US20070065308A1 - Diaphragm pump and cooling system with the diaphragm pump - Google Patents

Diaphragm pump and cooling system with the diaphragm pump Download PDF

Info

Publication number
US20070065308A1
US20070065308A1 US10/566,580 US56658004A US2007065308A1 US 20070065308 A1 US20070065308 A1 US 20070065308A1 US 56658004 A US56658004 A US 56658004A US 2007065308 A1 US2007065308 A1 US 2007065308A1
Authority
US
United States
Prior art keywords
flow passage
pressure chamber
side flow
liquid
diaphragm pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/566,580
Other languages
English (en)
Inventor
Mitsuru Yamamoto
Yasuhiro Sasaki
Atsushi Ochi
Sakae Kitajo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Assigned to NEC CORPORATION reassignment NEC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KITAJO, SAKAE, OCHI, ATSUSHI, SASAKI, YASUHIRO, YAMAMOTO, MITSURU
Publication of US20070065308A1 publication Critical patent/US20070065308A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive

Definitions

  • the present invention relates to a diaphragm pump used for a cooling system or the like, and in particular, relates to a slim diaphragm pump capable of discharging liquid efficiently. Further, the present invention relates to a cooling system with the diaphragm pump used for cooling electronic equipment or the like.
  • a water-cooled cooling system that can provide cooling by circulating liquid by a pump (for example, refer to Japanese Patent Laid-Open No. 2002-232174).
  • the water-cooled cooling system is provided with a closed-structure flow passage to be in thermally contact with heating parts, such as electronic parts, and a pump to circulate the liquid inside the flow passage.
  • the cooling system dissipates heat by circulating the liquid that is heated by the heated parts with the pump, so as to provide cooling for the heated parts.
  • a piezoelectric pump As the pump for the cooling system, a piezoelectric pump, a kind of diaphragm pump, which is compact and capable of generating a high discharge pressure, is often used.
  • the piezoelectric pump is usually provided with a pressure chamber with a suction port and a discharge port, a piezoelectric oscillator disposed on a wall of the pressure chamber, and a flow passage that is connected with the suction port and the discharge port.
  • the piezoelectric oscillator functions as a diaphragm in the diaphragm pump.
  • the piezoelectric oscillator is provided with an elastic plate made of metal and the like and a piezoelectric element bonded to the elastic plate.
  • the elastic plate piezoelectric oscillator itself
  • the piezoelectric pump by oscillating the piezoelectric oscillator, pressure operating on the liquid is generated in the pressure chamber.
  • the suction port and the discharge port are provided with check valves to prevent backflow of the liquid so as to restrict the flow direction of the liquid from the suction port to the discharge port.
  • FIG. 10 shows an example of a conventional piezoelectric pump.
  • the piezoelectric pump shown in FIG. 10 is provided with piezoelectric oscillator 130 arranged to form an upper surface of pressure chamber 150 .
  • suction port 121 a is provided for ingesting the liquid
  • discharge port 121 b is provided for discharging the liquid.
  • Suction side flow passage 170 a for supplying the liquid to suction port 121 a is formed under pressure chamber 150 , and is connected with suction port 121 a .
  • Discharge side flow passage 170 b a flow passage for the liquid discharged from discharge port 121 b , is formed under the pressure chamber 150 , and is connected with discharge port 121 b .
  • the flow passage of the liquid in piezoelectric pump 100 is formed from suction side flow passage 170 a to discharge side flow passage 170 b through suction port 121 a , pressure chamber 150 , and discharge port 121 b in order.
  • Suction port 121 a and discharge port 121 b are respectively provided with suction valve 120 a and discharge valve 120 b .
  • Suction valve 120 a and discharge valve 120 b are made from elastic members, such as silicon rubber, and respectively control the opening and closing of suction port 121 a and discharge port 121 b.
  • Piezoelectric pump 100 operates as follows.
  • piezoelectric oscillator 130 is displaced upward and the volume in pressure chamber 150 is increased, there is a negative pressure in pressure chamber 150 .
  • suction valve 120 a is opened and the liquid is supplied from suction side flow passage 170 a into pressure chamber 150 .
  • discharge valve 120 b there is no backflow of the liquid from discharge side flow passage 170 b to pressure chamber 150 .
  • piezoelectric oscillator 130 is displaced in the opposite direction, and the volume of pressure chamber 150 is reduced.
  • discharge valve 120 b is opened and the liquid is discharged toward discharge side flow passage 170 b .
  • Piezoelectric pump 100 functions as a pump by repeating the above-mentioned operations, and the liquid can flow in one direction.
  • the flow passage from the suction side flow passage to the discharge side flow passage via the pressure chamber is formed in being bent.
  • suction side flow passage 170 a and discharge side flow passage 170 b are formed under pressure chamber 150 , and are each connected with suction port 121 a and discharge part 120 b arranged on the lower surface of pressure chamber 150 . Accordingly, when piezoelectric pump 100 operates and the liquid flows along the flow passage, the flow direction of the liquid is bent at a point where the liquid flows from suction side flow passage 170 a into pressure chamber 150 .
  • the flow direction of the liquid which has passed through pressure chamber 150 is bent once again where the liquid flows from pressure chamber 150 to discharge side flow passage 170 b .
  • the pressure of the liquid is largely lost.
  • the amount of flow of the liquid passing through the flow passage is reduced, and therefore the pump efficiency is decreased.
  • the decrease in pump efficiency indicates a decrease in the cooling efficiency of the cooling system.
  • suction port 121 a , discharge port 121 b , and respective flow passages 170 a , 170 b are positioned on/under the lower surface of pressure chamber 150 . Accordingly, the thickness obtained by adding the thickness of pressure chamber 150 and the thickness of flow passages 170 a , 170 b means that the pump has a substantial thickness.
  • the pump is incorporated in electronic equipment such as portable personal computers, and therefore it is desirable to make the pump thinner in order to reduce the thickness of electronic equipment.
  • the present invention has its object to provide a diaphragm pump that enables an increase in pump efficiency by reducing the pressure loss of liquid and that enables reduction in thickness. Also, the present invention has its object to provide a cooling system that enables an increase in cooling efficiency by being provided with the diaphragm pump.
  • a diaphragm pump according to the present invention includes:
  • At least one diaphragm disposed on at least one of an upper surface and a lower surface of the pressure chamber and for oscillation to make a volume of the pressure chamber variable.
  • the suction side flow passage and the discharge side flow passage are disposed at both ends of the pressure chamber so that the pressure chamber is sandwiched between the flow passages and the flow passages are connected with the pressure chamber.
  • the suction side flow passage and the discharge side flow passage are extended in the same direction so that axes thereof are aligned with each other. Therefore, the flow passage for the pump, including the respective flow passages and the pressure chamber, is formed in a straight line without being bent, and thus the pressure loss of the liquid is reduced and the liquid flows efficiently.
  • check valves respectively disposed in the flow passages are tilted relative to the axial direction of these flow passages, namely, the flow direction of the liquid, and thus the pressure loss of the liquid is further reduced.
  • the pressure chamber is formed into a flat shape and, since the suction side flow passage and the discharge side flow passage are disposed at both ends of the pressure chamber, the whole of the pump is reduced in thickness.
  • the diaphragm is arranged on at least one upper surface and one the down surface of the pressure chamber so as to operate on a surface having a large area in the flat-shaped pressure chamber, and thus oscillation by the diaphragm is transmitted to the pressure chamber efficiently. Therefore, the driving source is reduced in size, work is saved, and the size of the pump is also reduced.
  • Each of the flow passages may be formed so that the axes thereof are positioned at the center of a cross-sectional shape of the pressure chamber on a surface orthogonal to the axes. Accordingly, the flow of the liquid in the pressure chamber is even around the axes. With this arrangement, since the axes of the respective flow passages approximately pass through the center of the pressure chamber, the space in the pressure chamber is approximately symmetric relative to the axes. Accordingly, the flow passage of the liquid is approximately symmetric relative to the axes, and thus the pressure loss of the liquid in the pressure chamber is reduced.
  • Each cross-sectional shape of flow passages and the pressure chamber is formed in an approximate rectangle in cross section. In this case, these can be formed by a cutting process or the like, and thus manufacturing is easy. In particular, when the lower surfaces of the flow passages and the pressure chamber are formed on the same surface, manufacturing is easy. Further, since the flow passage is made flatly, the liquid is circulated efficiently. In order to further reduce the pressure loss of the liquid, the length of the pressure chamber, viewed from an upper surface in a direction orthogonal to the axes, may be continuously shortened toward the suction side flow passage or toward the discharge side flow passage. Also, a height of the pressure chamber may be continuously lowered toward the suction side flow passage or the discharge side flow passage. In both cases, the section of the pressure chamber is made smaller continuously toward the respective flow passages, and thus the pressure loss of the liquid in the pressure chamber is reduced.
  • At least one groove may be formed in a peripheral wall of the pressure chamber and can accelerate the flow of the liquid downstream in a flow direction.
  • the groove may have a part with an opening opened to the pressure chamber, into which the liquid flows, and a side part with an opening opened to a peripheral wall surface of the pressure chamber, from which the liquid is discharged downstream in the flow direction.
  • the groove may be extended in a radial direction while a point in the vicinity of the entrance of the discharge side flow passage is set as a center.
  • the diaphragm pump may include: at least one intake opened to an upper surface of the suction side flow passage and is used to introduce bubbles mixed in the liquid; and a sealed space connected with the intake and is used to collect the introduced bubbles.
  • the intake may be positioned in the suction side flow passage upstream relative to the check valve. Bubble collection means like this are arranged in this way, and thus the bubbles mixed in the liquid are collected and are prevented from entering the pressure chamber. In this way, by removing bubbles from the flow passages and the pressure chamber, the pressure loss of the liquid is further reduced.
  • the intake is positioned in the suction side flow passage upstream relative to the check valve, and thus the bubbles are efficiently prevented from entering the pressure chamber.
  • the diaphragm pump is a so-called piezoelectric pump in which the driving source is a piezoelectric element.
  • the piezoelectric element enables a reduction in the size and thickness of the pump.
  • the above-mentioned diaphragm pump is available for a cooling system that has a closed-structure flow passage for circulating liquid discharged from the discharge side flow passage in the diaphragm pump and for returning the liquid to the suction side flow passage.
  • the cooling system cools electric equipment efficiently.
  • the cooling system having a pump with the bubble collection means circulates the liquid efficiently for a long period because the bubbles in the flow passage are collected.
  • a “flat” pressure chamber is a pressure chamber in which a length of the pressure chamber in the height direction is shorter than one-half of the maximum length of the pressure chamber viewed from the upper surface in the axial direction, and than one-half of the maximum length in the direction orthogonal to the axis.
  • the pressure loss of the liquid is reduced and the pump is improved in pump efficiency and is reduced in thickness.
  • the cooling system is provided with the diaphragm pump, and thus the cooling system is improved in cooling efficiency and is reduced in thickness.
  • FIG. 1 shows schematic views of a cooling system provided with a piezoelectric pump of a first embodiment according to the present invention
  • FIG. 1 ( a ) is a plan view showing a liquid passage in the cooling system
  • FIG. 1 ( b ) is a sectional view along line X-X in FIG. 1 ( a ).
  • FIG. 2 shows the piezoelectric pump of the first embodiment
  • FIG. 2 ( a ) is a lateral section view
  • FIG. 2 ( b ) is a longitudinal section view viewed from an upper surface side.
  • FIG. 3 shows the piezoelectric pump of a second embodiment
  • FIG. 3 ( a ) is a lateral section view
  • FIG. 3 ( b ) is a longitudinal section view viewed from an upper surface side.
  • FIG. 4 is a perspective enlarged view showing one returning groove and a flow direction of liquid.
  • FIG. 5 is a partial enlarged view showing a modification of the shapes of returning grooves.
  • FIG. 6 is a section view showing a modification of the shape of a pressure chamber.
  • FIG. 7 shows one example of a piezoelectric pump according to a third embodiment.
  • FIG. 8 shows another example of a piezoelectric pump according to the third embodiment.
  • FIG. 9 shows further another example of a piezoelectric pump according to the third embodiment.
  • FIG. 10 is a section view showing a conventional piezoelectric pump.
  • FIG. 1 shows schematic views of a cooling system provided with a piezoelectric pump of a first embodiment according to the present invention
  • FIG. 1 ( a ) is a plan view showing a liquid passage in the cooling system
  • FIG. 1 ( b ) is a sectional view along line X-X in FIG. 1 ( a ).
  • Cooling system 10 shown in FIG. 1 is a water-cooled cooling apparatus preferably used for providing cooling for electronic equipment, such as a portable personal computer. Cooling system 10 is roughly provided with flow passage unit 60 in which circulation flow passage 60 a is formed and piezoelectric pump 1 connected to flow passage unit 60 and is used to circulate liquid in the flow passage. Flow passage unit 60 and piezoelectric pump 1 provide a closed-structure flow passage. Inside the flow passage, liquid to be circulated is filled up.
  • circulation flow passage 60 a is formed in a predetermined pattern.
  • sectional shape of circulation flow passage 60 a may be rectangular or circular.
  • circulation flow passage 60 a is preferably formed in a rectangle in the cross section. Since a sectional shape of flat-shaped flow passage unit 60 is a shape in which plate members are overlaid, circulation flow passage 60 a is formed in a rectangle in cross section, for example, a groove is formed in one plate member and is joined with another plate member, thereby forming circulation flow passage 60 a easily.
  • Piezoelectric pump 1 is connected to both ends of circulation flow passage 60 a , and thus is formed in one closed-structure flow passage in association with circulation flow passage 60 a .
  • Cooling system 10 effects the operation of piezoelectric pump 1 such that the liquid is circulated in circulation flow passage 60 a to dissipate the heat of the liquid that is heated by the parts that have been heated.
  • FIG. 2 shows the piezoelectric pump of the first embodiment
  • FIG. 2 ( a ) is a lateral section view
  • FIG. 2 ( b ) is a longitudinal section view viewed from an upper surface side.
  • Piezoelectric pump 1 is provided with pressure chamber 50 in which a part is formed by piezoelectric oscillator 30 , and suction port 21 a and discharge port 21 b are each connected to pressure chamber 50 .
  • Suction valve 20 a and discharge valve 20 b are respectively arranged in the vicinity of suction port 21 a and discharge port 21 b .
  • Pressure chamber 50 is arranged between lower plate 11 and upper plate 12 which provide a cabinet for piezoelectric pump 1 .
  • Pressure chamber 50 is formed in a flat shape with a rectangular lower surface.
  • Both suction port 21 a and discharge port 21 b are positioned on the center line in the longitudinal direction of pressure chamber 50 formed in the rectangle viewed from the upper surface.
  • Suction side flow passage 70 a connected with circulation flow passage 60 a shown in FIG. 1 is formed so that it is connected with suction port 21 a
  • discharge side flow passage 70 b similarly connected with circulation flow passage 60 a is formed so that it is connected with discharge port 21 b
  • Suction side flow passage 70 a and discharge side flow passage 70 b are arranged in a line on the center line and are extended in the same direction while pressure chamber 50 is positioned between these flow passages.
  • Suction side flow passage 70 a and discharge side flow passage 70 b are formed having similar shapes, and sections thereof are rectangles. Flow passage 70 a and flow passage 70 b are formed in rectangles in the cross section, and thus they can be formed easily by the cutting process or the extruding process.
  • a height of pressure chamber 50 is approximately similar to that of suction side flow passage 70 a .
  • the flow passage in piezoelectric pump 1 is formed into a flat shape by positioning the lower surface of pressure chamber 50 and the lower surfaces of suction side flow passage 70 a and discharge side flow passage 70 b on the same plan.
  • Piezoelectric oscillator 30 is prepared as a diaphragm in which an oscillating plate (not shown) is put between two piezoelectric elements (not shown) which are bonded together, and is arranged so as to operate on the upper surface of flat-shaped pressure chamber 50 . Also, an electrode (not shown) for applying a voltage to the piezoelectric elements is formed. By applying an alternating voltage to piezoelectric oscillator 30 structured in this way, piezoelectric oscillator 30 bends and oscillate in the thickness direction of the plate.
  • Lead zirconate titanate ceramic materials may be used, for example, as piezoelectric elements.
  • the oscillating plate and the piezoelectric elements are bonded together by various techniques in accordance with the materials of the oscillating plate.
  • the piezoelectric elements can be integrated with the oscillating plate by a print firing method, a sputtering method, a sol-gel method, or a chemical vapor method.
  • the piezoelectric elements are used as a driving source to oscillate the diaphragm, however, the driving source is not limited to piezoelectric elements and may be anything capable of oscillating the diaphragm.
  • suction valve 20 a and discharge valve 20 b made of thin metal plates, such as aluminum, are respectively provided.
  • Valves 20 a , 20 b are arranged so as to diagonally intersect the flow direction of liquid.
  • upstream ends in the flow direction are supported by cantilevers and downstream ends are free ends abutting on side walls of flow passages 70 a , 70 b without water load.
  • suction valve 20 a opens suction side flow passage 70 a when negative pressure is generated in pressure chamber 50 , and closes flow passage 70 a when positive pressure is generated in pressure chamber 50 .
  • discharge valve 20 b closes flow passage 70 b when negative pressure is generated in pressure chamber 50 , and closes flow passage 70 b when positive pressure is generated.
  • sectional shapes of suction side flow passage 70 a and discharge side flow passage 70 b may be circles or so-called D-shapes in which a part of a circle is cut by a straight line.
  • flow passages 70 a , 70 b are formed in a rectangle in the cross section as in the first embodiment, thereby forming valves 20 a , 20 b in simple shapes.
  • valves 20 a , 20 b can be attached by a relatively easy method, for example, by bonding one end of a valve member to one wall face in a flow passage.
  • a voltage of a predetermined polarity is applied to piezoelectric oscillator 30 , and piezoelectric oscillator 30 is displaced so as to have an upward convex orientation in FIG. 2 .
  • the volume of pressure chamber 50 is increased, and the pressure in pressure chamber 50 becomes negative pressure.
  • suction valve 20 a is displaced and suction port 21 a is opened, and the liquid flows into pressure chamber 50 via suction side flow passage 70 a and suction port 21 a .
  • discharge valve 20 b blocks discharge port 20 b , and no liquid flows from discharge port 21 b.
  • a voltage of an inverse polarity to the above polarity is applied to piezoelectric oscillator 30 , and piezoelectric oscillator 30 is displaced so as to have a downward convex orientation in FIG. 2 .
  • the volume in pressure chamber 50 is reduced.
  • discharge valve 20 b is displaced and discharge port 21 b is opened, and the liquid is discharged from pressure chamber 50 via discharge side flow passage 70 b .
  • suction valve 20 a blocks suction side flow passage 70 a , and no liquid flows and is discharged into/from suction port 21 a.
  • suction of liquid from suction port 21 a and discharge of the liquid from discharge port 21 b are alternately repeated, and the liquid pulsates. Accordingly, the liquid circulates through circulation flow passage 60 a in the direction indicated by arrows shown in FIG. 1 ( a ) by the operation of piezoelectric pump 1 .
  • the flow passage in piezoelectric pump 1 is formed into a flat shape without being bent in the thickness direction of the piezoelectric pump. Specifically, all of suction side flow passage 70 a , pressure chamber 50 , and discharge side flow passage 70 b are formed on lower plate 11 . Suction side flow passage 70 a and discharge side flow passage 70 b are positioned on a straight line and are extended in the same direction so that presser chamber 50 is positioned between the passages. As a result, the flow passage of piezoelectric pump 1 is formed in a flat shape and in a straight line.
  • piezoelectric pump 1 can reduce the pressure loss caused by a change of the flow direction of the liquid and can circulate the liquid efficiently. Further, in piezoelectric pump 1 , suction valve 20 a and discharge valve 20 b are installed to tilt relative to the flow direction of the liquid. Accordingly, compared with a valve arranged orthogonally to the flow direction, suction valve 20 a and discharge valve 20 b are displaced with a small force, and the pressure loss of the liquid can be further reduced. As described above, piezoelectric pump 1 is improved in pump efficiency compared with the conventional one, and cooling system 10 (refer to FIG. 1 ) is also improved in cooling efficiency with the improvement in pump efficiency. Incidentally, in the first embodiment, both suction valve 20 a and discharge valve 20 b are tilted relative to the flow direction, however, it is possible to tilt only one discharge valve.
  • flow passages 70 a , 70 b are positioned at both ends of pressure chamber 50 , the flow passage is formed into a flat shape and the whole of piezoelectric pump 1 is reduced in thickness.
  • piezoelectric oscillator 30 is arranged so as to operate on one surface that has the large area of pressure chamber 50 formed in a flat rectangular parallelepiped shape, the bending displacement of piezoelectric oscillator 30 can be transmitted to pressure chamber 50 efficiently. Accordingly, relatively small piezoelectric oscillator 30 can obtain a sufficient amount of flow, and piezoelectric pump 1 can be reduced in size as a result.
  • one piezoelectric oscillator is arranged on the upper surface of pressure chamber 50 , however, the number of piezoelectric oscillators and their shape thereof are not limited. For example, two piezoelectric oscillators are arranged for upper and lower surfaces of pressure chamber 50 .
  • cooling system 1 using piezoelectric pump 1 that enables a reduction in thickness and an increase in pump efficiency can circulate the liquid efficiently. Further, for example, by arranging parts that have been heated directly to or in the vicinity of flow passage unit 60 , heat from the parts can be dissipated efficiently.
  • the pressure chamber is formed in a rectangular parallelepiped shape, however, the pressure chamber may be formed so that the cross-sectional area of the pressure chamber is gradually varied in order to reduce the resistance of the liquid.
  • FIG. 3 shows the piezoelectric pump of the second embodiment according to the present invention.
  • Piezoelectric pump 2 shown in FIG. 3 is formed so that pressure chamber 50 ′ is formed in a streamlined shape.
  • structural parts (retuning grooves 11 a ) for accelerating the flow of the liquid are arranged on peripheral walls of pressure chamber 50 ′.
  • the other structures are similar those of piezoelectric pump 1 shown in FIG. 2 , and the same numeral references are applied to the structural parts having the same functions and explanations thereof are omitted.
  • Pressure chamber 50 ′ is provided with peripheral wall surface 11 e in an approximate streamlined shape viewed from the upper surface.
  • Peripheral wall surface 11 e is arranged vertically to bottom part 11 b of pressure chamber 50 ′.
  • peripheral wall surfaces 11 e are respectively connected with suction port 21 a and discharge port 21 b , and are bent in an arc shape toward the outside.
  • the arc shape is preferably set, as appropriate, in accordance with the kind of liquid or characteristics of piezoelectric oscillator 30 so that the resistance of the liquid is reduced as far as possible.
  • a plurality of retuning grooves 11 a is formed on the peripheral wall of pressure chamber 50 ′ so as to open peripheral wall surface 11 e .
  • five retuning grooves 11 a are arranged at predetermined intervals to have the same groove width.
  • respective retuning grooves 11 a are extended from a point (not shown) as the center in the vicinity of discharge port 21 b in the radiation direction.
  • opening parts of returning grooves 11 a are directed to the point in the vicinity of discharge port 21 b .
  • the point is positioned at the center of discharge port 21 b.
  • FIG. 4 is a perspective enlarged view showing one returning groove- 11 a and the flow direction of liquid around groove 11 a .
  • returning groove 11 a is opened to upper edge surface 11 c , the upper surface of the peripheral wall, and to peripheral wall surface 11 e . Also, returning groove 11 a gradually becomes deeper toward one end (side of peripheral wall surface 11 e ).
  • convex part 11 d having a predetermined height relative to upper edge surface 11 c is formed.
  • piezoelectric oscillator 30 (refer to FIG. 3 ( a )) is positioned on the upper surface of convex part 11 a . Accordingly, a predetermined space is formed between upper edge surface 11 c and piezoelectric oscillator 30 , and the space is a part of pressure chamber 50 ′.
  • peripheral wall surface 11 e in pressure chamber 50 ′ is formed in a streamlined shape, and the cross-sectional area thereof continuously becomes smaller toward suction side flow passage 70 a and discharge side flow passage 70 b . Accordingly, the resistance between the liquid and peripheral wall surface 11 e is reduced, and the pressure loss in pressure chamber 50 ′ is further reduced. Also, when piezoelectric oscillator 30 is displaced and the liquid is discharged from discharge side flow passage 70 b (refer to FIG. 3 ), the liquid in the retuning groove 11 a is discharged toward discharge port 21 b . Therefore, the flow of the liquid in pressure chamber 50 ′ is accelerated, and piezoelectric pump 2 is further improved in pump efficiency. In particular, since each retuning groove 11 a is opened toward discharge port 21 b , the liquid discharged from retuning groove 11 a accelerates the flow of the liquid more efficiently.
  • the number of retuning grooves 11 a and the shape thereof, and the height of convex part 11 d are preferably set, as appropriate, in accordance with the kind of liquid or the shape of discharge port 20 b .
  • the number of retuning grooves 11 a and the shape thereof, and the height of convex part 11 d are preferably set, as appropriate, in accordance with the kind of liquid or the shape of discharge port 20 b .
  • only one retuning groove 11 a may be formed.
  • retuning grooves 11 a are preferably formed symmetrically with respect to the axial line. With this arrangement, the liquid flows symmetrically with respect to the axial line.
  • the width of retuning groove 11 a ′ may be tapered toward pressure chamber 50 ′, and the liquid in returning groove 11 a ′ may be discharged from the tip of returning groove 11 a ′ at high speed.
  • peripheral wall surface 11 e is bent so that the length orthogonal to the axial line of flow passages 70 a , 70 b continuously becomes shorter toward flow passages 70 a , 70 b , and the cross-sectional area of pressure chamber 50 ′ becomes smaller toward suction port 21 a and discharge port 21 b .
  • the shape of the pressure chamber is not limited to this description as long as the cross-sectional area becomes smaller continuously.
  • taper 12 a may be arranged at the corner part of pressure chamber 50 ′′.
  • the height of pressure chamber 50 ′′ is continuously lowered toward suction port 21 a or discharge port 21 b so that the cross-sectional area thereof becomes smaller.
  • a closed-structure flow passage in cooling system 10 shown in FIG. 1 is filled up with the liquid so that no bubbles remain.
  • dissolved oxygen is changed into bubbles and the bubbles are mixed into the liquid.
  • the existence of bubbles inside the flow passage causes a reduction in pump efficiency.
  • the existence of bubbles inside the closed-structure flow passage causes a reduction in cooling efficiency of cooling system 10 .
  • a piezoelectric pump may be provided with means for collecting bubbles mixed in the liquid.
  • Respective piezoelectric pumps 3 , 3 ′, 3 ′′ shown in FIG. 7 to FIG. 9 are provided with gaseous chambers 35 , 35 ′, 35 ′′.
  • FIGS. 7 ( a ), 8 ( a ) and 9 ( a ) are lateral section views of piezoelectric pumps 3 , 3 ′, 3 ′′, and
  • FIGS. 7 ( b ), 8 ( b ) and 9 ( b ) are longitudinal section views of gaseous chambers 35 , 35 ′, 35 ′′.
  • Piezoelectric pump 3 shown in FIG. 7 has gaseous chamber 35 over piezoelectric oscillator 30 .
  • the other structures are similar to those of piezoelectric pump 1 shown in FIG. 2 , and the same numeral references are applied to the structural parts having the same functions as FIG. 2 and explanations thereof are omitted.
  • Gaseous chamber 35 is formed by piezoelectric oscillator 30 and by the cabinet of piezoelectric pump 3 , and covers suction side flow passage 70 a and discharge side flow passage 70 b.
  • Intake 35 is a hole for connecting suction side flow passage 70 a and gaseous chamber 35 and is positioned on the upper surface of suction side flow passage 70 a.
  • a closed-structure flow passage is formed by the flow passage in cooling system 10 and gaseous chamber 35 . Then, the flow passage is completely filled up with the liquid to be circulated. In other words, in the initial state of cooling system 10 , atmospheric pressure chamber 35 is also filled up with the liquid.
  • cooling system 10 structured like this, when bubbles are generated in the liquid, the bubbles move through circulation flow passage 60 (refer to FIG. 1 ) by the flow of the liquid. Then, the bubbles which have moved along the upper wall of suction side flow passage 70 a are taken into intake 35 a and float upward. At the same time, the liquid in gaseous chamber 35 is pushed out from intake 35 a by the bubbles, and the bubbles are collected in gaseous chamber 35 . With this operation, in piezoelectric pump 3 , the bubbles can be removed from the flow passage in cooling system 10 , and the liquid can be circulated without a reduction in pump efficiency.
  • the shape of the opening of intake 35 a is formed in a circle.
  • the shape of intake 35 a there are no particular limitations to the shape of intake 35 a , as long as bubbles can be collected, for example, an oblong hole (not shown) extending in the width direction of suction side flow passage 70 a may be formed. With this arrangement, bubbles moving along the upper wall of flow passage 70 a can be collected efficiently. Further, when two intakes are provided, bubbles enter gaseous chamber 35 through one of the intakes while liquid is discharged from the other intake. In this way, the operation of changing bubbles and liquid may be performed smoothly. Needless to say, in order to collect bubbles efficiently, intake 35 may be arranged so as to be higher relative to flow passage 70 a , and grooves and cut parts for guiding the bubbles to intake 35 may be formed.
  • piezoelectric pump according to the third embodiment may be variously changed as shown FIGS. 8 and 9 .
  • piezoelectric pump 3 ′ in FIG. 8 piezoelectric oscillator 30 is arranged on the lower surface of pressure chamber 50 .
  • piezoelectric pump 3 ′′ in FIG. 9 gaseous chamber 35 ′′ is arranged in a loop area. Both of piezoelectric pumps 3 ′, 3 ′′ are not different from piezoelectric pumps 3 substantially, and gaseous chambers 35 , 35 ′, 35 ′′ function similarly.
  • piezoelectric pump 3 is provided with gaseous chamber 35 , and bubbles generated in liquid can be collected. Therefore, piezoelectric pump 3 is improved in pump efficiency. Also, high cooling efficiency in cooing system 10 is maintained for a long period. Further, in the cooling system 10 having piezoelectric pumps 3 , 3 ′, 3 ′′ explained in the third embodiment, when liquid is expanded by a change of environmental temperature or the like, the volume change is absorbed by gaseous chambers 35 , 35 ′, 35 ′′. Therefore, piezoelectric pumps 3 , 3 ′, 3 ′′ and the flow passage in cooling system are prevented from being broken.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
US10/566,580 2003-08-04 2004-07-21 Diaphragm pump and cooling system with the diaphragm pump Abandoned US20070065308A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003-285915 2003-08-04
JP2003285915 2003-08-04
PCT/JP2004/010339 WO2005012729A1 (fr) 2003-08-04 2004-07-21 Pompe a membrane et systeme de refroidissement equipe d'une telle pompe a membrane

Publications (1)

Publication Number Publication Date
US20070065308A1 true US20070065308A1 (en) 2007-03-22

Family

ID=34113910

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/566,580 Abandoned US20070065308A1 (en) 2003-08-04 2004-07-21 Diaphragm pump and cooling system with the diaphragm pump

Country Status (5)

Country Link
US (1) US20070065308A1 (fr)
JP (1) JPWO2005012729A1 (fr)
CN (1) CN100510400C (fr)
TW (1) TWI255886B (fr)
WO (1) WO2005012729A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080236793A1 (en) * 2007-03-30 2008-10-02 Hsiao-Kang Ma Water block
US20090314062A1 (en) * 2005-12-09 2009-12-24 Kyocera Corporation Fluid Actuator, and Heat Generating Device and Analysis Device Using the Same
US20100155230A1 (en) * 2008-12-19 2010-06-24 Daxon Technology Inc. Method of Fabricating Bubble-Type Micro-Pump
US20110076170A1 (en) * 2008-06-03 2011-03-31 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US20110152826A1 (en) * 2009-12-18 2011-06-23 K&Y Corporation Infusion Pump
EP2511529A1 (fr) * 2011-04-15 2012-10-17 Ikerlan, S. Coop. Cýur d'impulsion pour micropompe de fluides
US8899944B2 (en) 2009-12-04 2014-12-02 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
WO2017129327A1 (fr) * 2016-01-27 2017-08-03 Siemens Aktiengesellschaft Pompe à membrane dont l'aspiration de poussières s'effectue par le bas
CN111591038A (zh) * 2019-02-20 2020-08-28 东芝泰格有限公司 压电泵及液体喷出装置
US10781807B2 (en) 2016-08-25 2020-09-22 Dipl. Ing. Ernst Schmitz Gmbh & Co. Kg Maschinen Und Apparatebau Double membrane for a dust pump
US11215174B2 (en) 2016-08-25 2022-01-04 Dipl. Ing. Ernst Schmitz Gmbh & Co. Kg Maschinen Und Apparatebau Diaphragm pump having a porous, arched aluminum filter
US11590440B2 (en) 2016-08-25 2023-02-28 Dipl. Ing. Ernst Schmitz GmbH & Co. KG Maschinen and Apparatebau Production of a porous aluminum filter for a diaphragm pump

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338361C (zh) * 2005-08-12 2007-09-19 北京工业大学 无阀压电泵
GB0804739D0 (en) * 2008-03-14 2008-04-16 The Technology Partnership Plc Pump
TWI412716B (zh) * 2010-10-13 2013-10-21 Microjet Technology Co Ltd 可吸熱式流體輸送裝置
DE102011052432A1 (de) * 2011-04-15 2012-10-18 Reinhausen Plasma Gmbh Membranpumpe und Verfahren zum Fördern von feinkörnigen Pulvern mit Hilfe einer Membranpumpe
JP2018103380A (ja) * 2016-12-22 2018-07-05 東芝テック株式会社 液体循環モジュール、液体吐出装置、及び液体吐出方法
CN107381701B (zh) * 2017-08-22 2020-09-01 西安建筑科技大学 一种利用恒压微气泡发生器供气的臭氧气浮装置及方法
CN108678880A (zh) * 2018-05-22 2018-10-19 湖北赛恩斯科技股份有限公司 一种燃油泵
JP6912004B2 (ja) * 2018-05-31 2021-07-28 株式会社村田製作所 流体制御装置
CN108591031A (zh) * 2018-05-31 2018-09-28 东莞市创点智能卫浴实业有限公司 一种新型水气自吸流体混合一体式泡沫泵及应用其卫浴装置
US20220260067A1 (en) * 2019-06-03 2022-08-18 Sony Group Corporation Fluid control apparatus and electronic apparatus
JP7370739B2 (ja) * 2019-06-21 2023-10-30 東芝テック株式会社 圧電ポンプ、及び、液体吐出装置
CN111255667B (zh) * 2020-01-15 2021-11-02 东方红卫星移动通信有限公司 一种低轨卫星微流控系统的压电致动微驱动器
JP2022039456A (ja) * 2020-08-28 2022-03-10 日本電産トーソク株式会社 電動ポンプ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611214A (en) * 1994-07-29 1997-03-18 Battelle Memorial Institute Microcomponent sheet architecture
US6042345A (en) * 1997-04-15 2000-03-28 Face International Corporation Piezoelectrically actuated fluid pumps
US20030017063A1 (en) * 2001-07-18 2003-01-23 Matsushita Electric Industrial Co., Ltd. Miniature pump, cooling system and portable equipment
US6520753B1 (en) * 1999-06-04 2003-02-18 California Institute Of Technology Planar micropump

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154566U (fr) * 1984-09-14 1986-04-12
JP2671412B2 (ja) * 1988-08-02 1997-10-29 日本電気株式会社 圧電型マイクロポンプ
JP2971412B2 (ja) * 1997-03-07 1999-11-08 バンドー化学株式会社 突起付き搬送ベルト及びその製造方法
JP2000087862A (ja) * 1998-09-11 2000-03-28 Citizen Watch Co Ltd マイクロポンプ及びその製造方法
WO2001066947A1 (fr) * 2000-03-06 2001-09-13 Hitachi, Ltd. Systeme de distribution de liquide et dispositif associe
JP4365564B2 (ja) * 2001-07-18 2009-11-18 パナソニック株式会社 小型ポンプ
CN1378041A (zh) * 2002-05-20 2002-11-06 张建辉 高频阀压电泵及其泵腔设计方法
JP6056150B2 (ja) * 2011-04-08 2017-01-11 日亜化学工業株式会社 半導体発光素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611214A (en) * 1994-07-29 1997-03-18 Battelle Memorial Institute Microcomponent sheet architecture
US6042345A (en) * 1997-04-15 2000-03-28 Face International Corporation Piezoelectrically actuated fluid pumps
US6520753B1 (en) * 1999-06-04 2003-02-18 California Institute Of Technology Planar micropump
US20030017063A1 (en) * 2001-07-18 2003-01-23 Matsushita Electric Industrial Co., Ltd. Miniature pump, cooling system and portable equipment

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090314062A1 (en) * 2005-12-09 2009-12-24 Kyocera Corporation Fluid Actuator, and Heat Generating Device and Analysis Device Using the Same
US8159110B2 (en) * 2005-12-09 2012-04-17 Kyocera Corporation Fluid actuator, and heat generating device and analysis device using the same
US7694723B2 (en) * 2007-03-30 2010-04-13 Cooler Master Co., Ltd. Water block
US20080236793A1 (en) * 2007-03-30 2008-10-02 Hsiao-Kang Ma Water block
US20110076170A1 (en) * 2008-06-03 2011-03-31 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US9109592B2 (en) * 2008-06-03 2015-08-18 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US20140178220A1 (en) * 2008-06-03 2014-06-26 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US8596998B2 (en) * 2008-06-03 2013-12-03 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US8500964B2 (en) * 2008-12-19 2013-08-06 Benq Materials Corp. Method of fabricating bubble-type micro-pump
US20100155230A1 (en) * 2008-12-19 2010-06-24 Daxon Technology Inc. Method of Fabricating Bubble-Type Micro-Pump
US8899944B2 (en) 2009-12-04 2014-12-02 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US20110152826A1 (en) * 2009-12-18 2011-06-23 K&Y Corporation Infusion Pump
US8480622B2 (en) * 2009-12-18 2013-07-09 Sims Infusion pump
US8353872B2 (en) * 2009-12-18 2013-01-15 Sims Infusion pump
US20120053560A1 (en) * 2009-12-18 2012-03-01 Yasuhiro Kawamura Infusion Pump
WO2012140180A1 (fr) * 2011-04-15 2012-10-18 Ikerlan, S. Coop. Noyau à impulsions pour micro-pompe à fluide
EP2511529A1 (fr) * 2011-04-15 2012-10-17 Ikerlan, S. Coop. Cýur d'impulsion pour micropompe de fluides
WO2017129327A1 (fr) * 2016-01-27 2017-08-03 Siemens Aktiengesellschaft Pompe à membrane dont l'aspiration de poussières s'effectue par le bas
US10914299B2 (en) 2016-01-27 2021-02-09 Dipl. Ing. Ernst Schmitz Gmbh & Co. Kg Maschinen Und Apparatebau Diaphragm pump comprising dust suction from below
US10781807B2 (en) 2016-08-25 2020-09-22 Dipl. Ing. Ernst Schmitz Gmbh & Co. Kg Maschinen Und Apparatebau Double membrane for a dust pump
US11215174B2 (en) 2016-08-25 2022-01-04 Dipl. Ing. Ernst Schmitz Gmbh & Co. Kg Maschinen Und Apparatebau Diaphragm pump having a porous, arched aluminum filter
US11590440B2 (en) 2016-08-25 2023-02-28 Dipl. Ing. Ernst Schmitz GmbH & Co. KG Maschinen and Apparatebau Production of a porous aluminum filter for a diaphragm pump
CN111591038A (zh) * 2019-02-20 2020-08-28 东芝泰格有限公司 压电泵及液体喷出装置

Also Published As

Publication number Publication date
TW200508489A (en) 2005-03-01
CN1833105A (zh) 2006-09-13
WO2005012729A1 (fr) 2005-02-10
JPWO2005012729A1 (ja) 2007-11-01
CN100510400C (zh) 2009-07-08
TWI255886B (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US20070065308A1 (en) Diaphragm pump and cooling system with the diaphragm pump
KR100594802B1 (ko) 다이어프램 에어펌프
US7553135B2 (en) Diaphragm air pump
TWI747076B (zh) 行動裝置散熱組件
KR102666233B1 (ko) 폐쇄형 및 개방 장치를 위한 마이크로-전자기계 시스템 기반의 냉각 시스템
EP3328176B1 (fr) Dispositif et système de dissipation de chaleur à refroidissement par air
EP2306019A1 (fr) Microsoufflante piézoélectrique
JP4529915B2 (ja) 圧電ポンプおよびこれを用いた冷却装置
US20070020124A1 (en) Micropump for electronics cooling
JP2006083848A (ja) マイクロメンブレインポンプ
US20240060725A1 (en) Cooling device with easy-to-weld structure
TWI650839B (zh) 三維晶片積體電路冷卻系統
JP4778319B2 (ja) 圧電ファンおよびこれを用いた冷却装置、その駆動方法
TWI642850B (zh) 氣體循環控制裝置
JP4386165B2 (ja) 液体循環装置および該液体循環装置を備えた電子機器
TWM539762U (zh) 氣冷散熱裝置
TW202138677A (zh) 薄型氣體傳輸裝置
JP2003035264A (ja) 小型ポンプ及びその駆動方法
US11746773B2 (en) Gas transportation device
TWM551656U (zh) 氣體循環控制裝置
TWM565240U (zh) 微型輸送裝置
CN108112216B (zh) 气冷散热装置
TWI768915B (zh) 微型氣體傳輸裝置
TWM542332U (zh) 氣冷散熱裝置
CN108463088B (zh) 气冷散热装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAMOTO, MITSURU;SASAKI, YASUHIRO;OCHI, ATSUSHI;AND OTHERS;REEL/FRAME:017530/0883

Effective date: 20060123

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION