12-04 2016-06-09 Astex Pharmaceuticals, Inc. Pharmaceutical compositions for increasing the bioavailability of poorly soluble drugs
CN110958880A (zh) * 2017-05-30 2020-04-03 东莞东阳光太景医药研发有限责任公司 固体分散制剂
WO2018222172A1 (en) * 2017-05-30 2018-12-06 Taigen Biotechnology Co., Ltd. Solid dispersion formulation
US10486173B2 (en) 2017-08-04 2019-11-26 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10625281B2 (en) 2017-08-04 2020-04-21 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10252181B2 (en) 2017-08-04 2019-04-09 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10155234B1 (en) * 2017-08-04 2018-12-18 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10569244B2 (en) 2018-04-28 2020-02-25 ZoomEssence, Inc. Low temperature spray drying of carrier-free compositions
US10850244B2 (en) 2018-04-28 2020-12-01 ZoomEssence, Inc. Low temperature spray drying of carrier-free compositions
US11090622B2 (en) 2018-04-28 2021-08-17 ZoomEssence, Inc. Low temperature spray drying of carrier-free compositions
WO2022069661A1 (en) 2020-10-02 2022-04-07 Bend Research, Inc. Acetic acid as processing aid in spray drying for basic drugs

Also Published As

Publication number Publication date
US20140183768A1 (en) 2014-07-03
NO20084334L (no) 2008-11-27
WO2007109605A2 (en) 2007-09-27
CA2646335A1 (en) 2007-09-27
IL194176A (en) 2013-10-31
JP2014037435A (ja) 2014-02-27
JP2009530416A (ja) 2009-08-27
PE20080170A1 (es) 2008-03-10
EA200802008A1 (ru) 2009-04-28
GEP20125378B (en) 2012-01-10
UY30225A1 (es) 2007-10-31
MX2008011976A (es) 2009-04-07
AU2007226984A1 (en) 2007-09-27
SG170087A1 (en) 2011-04-29
WO2007109605A3 (en) 2008-01-03
EA018811B1 (ru) 2013-10-30
IL194176A0 (en) 2011-08-01
EP2001497A4 (de) 2012-11-07
KR20140107691A (ko) 2014-09-04
ECSP088759A (es) 2008-10-31
BRPI0708957A2 (pt) 2011-06-28
AU2013205948A1 (en) 2013-06-06
US8853152B2 (en) 2014-10-07
AR063468A1 (es) 2009-01-28
KR20090025187A (ko) 2009-03-10
AU2007226984B2 (en) 2013-02-21
TW200806280A (en) 2008-02-01
EP2001497A2 (de) 2008-12-17
TW201414469A (zh) 2014-04-16
CN103272234A (zh) 2013-09-04
US20090247468A1 (en) 2009-10-01
RS20090406A (en) 2010-12-31
TWI428125B (zh) 2014-03-01
NZ571934A (en) 2012-05-25

Similar Documents

Publication Publication Date Title
US8853152B2 (en) Pharmaceutical compositions
AU2007336516B2 (en) Fluidized spray drying
JP6404217B2 (ja) エンザルタミドの製剤
JP4334869B2 (ja) 溶解性または経口吸収性の改善された組成物
US20100267744A1 (en) Pharmaceutical Compositions
KR20150097792A (ko) 개선된 생체이용률을 갖는 약학 조성물
CA2778693A1 (en) Propane-i-sulfonic acid {3-[5-(4-chloro-phenyl)-1h-pyrrolo[2,3-b]pyridine-3-carbonyl]-2,4-difluoro-phenyl}-amide compositions and uses thereof
CA2567400C (en) Solid pharmaceutical formulation
KR100980752B1 (ko) 담체 표면 상에 흡착된 페노피브레이트를 포함하는 과립 및 이를 포함하는 약학 조성물
CN101448515A (zh) 药物组合物
KR100980749B1 (ko) 페노피브레이트-함유 과립 및 이를 포함하는 약학 조성물

Legal Events

Date Code Title Description
AS Assignment

Owner name: VERTEX PHARMACEUTICASLS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BITTORF, KEVIN JOHN;KATSTRA, JEFFREY P.;GASPAR, FILIPE;REEL/FRAME:019138/0385;SIGNING DATES FROM 20070312 TO 20070314

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION