US20060084135A1 - Compositions for manipulating the lifespan and stress response of cells and organisms - Google Patents

Compositions for manipulating the lifespan and stress response of cells and organisms Download PDF

Info

Publication number
US20060084135A1
US20060084135A1 US10/884,062 US88406204A US2006084135A1 US 20060084135 A1 US20060084135 A1 US 20060084135A1 US 88406204 A US88406204 A US 88406204A US 2006084135 A1 US2006084135 A1 US 2006084135A1
Authority
US
United States
Prior art keywords
compound
cell
formula
further embodiment
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/884,062
Other languages
English (en)
Inventor
Konrad Howitz
Robert Zipkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biomol International LP
Original Assignee
BIOMOL RESEARCH LABORATORIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIOMOL RESEARCH LABORATORIES Inc filed Critical BIOMOL RESEARCH LABORATORIES Inc
Priority to US10/884,062 priority Critical patent/US20060084135A1/en
Assigned to BIOMOL RESEARCH LABORATORIES, INC. reassignment BIOMOL RESEARCH LABORATORIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOWITZ, KONRAD T., ZIPKIN, ROBERT E.
Publication of US20060084135A1 publication Critical patent/US20060084135A1/en
Assigned to BIOMOL INTERNATIONAL, INC. reassignment BIOMOL INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIOMOL RESEARCH LABORATORIES, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/17Amides, e.g. hydroxamic acids having the group >N—C(O)—N< or >N—C(S)—N<, e.g. urea, thiourea, carmustine
    • A61K31/175Amides, e.g. hydroxamic acids having the group >N—C(O)—N< or >N—C(S)—N<, e.g. urea, thiourea, carmustine having the group, >N—C(O)—N=N— or, e.g. carbonohydrazides, carbazones, semicarbazides, semicarbazones; Thioanalogues thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/08Antiseborrheics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/12Keratolytics, e.g. wart or anti-corn preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/14Decongestants or antiallergics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/916Hydrolases (3) acting on ester bonds (3.1), e.g. phosphatases (3.1.3), phospholipases C or phospholipases D (3.1.4)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)

Definitions

  • yeast S. cerevisiae has proven a particularly useful model in which to study cell autonomous pathways of longevity (Sinclair, D. Mech Ageing Dev 123, 857-67 (2002)). In this organism, replicative lifespan is defined as the number of daughter cells an individual mother cell produces before dying.
  • Yeast lifespan extension is governed by PNC1, a calorie restriction (CR)—and stress-responsive gene that depletes nicotinamide, a potent inhibitor of the longevity protein Sir2. Both PNC1 and SIR2 are required for lifespan extension by CR or mild stress (Lin et al.
  • CR may confer health benefits in a variety of species because it is a mild stress that induces a sirtuin-mediated organismal defense response (Anderson et al. Nature 423, 181-5 (2003).
  • Sir2 a histone deacetylase (HDAC), is the founding member of the sirtuin deacetylase family, which is characterized by a requirement for NAD + as a co-substrate (Landry et al. Proc Natl Acad Sci USA 97, 5807-11 (2000); Imai et al. Nature 403, 795-800 (2000); Smith et al. Proc Natl Acad Sci USA 97, 6658-63 (2000); Tanner et al. Proc Natl Acad Sci USA 97, 14178-82 (2000); Tanny et al. Cell 99, 735-45 (1999); Tanny, J. C. and Moazed, D.
  • HDAC histone deacetylase
  • SIR2 was originally identified as a gene required for the formation of transcriptionally silent heterochromatin at yeast mating-type loci (Laurenson, P. and Rine, J. Microbiol Rev 56, 543-60. (1992)). Subsequent studies have shown that Sir2 suppresses recombination between repetitive DNA sequences at ribosomal RNA genes (rDNA)(Smith, J. S. and Boeke, J. D. Genes Dev 11, 241-54 (1997); Bryk et al. Genes Dev 11, 255-69 (1997); Gottlieb, S. and Esposito, R. E. Cell 56, 771-6 (1989)).
  • rDNA ribosomal RNA genes
  • Sir2 has also been implicated in the partitioning of carbonylated proteins to yeast mother cells during budding (Aguilaniu et al. Science ( 2003). Studies in C. elegans, mammalian cells, and the single-celled parasite Leishmania, indicate that the survival and longevity functions of sirtuins are conserved (Tissenbaum, H. A. and Guarente, L. Nature 410, 227-30 (2001); Vaziri et al. Cell 107, 149-59 (2001); Luo et al. Cell 107, 137-48 (2001); Vergnes et al. Gene 296, 139-50 (2002)). In C.
  • sir-2.1 additional copies of sir-2.1 extend lifespan by 50% via the insulin/IGF-1 signalling pathway, the same pathway recently shown to regulate lifespan in rodents (Holzenberger et al. Nature 421, 182-7 (2003); Shimokawa et al. Faseb J 17, 1108-9 (2003); Tatar et al. Science 299, 1346-51 (2003)).
  • the method may comprise contacting a sirtuin deacetylase protein family member with a compound having a structure selected from the group of formulas 1-25 and 31.
  • a compound having a structure selected from the group of formulas 1-25 and 31 Compounds falling within formulas 1-25 and 31 and activating a sirtuin protein are referred to herein as “activating compounds.”
  • the activating compound may be a polyphenol compound, such as a plant polyphenol or an analog or derivative thereof.
  • Exemplary compounds are selected from the group consisting of flavones, stilbenes, flavanones, isoflavones, catechins, chalcones, tannins and anthocyanidins or analog or derivative thereof.
  • compounds are selected from the group of resveratrol, butein, piceatannol, isoliquiritgenin, fisetin, luteolin, 3,6,3′,4′-tetrahydroxyflavone, quercetin, and analogs and derivatives thereof.
  • the activating compound if it is a naturally occurring compound, it may not in a form in which it is naturally occurring.
  • the sirtuin deacetylase protein family member maybe the human SIRT1 protein or the yeast Sir2 protein.
  • the sirtuin deacetylase protein family member may be in a cell, in which case the method may comprise contacting the cell with an activating compound or introducing a compound into the cell.
  • the cell may be in vitro.
  • the cell may be a cell of a subject.
  • the cell may be in a subject and the method may comprise administering the activating compound to the subject.
  • Methods may further comprise determining the activity of the sirtuin deacetylase protein family member.
  • a cell may be contacted with an activating compound at a concentration of 0.1-100 ⁇ M. In certain embodiments, a cell is further contacted with an additional activating compound. In other embodiments, a cell is contacted with a least three different activating compounds.
  • Other methods encompassed herein include methods for inhibiting the activity of p53 in a cell and optionally protecting the cell against apoptosis, e.g., comprising contacting the cell with an activating compound at a concentration of less than about 0.5 ⁇ M.
  • Another method comprises stimulating the activity of p53 in a cell and optionally inducing apoptosis in the cell, comprising contacting the cell with an activating compound at a concentration of at least 50 ⁇ M.
  • a compound selected from the group consisting of stilbene, flavone and chalcone family members Such compounds are referred to as “lifespan extending compounds.”
  • the compound may have the structure set forth in formula 7.
  • Other compounds may be activating compounds having a structure set forth in any of formulas 1-25 and 30, provided they extend lifespan or increase resistance to stress.
  • the compound may be selected from the group consisting of resveratrol, butein and fisetin and analogs and derivatives thereof.
  • the lifespan extending compound is a naturally occurring compound, it is not in a form in which it is naturally occurring.
  • the method may further comprise determining the lifespan of the cell.
  • the method may also further comprise contacting the cell with an additional compound or with at least three compounds selected from the group consisting of stilbene, flavone and chalcone family members or other lifespan extending compound.
  • the cell may be contacted with a compound at a concentration of less than about 10 ⁇ M or at a concentration of about 10-100 ⁇ M.
  • the cell may be in vitro or in vivo, it may be a yeast cell or a mammalian cell. If the cell is in a subject, the method may comprise administering the compound to the subject.
  • One method comprises contacting a sirtuin or cell or organism comprising such with an inhibitory compound having a formula selected from the group of formulas 26-29 and 31.
  • compositions comprising, e.g., two compounds each having a formula selected from the group of formulas 1-31.
  • screening methods for identifying compounds e.g., small molecules, that modulate sirtuins and/or modulate the life span or resistance to stress of cells.
  • Methods may comprise (i) contacting a cell comprising a SIRT1 protein with a peptide of p53 comprising an acetylated residue 382 in the presence of an inhibitor of class I and class II HDAC under conditions appropriate for SIRT1 to deacetylate the peptide and (ii) determining the level of acetylation of the peptide, wherein a different level of acetylation of the peptide in the presence of the test compound relative to the absence of the test compound indicates that the test compound modulates SIRT1 in vivo.
  • FIGS. 1 a through 1 d show the effects of resveratrol on the kinetics of recombinant human SIRT1.
  • FIG. 1 a shows resveratrol dose-response of SIRT1 catalytic rate at 25 ⁇ M NAD + , 25 ⁇ M p53-382 acetylated peptide.
  • Relative initial rates are the mean of two determinations, each derived from the slopes of fluorescence (arbitrary fluorescence units, AFU) vs. time plots with data obtained at 0, 5, 10 and 20 min. of deacetylation.
  • FIG. 1 a shows resveratrol dose-response of SIRT1 catalytic rate at 25 ⁇ M NAD + , 25 ⁇ M p53-382 acetylated peptide.
  • Relative initial rates are the mean of two determinations, each derived from the slopes of fluorescence (arbitrary fluorescence units, AFU) vs. time plot
  • 1 b shows the SIRT1 initial rate at 3 mM NAD + , as a function of p53-382 acetylated peptide concentration in the presence ( ⁇ ) or absence ( ⁇ ) of 100 ⁇ M resveratrol.
  • Lines represent non-linear least-squares fits to the Michaelis-Menten equation.
  • FIG. 1 d shows effects of resveratrol on nicotinamide inhibition of SIRT1.
  • FIG. 2 a through 2 d show the effects of polyphenols on Sir2 and S. cerevisiae lifespan.
  • FIG. 2 a shows the initial deacetylation rate of recombinant GST-Sir2 as a function of resveratrol concentration. Rates were determined at the indicated resveratrol concentrations, either with 100 ⁇ M ‘Fluor de Lys’ acetylated lysine substrate (FdL) plus 3 mM NAD + ( ⁇ ) or with 200 ⁇ M p53-382 acetylated peptide substrate plus 200 ⁇ M NAD + ( ⁇ ).
  • FIG. 2 b shows lifespan analyses determined by micro-manipulating individual yeast cells as described Sinclair, D. A.
  • FIG. 2 c shows the average lifespan for wild type untreated ( ⁇ ), fisetin ( ⁇ ), butein ( ), or resveratrol ( ⁇ ).
  • FIG. 2 d shows average lifespan for wild type untreated ( ⁇ ), and growth with resveratrol at 10 ⁇ M ( ⁇ ), 100 ⁇ M ( ⁇ ), or 500 ⁇ M ( ⁇ ).
  • FIGS. 3 a through 3 f show resveratrol extending lifespan by mimicking CR and suppressing rDNA recombination. Yeast lifespans were determined as in FIG. 2 .
  • FIG. 3 a shows average lifespan for wild type (wt) untreated ( ⁇ ), wild type+resveratrol (wt+R; ⁇ ) and glucose-restricted+resveratrol (CR+R; ⁇ ).
  • FIG. 3 b shows average lifespans for wild type ( ⁇ ), sir2( ⁇ ) sir2+resveratrol (sir2+R; ⁇ ), pnc1 ( ⁇ ), and pnc1+resveratrol (pnc1+R; ⁇ ).
  • FIG. 3 a shows average lifespan for wild type (wt) untreated ( ⁇ ), wild type+resveratrol (wt+R; ⁇ ) and glucose-restricted+resveratrol (CR+R; ⁇ ).
  • FIG. 3 b shows average
  • FIG. 3 c shows resveratrol suppressing the frequency of ribosomal DNA recombination in the presence and absence of nicotinamide (NAM). Frequencies were determined by loss of the ADE2 marker gene from the rDNA locus (RDN1).
  • FIG. 3 d shows that resveratrol does not suppress rDNA recombination in a sir2 strain.
  • FIG. 3 e show that resveratrol and other sirtuin activators do not significantly increase rDNA silencing compared to a 2 ⁇ SIR2 strain.
  • Pre-treated cells (RDN1::URA3) were harvested and spotted as 10-fold serial dilutions on either SC or SC with 5-fluororotic acid (5-FOA).
  • FIG. 3 f show quantitation of the effect of resveratrol on rDNA silencing by counting numbers of surviving cells on FOA/total plated.
  • FIGS. 4 a through 4 e show resveratrol and other polyphenols stimulating SIRT1 activity in human cells.
  • FIG. 4 a shows a method for assaying intracellular deacetylase activity with a fluorogenic, cell-permeable substrate, FdL (‘Fluor de Lys’, BIOMOL).
  • FdL 200 ⁇ M
  • FdL 200 ⁇ M
  • deAc-FdL lysine-deacetylated product
  • Cells are lysed with detergent in the presence of 1 ⁇ M TSA and 1 mM nicotinamide.
  • FIG. 4 b shows SIRT1 activating polyphenols stimulating TSA-insensitive, FdL deacetylation by HeLa S3 cells.
  • Cells were grown adherently in DMEM/10% FCS and treated for 1 hour with 200 ⁇ M FdL, 1 ⁇ M TSA and either vehicle (0.5% final DMSO, Control) or 500 ⁇ M of the indicated compound. Intracellular accumulation of deAc-FdL was then determined as described briefly in FIG. 4 a.
  • FIG. 4 c shows U2OS osteosarcoma cells grown to ⁇ 90% confluence in DMEM/10% FCS exposed to 0 or 10 grays of gamma irradiation (IR). Whole cell lysates were prepared 4 hours post-irradiation and were probed by Western blotting with indicated antibodies.
  • FIG. 4 c shows U2OS osteosarcoma cells grown to ⁇ 90% confluence in DMEM/10% FCS exposed to 0 or 10 grays of gamma irradiation (IR). Whole cell lysates were prepared 4 hours post-irradiation and were probed by Western blotting with indicated antibodies.
  • FIG. 4 d shows U2OS cells cultured as above and pre-treated with the indicated amounts of resveratrol or a 0.5% DMSO blank for 4 hours after which cells were exposed to 0 or 50 J/cm 2 of UV radiation. Lysates were prepared and analyzed by Western blot as in FIG. 4 c.
  • FIG. 4 e shows human embryonic kidney cells (HEK 293) expressing wild type SIRT1 or dominant negative SIRT1-H363Y (SIRT1-HY) protein cultured as described above, pre-treated with the indicated amounts of resveratrol or a 0.5% DMSO blank for 4 hours, and exposed to 50 J/cm 2 of UV radiation as above. Lysates were prepared and analyzed as above.
  • FIG. 5 shows the deacetylation site preferences of recombinant SIRT1. Initial rates of deacetylation were determined for a series of fluorogenic acetylated peptide substrates based on short stretches of human histone H3, H4 and p53 sequence.
  • Substrates examined include: H3-4-9 with the sequence K(Ac)QTARK(Ac) (SEQ ID NO:1); H3-9-14 with the sequence K(Ac)STGGK(Ac) (SEQ ID NO:2); H3-9-14/pS with the sequence K(Ac)—S(PO3)-TGGK(Ac) (SEQ ID NO:3); H3-14-18 with the sequence K(Ac)APRK(Ac) (SEQ ID NO:4); H4-1-5 with the sequence SGRGK(Ac)(SEQ ID NO:5); H4-12-16(Fluor de Lys-H4-AcK16) with the sequence KGGAK(Ac) (SEQ ID NO:6); H4-12-16/diAc with the sequence K(Ac)GGAK(Ac)(SEQ ID NO:7); p53-320 (Fluor de Lys-SIRT2) with the sequence QPKK(Ac)(SEQ ID NO:8); p
  • FIG. 6 a through 6 c show intracellular deacetylation activity measured with a cell-permeable, fluorogenic HDAC and sirtuin substrate.
  • HeLa S3 cells were grown to confluence in DMEM/10% FCS and then incubated with fresh medium containing 200 ⁇ M FdL for the indicated times at 37° C.
  • Intracellular and medium levels of deacetylated substrate (deAc-FdL) were determined according to the manufacturer's instructions (HDAC assay kit, BIOMOL). All data points represent the mean of two determinations.
  • FIG. 1 HDAC assay kit
  • FIG. 6 a shows the concentration ratio of intracellular ([deAc-FdL] i ) to medium ([deAc-FdL] o ) concentrations in the presence ( ⁇ ) or absence ( ⁇ ) of 1 ⁇ M trichostatin A (TSA).
  • FIG. 6 b shows total accumulation of deacetylated substrate (deAc-FdL) in the presence ( ⁇ ) or absence ( ⁇ ) of 1 ⁇ M TSA.
  • FIG. 6 c shows intracellular accumulation of deacetylated substrate (deAc-FdL) in the presence ( ⁇ ) or absence ( ⁇ ) of 1 ⁇ M TSA.
  • Activating a sirtuin protein refers to the action of producing an activated sirtuin protein, i.e., a sirtuin protein that is capable of performing at least one of its biological activities to at least some extent, e.g., with an increase of activity of at least about 10%, 50%, 2 fold or more.
  • Biological activities of sirtuin proteins include deacetylation, e.g., of histones and p53; extending lifespan; increasing genomic stability; silencing transcription; and controlling the segregation of oxidized proteins between mother and daughter cells.
  • activating compound refers to a compound that activates a sirtuin protein. Activating compounds may have a formula selected from the group of formulas 1-25 and 30.
  • a “form that is naturally occurring” when referring to a compound means a compound that is in a form, e.g., a composition, in which it can be found naturally. For example, since resveratrol can be found in red wine, it is present in red wine in a form that is naturally occurring. A compound is not in a form that is naturally occurring if, e.g., the compound has been purified and separated from at least some of the other molecules that are found with the compound in nature.
  • “Inhibiting a sirtuin protein” refers to the action of reducing at least one of the biological activities of a sirtuin protein to at least some extent, e.g., at least about 10%, 50%, 2 fold or more.
  • inhibitory compound refers to a compound that inhibits a sirtuin protein. Inhibitory compounds may have a formula selected from the group of formulas 26-29 and 31.
  • a “naturally occurring compound” refers to a compound that can be found in nature, i.e., a compound that has not been designed by man. A naturally occurring compound may have been made by man or by nature.
  • Replicative lifespan which is used interchangeably herein with “lifespan” of a cell refers to the number of daughter cells produced by an individual “mother cell.” “Chronological aging,” on the other hand, refers to the length of time a population of non-dividing cells remains viable when deprived of nutrients. “Increasing the lifespan of a cell” or “extending the lifespan of a cell,” as applied to cells or organisms, refers to increasing the number of daughter cells produced by one cell; increasing the ability of cells or organisms to cope with stresses and combat damage, e.g., to DNA, proteins; and/or increasing the ability of cells or organisms to survive and exist in a living state for longer under a particular condition, e.g., stress. Lifespan can be increased by at least about 20%, 30%, 40%, 50%, 60% or between 20% and 70%, 30% and 60%, 40% and 60% or more using methods described herein.
  • “Sirtuin deacetylase protein family members;” “Sir2 family members;” “Sir2 protein family members;” or “sirtuin proteins” includes yeast Sir2, Sir-2.1, and human SIRT1 and SIRT2 proteins.
  • Other family members include the four additional yeast Sir2-like genes termed “HST genes” (homologues of Sir two) HST1, HST2, HST3 and HST4, and the five other human homologues hSIRT3, hSIRT4, hSIRT5, hSIRT6 and hSIRT7 (Brachmann et al. (1995) Genes Dev. 9:2888 and Frye et al. (1999) BBRC 260:273).
  • Preferred sirtuins are those that share more similarities with SIRT1, i.e., hSIRT1, and/or Sir2 than with SIRT2, such as those members having at least part of the N-terminal sequence present in SIRT1 and absent in SIRT2 such as SIRT3 has.
  • Cis configurations are often labeled as (Z) configurations.
  • Trans is art-recognized and refers to the arrangement of two atoms or groups around a double bond such that the atoms or groups are on the opposite sides of a double bond.
  • Trans configurations are often labeled as (E) configurations.
  • covalent bond is art-recognized and refers to a bond between two atoms where electrons are attracted electrostatically to both nuclei of the two atoms, and the net effect of increased electron density between the nuclei counterbalances the internuclear repulsion.
  • covalent bond includes coordinate bonds when the bond is with a metal ion.
  • therapeutic agent refers to any chemical moiety that is a biologically, physiologically, or pharmacologically active substance that acts locally or systemically in a subject.
  • therapeutic agents also referred to as “drugs”
  • drug are described in well-known literature references such as the Merck Index, the Physicians Desk Reference, and The Pharmacological Basis of Therapeutics, and they include, without limitation, medicaments; vitamins; mineral supplements; substances used for the treatment, prevention, diagnosis, cure or mitigation of a disease or illness; substances which affect the structure or function of the body; or pro-drugs, which become biologically active or more active after they have been placed in a physiological environment.
  • therapeutic effect is art-recognized and refers to a local or systemic effect in animals, particularly mammals, and more particularly humans caused by a pharmacologically active substance.
  • the term thus means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and/or conditions in an animal or human.
  • therapeutically-effective amount means that amount of such a substance that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment.
  • the therapeutically effective amount of such substance will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
  • certain compositions described herein may be administered in a sufficient amount to produce a at a reasonable benefit/risk ratio applicable to such treatment.
  • synthetic is art-recognized and refers to production by in vitro chemical or enzymatic synthesis.
  • meso compound is art-recognized and refers to a chemical compound which has at least two chiral centers but is achiral due to a plane or point of symmetry.
  • chiral is art-recognized and refers to molecules that have the property of non-superimposability of the mirror image partner, while the term “achiral” refers to molecules that are superimposable on their mirror image partner.
  • a “prochiral molecule” is a molecule that has the potential to be converted to a chiral molecule in a particular process.
  • stereoisomers is art-recognized and refers to compounds that have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
  • enantiomers refer to two stereoisomers of a compound that are non-superimposable mirror images of one another.
  • Diastereomers refers to stereoisomers with two or more centers of dissymmetry and whose molecules are not mirror images of one another.
  • a “stereoselective process” is one that produces a particular stereoisomer of a reaction product in preference to other possible stereoisomers of that product.
  • An “enantioselective process” is one that favors production of one of the two possible enantiomers of a reaction product.
  • regioisomers is art-recognized and refers to compounds that have the same molecular formula but differ in the connectivity of the atoms. Accordingly, a “regioselective process” is one that favors the production of a particular regioisomer over others, e.g., the reaction produces a statistically significant increase in the yield of a certain regioisomer.
  • esters are art-recognized and refers to molecules with identical chemical constitution and containing more than one stereocenter, but which differ in configuration at only one of these stereocenters.
  • ED 50 means the dose of a drug that produces 50% of its maximum response or effect, or alternatively, the dose that produces a pre-determined response in 50% of test subjects or preparations.
  • LD 50 means the dose of a drug that is lethal in 50% of test subjects.
  • therapeutic index is an art-recognized term that refers to the therapeutic index of a drug, defined as LD 50 /ED 50 .
  • structure-activity relationship or “(SAR)” is art-recognized and refers to the way in which altering the molecular structure of a drug or other compound alters its biological activity, e.g., its interaction with a receptor, enzyme, nucleic acid or other target and the like.
  • aliphatic is art-recognized and refers to a linear, branched, cyclic alkane, alkene, or alkyne.
  • aliphatic groups in the present compounds are linear or branched and have from 1 to about 20 carbon atoms.
  • alkyl is art-recognized, and includes saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups.
  • a straight chain or branched chain alkyl has about 30 or fewer carbon atoms in its backbone (e.g., C 1 -C 30 for straight chain, C 3 -C 30 for branched chain), and alternatively, about 20 or fewer.
  • cycloalkyls have from about 3 to about 10 carbon atoms in their ring structure, and alternatively about 5, 6 or 7 carbons in the ring structure.
  • alkyl is also defined to include halosubstituted alkyls.
  • alkyl includes “substituted alkyls”, which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
  • substituents may include, for example, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a s
  • the moieties substituted on the hydrocarbon chain may themselves be substituted, if appropriate.
  • the substituents of a substituted alkyl may include substituted and unsubstituted forms of amino, azido, imino, amido, phosphoryl (including phosphonate and phosphinate), sulfonyl (including sulfate, sulfonamido, sulfamoyl and sulfonate), and silyl groups, as well as ethers, alkylthios, carbonyls (including ketones, aldehydes, carboxylates, and esters), —CN and the like. Exemplary substituted alkyls are described below. Cycloalkyls may be further substituted with alkyls, alkenyls, alkoxys, alkylthios, aminoalkyls, carbonyl-substituted alkyls, —CN, and the like.
  • aralkyl is art-recognized and refers to an alkyl group substituted with an aryl group (e.g., an aromatic or heteroaromatic group).
  • alkenyl and alkynyl are art-recognized and refer to unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double or triple bond respectively.
  • lower alkyl refers to an alkyl group, as defined above, but having from one to about ten carbons, alternatively from one to about six carbon atoms in its backbone structure.
  • lower alkenyl and “lower alkynyl” have similar chain lengths.
  • heteroatom is art-recognized and refers to an atom of any element other than carbon or hydrogen.
  • Illustrative heteroatoms include boron, nitrogen, oxygen, phosphorus, sulfur and selenium.
  • aryl is art-recognized and refers to 5-, 6- and 7-membered single-ring aromatic groups that may include from zero to four heteroatoms, for example, benzene, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like.
  • aryl groups having heteroatoms in the ring structure may also be referred to as “aryl heterocycles” or “heteroaromatics.”
  • the aromatic ring may be substituted at one or more ring positions with such substituents as described above, for example, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, alkoxyl, amino, nitro, sulfhydryl, imino, amido, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, sulfonamido, ketone, aldehyde, ester, heterocyclyl, aromatic or heteroaromatic moieties, —CF 3 , —CN, or the like.
  • aryl also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings (the rings are “fused rings”) wherein at least one of the rings is aromatic, e.g., the other cyclic rings may be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls.
  • ortho, meta and para are art-recognized and refer to 1,2-, 1,3- and 1,4-disubstituted benzenes, respectively.
  • 1,2-dimethylbenzene and ortho-dimethylbenzene are synonymous.
  • heterocyclyl or “heterocyclic group” are art-recognized and refer to 3- to about 10-membered ring structures, alternatively 3- to about 7-membered rings, whose ring structures include one to four heteroatoms. Heterocycles may also be polycycles.
  • Heterocyclyl groups include, for example, thiophene, thianthrene, furan, pyran, isobenzofuran, chromene, xanthene, phenoxanthene, pyrrole, imidazole, pyrazole, isothiazole, isoxazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, pyrimidine, phenanthroline, phenazine, phenarsazine, phenothiazine, furazan, phenoxazine, pyrrolidine, o
  • the heterocyclic ring may be substituted at one or more positions with such substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, ketone, aldehyde, ester, a heterocyclyl, an aromatic or heteroaromatic moiety, —CF 3 , —CN, or the like.
  • substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphonate, phosphinate, carbonyl, carboxy
  • polycyclyl or “polycyclic group” are art-recognized and refer to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls) in which two or more carbons are common to two adjoining rings, e.g., the rings are “fused rings”. Rings that are joined through non-adjacent atoms are termed “bridged” rings.
  • Each of the rings of the polycycle may be substituted with such substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, ketone, aldehyde, ester, a heterocyclyl, an aromatic or heteroaromatic moiety, —CF 3 , —CN, or the like.
  • substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphonate, phosphinate, carbonyl, carboxyl, si
  • carrier is art-recognized and refers to an aromatic or non-aromatic ring in which each atom of the ring is carbon.
  • nitro is art-recognized and refers to —NO 2 ;
  • halogen is art-recognized and refers to —F, —Cl, —Br or —I;
  • sulfhydryl is art-recognized and refers to —SH;
  • hydroxyl means —OH;
  • sulfonyl is art-recognized and refers to —SO 2 ⁇ .
  • Halide designates the corresponding anion of the halogens, and “pseudohalide” has the definition set forth on page 560 of “ Advanced Inorganic Chemistry ” by Cotton and Wilkinson.
  • amine and “amino” are art-recognized and refer to both unsubstituted and substituted amines, e.g., a moiety that may be represented by the general formulas: wherein R50, R51 and R52 each independently represent a hydrogen, an alkyl, an alkenyl, —(CH 2 ) m —R61, or R50 and R51, taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure; R61 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle; and m is zero or an integer in the range of 1 to 8.
  • R50 or R51 may be a carbonyl, e.g., R50, R51 and the nitrogen together do not form an imide.
  • R50 and R51 each independently represent a hydrogen, an alkyl, an alkenyl, or —(CH 2 ) m —R61.
  • alkylamine includes an amine group, as defined above, having a substituted or unsubstituted alkyl attached thereto, i.e., at least one of R50 and R51 is an alkyl group.
  • acylamino is art-recognized and refers to a moiety that may be represented by the general formula: wherein R50 is as defined above, and R54 represents a hydrogen, an alkyl, an alkenyl or —(CH 2 ) m —R61, where m and R61 are as defined above.
  • amide is art recognized as an amino-substituted carbonyl and includes a moiety that may be represented by the general formula: wherein R50 and R51 are as defined above. Certain embodiments of amides may not include imides which may be unstable.
  • alkylthio refers to an alkyl group, as defined above, having a sulfur radical attached thereto.
  • the “alkylthio” moiety is represented by one of —S-alkyl, —S-alkenyl, —S-alkynyl, and —S—(CH 2 ) m —R61, wherein m and R61 are defined above.
  • Representative alkylthio groups include methylthio, ethyl thio, and the like.
  • carbonyl is art recognized and includes such moieties as may be represented by the general formulas: wherein X50 is a bond or represents an oxygen or a sulfur, and R55 and R56 represents a hydrogen, an alkyl, an alkenyl, —(CH 2 ) m —R61 or a pharmaceutically acceptable salt, R56 represents a hydrogen, an alkyl, an alkenyl or —(CH 2 ) m —R61, where m and R61 are defined above. Where X50 is an oxygen and R55 or R56 is not hydrogen, the formula represents an “ester”.
  • X50 is an oxygen
  • R55 is as defined above
  • the moiety is referred to herein as a carboxyl group, and particularly when R55 is a hydrogen, the formula represents a “carboxylic acid”.
  • X50 is an oxygen
  • R56 is hydrogen
  • the formula represents a “formate”.
  • the oxygen atom of the above formula is replaced by sulfur
  • the formula represents a “thiolcarbonyl” group.
  • X50 is a sulfur and R55 or R56 is not hydrogen
  • the formula represents a “thiolester.”
  • X50 is a sulfur and R55 is hydrogen
  • the formula represents a “thiolcarboxylic acid.”
  • X50 is a sulfur and R56 is hydrogen
  • the formula represents a “thiolformate.”
  • X50 is a bond, and R55 is not hydrogen
  • the above formula represents a “ketone” group.
  • X50 is a bond, and R55 is hydrogen
  • the above formula represents an “aldehyde” group.
  • alkoxyl or “alkoxy” are art-recognized and refer to an alkyl group, as defined above, having an oxygen radical attached thereto.
  • Representative alkoxyl groups include methoxy, ethoxy, propyloxy, tert-butoxy and the like.
  • An “ether” is two hydrocarbons covalently linked by an oxygen. Accordingly, the substituent of an alkyl that renders that alkyl an ether is or resembles an alkoxyl, such as may be represented by one of —O-alkyl, —O-alkenyl, —O-alkynyl, —O—(CH 2 ) m —R61, where m and R61 are described above.
  • sulfonate is art recognized and refers to a moiety that may be represented by the general formula: in which R57 is an electron pair, hydrogen, alkyl, cycloalkyl, or aryl.
  • sulfonamido is art recognized and includes a moiety that may be represented by the general formula: in which R50 and R56 are as defined above.
  • sulfamoyl is art-recognized and refers to a moiety that may be represented by the general formula: in which R50 and R51 are as defined above.
  • sulfonyl is art-recognized and refers to a moiety that may be represented by the general formula: in which R58 is one of the following: hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl or heteroaryl.
  • sulfoxido is art-recognized and refers to a moiety that may be represented by the general formula: in which R58 is defined above.
  • phosphoryl is art-recognized and may in general be represented by the formula: wherein Q50 represents S or O, and R59 represents hydrogen, a lower alkyl or an aryl.
  • the phosphoryl group of the phosphorylalkyl may be represented by the general formulas: wherein Q50 and R59, each independently, are defined above, and Q51 represents O, S or N.
  • Q50 is S
  • the phosphoryl moiety is a “phosphorothioate”.
  • phosphonamidite is art-recognized and may be represented in the general formulas: wherein Q51, R50, R51 and R59 are as defined above, and R60 represents a lower alkyl or an aryl.
  • Analogous substitutions may be made to alkenyl and alkynyl groups to produce, for example, aminoalkenyls, aminoalkynyls, amidoalkenyls, amidoalkynyls, iminoalkenyls, iminoalkynyls, thioalkenyls, thioalkynyls, carbonyl-substituted alkenyls or alkynyls.
  • each expression e.g. alkyl, m, n, and the like, when it occurs more than once in any structure, is intended to be independent of its definition elsewhere in the same structure.
  • selenoalkyl is art-recognized and refers to an alkyl group having a substituted seleno group attached thereto.
  • exemplary “selenoethers” which may be substituted on the alkyl are selected from one of —Se-alkyl, —Se-alkenyl, —Se-alkynyl, and —Se—(CH 2 ) m —R61, m and R61 being defined above.
  • triflyl, tosyl, mesyl, and nonaflyl are art-recognized and refer to trifluoromethanesulfonyl, p-toluenesulfonyl, methanesulfonyl, and nonafluorobutanesulfonyl groups, respectively.
  • triflate, tosylate, mesylate, and nonaflate are art-recognized and refer to trifluoromethanesulfonate ester, p-toluenesulfonate ester, methanesulfonate ester, and nonafluorobutanesulfonate ester functional groups and molecules that contain said groups, respectively.
  • Me, Et, Ph, Tf, Nf, Ts, and Ms represent methyl, ethyl, phenyl, trifluoromethanesulfonyl, nonafluorobutanesulfonyl, p-toluenesulfonyl and methanesulfonyl, respectively.
  • a more comprehensive list of the abbreviations utilized by organic chemists of ordinary skill in the art appears in the first issue of each volume of the Journal of Organic Chemistry ; this list is typically presented in a table entitled Standard List of Abbreviations.
  • compositions described herein may exist in particular geometric or stereoisomeric forms.
  • compounds may also be optically active. Contemplated herein are all such compounds, including cis- and trans-isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof. Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are encompassed herein.
  • a particular enantiomer of a compound may be prepared by asymmetric synthesis, or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomers.
  • the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl, diastereomeric salts are formed with an appropriate optically-active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic means well known in the art, and subsequent recovery of the pure enantiomers.
  • substitution or “substituted with” includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, or other reaction.
  • substituted is also contemplated to include all permissible substituents of organic compounds.
  • the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds.
  • Illustrative substituents include, for example, those described herein above.
  • the permissible substituents may be one or more and the same or different for appropriate organic compounds.
  • Heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms.
  • Compounds are not intended to be limited in any manner by the permissible substituents of organic compounds.
  • hydrocarbon is contemplated to include all permissible compounds having at least one hydrogen and one carbon atom.
  • permissible hydrocarbons include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic organic compounds that may be substituted or unsubstituted.
  • protecting group is art-recognized and refers to temporary substituents that protect a potentially reactive functional group from undesired chemical transformations.
  • protecting groups include esters of carboxylic acids, silyl ethers of alcohols, and acetals and ketals of aldehydes and ketones, respectively.
  • the field of protecting group chemistry has been reviewed by Greene and Wuts in Protective Groups in Organic Synthesis (2 nd ed., Wiley: N.Y., 1991).
  • hydroxyl-protecting group refers to those groups intended to protect a hydrozyl group against undesirable reactions during synthetic procedures and includes, for example, benzyl or other suitable esters or ethers groups known in the art.
  • carboxyl-protecting group refers to those groups intended to protect a carboxylic acid group, such as the C-terminus of an amino acid or peptide or an acidic or hydroxyl azepine ring substituent, against undesirable reactions during synthetic procedures and includes.
  • Examples for protecting groups for carboxyl groups involve, for example, benzyl ester, cyclohexyl ester, 4-nitrobenzyl ester, t-butyl ester, 4-pyridylmethyl ester, and the like.
  • amino-blocking group refers to a group which will prevent an amino group from participating in a reaction carried out on some other functional group, but which can be removed from the amine when desired.
  • amino-blocking group refers to a group which will prevent an amino group from participating in a reaction carried out on some other functional group, but which can be removed from the amine when desired.
  • Such groups are discussed by in Ch. 7 of Greene and Wuts, cited above, and by Barton, Protective Groups in Organic Chemistry ch. 2 (McOmie, ed., Plenum Press, New York, 1973).
  • acyl protecting groups such as, to illustrate, formyl, dansyl, acetyl, benzoyl, trifluoroacetyl, succinyl, methoxysuccinyl, benzyl and substituted benzyl such as 3,4-dimethoxybenzyl, o-nitrobenzyl, and triphenylmethyl; those of the formula —COOR where R includes such groups as methyl, ethyl, propyl, isopropyl, 2,2,2-trichloroethyl, 1-methyl-1-phenylethyl, isobutyl, t-butyl, t-amyl, vinyl, allyl, phenyl, benzyl, p-nitrobenzyl, o-nitrobenzyl, and 2,4-dichlorobenzyl; acyl groups and substituted acyl such as formyl, acetyl, chloroacetyl, dichloroacetyl,
  • Preferred amino-blocking groups are benzyl (—CH 2 C 6 H 5 ), acyl [C(O)R1] or SiR1 3 where R1 is C 1 -C 4 alkyl, halomethyl, or 2-halo-substituted-(C 2 -C 4 alkoxy), aromatic urethane protecting groups as, for example, carbonylbenzyloxy (Cbz); and aliphatic urethane protecting groups such as t-butyloxycarbonyl (Boc) or 9-fluorenylmethoxycarbonyl (FMOC).
  • each expression e.g. lower alkyl, m, n, p and the like, when it occurs more than once in any structure, is intended to be independent of its definition elsewhere in the same structure.
  • electron-withdrawing group is art-recognized, and refers to the tendency of a substituent to attract valence electrons from neighboring atoms, i.e., the substituent is electronegative with respect to neighboring atoms.
  • Hammett sigma
  • Exemplary electron-withdrawing groups include nitro, acyl, formyl, sulfonyl, trifluoromethyl, cyano, chloride, and the like.
  • Exemplary electron-donating groups include amino, methoxy, and the like.
  • small molecule is art-recognized and refers to a composition which has a molecular weight of less than about 2000 amu, or less than about 1000 amu, and even less than about 500 amu.
  • Small molecules may be, for example, nucleic acids, peptides, polypeptides, peptide nucleic acids, peptidomimetics, carbohydrates, lipids or other organic (carbon containing) or inorganic molecules.
  • Many pharmaceutical companies have extensive libraries of chemical and/or biological mixtures, often fungal, bacterial, or algal extracts, which can be screened with any of the assays described herein.
  • small organic molecule refers to a small molecule that is often identified as being an organic or medicinal compound, and does not include molecules that are exclusively nucleic acids, peptides or polypeptides.
  • modulation is art-recognized and refers to up regulation (i.e., activation or stimulation), down regulation (i.e., inhibition or suppression) of a response, or the two in combination or apart.
  • treating is art-recognized and refers to curing as well as ameliorating at least one symptom of any condition or disease.
  • prophylactic or therapeutic treatment refers to administration of a drug to a host. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing the unwanted condition, whereas if administered after manifestation of the unwanted condition, the treatment is therapeutic (i.e., it is intended to diminish, ameliorate or maintain the existing unwanted condition or side effects therefrom).
  • the unwanted condition e.g., disease or other unwanted state of the host animal
  • a “patient,” “subject” or “host” to be treated by the subject method may mean either a human or non-human animal.
  • mammals include humans, primates, bovines, porcines, canines, felines, and rodents (e.g., mice and rats).
  • bioavailable when referring to a compound is art-recognized and refers to a form of a compound that allows for it, or a portion of the amount of compound administered, to be absorbed by, incorporated to, or otherwise physiologically available to a subject or patient to whom it is administered.
  • pharmaceutically-acceptable salts refers to the relatively non-toxic, inorganic and organic acid addition salts of compounds, including, for example, those contained in compositions described herein.
  • pharmaceutically acceptable carrier refers to a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting any subject composition or component thereof from one organ, or portion of the body, to another organ, or portion of the body.
  • a pharmaceutically-acceptable material such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting any subject composition or component thereof from one organ, or portion of the body, to another organ, or portion of the body.
  • Each carrier must be “acceptable” in the sense of being compatible with the subject composition and its components and not injurious to the patient.
  • materials which may serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide;
  • systemic administration refers to the administration of a subject composition, therapeutic or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes.
  • parenteral administration and “administered parenterally” are art-recognized and refer to modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articulare, subcapsular, subarachnoid, intraspinal, and intrastemal injection and infusion.
  • sirtuin protein a sirtuin deacetylase protein family member
  • the methods may comprise contacting the sirtuin deacetylase protein family member with a compound, such as a polyphenol, e.g. a plant polyphenol, and referred to herein as “activation compound” or “activating compound.”
  • a compound such as a polyphenol, e.g. a plant polyphenol, and referred to herein as “activation compound” or “activating compound.”
  • exemplary sirtuin deacetylase proteins include the yeast silent information regulator 2 (Sir2) and human SIRT1.
  • Other family members include proteins having a significant amino acid sequence homology and biological activity, e.g., the ability to deacetylate target proteins, such as histones and p53, to those of Sir2 and SIRT1.
  • Exemplary activating compounds are those selected from the group consisting of flavones, stilbenes, flavanones, isoflavanones, catechins, chalcones, tannins and anthocyanidins.
  • Exemplary stilbenes include hydroxystilbenes, such as trihydroxystilbenes, e.g., 3,5,4′-trihydroxystilbene (“resveratrol”). Resveratrol is also known as 3,4′5-stilbenetriol. Tetrahydroxystilbenes, e.g., piceatannol, are also encompassed.
  • Hydroxychalones including trihydroxychalones, such as isoliquiritigenin, and tetrahydroxychalones, such as butein can also be used.
  • Hydroxyflavones including tetrahydroxyflavones, such as fisetin, and pentahydroxyflavones, such as quercetin, can also be used.
  • methods for activating a sirtuin protein comprise an activating compound that is a stilbene or chalcone compound of formula 1: wherein, independently for each occurrence,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 represent H, alkyl, aryl, heteroaryl, alkaryl, heteroaralkyl, halide, NO 2 , SR, OR, N(R) 2 , or carboxyl;
  • R represents H, alkyl, or aryl
  • M represents O, NR, or S
  • A-B represents a bivalent alkyl, alkenyl, alkynyl, amido, sulfonamido, diazo, ether, alkylamino, alkylsulfide, or hydrazine group;
  • n 0 or 1.
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein n is 0. In a further embodiment, the methods comprise a compound of formula 1 and the attendant definitions, wherein n is 1. In a further embodiment, the methods comprise a compound of formula 1 and the attendant definitions, wherein A-B is ethenyl. In a further embodiment, the methods comprise a compound of formula 1 and the attendant definitions, wherein A-B is —CH 2 CH(Me)CH(Me)CH 2 —. In a further embodiment, the methods comprise a compound of formula 1 and the attendant definitions, wherein M is O.
  • the methods comprises a compound of formula 1 and the attendant definitions, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 are H.
  • the method comprise a compound of formula 1 and the attendant definitions, wherein R 2 , R 4 , and R′ 3 are OH.
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein R 2 , R 4 , R′ 2 and R′ 3 are OH.
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein R 3 , R 5 , R′ 2 and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 1 and the attendant definitions, wherein R 1 , R 3 , R 5 , R′ 2 and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 1 and the attendant definitions, wherein R 2 and R′ 2 are OH; R 4 is O- ⁇ -D-glucoside; and R′ 3 is OCH 3 . In a further embodiment, the methods comprise a compound of formula 1 and the attendant definitions, wherein R 2 is OH; R 4 is O- ⁇ -D-glucoside; and R′ 3 is OCH 3 .
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein n is 0; A-B is ethenyl; and R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 are H (trans stilbene).
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein n is 1; A-B is ethenyl; M is O; and R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 are H (chalcone).
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein n is 0; A-B is ethenyl; R 2 , R 4 , and R′ 3 are OH; and R 1 , R 3 , R 5 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H (resveratrol).
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein n is 0; A-B is ethenyl; R 2 , R 4 , R′ 2 and R′ 3 are OH; and R 1 , R 3 , R 5 , R′ 1 , R′ 4 and R′ 5 are H (piceatannol).
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein n is 1; A-B is ethenyl; M is O; R 3 , R 5 , R′ 2 and R′ 3 are OH; and R 1 , R 2 , R 4 , R′ 1 , R′ 4 , and R′ 5 are H (butein).
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein n is 1; A-B is ethenyl; M is O; R 1 , R 3 , R 5 , R′ 2 and R′ 3 are OH; and R 2 , R 4 , R′ 1 , R′ 4 , and R′ 5 are H (3,4,2′,4′,6′-pentahydroxychalcone).
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein n is 0; A-B is ethenyl; R 2 and R′ 2 are OH, R 4 is O- ⁇ -D-glucoside, R′ 3 is OCH 3 ; and R 1 , R 3 , R 5 , R′ 1 , R′ 4 , and R′ 5 are H (rhapontin).
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein n is 0; A-B is ethenyl; R 2 is OH, R 4 is O- ⁇ -D-glucoside, R′ 3 is OCH 3 ; and R 1 , R 3 , R 5 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H (deoxyrhapontin).
  • the methods comprise a compound of formula 1 and the attendant definitions, wherein n is 0; A-B is —CH 2 CH(Me)CH(Me)CH 2 —; R 2 , R 3 , R′ 2 , and R′ 3 are OH; and R 1 , R 4 , R 5 , R′ 1 , R′ 4 , and R′ 5 are H (NDGA).
  • methods for activating a sirtuin protein comprise an activating compound that is a flavanone compound of formula 2:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , R′ 5 , and R′′ represent H, alkyl, aryl, heteroaryl, alkaryl, heteroaralkyl, halide, NO 2 , SR, OR, N(R) 2 , or carboxyl;
  • R represents H, alkyl, or aryl
  • M represents H 2 , O, NR, or S
  • Z represents CR, O, NR, or S
  • X represents CR or N
  • Y represents CR or N.
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein X and Y are both CH. In a further embodiment, the methods comprise a compound of formula 2 and the attendant definitions, wherein M is O. In a further embodiment, the methods comprise a compound of formula 2 and the attendant definitions, wherein. M is H 2 . In a further embodiment, the methods comprise a compound of formula 2 and the attendant definitions, wherein Z is O. In a further embodiment, the methods comprise a compound of formula 2 and the attendant definitions, wherein R′′ is H. In a further embodiment, the methods comprise a compound of formula 2 and the attendant definitions, wherein R′′ is OH.
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein R′′ is an ester.
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein R 1 is
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein R 1 , R 2 , R 3 , R 4 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , R′ 5 and R′′ are H.
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein R 2 , R 4 , and R′ 3 are OH.
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein R 4 , R′ 2 , R′ 3 , and R′′ are OH. In a further embodiment, the methods comprise a compound of formula 2 and the attendant definitions, wherein R 2 , R 4 , R′ 2 , R′ 3 , and R′′ are OH. In a further embodiment, the methods comprise a compound of formula 2 and the attendant definitions, wherein R 2 , R 4 , R′ 2 , R′ 3 , R′ 4 , and R′′ are OH.
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein X and Y are CH; M is O; Z and O; R′′ is H; and R 1 , R 2 , R 3 , R 4 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , R′ 5 and R′′ are H (flavanone).
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein X and Y are CH; M is O; Z and O; R′′ is H; R 2 , R 4 , and R′ 3 are OH; and R 1 , R 3 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H (naringenin).
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein X and Y are CH; M is O; Z and O; R′′ is OH; R 2 , R 4 , R′ 2 , and R′ 3 are OH; and R 1 , R 3 , R′ 1 , R′ 4 , and R′ 5 are H (3,5,7,3′,4′-pentahydroxyflavanone).
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein X and Y are CH; M is H 2 ; Z and O; R′′ is OH; R 2 , R 4 , R′ 2 , and R′ 3 , are OH; and R 1 , R 3 , R′ 1 , R′ 4 and R′ 5 are H (epicatechin).
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein X and Y are CH; M is H 2 ; Z and O; R′′ is OH; R 2 , R 4 , R′ 2 , R′ 3 , and R′ 4 are OH; and R 1 , R 3 , R′ 1 , and R′ 5 are H (gallocatechin).
  • the methods comprise a compound of formula 2 and the attendant definitions, wherein X and Y are CH; M is H 2 ; Z and O; R′′ is R 2 , R 4 , R′ 2 , R′ 3 , R′ 4 , and R′′ are OH; and R 1 , R 3 , R′ 1 , and R′ 5 are H (epigallocatechin gallate).
  • methods for activating a sirtuin protein comprise an activating compound that is an iso flavanone compound of formula 3:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , R′ 5 , and R′′ 1 represent H, alkyl, aryl, heteroaryl, alkaryl, heteroaralkyl, halide, NO 2 , SR, OR, N(R) 2 , or carboxyl;
  • R represents H, alkyl, or aryl
  • M represents H 2 , O, NR, or S
  • Z represents CR, O, NR, or S
  • X represents CR or N
  • Y represents CR or N.
  • methods for activating a sirtuin protein comprise an activating compound that is a flavone compound of formula 4:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 represent H, alkyl, aryl, heteroaryl, alkaryl, heteroaralkyl, halide, NO 2 , SR, OR, N(R) 2 , or carboxyl;
  • R′′ is absent or represents H, alkyl, aryl, heteroaryl, alkaryl, heteroaralkyl, halide, NO 2 , SR, OR, N(R) 2 , or carboxyl;
  • R represents H, alkyl, or aryl
  • M represents H 2 , O, NR, or S
  • Z represents CR, O, NR, or S
  • X represents CR or N when R′′ is absent or C when R′′ is present.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CR. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein Z is O. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein M is O. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R′′ is H. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R′′ is OH.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 , R′ 2 , and R′ 3 are OH.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 , R 4 , R′ 2 , R′ 3 , and R′ 4 are OH.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 , R 4 , R′ 2 , and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 3 , R′ 2 , and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 , R 4 , R′ 2 , and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 , R′ 2 , R′ 3 , and R′ 4 are OH.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 , R 4 , and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 , R 3 , R 4 , and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 , R 4 , and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 3 , R′ 1 , and R′ 3 are OH.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 1 , R 2 , R′ 2 , and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 3 , R′ 1 , and R′ 2 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R′ 3 is OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 4 and R′ 3 are OH.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 and R 4 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 , R 4 , R′ 1 , and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 4 is OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 , R 4 , R′ 2 , R′ 3 , and R′ 4 are OH.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein R 2 , R′ 2 , R′ 3 , and R′ 4 are OH. In a further embodiment, the methods comprise a compound of formula 4 and the attendant definitions, wherein R 1 , R 2 , R 4 , R′ 2 , and R′ 3 are OH.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CH; R′′ is absent; Z is O; M is O; and R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 are H (flavone).
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C; R′′ is OH; Z is O; M is O; R 2 , R′ 2 , and R′ 3 are OH; and R 1 , R 3 , R 4 , R′ 1 , R′ 4 , and R′ 5 are H (fisetin).
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CH; R′′ is absent; Z is O; M is O; R 2 , R 4 , R′ 2 , R′ 3 , and R′ 4 are OH; and R 1 , R 3 , R′ 1 , and R′ 5 are H (5,7,3′,4′,5′-pentahydroxyflavone).
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CH; R′′ is absent; Z is O; M is O; R 2 , R 4 , R′ 2 , and R′ 3 are OH; and R 1 , R 3 , R′ 1 , R′ 4 , and R′ 5 are H (luteolin).
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C, R′′ is OH; Z is O; M is O; R 3 , R′ 2 , and R′ 3 are OH; and R 1 , R 2 , R 4 , R′ 1 , R′ 4 , and R′ 5 are H (3,6,3′,4′-tetrahydroxyflavone).
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C, R′′ is OH;Zis O; M is O; R 2 , R 4 , R′ 2 , and R′ 3 are OH; and R 1 , R 3 , R′ 1 , R′ 4 , and R′ 5 are H (quercetin).
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CH; R′′ is absent; Z is O; M is O; R 2 , R′ 2 , R′ 3 , and R′ 4 are OH; and R 1 , R 3 , R 4 , R′ 1 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C; R′′ is OH; Z is O; M is O; R 2 , R 4 , and R′ 3 are OH; and R 1 , R 3 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CH; R′′ is absent; Z is O; M is O; R 2 , R 3 , R 4 , and R′ 3 are OH; and R 1 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CH; R′′ is absent; Z is O; M is O; R 2 , R 4 , and R′ 3 are OH; and R 1 , R 3 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C, R′′ is OH; Z is O; M is O; R 3 , R′ 1 , and R′ 3 are OH; and R 1 , R 2 , R 4 , R′ 2 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CH; R′′ is absent; Z is O; M is O; R 2 and R′ 3 are OH; and R 1 , R 3 , R 4 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C, R′′ is OH; Z is O; M is O; R 1 , R 2 , R′ 2 , and R′ 3 are OH; and R 1 , R 2 , R 4 , R′ 3 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C; R′′ is OH; Z is O; M is O; R 3 , R′ 1 , and R′ 2 are OH; and R 1 , R 2 , R 4 ; R′ 3 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CH; R′′ is absent; Z is O; M is O; R′ 3 is OH; and R 1 , R 2 , R 3 , R 4 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CH; R′′ is absent; Z is O; M is O; R 4 and R′ 3 are OH; and R 1 , R 2 , R 3 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CH; R′′ is absent; Z is O; M is O; R 2 and R 4 are OH; and R 1 , R 3 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C; R′′ is OH; Z is O; M is O; R 2 , R 4 , R′ 1 , and R′ 3 are OH; and R 1 , R 3 , R′ 2 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is CH; R′′ is absent; Z is O; M is O; R 4 is OH; and R 1 , R 2 , R 3 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C; R′′ is OH; Z is O; M is O; R 2 , R 4 , R′ 2 , R′ 3 , and R′ 4 are OH; and R 1 , R 3 , R′ 1 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C; R′′ is OH; Z is O; M is O; R 2 , R′ 2 , R′ 3 , and R′ 4 are OH; and R 1 , R 3 , R 4 , R′ 1 , and R′ 5 are H.
  • the methods comprise a compound of formula 4 and the attendant definitions, wherein X is C; R′′ is OH; Z is O; M is O; R 1 , R 2 , R 4 , R′ 2 , and R′ 3 are OH; and R 3 , R′ 1 , R′ 4 , and R′ 5 are H.
  • methods for activating a sirtuin protein comprise an activating compound that is an iso flavone compound of formula 5:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 represent H, alkyl, aryl, heteroaryl, alkaryl, heteroaralkyl, halide, NO 2 , SR, OR, N(R) 2 , or carboxyl;
  • R′′ is absent or represents H, alkyl, aryl, heteroaryl, alkaryl, heteroaralkyl, halide, NO 2 , SR, OR, N(R) 2 , or carboxyl;
  • R represents H, alkyl, or aryl
  • M represents H 2 , O, NR, or S
  • Z represents CR, O, NR, or S
  • Y represents CR or N when R′′ is absent or C when R′′ is present.
  • the methods comprise a compound of formula 5 and the attendant definitions, wherein Y is CR. In a further embodiment, the methods comprise a compound of formula 5 and the attendant definitions, wherein Y is CH. In a further embodiment, the methods comprise a compound of formula 5 and the attendant definitions, wherein Z is O. In a further embodiment, the methods comprise a compound of formula 5 and the attendant definitions, wherein M is O. In a further embodiment, the methods comprise a compound of formula 5 and the attendant definitions, wherein R 2 and R′ 3 are OH. In a further embodiment, the methods comprise a compound of formula 5 and the attendant definitions, wherein R 2 , R 4 , and R′ 3 are OH.
  • the methods comprise a compound of formula 5 and the attendant definitions, wherein Y is CH; R′′ is absent; Z is O; M is O; R 2 and R′ 3 are OH; and R 1 , R 3 , R 4 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound of formula 5 and the attendant definitions, wherein Y is CH; R′′ is absent; Z is O; M is O; R 2 , R 4 , and R′ 3 are OH; and R 1 , R 3 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 and H.
  • methods for activating a sirtuin protein comprise an activating compound that is an anthocyanidin compound of formula 6:
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R′ 2 , R′ 3 , R′ 4 , R′ 5 , and R′ 6 represent H, alkyl, aryl, heteroaryl, alkaryl, heteroaralkyl, halide, NO 2 , SR, OR, N(R) 2 , or carboxyl;
  • R represents H, alkyl, or aryl
  • a ⁇ represents an anion selected from the following: Cl ⁇ , Br ⁇ , or I ⁇ .
  • the methods comprise a compound of formula 6 and the attendant definitions, wherein A ⁇ is Cl ⁇ . In a further embodiment, the methods comprise a compound of formula 6 and the attendant definitions, wherein R 3 , R 5 , R 7 , and R′ 4 are OH. In a further embodiment, the methods comprise a compound of formula 6 and the attendant definitions, wherein R 3 , R 5 , R 7 , R′ 3 , and R′ 4 are OH. In a further embodiment, the methods comprise a compound of formula 6 and the attendant definitions, wherein R 3 , R 5 , R 7 , R′ 3 , R′ 4 , and R′ 5 are OH.
  • the methods comprise a compound of formula 6 and the attendant definitions, wherein A ⁇ is Cl ⁇ ; R 3 , R 5 , R 7 , and R′ 4 are OH; and R 4 , R 6 , R 8 , R′ 2 , R′ 3 , R′ 5 , and R′ 6 are H.
  • the methods comprise a compound of formula 6 and the attendant definitions, wherein A ⁇ is Cl ⁇ ; R 3 , R 5 , R 7 , R′ 3 , and R′ 4 are OH; and R 4 , R 6 , R 8 , R′ 2 , R′ 5 , and R′ 6 are H.
  • the methods comprise a compound of formula 6 and the attendant definitions, wherein A ⁇ is Cl ⁇ ; R 3 , R 5 , R 7 , R′ 3 , R′ 4 , and R′ 5 are OH; and R 4 , R 6 , R 8 , R′ 2 , and R′ 6 are H.
  • Methods for activating a sirtuin protein may also comprise a stilbene, chalcone, or flavone compound represented by formula 7:
  • M is absent or O
  • R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 represent H, alkyl, aryl, heteroary alkaryl, heteroaralkyl, halide, NO 2 , SR, OR, N(R) 2 , or carboxyl;
  • R a represents H or the two R a form a bond
  • R represents H, alkyl, or aryl
  • n 0 or 1.
  • the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein n is 0. In a further embodiment, the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein n is 1. In a further embodiment, the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein M is absent. In a further embodiment, the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein M is O. In a further embodiment, the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein R a is H. In a further embodiment, the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein M is O and the two R a form a bond.
  • the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein R 5 is H. In a further embodiment, the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein R 5 is OH. In a further embodiment, the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein R 1 , R 3 , and R′ 3 are OH. In a further embodiment, the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein R 2 , R 4 , R′ 2 , and R′ 3 are OH. In a further embodiment, the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein R 2 , R′ 2 , and R′ 3 are OH. In a further embodiment, the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein R 2 , R′ 2 , and R′ 3 are OH. In a further embodiment, the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein R 2 and
  • the methods include contacting a cell with an activating compound represented by formula 7 and the attendant definitions, wherein n is 0; M is absent; R a is H; R 5 is H; R 1 , R 3 , and R′ 3 are OH; and R 2 , R 4 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H.
  • the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein n is 1; M is absent; R a is H; R 5 is H; R 2 , R 4 , R′ 2 , and R′ 3 are OH; and R 1 , R 3 , R′ 1 , R′ 4 , and R′ 5 are H.
  • the methods comprise an activating compound represented by formula 7 and the attendant definitions, wherein n is 1; M is O; the two R a form a bond; R 5 is OH; R 2 , R′ 2 , and R′ 3 are OH; and R 1 , R 3 , R 4 , R′ 1 , R′ 4 , and R′ 5 are H.
  • sirtuin deacetylase protein family members include compounds having a formula selected from the group consisting of formulas 8-25 and 30 set forth below.
  • R′ ⁇ H, halogen, NO 2 , SR, OR, NR 2 , alkyl, aryl, or carboxy
  • R′ ⁇ H, halogen, NO 2 , SR, OR, NR 2 , alkyl, aryl, or carboxy
  • L represents CR 2 , O, NR, or S
  • R represents H, alkyl, aryl, aralkyl, or heteroaralkyl
  • R′ represents H, halogen, NO 2 , SR, OR, NR 2 , alkyl, aryl, or carboxy.
  • L represents CR 2 , O, NR, or S
  • W represents CR or N
  • R represents H, alkyl, aryl, aralkyl, or heteroaralkyl
  • Ar represents a fused aryl or heteroaryl ring
  • R′ represents H, halogen, NO 2 , SR, OR, NR 2 , alkyl, aryl, or carboxy.
  • L represents CR 2 , O, NR, or S
  • R represents H, alkyl, aryl, aralkyl, or heteroaralkyl
  • R′ represents H, halogen, NO 2 , SR, OR, NR 2 , alkyl, aryl, or carboxy.
  • L represents CR 2 , O, NR, or S
  • R represents H, alkyl, aryl, aralkyl, or heteroaralkyl
  • R′ represents H, halogen, NO 2 , SR, OR, NR 2 , alkyl, aryl, or carboxy.
  • Methods for activating a sirtuin protein may also comprise a stilbene, chalcone, or flavone compound represented by formula 30:
  • D is a phenyl or cyclohexyl group
  • R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 represent H, alkyl, aryl, heteroary, alkaryl, heteroaralkyl, halide, NO 2 , SR, OR, N(R) 2 , carboxyl, azide, ether; or any two adjacent R or R′ groups taken together form a fused benzene or cyclohexyl group;
  • R represents H, alkyl, or aryl
  • A-B represents an ethylene, ethenylene, or imine group
  • R 3 is not OH when R 1 , R 2 , R 4 , and R 5 are H; and R 2 and R 4 are not OMe when R 1 , R 3 , and R 5 are H; and R 3 is not OMe when R 1 , R 2 , R 4 , and R 5 are H.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein D is a phenyl group.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is an ethenylene or imine group.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is an ethenylene group.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein R 2 is OH.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein R 4 is OH
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein R 2 and R 4 are OH.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein D is a phenyl group; and A-B is an ethenylene group.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein D is a phenyl group; A-B is an ethenylene group; and R 2 and R 4 are OH.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is Cl.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is OH.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is H.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is CH 2 CH 3 .
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is F.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is Me.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is an azide.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is SMe.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is NO 2 .
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is CH(CH 3 ) 2 .
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is OMe.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; R′ 2 is OH; and R′ 3 is OMe.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 is OH; R 4 is carboxyl; and R′ 3 is OH.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is carboxyl.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 and R′ 4 taken together form a fused benzene ring.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; and R 4 is OH.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OCH 2 OCH 3 ; and R′ 3 is SMe.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is carboxyl.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a cyclohexyl ring; and R 2 and R 4 are OH.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; and R 3 and R 4 are OMe.
  • the methods include contacting a cell with an activating compound represented by formula 30 and the attendant definitions, wherein A-B is ethenylene; D is a phenyl ring; R 2 and R 4 are OH; and R′ 3 is OH.
  • Exemplary activating compounds are those listed in the appended Tables having a ratio to control rate of more than one.
  • a preferred compound of formula 8 is Dipyridamole; a preferred compound of formula 12 is Hinokitiol; a preferred compound of formula 13 is L-(+)-Ergothioneine; a preferred compound of formula 19 is Caffeic Acid Phenol Ester; a preferred compound of formula 20 is MCI-186 and a preferred compound of formula 21 is HBED (Supplementary Table 6).
  • prodrugs of the compounds of formulas 1-25 and 30 are also included in the methods presented herein. Prodrugs are considered to be any covalently bonded carriers that release the active parent drug in vivo.
  • Analogs and derivatives of the above-described compounds can also be used for activating a member of the sirtuin protein family.
  • derivatives or analogs may make the compounds more stable or improve their ability to traverse cell membranes or being phagocytosed or pinocytosed.
  • Exemplary derivatives include glycosylated derivatives, as described, e.g., in U.S. Pat. No. 6,361,815 for resveratrol.
  • Other derivatives of resveratrol include cis- and trans-resveratrol and conjugates thereof with a saccharide, such as to form a glucoside (see, e.g., U.S. Pat. No. 6,414,037).
  • Glucoside polydatin referred to as piceid or resveratrol 3-O-beta-D-glucopyranoside
  • Saccharides to which compounds may be conjugated include glucose, galactose, maltose, lactose and sucrose.
  • Glycosylated stilbenes are further described in Regev-Shoshani et al. Biochemical J. (published on Apr. 16, 2003 as BJ20030141).
  • Other derivatives of compounds described herein are esters, amides and prodrugs. Esters of resveratrol are described, e.g., in U.S. Pat. No. 6,572,882.
  • Resveratrol and derivatives thereof can be prepared as described in the art, e.g., in U.S. Pat. Nos. 6,414,037; 6,361,815; 6,270,780; 6,572,882; and Brandolini et al. (2002) J. Agric. Food. Chem.50:7407. Derivatives of hydroxyflavones are described, e.g., in U.S. Pat. No. 4,591,600. Resveratrol and other activating compounds can also be obtained commercially, e.g., from Sigma.
  • an activating compound may be at least partially isolated from its natural environment prior to use.
  • a plant polyphenol may be isolated from a plant and partially or significantly purified prior to use in the methods described herein.
  • An activating compound may also be prepared synthetically, in which case it would be free of other compounds with which it is naturally associated.
  • an activating composition comprises, or an activating compound is associated with, less than about 50%, 10%, 1%, 0.1%, 10 ⁇ 2 % or 10 ⁇ 3 % of a compound with which it is naturally associated.
  • Sirtuin proteins may be activated in vitro, e.g., in a solution or in a cell.
  • a sirtuin protein is contacted with an activating compound in a solution.
  • a sirtuin is activated by a compound when at least one of its biological activities, e.g., deacetylation activity, is higher in the presence of the compound than in its absence. Activation may be by a factor of at least about 10%, 30%, 50%, 100% (i.e., a factor of two), 3, 10, 30, or 100.
  • the extent of activation can be determined, e.g., by contacting the activated sirtuin with a deacetylation substrate and determining the extent of deacetylation of the substrate, as further described herein.
  • the observation of a lower level of acetylation of the substrate in the presence of a test sirtuin relative to the presence of a non activated control sirtuin indicates that the test sirtuin is activated.
  • the solution may be a reaction mixture.
  • the solution may be in a dish, e.g., a multiwell dish.
  • Sirtuin proteins may be prepared recombinantly or isolated from cells according to methods known in the art.
  • a cell comprising a sirtuin deacetylase protein is contacted with an activating compound.
  • the cell may be a eukaryotic cell, e.g., a mammalian cell, such as a human cell, a yeast cell, a non-human primate cell, a bovine cell, an ovine cell, an equine cell, a porcine cell, a sheep cell, a bird (e.g., chicken or fowl) cell, a canine cell, a feline cell or a rodent (mouse or rat) cell. It can also be a non-mammalian cell, e.g., a fish cell.
  • Yeast cells include S.
  • the cell may also be a prokaryotic cell, e.g., a bacterial cell.
  • the cell may also be a single-celled microorganism, e.g., a protozoan.
  • the cell may also be a metazoan cell, a plant cell or an insect cell.
  • the cells are in vitro.
  • a cell may be contacted with a solution having a concentration of an activating compound of less than about 0.1 ⁇ M; 0.5 ⁇ M; less than about 1 ⁇ M; less than about 10 ⁇ M or less than about 100 ⁇ M.
  • concentration of the activating compound may also be in the range of about 0.1 to 1 ⁇ M, about 1 to 10 ⁇ M or about 10 to 100 ⁇ M. The appropriate concentration may depend on the particular compound and the particular cell used as well as the desired effect.
  • a cell may be contacted with a “sirtuin activating” concentration of an activating compound, e.g., a concentration sufficient for activating the sirtuin by a factor of at least 10%, 30%, 50%, 100%, 3, 10, 30, or 100.
  • a “sirtuin activating” concentration of an activating compound e.g., a concentration sufficient for activating the sirtuin by a factor of at least 10%, 30%, 50%, 100%, 3, 10, 30, or 100.
  • a cell is contacted with an activating compound in vivo, such as in a subject.
  • the subject can be a human, a non-human primate, a bovine, an ovine, an equine, a porcine, a sheep, a canine, a feline or a rodent (mouse or rat).
  • an activating compound may be administered to a subject. Administration may be local, e.g., topical, parenteral, oral, or other depending on the desired result of the administration (as further described herein). Administration may be followed by measuring a factor in the subject, such as measuring the activity of the sirtuin.
  • a cell is obtained from a subject following administration of an activating compound to the subject, such as by obtaining a biopsy, and the activity of the sirtuin is determined in the biopsy.
  • the cell may be any cell of the subject, but in cases in which an activating compound is administered locally, the cell is preferably a cell that is located in the vicinity of the site of administration.
  • lysine 382 of p53 proteins in cells is deacetylated following incubation of cells in the presence of low concentrations of resveratrol.
  • concentrations include, e.g., concentrations of less than about 0.1 ⁇ M, 0.5 ⁇ M, 1 ⁇ M, 3 ⁇ M, 50 ⁇ M, 100 ⁇ M or 300 ⁇ M. It has also been shown herein that p53 proteins in cells are acetylated in the presence of higher concentrations of resveratrol.
  • p53 acetylating concentrations include, e.g., concentrations of at least about 10 ⁇ M, 30 ⁇ M, 100 ⁇ M or 300 ⁇ M.
  • concentrations of at least about 10 ⁇ M, 30 ⁇ M, 100 ⁇ M or 300 ⁇ M The level of acetylation of p53 can be determined by methods known in the art, e.g., as further described in the Examples.
  • a cell can be protected from apoptosis by activating sirtuins by contacting the cell with an amount of an activating compound sufficient or adequate for protecting against apoptosis, e.g., less than about 0.1 ⁇ M, 0.5 ⁇ M, 1 ⁇ M, 3 ⁇ M or 10 ⁇ M.
  • An amount sufficient or adequate for protection against apoptosis can also be determined experimentally, such as by incubating a cell with different amounts of an activating compound, subjecting the cell to an agent or condition that induces apoptosis, and comparing the extent of apoptosis in the presence of different concentrations or the absence of an enhancing compound and determining the concentration that provides the desired protection. Determining the level of apoptosis in a population of cells can be performed according to methods known in the art.
  • Apoptosis inducing concentrations of compounds may be, e.g., at least about 10 ⁇ M, 30 ⁇ M, 100 ⁇ M or 300 ⁇ M.
  • concentrations for modulating p53 deacetylation and apoptosis can be determined according to methods, e.g., those described herein. Concentrations may vary slightly from one cell to another, from one activating compound to another and whether the cell is isolated or in an organism.
  • Cells in which p53 acetylation and apoptosis may be modulated can be in vitro, e.g., in cell culture, or in vivo, e.g., in a subject.
  • Administration of an activating compound to a subject can be conducted as further described herein.
  • the level of p53 acetylation and/or apoptosis in cells of the subject can be determined, e.g., by obtaining a sample of cells from the subject and conducting an in vitro analysis of the level of p53 acetylation and/or apoptosis.
  • Also provided herein are methods for extending the lifespan of a eukaryotic cells and/or increasing their resistance to stress comprising, e.g., contacting the eukaryotic cell with a compound, e.g., a polyphenol compound.
  • exemplary compounds include the activating compounds described herein, such as compounds of the stilbene, flavone and chalcone families.
  • quercetin and piceatannol which activate sirtuins, were not found to significantly affect the lifespan of eukaryotic cells, it is believed that this may be the result of a lack of entry of the compounds into the cell or potentially the existence of another pathway overriding activation of sirtuins.
  • Derivatives and analogs of these compounds or administration of these compound to other cells or by other methods are expected to activate sirtuins.
  • methods for extending the lifespan of a eukaryotic cell and/or increasing its resistance to stress comprise contacting the cell with a stilbene, chalcone, or flavone compound represented by formula 7:
  • M is absent or O
  • R 1 , R 2 , R 3 , R 4 , R 5 , R′ 1 , R′ 2 , R′ 3 , R′ 4 , and R′ 5 represent H, alkyl, aryl, heteroary alkaryl, heteroaralkyl, halide, NO 2 , SR, OR, N(R) 2 , or carboxyl;
  • R a represents H or the two R a form a bond
  • R represents H, alkyl, or aryl
  • n 0 or 1.
  • the methods comprise a compound represented by formula 7 and the attendant definitions, wherein n is 0. In a further embodiment, the methods comprise a compound represented by formula 7 and the attendant definitions, wherein n is 1. In a further embodiment, the methods comprise a compound represented by formula 7 and the attendant definitions, wherein M is absent. In a further embodiment, the methods comprise a compound represented by formula 7 and the attendant definitions, wherein M is O. In a further embodiment, the methods comprise a compound represented by formula 7 and the attendant definitions, wherein R a is H. In a further embodiment, the methods comprise a compound represented by formula 7 and the attendant definitions, wherein M is O and the two R a form a bond.
  • the methods comprise a compound represented by formula 7 and the attendant definitions, wherein R 5 is H. In a further embodiment, the methods comprise a compound represented by formula 7 and the attendant definitions, wherein R 5 is OH. In a further embodiment, the methods comprise a compound represented by formula 7 and the attendant definitions, wherein R 1 , R 3 , and R′ 3 are OH. In a further embodiment, the methods comprise a compound represented by formula 7 and the attendant definitions, wherein R 2 , R 4 , R′ 2 , and R′ 3 are OH. In a further embodiment, the methods comprise a compound represented by formula 7 and the attendant definitions, wherein R 2 , R′ 2 , and R′ 3 are OH.
  • methods for extending the lifespan of a eukaryotic cell comprise contacting the cell with a compound represented by formula 7 and the attendant definitions, wherein n is 0; M is absent; R a is H; R 5 is H; R 1 , R 3 , and R′ 3 are OH; and R 2 , R 4 , R′ 1 , R′ 2 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound represented by formula 7 and the attendant definitions, wherein n is 1; M is absent; R a is H; R 5 is H; R 2 , R 4 , R′ 2 , and R′ 3 are OH; and R 1 , R 3 , R′ 1 , R′ 4 , and R′ 5 are H.
  • the methods comprise a compound represented by formula 7 and the attendant definitions, wherein n is 1; M is O; the two R a form a bond; R 5 is OH; R 2 , R′ 2 , and R′ 3 are OH; and R 1 , R 3 , R 4 , R′ 1 , R′ 4 , and R′ 5 are H.
  • the eukaryotic cell whose lifespan may be extended can be a human, a non-human primate, a bovine, an ovine, an equine, a porcine, a sheep, a canine, a feline, a rodent (mouse or rat) or a yeast cell.
  • a yeast cell may be Saccharomyces cerevisiae or Candida albicans. Concentrations of compounds for this purpose may be about 0.1 ⁇ M, 0.3 ⁇ M, 0.5 ⁇ M, 1 ⁇ M, 3 ⁇ M, 10 ⁇ M, 30 ⁇ M, 100 ⁇ M or 300 ⁇ M. Based at least on the high conservation of Sir2 proteins in various organisms, lifespan can also be prolonged in prokaryotes, protozoans, metazoans, insects and plants.
  • the cell may be in vitro or in vivo.
  • a life-extending compound is administered to an organism (e.g., a subject) such as to induce hormesis, i.e., an increasing resistance to mild stress that results in increasing the lifespan of the organism.
  • hormesis i.e., an increasing resistance to mild stress that results in increasing the lifespan of the organism.
  • SIR2 is essential for the increased longevity provided by calorie restriction, a mild stress, that extends the lifespan of every organism it has been tested on (Lin et al. (2000) Science 249:2126).
  • overexpression of a Caenorhabditis for example, overexpression of a Caenorhabditis.
  • elegans SIR2 homologue increases lifespan via a forkhead transcription factor, DAF-16, and a SIR2 gene has recently been implicated in lifespan regulation in Drosophila melanogaster (Rogina et al. Science (2002) 298:1745).
  • the closest human Sir2 homologue, SIRT1 promotes survival in human cells by down-regulating the activity of the tumor suppressor p53 (Tissenbaum et al. Nature 410, 227-30 (2001); Rogina et al. Science, in press (2002); and Vaziri, H. et al. Cell 107, 149-59. (2001)).
  • PNC1 a calorie restriction- and stress-responsive gene that increases lifespan and stress resistance of cells by depleting intracellular nicotinamide (Anderson et al. (2003) Nature 423:181 and Bitterman et al. (2002) J. Biol. Chem. 277: 45099). Accordingly, compounds may be administered to a subject for protecting the cells of the subject from stresses and thereby extending the lifespan of the cells of the subject.
  • Methods may include contacting a cell or a molecule, such as a sirtuin or a p53 protein, with a compound that inhibits sirtuins, i.e., an “inhibiting compound,” such, a compound having a formula selected from the group of formulas 26-29 and 31:
  • R′ represents H, halogen, NO 2 , SR, OR, NR 2 , alkyl, aryl, or carboxy;
  • R represents H, alkyl, aryl, aralkyl, or heteroaralkyl
  • R′′ represents alkyl, alkenyl, or alkynyl.
  • L represents O, NR, or S
  • R represents H, alkyl, aryl, aralkyl, or heteroaralkyl
  • R′ represents H, halogen, NO 2 , SR, SO 3 , OR, NR 2 , alkyl, aryl, or carboxy;
  • a represents an integer from 1 to 7 inclusively
  • b represents an integer from 1 to 4 inclusively.
  • L represents O, NR, or S
  • R represents H, alkyl, aryl, aralkyl, or heteroaralkyl
  • R′ represents H, halogen, NO 2 , SR, SO 3 , OR, NR 2 , alkyl, aryl, or carboxy;
  • a represents an integer from 1 to 7 inclusively
  • b represents an integer from 1 to 4 inclusively.
  • L represents O, NR, or S
  • R represents H, alkyl, aryl, aralkyl, or heteroaralkyl
  • R′ represents H, halogen, NO 2 , SR, SO 3 , OR, NR 2 , alkyl, aryl, or carboxy;
  • a represents an integer from 1 to 7 inclusively
  • b represents an integer from 1 to 4 inclusively.
  • R 2 , R 3 , and R 4 are H, OH, or O-alkyl
  • R′ 3 is H or NO 2 ;
  • A-B is an ethenylene or amido group.
  • the inhibiting compound is represented by formula 31 and the attendant definitions, wherein R 3 is OH, A-B is ethenylene, and R′ 3 is H.
  • the inhibiting compound is represented by formula 31 and the attendant definitions, wherein R 2 and R 4 are OH, A-B is an amido group, and R′ 3 is H.
  • the inhibiting compound is represented by formula 31 and the attendant definitions, wherein R 2 and R 4 are OMe, A-B is ethenylene, and R′ 3 is NO 2 .
  • the inhibiting compound is represented by formula 31 and the attendant definitions, wherein R 3 is OMe, A-B is ethenylene, and R′ 3 is H.
  • Exemplary inhibitory compounds are those set forth in the appended Tables for which the “ratio to control rate” is lower than one.
  • prodrugs of the compounds of formulas 26-29 and 31 are also included in the methods presented herein.
  • Prodrugs are considered to be any covalently bonded carriers that release the active parent drug in vivo.
  • Inhibitory compounds may be contacted with a cell, administered to a subject, or contacted with one or more molecules, such as a sirtuin protein and a p53 protein. Doses of inhibitory compounds may be similar to those of activating compounds.
  • a cell may also be contacted with more than one compound (whether an activating compound or an inhibiting compound).
  • a cell may be contacted with at least 2, 3, 5, or 10 different compounds.
  • a cell may be contacted simultaneously or sequentially with different compounds.
  • compositions comprising one or more activating or inhibiting compounds having a formula selected from the group of formulas 1-31.
  • Compounds may be in a pharmaceutical composition, such as a pill or other formulation for oral administration, further described herein.
  • compositions may also comprise or consist of extracts of plants, red wine or other source of the compounds.
  • an assay may comprise incubating (or contacting) a sirtuin with a test compound under conditions in which a sirtuin can be activated by an agent known to activate the sirtuin, and monitoring or determining the level of activation of the sirtuin in the presence of the test compound relative to the absence of the test compound.
  • the level of activation of a sirtuin can be determined by determining its ability to deacetylate a substrate.
  • Exemplary substrates are acetylated peptides, e.g., those set forth in FIG. 5 , which can be obtained from BIOMOL (Plymouth Meeting, Pa.).
  • Preferred substrates include peptides of p53, such as those comprising an acetylated K382.
  • a particularly preferred substrate is the Fluor de Lys-SIRT1 (BIOMOL), i.e., the acetylated peptide Arg-His-Lys-Lys.
  • Other substrates are peptides from human histones H3 and H4 or an acetylated amino acid (see FIG. 5 ).
  • Substrates may be fluorogenic.
  • the sirtuin may be SIRT1 or Sir2 or a portion thereof.
  • recombinant SIRT1 can be obtained from BIOMOL.
  • the reaction may be conducted for about 30 minutes and stopped, e.g., with nicotinamide.
  • the HDAC fluorescent activity assay/drug discovery kit (AK-500, BIOMOL Research Laboratories) may be used to determine the level of acetylation. Similar assays are described in Bitterman et al. (2002) J. Biol. Chem. 277:45099.
  • the level of activation of the sirtuin in an assay may be compared to the level of activation of the sirtuin in the presence of one or more (separately or simultaneously) compounds described herein, which may serve as positive or negative controls.
  • Sirtuins for use in the assays may be full length sirtuin proteins or portions thereof. Since it has been shown herein that activating compounds appear to interact with the N-terminus of SIRT1, proteins for use in the assays include N-terminal portions of sirtuins, e.g., about amino acids 1-176 or 1-255 of SIRT1; about amino acids 1-174 or 1-252 of Sir2.
  • a screening assay comprises (i) contacting a sirtuin with a test compound and an acetylated substrate under conditions appropriate for the sirtuin to deacetylate the substrate in the absence of the test compound; and (ii) determining the level of acetylation of the substrate, wherein a lower level of acetylation of the substrate in the presence of the test compound relative to the absence of the test compound indicates that the test compound stimulates deacetylation by the sirtuin, whereas a higher level of acetylation of the substrate in the presence of the test compound relative to the absence of the test compound indicates that the test compound inhibits deacetylation by the sirtuin.
  • Methods for identifying compounds that modulate, e.g., stimulate or inhibit, sirtuins in vivo may comprise (i) contacting a cell with a test compound and a substrate that is capable of entering a cell in the presence of an inhibitor of class I and class II HDACs under conditions appropriate for the sirtuin to deacetylate the substrate in the absence of the test compound; and (ii) determining the level of acetylation of the substrate, wherein a lower level of acetylation of the substrate in the presence of the test compound relative to the absence of the test compound indicates that the test compound stimulates deacetylation by the sirtuin, whereas a higher level of acetylation of the substrate in the presence of the test compound relative to the absence of the test compound indicates that the test compound inhibits deacetylation by the sirtuin.
  • a preferred substrate is an acetylated peptide, which is also prefeably fluorogenic, as further described herein (Examples).
  • the method may further comprise lysing the cells to determine the level of acetylation of the substrate.
  • Substrates may be added to cells at a concentration ranging from about 1 ⁇ M to about 10 mM, preferably from about 10 ⁇ M to 1 mM, even more preferably from about 100 ⁇ M to 1 mM, such as about 200 ⁇ M.
  • a preferred substrate is an acetylated lysine, e.g., ⁇ -acetyl lysine (Fluor de Lys, FdL) or Fluor de Lys-SIRT1.
  • a preferred inhibitor of class I and class II HDACs is trichostatin A (TSA), which may be used at concentrations ranging from about 0.01 to 100 ⁇ M, preferably from about 0.1 to 10 ⁇ M, such as 1 ⁇ M.
  • TSA trichostatin A
  • Incubation of cells with the test compound and the substrate may be conducted for about 10 minutes to 5 hours, preferably for about 1-3 hours. Since TSA inhibits all class I and class II HDACs, and that certain substrates, e.g., Fluor de Lys, is a poor substrate for SIRT2 and even less a substrate for SIRT3-7, such an assay may be used to identify modulators of SIRT1 in vivo.
  • An exemplary assay is further described in the Examples and shown in FIG. 4 a.
  • a method may comprise incubating cells with a test compound and determining the effect of the test compound on rDNA silencing and rDNA recombination, wherein an increase in the frequency of rDNA recombination and an absence of effect on rDNA silencing in the presence of the test compound relative to the absence of the test compound indicates that the test compound extends lifespan.
  • This assay is based at least on the observation that resveratrol reduced the frequency of rDNA recombination by about 60% in a SIR2 dependent manner, but did not increasing rDNA silencing.
  • BML-232 (Table 10) is used.
  • BML-232 has very similar SIRT1 activating properties to resveratrol and contains a phenylazide function. Phenylazide groups may be activated by the absorption of ultraviolet light to form reactive nitrenes. When a protein-bound phenylazide is light-activated it can react to form covalent adducts with various protein functional groups in the site to which it is bound. The photo cross-linked protein may then be analyzed by proteolysis/mass spectrometry to identify amino acid residues which may form part of the binding site for the compound. This information, in combination with published three dimensional structural information on SIRT1 homologs could be used to aid the design of new, possibly higher affinity, SIRT1 activating ligands.
  • cells are treated in vitro as described herein to extend their lifespan, e.g., to keep them proliferating longer and/or increasing its resistance to stress or prevent apoptosis. That compounds described herein may increase resistance to stress is based at least on the observation that Sir2 provides stress resistance and that PNC1 modulates Sir2 activity in response to cell stress (Anderson et al. (2003) Nature 423:181). This is particularly useful for primary cell cultures (i.e., cells obtained from an organism, e.g., a human), which are known to have only a limited lifespan in culture.
  • Embryonic stem (ES) cells and pluripotent cells, and cells differentiated therefrom can also be treated according to the methods described herein such as to keep the cells or progeny thereof in culture for longer periods of time.
  • Primary cultures of cells, ES cells, pluripotent cells and progeny thereof can be used, e.g., to identify compounds having particular biological effects on the cells or for testing the toxicity of compounds on the cells (i.e., cytotoxicity assays).
  • Such cells can also be used for transplantation into a subject, e.g., after ex vivo modification.
  • cells that are intended to be preserved for long periods of time are treated as described herein.
  • the cells can be cells in suspension, e.g., blood cells, serum, biological growth media, or tissues or organs.
  • blood collected from an individual for administering to an individual can be treated as described herein, such as to preserve the blood cells for longer periods of time, such as for forensic purposes.
  • Other cells that one may treat for extending their lifespan or protect against apoptosis include cells for consumption, e.g., cells from non-human mammals (such as meat), or plant cells (such as vegetables).
  • Compounds may also be applied during developmental and growth phases in mammals, plants, insects or microorganisms, in order to, e.g., alter, retard or accelerate the developmental and/or growth process.
  • cells obtained from a subject are treated according to methods described herein and then administered to the same or a different subject.
  • cells or tissues obtained from a donor for use as a graft can be treated as described herein prior to administering to the recipient of the graft.
  • bone marrow cells can be obtained from a subject, treated ex vivo, e.g., to extend their lifespan, and then administered to a recipient.
  • the graft can be an organ, a tissue or loose cells.
  • cells are treated in vivo, e.g., to increase their lifespan or prevent apoptosis.
  • skin can be protected from aging, e.g., developing wrinkles, by treating skin, e.g., epithelial cells, as described herein.
  • skin is contacted with a pharmaceutical or cosmetic composition comprising a compound described herein.
  • exemplary skin afflictions or skin conditions include disorders or diseases associated with or caused by inflammation, sun damage or natural aging.
  • compositions find utility in the prevention or treatment of contact dermatitis (including irritant contact dermatitis and allergic contact dermatitis), atopic dermatitis (also known as allergic eczema), actinic keratosis, keratinization disorders (including eczema), epidermolysis bullosa diseases (including penfigus), exfoliative dermatitis, seborrheic dermatitis, erythemas (including erythema multiforme and erythema nodosum), damage caused by the sun or other light sources, discoid lupus erythematosus, dermatomyositis, skin cancer and the effects of natural aging.
  • contact dermatitis including irritant contact dermatitis and allergic contact dermatitis
  • atopic dermatitis also known as allergic eczema
  • actinic keratosis also known as allergic eczema
  • keratinization disorders including
  • the formulations may be administered topically, to the skin or mucosal tissue, as an ointment, lotion, cream, microemulsion, gel, solution or the like, as described in the preceding section, within the context of a dosing regimen effective to bring about the desired result.
  • a dose of active agent may be in the range of about 0.005 to about 1 micromoles per kg per day, preferably about 0.05 to about 0.75 micromoles per kg per day, more typically about 0.075 to about 0.5 micromoles per kg per day.
  • a dosing regimen for any particular patient, i.e., the number and frequency of doses, can be ascertained using conventional course of treatment determination tests.
  • a dosing regimen herein involves administration of the topical formulation at least once daily, and preferably one to four times daily, until symptoms have subsided.
  • Topical formulations may also be used as chemopreventive compositions. When used in a chemopreventive method, susceptible skin is treated prior to any visible condition in a particular individual.
  • Compounds can also be delivered locally, e.g., to a tissue or organ within a subject, such as by injection, e.g., to extend the lifespan of the cells; protect against apoptosis or induce apoptosis.
  • a compound is administered to a subject, such as to generally increase the lifespan of its cells and to protect its cells against stress and/or against apoptosis. It is believed that treating a subject with a compound described herein is similar to subjecting the subject to hormesis, i.e., mild stress that is beneficial to organisms and may extend their lifespan.
  • a compound can be taken by subjects as a food or dietary supplement. In one embodiment, such a compound is a component of a multi-vitamin complex.
  • Compounds can also be added to existing formulations that are taken on a daily basis, e.g., statins and aspirin. Compounds may also be used as food additives.
  • this multi-drug complex or regimen would include drugs or compounds for the treatment or prevention of aging-related diseases, e.g., stroke, heart disease, arthritis, high blood pressure, Alzheimer's.
  • this multi-drug regimen would include chemotherapeutic drugs for the treatment of cancer.
  • a polyphenol compound could be used to protect non-cancerous cells from the effects of chemotherapy.
  • Compounds may be administered to subject to prevent aging and aging-related consequences or diseases, such as stroke, heart disease, arthritis, high blood pressure, and Alzheimer's disease.
  • Compounds described herein can also be administered to subjects for treatment of diseases, e.g., chronic diseases, associated with cell death, such as to protect the cells from cell death.
  • Exemplary diseases include those associated with neural cell death or muscular cell death, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, amniotropic lateral sclerosis, and muscular dystrophy; AIDS; fulminant hepatitis; diseases linked to degeneration of the brain, such as Creutzfeld-Jakob disease, retinitis pigmentosa and cerebellar degeneration; myelodysplasis such as aplastic anemia; ischemic diseases such as myocardial infarction and stroke; hepatic diseases such as alcoholic hepatitis, hepatitis B and hepatitis C; joint-diseases such as osteoarthritis; atherosclerosis; alopecia; damage to the skin due to UV light; lichen planus; atrophy of the skin; cataract; graft rejections; and etc.
  • neural cell death or muscular cell death such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, amniotropic lateral sclerosis, and muscular dys
  • Compounds described herein can also be administered to a subject suffering from an acute disease, e.g., damage to an organ or tissue, e.g., a subject suffering from stroke or myocardial infarction or a subject suffering from a spinal cord injury. Compounds can also be used to repair an alcoholic's liver.
  • an acute disease e.g., damage to an organ or tissue, e.g., a subject suffering from stroke or myocardial infarction or a subject suffering from a spinal cord injury.
  • Compounds can also be used to repair an alcoholic's liver.
  • Compounds can also be administered to subjects who have recently received or are likely to receive a dose of radiation.
  • the dose of radiation is received as part of a work-related or medical procedure, e.g., working in a nuclear power plant, flying an airplane, an X-ray, CAT scan, or the administration of a radioactive dye for medical imaging; in such an embodiment, the compound is administered as a prophylactic measure.
  • the radiation exposure is received unintentionally, e.g., as a result of an industrial accident, terrorist act, or act of war involving radioactive material.
  • the compound is preferably administered as soon as possible after the exposure to inhibit apoptosis and the subsequent development of acute radiation syndrome.
  • the activating compounds can also be administed to a subject in conditions in which apoptosis of certain cells is desired.
  • cancer may be treated or prevented.
  • Exemplary cancers are those of the brain and kidney; hormone-dependent cancers including breast, prostate, testicular, and ovarian cancers; lymphomas, and leukemias.
  • a activating compound may be administered directly into the tumor.
  • Cancer of blood cells e.g., leukemia can be treated by administering a activating compound into the blood stream or into the bone marrow.
  • Benign cell growth can also be treated, e.g., warts.
  • Other diseases that can be treated include autoimmune diseases, e.g., systemic lupus erythematosus, scleroderma, and arthritis, in which autoimmune cells should be removed.
  • Viral infections such as herpes, HIV, adenovirus, and HTLV-1 associated malignant and benign disorders can also be treated by administration of compounds.
  • cells can be obtained from a subject, treated ex vivo to remove certain undesirable cells, e.g., cancer cells, and administered back to the same or a different subject.
  • methods described herein are applied to yeast cells.
  • Situations in which it may be desirable to extend the lifespan of yeast cells include any process in which yeast is used, e.g., the making of beer, yogurt, and bakery items, e.g., bread.
  • Use of yeast having an extended lifespan can result in using less yeast or in having the yeast be active for longer periods of time.
  • Yeast or other mammalian cells used for recombinantly producing proteins may also be treated as described herein.
  • Subjects that may be treated as described herein include eukaryotes, such as mammals, e.g., humans, ovines, bovines, equines, porcines, canines, felines, non-human primate, mice, and rats.
  • Cells that may be treated include eukaryotic cells, e.g., from a subject described above, or plant cells, yeast cells and prokaryotic cells, e.g., bacterial cells.
  • activating compounds may be administered to form animals to improve their ability to withstand farming conditions longer.
  • Compounds may also be used to increase lifespan, stress resistance, and resistance to apoptosis in plants.
  • a compound is applied to plants, either on a periodic basis or in fungi.
  • plants are genetically modified to produce a compound.
  • plants and fruits are treated with a compound prior to picking and shipping to increase resistance to damage during shipping.
  • Compounds may also be used to increase lifespan, stress resistance and resistance to apoptosis in insects.
  • compounds would be applied to useful insects, e.g., bees and other insects that are involved in pollination of plants.
  • a compound would be applied to bees involved in the production of honey.
  • the methods described herein may be applied to any organism, e.g., eukaryote, that may have commercial importance. For example, they can be applied to fish (aquaculture) and birds (e.g., chicken and fowl).
  • a compound may be applied to plants using a method known in the art that ensures the compound is bio-available to insect larvae, and not to plants.
  • Activated sirtuin proteins that are in vitro outside of a cell may be used, e.g., for deacetylating target proteins, thereby, e.g., activating the target proteins.
  • Activated sirtuins may be used, e.g., for the identification, in vitro, of previously unknown targets of sirtuin deacetylation, for example using 2D electrophoresis of acetyl labeled proteins.
  • the compounds can be applied to affect the reproduction of organisms such as insects, animals and microorganisms.
  • Inhibitory compounds may be used for similar purposes as high concentrations of activating compounds can be used for.
  • inhibitory compounds may be used to stimulate acetylation of substrates such as p53 and thereby increase apoptosis, as well as to reduce the lifespan of cells and organisms and/or rendering them more sensitive to stress.
  • compositions for use in accordance with the present methods may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients.
  • activating compounds and their physiologically acceptable salts and solvates may be formulated for administration by, for example, injection, inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral or rectal administration.
  • the compound is administered locally, at the site where the target cells, e.g., diseased cells, are present, i.e., in the blood or in a joint.
  • Compounds can be formulated for a variety of loads of administration, including systemic and topical or localized administration. Techniques and formulations generally may be found in Remmington's Pharmaceutical Sciences, Meade Publishing Co., Easton, Pa.
  • injection is preferred, including intramuscular, intravenous, intraperitoneal, and subcutaneous.
  • the compounds can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution.
  • the compounds may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included.
  • the pharmaceutical compositions may take the form of, for example, tablets, lozanges, or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate).
  • binding agents e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose
  • fillers e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate
  • lubricants e.g., magnesium stearate, talc or silica
  • disintegrants e.g
  • Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use.
  • Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., ationd oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid).
  • the preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.
  • Preparations for oral administration may be suitably formulated to give controlled release of the active compound.
  • the compounds may be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • the compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
  • Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
  • the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
  • the compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
  • the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • compositions may comprise from about 0.00001 to 100% such as from 0.001 to 10% or from 0.1% to 5% by weight of one or more compounds described herein.
  • a compound described herein is incorporated into a topical formulation containing a topical carrier that is generally suited to topical drug administration and comprising any such material known in the art.
  • the topical carrier may be selected so as to provide the composition in the desired form, e.g., as an ointment, lotion, cream, microemulsion, gel, oil, solution, or the like, and may be comprised of a material of either naturally occurring or synthetic origin. It is preferable that the selected carrier not adversely affect the active agent or other components of the topical formulation.
  • suitable topical carriers for use herein include water, alcohols and other nontoxic organic solvents, glycerin, mineral oil, silicone, petroleum jelly, lanolin, fatty acids, vegetable oils, parabens, waxes, and the like.
  • Formulations may be colorless, odorless ointments, lotions, creams, microemulsions and gels.
  • ointments which generally are semisolid preparations which are typically based on petrolatum or other petroleum derivatives.
  • the specific ointment base to be used is one that will provide for optimum drug delivery, and, preferably, will provide for other desired characteristics as well, e.g., emolliency or the like.
  • an ointment base should be inert, stable, nonirritating and nonsensitizing.
  • ointment bases may be grouped in four classes: oleaginous bases; emulsifiable bases; emulsion bases; and water-soluble bases.
  • Oleaginous ointment bases include, for example, vegetable oils, fats obtained from animals, and semisolid hydrocarbons obtained from petroleum.
  • Emulsifiable ointment bases also known as absorbent ointment bases, contain little or no water and include, for example, hydroxystearin sulfate, anhydrous lanolin and hydrophilic petrolatum.
  • Emulsion ointment bases are either water-in-oil (W/O) emulsions or oil-in-water (O/W) emulsions, and include, for example, cetyl alcohol, glyceryl monostearate, lanolin and stearic acid.
  • Exemplary water-soluble ointment bases are prepared from polyethylene glycols (PEGs) of varying molecular weight; again, reference may be had to Remington's, supra, for further information.
  • Lotions may be incorporated into lotions, which generally are preparations to be applied to the skin surface without friction, and are typically liquid or semiliquid preparations in which solid particles, including the active agent, are present in a water or alcohol base.
  • Lotions are usually suspensions of solids, and may comprise a liquid oily emulsion of the oil-in-water type. Lotions are preferred formulations for treating large body areas, because of the ease of applying a more fluid composition. It is generally necessary that the insoluble matter in a lotion be finely divided. Lotions will typically contain suspending agents to produce better dispersions as well as compounds useful for localizing and holding the active agent in contact with the skin, e.g., methylcellulose, sodium carboxymethylcellulose, or the like.
  • An exemplary lotion formulation for use in conjunction with the present method contains propylene glycol mixed with a hydrophilic petrolatum such as that which may be obtained under the trademark Aquaphor® from Beiersdorf, Inc. (Norwalk, Conn.).
  • Cream bases are water-washable, and contain an oil phase, an emulsifier and an aqueous phase.
  • the oil phase is generally comprised of petrolatum and a fatty alcohol such as cetyl or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant.
  • the emulsifier in a cream formulation is generally a nonionic, anionic, cationic or amphoteric surfactant.
  • microemulsions which generally are thermodynamically stable, isotropically clear dispersions of two immiscible liquids, such as oil and water, stabilized by an interfacial film of surfactant molecules (Encyclopedia of Pharmaceutical Technology (New York: Marcel Dekker, 1992), volume 9).
  • surfactant emulsifier
  • co-surfactant co-emulsifier
  • an oil phase and a water phase are necessary.
  • Suitable surfactants include any surfactants that are useful in the preparation of emulsions, e.g., emulsifiers that are typically used in the preparation of creams.
  • the co-surfactant is generally selected from the group of polyglycerol derivatives, glycerol derivatives and fatty alcohols.
  • Preferred emulsifier/co-emulsifier combinations are generally although not necessarily selected from the group consisting of: glyceryl monostearate and polyoxyethylene stearate; polyethylene glycol and ethylene glycol palmitostearate; and caprilic and capric triglycerides and oleoyl macrogolglycerides.
  • the water phase includes not only water but also, typically, buffers, glucose, propylene glycol, polyethylene glycols, preferably lower molecular weight polyethylene glycols (e.g., PEG 300 and PEG 400), and/or glycerol, and the like, while the oil phase will generally comprise, for example, fatty acid esters, modified vegetable oils, silicone oils, mixtures of mono- di- and triglycerides, mono- and di-esters of PEG (e.g., oleoyl macrogol glycerides), etc.
  • buffers glucose, propylene glycol, polyethylene glycols, preferably lower molecular weight polyethylene glycols (e.g., PEG 300 and PEG 400), and/or glycerol, and the like
  • the oil phase will generally comprise, for example, fatty acid esters, modified vegetable oils, silicone oils, mixtures of mono- di- and triglycerides, mono- and di-esters of PEG (e.g., ole
  • Gel formulations which generally are semisolid systems consisting of either suspensions made up of small inorganic particles (two-phase systems) or large organic molecules distributed substantially uniformly throughout a carrier liquid (single phase gels).
  • Single phase gels can be made, for example, by combining the active agent, a carrier liquid and a suitable gelling agent such as tragacanth (at 2 to 5%), sodium alginate (at 2-10%), gelatin (at 2-15%), methylcellulose (at 3-5%), sodium carboxymethylcellulose (at 2-5%), carbomer (at 0.3-5%) or polyvinyl alcohol (at 10-20%) together and mixing until a characteristic semisolid product is produced.
  • suitable gelling agents include methylhydroxycellulose, polyoxyethylene-polyoxypropylene, hydroxyethylcellulose and gelatin.
  • additives may be included in formulations, e.g., topical formulations.
  • additives include, but are not limited to, solubilizers, skin permeation enhancers, opacifiers, preservatives (e.g., anti-oxidants), gelling agents, buffering agents, surfactants (particularly nonionic and amphoteric surfactants), emulsifiers, emollients, thickening agents, stabilizers, humectants, colorants, fragrance, and the like.
  • solubilizers and/or skin permeation enhancers is particularly preferred, along with emulsifiers, emollients and preservatives.
  • An optimum topical formulation comprises approximately: 2 wt. % to 60 wt. %, preferably 2 wt. % to 50 wt. %, solubilizer and/or skin permeation enhancer; 2 wt. % to 50 wt. %, preferably 2 wt. % to 20 wt. %, emulsifiers; 2 wt. % to 20 wt. % emollient; and 0.01 to 0.2 wt. % preservative, with the active agent and carrier (e.g., water) making of the remainder of the formulation.
  • the active agent and carrier e.g., water
  • a skin permeation enhancer serves to facilitate passage of therapeutic levels of active agent to pass through a reasonably sized area of unbroken skin.
  • Suitable enhancers include, for example: lower alkanols such as methanol ethanol and 2-propanol; alkyl methyl sulfoxides such as dimethylsulfoxide (DMSO), decylmethylsulfoxide (C.sub.10 MSO) and tetradecylmethyl sulfboxide; pyrrolidones such as 2-pyrrolidone, N-methyl-2-pyrrolidone and N-(-hydroxyethyl)pyrrolidone; urea; N,N-diethyl-m-toluamide; C.sub.2 -C.sub.6 alkanediols; miscellaneous solvents such as dimethyl formamide (DMF), N,N-dimethylacetamide (DMA) and tetrahydrofurfuryl alcohol; and the 1-
  • solubilizers include, but are not limited to, the following: hydrophilic ethers such as diethylene glycol monoethyl ether (ethoxydiglycol, available commercially as Transcutol®) and diethylene glycol monoethyl ether oleate (available commercially as Softcutol®); polyethylene castor oil derivatives such as polyoxy 35 castor oil, polyoxy 40 hydrogenated castor oil, etc.; polyethylene glycol, particularly lower molecular weight polyethylene glycols such as PEG 300 and PEG 400, and polyethylene glycol derivatives such as PEG-8 caprylic/capric glycerides (available commercially as Labrasol®); alkyl methyl sulfoxides such as DMSO; pyrrolidones such as 2-pyrrolidone and N-methyl-2-pyrrolidone; and DMA. Many solubilizers can also act as absorption enhancers. A single solubilizer may be incorporated into the formulation, or a mixture of solubilizer
  • Suitable emulsifiers and co-emulsifiers include, without limitation, those emulsifiers and co-emulsifiers described with respect to microemulsion formulations.
  • Emollients include, for example, propylene glycol, glycerol, isopropyl myristate, polypropylene glycol-2 (PPG-2) myristyl ether propionate, and the like.
  • sunscreen formulations e.g., other anti-inflammatory agents, analgesics, antimicrobial agents, antifungal agents, antibiotics, vitamins, antioxidants, and sunblock agents commonly found in sunscreen formulations including, but not limited to, anthranilates, benzophenones (particularly benzophenone-3), camphor derivatives, cinnamates (e.g., octyl methoxycinnamate), dibenzoyl methanes (e.g., butyl methoxydibenzoyl methane), p-aminobenzoic acid (PABA) and derivatives thereof, and salicylates (e.g., octyl salicylate).
  • sunscreen formulations including, but not limited to, anthranilates, benzophenones (particularly benzophenone-3), camphor derivatives, cinnamates (e.g., octyl methoxycinnamate), dibenzoyl methanes (e.g.,
  • the active agent is present in an amount in the range of approximately 0.25 wt. % to 75 wt. % of the formulation, preferably in the range of approximately 0.25 wt. % to 30 wt. % of the formulation, more preferably in the range of approximately 0.5 wt. % to 15 wt. % of the formulation, and most preferably in the range of approximately 1.0 wt. % to 10 wt. % of the formulation.
  • Topical skin treatment compositions can be packaged in a suitable container to suit its viscosity and intended use by the consumer.
  • a lotion or cream can be packaged in a bottle or a roll-ball applicator, or a propellant-driven aerosol device or a container fitted with a pump suitable for finger operation.
  • the composition When the composition is a cream, it can simply be stored in a non-deformable bottle or squeeze container, such as a tube or a lidded jar.
  • the composition may also be included in capsules such as those described in U.S. Pat. No. 5,063,507. Accordingly, also provided are closed containers containing a cosmetically acceptable composition as herein defined.
  • a pharmaceutical formulation for oral or parenteral administration, in which case the formulation may comprises an activating compound-containing microemulsion as described above, but may contain alternative pharmaceutically acceptable carriers, vehicles, additives, etc. particularly suited to oral or parenteral drug administration.
  • an activating compound-containing microemulsion may be administered orally or parenterally substantially as described above, without modification.
  • resveratrol or analog thereof can be prepared in an airtight capusule for oral administration, such as Capsugel from Pfizer, Inc.
  • Cells e.g., treated ex vivo with a compound described herein, can be administered according to methods for administering a graft to a subject, which may be accompanied, e.g., by administration of an immunosuppressant drug, e.g., cyclosporin A.
  • an immunosuppressant drug e.g., cyclosporin A.
  • the reader is referred to Cell Therapy: Stem Cell Transplantation, Gene Therapy, and Cellular Immunotherapy, by G. Morstyn & W. Sheridan eds, Cambridge University Press, 1996; and Hematopoietic Stem Cell Therapy, E. D. Ball, J. Lister & P. Law, Churchill Livingstone, 2000.
  • kits e.g., kits for therapeutic purposes or kits for modulating the lifespan of cells or modulating apoptosis.
  • a kit may comprise one or more activating or inhibitory compounds described herein, and optionally devices for contacting cells with the compounds.
  • Devices include syringes, stents and other devices for introducing a compound into a subject or applying it to the skin of a subject.
  • the small molecule libraries included analogues of nicotinamide, ⁇ -acetyl lysine, NAD + , nucleotides, nucleotide analogues and purinergic ligands. From the initial screen, several sirtuin inhibitors were found (Supplementary Table 7). However, the most striking outcome was the identification of two compounds, quercetin and piceatannol, that stimulated SIRT1 activity five and eight-fold, respectively (Table 1). Both quercetin and piceatannol have been previously identified as protein kinase inhibitors (Glossmann et al. Naunyn Schmiedebergs Arch Pharmacol 317, 100-2 (1981); Oliver et al. J Biol Chem 269, 29697-703 (1994)).
  • Piceatannol comprises two phenyl groups trans to one another across a linking ethylene moiety.
  • the trans-stilbene ring structures of piceatannol are superimposable on the flavonoid A and B rings of quercetin, with the ether oxygen and carbon-2 of the C ring aligning with the ethylene carbons in piceatannol (see structures, Table 1). Further, the 5,7,3′ and 4′ hydroxyl group positions in quercetin can be aligned, respectively, with the 3,5,3′ and 4′ hydroxyls of piceatannol.
  • SIRT1 stimulating activity e.g. compare resveratrol, quercetin and the epicatechins in Supplementary Tables 1, 2 and 5 and see Stojanovic et al. Arch Biochem Biophys 391, 79-89 (2001)).
  • resveratrol acts only on K m , it could be classified as an allosteric effector of ‘K system’ type (Monod et al. J. Mol. Biol. 12, 88-118 (1965)). This can imply that only the substrate binding affinity of the enzyme has been altered, rather than a rate-limiting catalytic step.
  • kinetic constants in the presence of 50 ⁇ M nicotinamide were determined either by varying the concentration of NAD + or that of the p53-382 acetylated peptide ( FIG. 1 d ). Nicotinamide, in contrast to resveratrol, affects the SIRT1 V max (note 30% and 36% V max decreases in absence of resveratrol, FIG. 1 d and see Bitterman et al. J Biol Chem 277, 45099-107 (2002)). In the presence of 50 ⁇ M nicotinamide, resveratrol appears to have complex, concentration-dependent effects on the kinetics of SIRT1 ( FIG. 1 d ).
  • Resveratrol and four other potent sirtuin activators were tested for their effect on yeast lifespan. Due to the potential impediment by the yeast cell wall or plasma membrane and suspected slow oxidation of the compound in the medium, we chose to use a concentration (10 ⁇ M) slightly higher than the optimal resveratrol concentration in vitro. As shown in FIG. 2 b, quercetin and piceatannol had no significant effect on lifespan. In contrast, butein, fisetin and resveratrol increased average lifespan by 31, 55 and 70%, respectively, and all three significantly increased maximum lifespan ( FIG. 2 c ). Concentrations of resveratrol higher than 10 ⁇ M provided no added lifespan benefit and there was no lasting effect of the compound on the lifespan of pre-treated young cells ( FIG. 2 d ).
  • Sir2 is thought to extend lifespan by suppressing recombination at the replication fork barrier of rDNA( Benguria et al. Nucleic Acids Res 31, 893-8 (2003)). Consistent with the lifespan extension we observed for resveratrol, this compound reduced the frequency of rDNA recombination by ⁇ 60% ( FIG. 3 c ), in a SIR2-dependent manner ( FIG. 3 d ). In the presence of the Sir2 inhibitor nicotinamide, recombination was also decreased by resveratrol ( FIG. 3 c ), in agreement with the kinetic data (see FIG. 1 d ). Interestingly, we found that resveratrol and other sirtuin activators had only minor effects on rDNA silencing ( FIG. 3 e and f ).
  • S. cerevisiae Another measure of lifespan in S. cerevisiae is the length of time cells can survive in a metabolically active but nutrient deprived state. Aging under these conditions (i.e. chronological aging) is primarily due to oxidative damage (Longo, V. D. and Finch, C. E. Science 299, 1342-6 (2003)). Resveratrol (10 ⁇ M or 100 ⁇ M) failed to extend chronological lifespan (not shown), indicating that the sirtuin-stimulatory effect of resveratrol may be more relevant in vivo than its antioxidant activity (Ferguson, L. R. Mutat Res 475, 89-111 (2001); Middleton et al. Pharmacol Rev 52, 673-751 (2000)).
  • FIG. 4 a A schematic of the assay procedure is depicted in FIG. 4 a.
  • Cells are incubated with media containing the fluorogenic ⁇ -acetyl-lysine substrate, ‘Fluor de Lys’ (FdL).
  • FdL fluorogenic ⁇ -acetyl-lysine substrate
  • This substrate neutral when acetylated, becomes positively charged upon deacetylation and accumulates within cells (see FIG. 6 a ). Lysis of the cells and addition of the non-cell-permeable ‘Developer’ reagent releases a fluorophor specifically from those substrate molecules that have been deacetylated ( FIG. 4 a and see Methods).
  • TSA trichostatin A
  • class III sirtuins
  • FIG. 4 b A selection of SIRT1-stimulatory and non-stimulatory polyphenols were tested for their effects on this TSA-insensitive signal.
  • FIG. 4 b Cellular deacetylation signals in the presence of each compound (y-axis, FIG. 4 b ) were plotted against their fold-stimulations of SIRT1 in vitro (x-axis, FIG. 4 b, data from Supplementary Tables 1-3).
  • the in vitro activity roughly corresponded to the cellular signal.
  • Compounds with little or no in vitro activity clustered around the negative control (Group A, FIG. 4 b ).
  • Another grouping, of strong in vitro activators is clearly distanced from the low activity cluster in both dimensions (Group B, FIG. 4 b ).
  • SIRT1 One known target of SIRT1 in vivo is lysine 382 of p53. Deacetylation of this residue by SIRT1 decreases the activity and half-life of p53 (Vaziri et al. Cell 107, 149-59 (2001); Luo et al. Cell 107, 137-48. (2001); Langley et al. EMBO J 21, 2383-2396 (2002)).
  • K382 To follow the acetylation status of K382 we generated a rabbit polyclonal antibody that recognizes the acetylated form of K382 (Ac-K382) on Western blots of whole cell lysates.
  • sirtuin activators all of which are plant polyphenols. These compounds can dramatically stimulate sirtuin activity in vitro and promote effects consistent with increased sirtuin activity in vivo.
  • resveratrol promotes SIRT1-mediated p53 deacetylation of K382.
  • yeast the effect of resveratrol on lifespan is as great as any longevity-promoting genetic manipulation (Anderson et al. Nature 423, 181-5 (2003)) and has been linked convincingly to the direct activation of Sir2.
  • Sirtuins have been found in diverse eukaryotes, including fungi, protozoans, metazoans and plants (Pandey et al. Nucleic Acids Res 30, 5036-55 (2002); Frye, R. A. Biochem Biophys Res Commun 273, 793-8 (2000)), and likely evolved early in life's history (Kenyon, C. A conserved regulatory mechanism for aging. Cell 105, 165-168 (2001)). Plants are known to produce a variety of polyphenols, including resveratrol, in response to stresses such as dehydration, nutrient deprivation, UV radiation and pathogens (Soleas et al.
  • animal and fungal sirtuins may have retained or developed an ability to respond to these plant metabolites because they are a useful indicator of a deteriorating environment and/or food supply.
  • SIRT1 and GST-tagged recombinant Sir2 were prepared as described by (Bitterman et al. J Biol Chem 277, 45099-107. (2002). From 0.1 to 1 ⁇ g of SIRT1 and 1.5 ⁇ g of Sir2 were used per deacetylation assay (in 50 ⁇ l total reaction). SIRT1 assays and certain of those for Sir2 employed the p53-382 acetylated substrate (‘Fluor de Lys-SIRT1′, BIOMOL) rather than FdL.
  • SIRT1 assays and certain of those for Sir2 employed the p53-382 acetylated substrate (‘Fluor de Lys-SIRT1′, BIOMOL) rather than FdL.
  • DMSO dimethylsulfoxide
  • HeLa cells were grown and the cellular deacetylation assays were performed and read, as above, but in full-volume 96-well microplates (Corning Costar 3595). Unless otherwise indicated all initial rate measurements were means of three or more replicates, obtained with single incubation times, at which point 5% or less of the substrate initially present had been deacetylated. Calculation of net fluorescence increases included subtraction of a blank value, which in the case of Sir2 was obtained by omitting the enzyme from the reaction and in the case of SIRT1 by adding an inhibitor (200 ⁇ M suramin or 1 mM nicotinamide) to the reaction prior to the acetylated substrate.
  • an inhibitor 200 ⁇ M suramin or 1 mM nicotinamide
  • yeast strains were grown at 30° C. in complete yeast extract/bactopeptone, 2.0% (w/v) glucose (YPD) medium except where stated otherwise. Calorie restriction was induced in 0.5% glucose.
  • Synthetic complete (SC) medium consisted of 1.67% yeast nitrogen base, 2% glucose, 40 mg/liter each of auxotrophic markers. SIR2 was integrated in extra copy and disrupted as described by Lin et al. ( Science 289, 2126-8 (2000)). Other strains are described elsewhere (Bitterman et al. J Biol Chem 277, 45099-107 (2002)). For cellular deacetylation assays, HeLa S3 cells were used.
  • HEK 293 cells were cultured adherently in Dulbecco's Modified Eagle's Medium (DMEM) containing 10% fetal calf serum (FCS) with 1.0% glutamine and 1.0% penecillin/streptomycin.
  • DMEM Dulbecco's Modified Eagle's Medium
  • FCS fetal calf serum
  • HEK 293 overexpressing dominant negative SIRT1 H363Y was a gift of R. Frye (U. Pittsburgh).
  • Lifespan measurements were performed using PSY316AT MAT ⁇ as previously described by Anderson et al. ( J Biol Chem 277, 18881-90. (2002). All compounds for lifespan analyses were dissolved in 95% ethanol and plates were dried and used within 24 hours. Prior to lifespan analysis, cells were pre-incubated on their respective media for at least 15 hours. Following transfer to a new plate, cells were equilibrated on the medium for a minimum of 4 hours prior to micro-manipulating them. At least 30 cells were examined per experiment and each experiment was performed at least twice. Statistical significance of lifespan differences was determined using the Wilcoxon rank sum test. Differences are stated to be significant when the confidence is higher than 95%.
  • Ribosomal DNA silencing assays using the URA3 reporters were performed as previously described by Bitterman et al. ( J Biol Chem 277, 45099-107 (2002)). Ribosomal DNA recombination frequencies were determined by plating W303AR cells (Sinclair, D. A. and Guarente, L. Cell 91, 1033-42 (1997)) on YPD medium with low adenine/histidine and counting the fraction of half-red sectored colonies using Bio-Rad Quantity One software as described by Anderson et al. ( J Biol Chem 277, 18881-90. (2002)). At least 6000 cells were analyzed per experiment and all experiments were performed in triplicate. All strains were pre-grown for 15 hours with the relevant compound prior to plating.
  • Recombinant Sir2-GST was expressed and purified from E. coli as previously described except that lysates were prepared using sonication (Bitterman et al. J Biol Chem 277, 45099-107 (2002).
  • Recombinant SIRT1 from E. coli was prepared as previously described (Bitterman et al. J Biol Chem 277, 45099-107 (2002).
  • Polyclonal antiserum against p53-AcK382 was generated using an acetylated peptide antigen as previously described (Vaziri et al. Cell 107, 149-59 (2001) with the following modifications.
  • Anti-Ac-K382 antibody was affinity purified using non-acetylated p53-K382 peptides and stored in PBS at ⁇ 70° C. and recognized an acetylated but not a non-acetylated p53 peptide.
  • Western hybridizations using anti-acetylated K382 or anti-actin (Chemicon) antibody were performed at 1:1000 dilution of antibody.
  • Hybridizations with polyclonal p53 antibody (Santa Cruz Biotech.) used 1:500 dilution of antibody.
  • Whole cell extracts were prepared by lysing cells in buffer containing 150 mM NaCl, 1 mM MgCl 2 , 10% glycerol, 1% NP40, 1 mM DTT and anti-protease cocktail (Roche).
  • Yeast Sir2 and human SIRT1 are very homologous and differ from human SIRT2 by the addition of an N-terminal domain that is absent in SIRT2.
  • the effect of resveratrol was assayed on human recombinant SIRT2 as follows. Human recombinant SIRT2 was incubated at a concentration of 1.25 ⁇ g/well with 25 ⁇ M of Fluor de Lys-SIRT2 (BIOMOL cat. # KI-179) and 25 ⁇ M NAD + for 20 minutes at 37° C., as described above. Results, indicate that, in contrast to SIRT1, increasing concentrations of resveratrol decrease SIRT2 activity.
  • SIRT1 and SIRT2 i.e., the absence of an N-terminal domain
  • the N-terminal domain of SIRT1 and Sir2 is necessary for activation by the compounds described herein.
  • the activator compounds described herein interact with the N-terminal portion of sirtuins.
  • the N-terminal portion of SIRT1 that is necessary for the action of the compounds is from about amino acid 1 to about amino acid 176, and that of Sir2 is from about amino acid 1 to about amino acid 175.
  • C. elegans worms (strain N2) were grown in the presence or absence of 100 ⁇ M resveratrol for 17 days. On day 17, only 5 worms in the control group without resveratrol were alive, whereas 17 worms were alive in the group that was treated with resveratrol. Thus, the presence of resveratrol in the growth media of C. elegans extends their lifespan.
  • t 1/2 Stability determinations (t 1/2 ) derived from SIRT1 rate measurements performed in a similar way to those described above, except that 5 ⁇ M p53-382 acetylated peptide substrate was used rather than 25 ⁇ M.
  • the fold-stimulation (ratio to control) obtained with a compound diluted from an aged stock solution was compared to an identical dilution from a stock solution freshly prepared from the solid compound.
  • t 1/2 is defined as the time required for the SIRT1 fold-stimulation of the compound from the aged solution to decay to one-half of that obtained from a freshly prepared solution.
  • Ethanol stocks of resveratrol, BML-212 and BML-221 were prepared at 2.5 mM and the compounds were assayed at a final concentration of 50 ⁇ M.
  • the water stock of resveratrol was 100 ⁇ M and the assay performed at 10 ⁇ M.
  • Stocks were aged by storage at room 5 temperature, in glass vials, under a nitrogen atmosphere.
  • SIRT1 activation results from several of these new analogs confirmed the importance of planarity, or at least the potential for planarity, between and within the two rings of the active compounds.
  • Reduction of the double bond of the ethylene function, between, the two rings essentially abolishes activity (compare Resveratrol, Table A and Dihydroresveratrol, Table E).
  • Replacement of a phenyl moiety with a cyclohexyl group is nearly as detrimental to SIRT1 stimulating activity (compare Pinosylvin, Table 9 and BML-224, Table 12).
  • Amide bonds are thought to have a partially double bond character.
  • Resveratrol is currently the most potent known activator of SIRT1.
  • the collection of analogs described above, particularly the group entailing substitutions at the 4′ position, may be instrumental in informing the design of new SIRT1 ligands with improved pharmacological properties.
  • One parameter that may be of interest in this regard is stability.
  • One 4′-substituted analog, BML-221 displays a vast improvement in solution stability relative to resveratrol and although diminished in vitro SIRT1 activating ability, retains much of resveratrol's biological activity (see lifespan data).
  • the 4′-hydroxyl of resveratrol is thought to be of primary importance to resveratrol's free-radical scavenging reactivity (S. Stojanovic et al.
  • results obtained with 4′-substituted analogs may indicate promising routes to explore while seeking to increase SIRT1 binding affinity.
  • the efficacy of the 4′-ethyl compound (BML-225) might indicate the presence of a narrow, hydrophobic binding pocket at the SIRT1 site corresponding to the 4′ end of resveratrol.
  • Several new series of 4′-substituted analogs are planned, the simplest comprising straight-chain aliphatic groups of various lengths.
  • Section III describes the procedures for synthesizing the final compounds from any of the benzylphosphonate/aldehyde pairs.
  • the coupling reaction (Section III. A.) is followed by one of two deprotection reactions depending on whether the intermediates contained methoxymethyl (Section III. B.) or methoxy (Section III. C.) protecting groups.
  • Section IV corresponds to Tables 14-18, which list the particular benzylphosphonate and aldehyde used in the synthesis of particular final compounds.
  • BML-220 (3,3′,5-trihydroxy-4′-methoxystilbene): To Rhapontin in methanol was added catalytic p-toluenesulfonic acid. The reaction was refluxed overnight. Upon completion of the reaction (TLC), the reaction mixture was evaporated to dryness and taken up in ethyl acetate. The organics were washed with water and brine and dried over sodium sulfate. Flash chromatography (silica gel) yielded the desired product.
  • BML-233 (3,5-Dihydroxy-4′-methoxystilbene): To deoxyrhapontin in methanol was added catalytic p-toluenesulfonic acid. The reaction was refluxed overnight. Upon completion of the reaction (TLC), the reaction mixture was evaporated to dryness and taken up in ethyl acetate. The organics were washed with water and brine and dried over sodium sulfate. Flash chromatography (silica gel) yielded the desired product.
  • Rate measurements with 25 ⁇ M NAD + and 25 ⁇ M p53-382 acetylated peptide substrate were performed as described in Methods. All ratio data were calculated from experiments in which the total deacetylation in the control reaction was 0.25-1.25 ⁇ M peptide or 1-5% of the initial concentration of acetylated peptide.
  • Rate measurements with 25 ⁇ M NAD + and 25 ⁇ M p53-382 acetylated peptide substrate were performed as described in Methods. All radio data were calculated from experiments in which the total deacetylation in the control reaction was 0.25-1.25 ⁇ M peptide or 1-5% of the initial concentration of acetylated peptide.
  • Rate measurements with 25 ⁇ M NAD + and 25 ⁇ M p53-382 acetylated peptide substrate were performed as described in Methods. All ratio data were calculated from experiments in which the total deacetylation in the control reaction was 0.25-1.25 ⁇ M peptide or 1-5% of the initial concentration of acetylated peptide.
  • Rate measurements with 25 ⁇ M NAD + and 25 ⁇ M p53-382 acetylated peptide substrate were performed as described in Methods. All ratio data were calculated from experiments in which the total deacetylation in the control reaction was 0.25-1.25 ⁇ M peptide or 1-5% of the initial concentration of acetylated peptide.
  • Rate measurements with 25 ⁇ M NAD + and 25 ⁇ M p53-382 acetylated peptide substrate were performed as described in Methods. All ratio data were calculated from experiments in which the total deacetylation in the control reaction was 0.25-1.25 ⁇ M peptide or 1-5% of the initial concentration of acetylated peptide.
  • Rate measurements with 25 ⁇ M NAD + and 25 ⁇ M p53-382 acetylated peptide substrate were performed as described in Methods. All ratio data were calculated from experiments in which the total deacetylation in the control reaction was 0.25-1.25 ⁇ M peptide or 1-5% of the initial concentration of acetylated peptide.
  • Rate measurements with 25 ⁇ M NAD + and 25 ⁇ M p53-382 acetylated peptide substrate were performed as described in Methods. All ratio data were calculated from experiments in which the total deacetylation in the control reaction was 0.25-1.25 ⁇ M peptide or 1-5% of the initial concentration of acetylated peptide.
  • Rate measurements with 25 ⁇ M NAD + and 25 ⁇ M p53-382 acetylated peptide substrate were performed as described in Methods. All ratio data were calculated from experiments in which the total deacetylation in the control reaction was 0.25-1.25 ⁇ M peptide or 1-5% of the initial concentration of acetylated peptide.
  • Ratio to Compound, Control Rate (Concentration) Mean ⁇ SE Replicates Structure ZM 336372, (100 ⁇ M) 3.5 ⁇ 1.1 3 Camptothecin, (10 ⁇ M) 2.92 ⁇ 0.41 3 Coumestrol, (10 ⁇ M) 2.30 ⁇ 0.31 2 NDGA, (100 ⁇ M) 1.738 ⁇ 0.088 3 Esculetin, (10 ⁇ M) 1.737 ⁇ 0.082 3 Sphingosine 0.069 ⁇ 0.028 3
  • SE Standard error of the mean.
  • Rate measurements with 25 ⁇ M NAD + and 25 ⁇ M p53-382 acetylated peptide substrate were performed as described in Methods. All ratio data were calculated from experiments in which the total deacetylation in the control reaction was 0.25-1.25 ⁇ M peptide or 1-5% of the initial concentration of acetylated peptide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Cardiology (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Genetics & Genomics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Neurosurgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Communicable Diseases (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pulmonology (AREA)
  • Urology & Nephrology (AREA)
US10/884,062 2003-07-01 2004-07-01 Compositions for manipulating the lifespan and stress response of cells and organisms Abandoned US20060084135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/884,062 US20060084135A1 (en) 2003-07-01 2004-07-01 Compositions for manipulating the lifespan and stress response of cells and organisms

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US48394903P 2003-07-01 2003-07-01
US53215803P 2003-12-23 2003-12-23
US10/884,062 US20060084135A1 (en) 2003-07-01 2004-07-01 Compositions for manipulating the lifespan and stress response of cells and organisms

Publications (1)

Publication Number Publication Date
US20060084135A1 true US20060084135A1 (en) 2006-04-20

Family

ID=33567706

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/884,062 Abandoned US20060084135A1 (en) 2003-07-01 2004-07-01 Compositions for manipulating the lifespan and stress response of cells and organisms
US10/884,022 Abandoned US20050096256A1 (en) 2003-07-01 2004-07-01 Compositions for manipulating the lifespan and stress response of cells and organisms
US10/884,879 Active 2024-07-08 US7544497B2 (en) 2003-07-01 2004-07-02 Compositions for manipulating the lifespan and stress response of cells and organisms
US12/479,883 Abandoned US20100035885A1 (en) 2003-07-01 2009-06-08 Compositions for manipulating the lifespan and stress response of cells and organisms

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/884,022 Abandoned US20050096256A1 (en) 2003-07-01 2004-07-01 Compositions for manipulating the lifespan and stress response of cells and organisms
US10/884,879 Active 2024-07-08 US7544497B2 (en) 2003-07-01 2004-07-02 Compositions for manipulating the lifespan and stress response of cells and organisms
US12/479,883 Abandoned US20100035885A1 (en) 2003-07-01 2009-06-08 Compositions for manipulating the lifespan and stress response of cells and organisms

Country Status (6)

Country Link
US (4) US20060084135A1 (de)
EP (3) EP2289504A3 (de)
JP (4) JP2007530417A (de)
AU (2) AU2004253579B2 (de)
CA (1) CA2529510A1 (de)
WO (2) WO2005002672A2 (de)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050136537A1 (en) * 2003-07-01 2005-06-23 President And Fellows Of Harvard College Compositions for manipulating the lifespan and stress response of cells and organisms
US20050171027A1 (en) * 2003-12-29 2005-08-04 President And Fellows Of Harvard College Compositions for treating or preventing obesity and insulin resistance disorders
US20060014705A1 (en) * 2004-06-30 2006-01-19 Howitz Konrad T Compositions and methods for selectively activating human sirtuins
US20060025337A1 (en) * 2003-07-01 2006-02-02 President And Fellows Of Harvard College Sirtuin related therapeutics and diagnostics for neurodegenerative diseases
US20060229265A1 (en) * 2005-03-30 2006-10-12 Sirtris Pharmaceuticals, Inc. Nicotinamide riboside and analogues thereof
US20060276393A1 (en) * 2005-01-13 2006-12-07 Sirtris Pharmaceuticals, Inc. Novel compositions for preventing and treating neurodegenerative and blood coagulation disorders
US20060292099A1 (en) * 2005-05-25 2006-12-28 Michael Milburn Treatment of eye disorders with sirtuin modulators
US20070014833A1 (en) * 2005-03-30 2007-01-18 Sirtris Pharmaceuticals, Inc. Treatment of eye disorders with sirtuin modulators
US20070149466A1 (en) * 2005-07-07 2007-06-28 Michael Milburn Methods and related compositions for treating or preventing obesity, insulin resistance disorders, and mitochondrial-associated disorders
US20080194803A1 (en) * 2005-06-14 2008-08-14 Sinclair David A Cognitive Performance With Sirtuin Activators
US20090137681A1 (en) * 2005-04-08 2009-05-28 David A Sinclair Sirtuin Inhibiting Compounds
US20090142335A1 (en) * 2005-02-15 2009-06-04 Joslin Diabetes Center Methods of diagnosis and treatment of metabolic disorders
US20090163580A1 (en) * 2007-12-24 2009-06-25 Natrol, Inc. Anti-aging composition containing resveratrol and method of administration
US20090215681A1 (en) * 2005-02-15 2009-08-27 Joslin Diabetes Center Methods of Diagnosis and Treatment of Metabolic Disorders
US20090221020A1 (en) * 2005-12-02 2009-09-03 Sirtris Pharmaceuticals, Inc Mass Spectrometry Assays for Acetyltransferase/Deacetylase Activity
WO2009126700A1 (en) * 2008-04-08 2009-10-15 Kent State University Hydroxylated tolans and related compounds as cosmetics or therapeutics for skin conditions
US20090318455A1 (en) * 2008-06-03 2009-12-24 Intermune, Inc. Compounds and methods for treating inflammatory and fibrotic disorders
US20100185006A1 (en) * 2004-01-20 2010-07-22 Brigham Young University Novel sirtuin activating compounds and processes for making the same
US20100292243A1 (en) * 2009-05-12 2010-11-18 Albany Molecular Research, Inc. 7-([1,2,4]TRIAZOLO[1,5-a]PYRIDIN-6-YL)-4-(3,4-DICHLOROPHENYL)-1,2,3,4-TETRAHYDROISOQUINOLINE AND USE THEREOF
US20100292242A1 (en) * 2009-05-12 2010-11-18 Albany Molecular Research, Inc. Aryl, heteroaryl, and heterocycle substituted tetrahydroisoquinolines and use thereof
US20100292250A1 (en) * 2009-05-12 2010-11-18 Albany Molecular Research, Inc. CRYSTALLINE FORMS OF (S)-7-([1,2,4]TRIAZOLO[1,5-a]PYRIDIN-6-YL)-4-(3,4-DICHLOROPHENYL)-1,2,3,4- TETRAHYDROISOQUINOLINE AND USE THEREOF
US8017634B2 (en) 2003-12-29 2011-09-13 President And Fellows Of Harvard College Compositions for treating obesity and insulin resistance disorders
US8741901B2 (en) 2004-07-15 2014-06-03 Albany Molecular Research, Inc. Aryl- and heteroaryl-substituted tetrahydroisoquinolines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
US8741936B2 (en) 2005-05-10 2014-06-03 Intermune, Inc. Method of modulating stress-activated protein kinase system
US8907108B2 (en) 2012-10-26 2014-12-09 Industrial Technology Research Institute P-type organic semiconductor material and optoelectronic device utilizing the same
US9359379B2 (en) 2012-10-02 2016-06-07 Intermune, Inc. Anti-fibrotic pyridinones
WO2016178713A1 (en) * 2015-05-02 2016-11-10 Flavocure Biotech Llc Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
US9498476B2 (en) 2008-06-04 2016-11-22 Albany Molecular Research, Inc. Crystalline form of 6-[(4S)-2-methyl-4-(2-naphthyl)-1,2,3,4-tetrahydroisoquinolin-7-yl]pyridazin-3-amine
US10045950B2 (en) 2015-04-08 2018-08-14 BioMendics, LLC Formulation and process for modulating wound healing
US10233195B2 (en) 2014-04-02 2019-03-19 Intermune, Inc. Anti-fibrotic pyridinones
US10398674B2 (en) 2014-11-26 2019-09-03 Flavocure Biotech Llc Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
US11820747B2 (en) 2021-11-02 2023-11-21 Flare Therapeutics Inc. PPARG inverse agonists and uses thereof
US11939328B2 (en) 2021-10-14 2024-03-26 Incyte Corporation Quinoline compounds as inhibitors of KRAS

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563522B2 (en) * 1997-07-08 2013-10-22 The Iams Company Method of maintaining and/or attenuating a decline in quality of life
US8914114B2 (en) 2000-05-23 2014-12-16 The Feinstein Institute For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US7666459B2 (en) * 2001-09-12 2010-02-23 The Procter & Gamble Company Pet food compositions
US20040167189A1 (en) * 2002-03-22 2004-08-26 The Government Of The U.S.A., As Represented By The Secretary, Dept. Of Health And Human Services Materials and methods for inhibiting Wip1
US20040009601A1 (en) * 2002-07-15 2004-01-15 The Regents Of The University Of California Methods for the regeneration and transformation of cotton
US7977049B2 (en) 2002-08-09 2011-07-12 President And Fellows Of Harvard College Methods and compositions for extending the life span and increasing the stress resistance of cells and organisms
US20060111318A1 (en) * 2003-04-18 2006-05-25 Advanced Medicine Research Institute Agent for treating eye diseases
US20050158376A1 (en) * 2003-10-23 2005-07-21 Sardi William F. Dietary supplement and method of processing same
US20090169585A1 (en) * 2003-10-23 2009-07-02 Resveratrol Partners, Llc Resveratrol-Containing Compositions And Their Use In Modulating Gene Product Concentration Or Activity
US20050158294A1 (en) 2003-12-19 2005-07-21 The Procter & Gamble Company Canine probiotic Bifidobacteria pseudolongum
US8877178B2 (en) 2003-12-19 2014-11-04 The Iams Company Methods of use of probiotic bifidobacteria for companion animals
EP1734941A2 (de) 2004-03-25 2006-12-27 The Feinstein Institute for Medical Research Neurale staubinde
US10912712B2 (en) 2004-03-25 2021-02-09 The Feinstein Institutes For Medical Research Treatment of bleeding by non-invasive stimulation
US20070212395A1 (en) * 2006-03-08 2007-09-13 Allergan, Inc. Ocular therapy using sirtuin-activating agents
WO2006068656A2 (en) * 2004-05-04 2006-06-29 President And Fellows Of Harvard College Methods and compositions for inducing sirtuins
US20090252834A1 (en) * 2004-05-10 2009-10-08 Michael Griffin Hayek Compositions comprising glucose anti-metabolites
AU2005257883A1 (en) * 2004-06-04 2006-01-05 Washington University Methods and compositions for treating neuropathies
JP2008503479A (ja) * 2004-06-16 2008-02-07 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Bax媒介性アポトーシスを調節する方法及び組成物
US7578796B2 (en) * 2004-10-22 2009-08-25 General Patent Llc Method of shockwave treating fish and shellfish
EP1833559B1 (de) * 2004-12-27 2010-11-24 The Feinstein Institute for Medical Research Behandlung von entzündlichen erkrankungen durch elektrische stimulation des vagus-nervs
US11207518B2 (en) * 2004-12-27 2021-12-28 The Feinstein Institutes For Medical Research Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway
AU2006206274A1 (en) * 2005-01-20 2006-07-27 Sirtris Pharmaceuticals, Inc. Use of sirtuin-activating compounds for treating flushing and drug induced weight gain
US20090012130A1 (en) * 2005-01-25 2009-01-08 The Johns Hopkins University Strategies for Designing Drugs that Target the Sir2 Family of Enzymes
WO2006087718A1 (en) * 2005-02-17 2006-08-24 Yissum Research Development Company Of The Hebrew University Of Jerusalem Extension of lifespan with drugs
WO2006094210A2 (en) * 2005-03-03 2006-09-08 Sirtris Pharmaceuticals, Inc. Tetrahydroquinoxalinone sirtuin modulators
WO2006094248A1 (en) * 2005-03-03 2006-09-08 Sirtris Pharmaceuticals, Inc. Aryl-substituted cyclic sirtuin modulators
WO2006094209A2 (en) * 2005-03-03 2006-09-08 Sirtris Pharmaceuticals, Inc. N-benzimidazolylalkyl-substituted amide sirtuin modulators
WO2006094239A2 (en) * 2005-03-03 2006-09-08 Sirtris Pharmaceuticals, Inc. Fluorescence polarization assays for acetyltransferase/deacetylase activity
FR2883753B1 (fr) * 2005-04-01 2008-04-11 Soc Extraction Principes Actif Composition dermatologique et/ou cosmetique contenant des polypeptides
FR2883751B1 (fr) * 2005-04-01 2008-04-11 Soc Extraction Principes Actif Utilisation de composes inducteurs de la synthese des proteines sirt dans ou pour la preparation d'une composition cosmetique ou pharmaceutique
FR2883754B1 (fr) * 2005-04-01 2008-04-18 Soc Extraction Principes Actif Utilisation de composes inducteurs de la synthese des proteines sirt dans ou pour la preparation d'une composition cosmetique ou pharmaceutique
FR2883752B1 (fr) * 2005-04-01 2008-04-11 Soc Extraction Principes Actif Utilisation de composes inducteurs de la synthese des proteines sirt dans ou pour la preparation d'une composition cosmetique ou pharmaceutique
US20070155738A1 (en) * 2005-05-20 2007-07-05 Alantos Pharmaceuticals, Inc. Heterobicyclic metalloprotease inhibitors
KR20080087070A (ko) * 2005-05-20 2008-09-30 알란토스 파마슈티컬즈 홀딩, 인코포레이티드 피리미딘 또는 트리아진 융합된 비시클릭 메탈로프로테아제억제제
WO2006127987A2 (en) * 2005-05-25 2006-11-30 Sirtris Pharmaceuticals, Inc. Treatment of eye disorders with sirtuin modulators
EP2270131A1 (de) 2005-05-31 2011-01-05 The Iams Company Probiotische Katzen-Laktobazillen
AU2006253007B2 (en) 2005-05-31 2012-12-20 Alimentary Health Ltd Feline probiotic Bifidobacteria
FR2887772B1 (fr) * 2005-07-01 2010-08-13 Soc Extraction Principes Actif Utilisation d'un extrait de levure en tant qu'agent actif inducteur de la synthese des proteines sirt dans les cellules de la peau.
FR2887773B1 (fr) * 2005-07-01 2008-05-30 Soc Extraction Principes Actif Utilisation d'un acide amine en tant qu'agent actif inducteur de la synthese des proteines sirt dans les cellules de la peau.
FR2887775B1 (fr) * 2005-07-01 2010-08-13 Soc Extraction Principes Actif Utilisation d'un extrait de levure en tant qu'agent actif inducteur de la synthese des proteines sirt dans les cellules de la peau.
AU2006269459B2 (en) * 2005-07-07 2013-02-07 Sirtris Pharmaceuticals, Inc. Methods and related compositions for treating or preventing obesity, insulin resistance disorders, and mitochondrial-associated disorders
CN101263121A (zh) 2005-07-14 2008-09-10 塔克达圣地亚哥公司 组蛋白脱乙酰基酶抑制剂
JP2009502962A (ja) * 2005-07-29 2009-01-29 ザ ジェネラル ホスピタル コーポレイション 皮膚損傷を軽減するための方法、及び組成物
ITRM20050446A1 (it) * 2005-08-19 2007-02-20 Tubilux Pharma S P A Uso di stilbeni idrossilati e glucosidati per la prevenzione ed il trattamento di patologie oculari.
KR100680584B1 (ko) * 2005-08-19 2007-02-08 (주)아모레퍼시픽 히드록시벤즈아미드 화합물 및 그 제조방법, 및 이를유효성분으로 함유하는 화장료 조성물
JP4739161B2 (ja) * 2005-10-26 2011-08-03 花王株式会社 持久力向上剤
FR2895261B1 (fr) * 2005-12-22 2009-06-05 Vincience Sa Utilisation d'un extrait de riz en tant qu'agent actif inducteur de la synthese des proteines sirt dans les cellules de la peau
AU2007205982A1 (en) * 2006-01-13 2007-07-26 President And Fellows Of Harvard College Xenohormesis based compositions and methods
US8722016B2 (en) * 2006-09-25 2014-05-13 Palo Alto Investors Methods of identifying xenohormetic phenotypes and agents
EP2124985A4 (de) * 2007-01-26 2011-06-08 Univ Washington Verfahren und zusammensetzungen zur behandlung von nervenleiden
PL2124966T3 (pl) 2007-02-01 2016-01-29 Iams Europe B V Sposób zmniejszania reakcji zapalnej i stresu u ssaków za pomocą antymetabolitów glukozy, awokado lub ekstraktów awokado
US8391970B2 (en) * 2007-08-27 2013-03-05 The Feinstein Institute For Medical Research Devices and methods for inhibiting granulocyte activation by neural stimulation
JP2010540444A (ja) * 2007-09-20 2010-12-24 レスベラトロル パートナーズ, エルエルシー 遺伝子産物の濃縮または活性を調節するためのレスベラトロールを含む組成物
CN101152173A (zh) * 2007-10-15 2008-04-02 崔福贵 甘草素在制备治疗神经退行性疾病药物中的用途
WO2009054994A2 (en) * 2007-10-23 2009-04-30 President And Fellows Of Harvard College Sirt-3 related methods and compositions for mimicking exercise
WO2009086303A2 (en) * 2007-12-21 2009-07-09 University Of Rochester Method for altering the lifespan of eukaryotic organisms
US9662490B2 (en) 2008-03-31 2017-05-30 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug
WO2009146030A1 (en) 2008-03-31 2009-12-03 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation of t-cell activity
US9771199B2 (en) 2008-07-07 2017-09-26 Mars, Incorporated Probiotic supplement, process for making, and packaging
US9326986B2 (en) 2008-09-29 2016-05-03 Glaxosmithkline Llc Quinazolinone, quinolone and related analogs as sirtuin modulators
WO2010046926A2 (en) * 2008-10-17 2010-04-29 Aptuit Laurus Pvt Ltd Novel stilbene analogs
CN102215909B (zh) 2008-11-18 2014-09-10 赛博恩特医疗器械公司 优化用于消炎刺激的电极放置的装置和方法
US20100173024A1 (en) * 2008-12-01 2010-07-08 LifeSpan Extension, LLC Methods and compositions for altering health, wellbeing, and lifespan
EP2963116B1 (de) 2009-03-04 2020-11-11 CuRNA, Inc. Behandlung von sirtuin 1 (sirt1)-bedingten erkrankungen mittels hemmung des natürlichen antisense-transkripts gegen sirt 1
US8788034B2 (en) 2011-05-09 2014-07-22 Setpoint Medical Corporation Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US9211410B2 (en) 2009-05-01 2015-12-15 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US8996116B2 (en) * 2009-10-30 2015-03-31 Setpoint Medical Corporation Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction
CN102573986B (zh) 2009-06-09 2016-01-20 赛博恩特医疗器械公司 用于无导线刺激器的具有袋部的神经封套
US10104903B2 (en) 2009-07-31 2018-10-23 Mars, Incorporated Animal food and its appearance
WO2011028763A2 (en) * 2009-09-01 2011-03-10 Setpoint Medical Corporation Prescription pad for treatment of inflammatory disorders
CA2779606A1 (en) * 2009-11-10 2011-05-19 Nestec S.A. Heart aging biomarkers and methods of use
US9833621B2 (en) 2011-09-23 2017-12-05 Setpoint Medical Corporation Modulation of sirtuins by vagus nerve stimulation
US11051744B2 (en) 2009-11-17 2021-07-06 Setpoint Medical Corporation Closed-loop vagus nerve stimulation
EP3636314B1 (de) 2009-12-23 2021-09-08 Setpoint Medical Corporation Nervenstimulatoren und systeme zur behandlung von chronischer entzündung
US8940708B2 (en) 2009-12-23 2015-01-27 Curna, Inc. Treatment of hepatocyte growth factor (HGF) related diseases by inhibition of natural antisense transcript to HGF
WO2011079212A2 (en) * 2009-12-24 2011-06-30 LifeSpan Extension, LLC Methods and compositions for identifying, producing and using plant-derived products modulating cell function and aging
RU2611186C2 (ru) 2009-12-29 2017-02-21 Курна, Инк. ЛЕЧЕНИЕ ЗАБОЛЕВАНИЙ, СВЯЗАННЫХ С ОПУХОЛЕВЫМ БЕЛКОМ 63 (р63), ПУТЕМ ИНГИБИРОВАНИЯ ПРИРОДНОГО АНТИСМЫСЛОВОГО ТРАНСКРИПТА К р63
DE102010002969A1 (de) * 2010-03-17 2011-11-17 Rovi Cosmetics International Gmbh Zusammensetzung mit einem Sirtuin-Aktivator
RU2018110642A (ru) 2010-05-03 2019-02-27 Курна, Инк. Лечение заболеваний, связанных с сиртуином (sirt), путем ингибирования природного антисмыслового транскрипта к сиртуину (sirt)
EP2389922A1 (de) 2010-05-25 2011-11-30 Symrise AG Cyclohexylcarbamatverbindungen als Anti-ageing-Wirkstoffe
FR2966040A1 (fr) 2010-10-19 2012-04-20 Brigitte Gourlaouen Composition amincissante et/ou de prevention des processus inflammatoires
EP2356977B1 (de) 2011-02-02 2017-12-27 Symrise AG Zubereitungen mit Holzextrakten von Gleditschien
WO2012135149A2 (en) * 2011-03-25 2012-10-04 Indiana University Research And Technology Corporation Small molecule modulators of sirt1 activity activate p53 and suppress tumor growth
KR101329524B1 (ko) * 2011-05-23 2013-11-13 연세대학교 산학협력단 미분화 전능성 줄기세포의 선택적 세포사멸 방법
BR112013033797A2 (pt) 2011-06-29 2017-02-14 Harvard College composição, célula isolada, mitocôndria isolada , métodos de preparo de um oócito, de fertilização in vitro, de melhora de fertilidade em um indivíduo, de sustentação de desenvolvimento embrionário, de recuperação ou aumento de função ovariana em um indivíduo, de preparo de um tecido ou célula do mesmo, e de produção de um oócito, oócito, e, agente bioenergético
US20140309291A1 (en) * 2011-11-11 2014-10-16 The Children's Hospital Of Philadelphia Compositions and Methods for Increasing Stress Resilience
US8916528B2 (en) 2011-11-16 2014-12-23 Resveratrol Partners, Llc Compositions containing resveratrol and nucleotides
US9572983B2 (en) 2012-03-26 2017-02-21 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
CN103387508A (zh) * 2012-05-07 2013-11-13 长沙理工大学 反3,5-二羟基-4′-乙酰胺基二苯乙烯的制备
JP5948139B2 (ja) * 2012-05-11 2016-07-06 ヒノキ新薬株式会社 サーチュイン1(sirt1)遺伝子活性化剤
JO3407B1 (ar) 2012-05-31 2019-10-20 Eisai R&D Man Co Ltd مركبات رباعي هيدرو بيرازولو بيريميدين
WO2014059034A2 (en) 2012-10-09 2014-04-17 President And Fellows Of Harvard College Nad biosynthesis and precursors for the treatment and prevention of cancer and proliferation
EP2801357A1 (de) 2013-05-10 2014-11-12 IMD Natural Solutions GmbH Carboxylierte Stilbene zur Aktivierung von AMPK und Sirtuinen
CN106573156A (zh) * 2014-03-11 2017-04-19 比奥考金特有限责任公司 包含去乙酰化酶的组合物和方法
AU2015270130A1 (en) 2014-06-02 2016-12-15 Glaxosmithkline Intellectual Property (No.2) Limited Preparation and use of crystalline beta-D-nicotinamide riboside
AU2015270090A1 (en) 2014-06-06 2016-12-22 Glaxosmithkline Intellectual Property (No.2) Limited Nicotinamide riboside analogs and pharmaceutical compositions and uses thereof
US11311725B2 (en) 2014-10-24 2022-04-26 Setpoint Medical Corporation Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation
WO2016073529A1 (en) * 2014-11-03 2016-05-12 Stella & Dot Llc Skincare formulations and regimens
US11406833B2 (en) 2015-02-03 2022-08-09 Setpoint Medical Corporation Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator
US10596367B2 (en) 2016-01-13 2020-03-24 Setpoint Medical Corporation Systems and methods for establishing a nerve block
CN114904142A (zh) 2016-01-20 2022-08-16 赛博恩特医疗器械公司 迷走神经刺激的控制
WO2017127758A1 (en) 2016-01-20 2017-07-27 Setpoint Medical Corporation Implantable microstimulators and inductive charging systems
US11471681B2 (en) 2016-01-20 2022-10-18 Setpoint Medical Corporation Batteryless implantable microstimulators
US10583304B2 (en) 2016-01-25 2020-03-10 Setpoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
CN109890378A (zh) * 2016-10-27 2019-06-14 三得利控股株式会社 Foxo1活性阻碍用组合物
WO2018089830A1 (en) 2016-11-11 2018-05-17 The Queen's University Of Belfast Efficient and scalable syntheses of nicotinoyl ribosides and reduced nicotinoyl ribosides, modified derivatives thereof, phosphorylated analogs thereof, adenylyl dinucleotide conjugates thereof, and novel crystalline forms thereof
EP3541410B1 (de) 2016-11-16 2024-03-27 Yeditepe Üniversitesi Kombination zur hemmung von meis-proteinen
US11071747B2 (en) 2016-11-29 2021-07-27 University Of Iowa Research Foundation Use of NAD precursors for breast enhancement
JP7136795B2 (ja) 2016-11-29 2022-09-13 ユニバーシティー オブ アイオワ リサーチ ファウンデーション 母体の健康および/または子の健康を向上させるためのnad前駆体の使用
US11173307B2 (en) 2017-08-14 2021-11-16 Setpoint Medical Corporation Vagus nerve stimulation pre-screening test
US11260229B2 (en) 2018-09-25 2022-03-01 The Feinstein Institutes For Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
CA3148300A1 (en) 2019-07-19 2021-01-28 Biosynth Ag Method of making nicotinamide ribofuranoside salts, nicotinamide ribofuranoside salts as such, and uses thereof
CN110478339A (zh) * 2019-08-12 2019-11-22 昆明理工大学 紫铆因在制备靶向恢复突变p53构象药物中的应用
KR20230012585A (ko) 2020-05-21 2023-01-26 더 파인스타인 인스티튜츠 포 메디칼 리서치 미주 신경 자극을 위한 시스템들 및 방법들
WO2023150072A1 (en) 2022-02-01 2023-08-10 Sinclair David A Compositions and methods for the preservation of plant matter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147121A (en) * 1998-04-10 2000-11-14 Societe L'oreal S.A. Skin toning by stimulating collagen synthesis/proliferation of dermal fibroblasts
US6355692B2 (en) * 1998-09-01 2002-03-12 Northeastern Ohio Universities College Of Medicine Method of inhibiting formation of infectious microorganisms
US20030190337A1 (en) * 2002-03-28 2003-10-09 The Procter & Gamble Company Methods for regulating the condition of mammalian keratinous tissue via topical application of vitamin B6 compositions
US20040265861A1 (en) * 2003-02-28 2004-12-30 Goldfarb David S Materials and methods for identifying genes and/or agents that alter replicative lifespan

Family Cites Families (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543550B1 (fr) 1983-04-01 1985-08-09 Cortial Nouveaux derives de la tetrahydroxy-3', 4',5,7 flavone, leur methode de preparation et leur emploi therapeutique
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US5689046A (en) 1987-09-30 1997-11-18 Bayer Aktiengesellschaft Stilbene synthase gene
DE3733017A1 (de) 1987-09-30 1989-04-13 Bayer Ag Stilbensynthase-gen
DE4107396A1 (de) * 1990-06-29 1992-01-02 Bayer Ag Stilbensynthase-gene aus weinrebe
US5063507A (en) 1990-09-14 1991-11-05 Plains Cotton Cooperative Association Goods database employing electronic title or documentary-type title
JP3214049B2 (ja) 1992-03-09 2001-10-02 史衛 佐藤 シス−オレフィンの製造法
IL107642A0 (en) * 1992-11-20 1994-02-27 Amgen Inc Progenitor b cell stimulating factor
US6048903A (en) * 1994-05-03 2000-04-11 Robert Toppo Treatment for blood cholesterol with trans-resveratrol
DE4440200A1 (de) * 1994-11-10 1996-05-15 Bayer Ag DNA-Sequenzen und ihre Verwendung
DE4444238A1 (de) * 1994-12-13 1996-06-20 Beiersdorf Ag Kosmetische oder dermatologische Wirkstoffkombinationen aus Zimtsäurederivaten und Flavonglycosiden
US5589483A (en) * 1994-12-21 1996-12-31 Geron Corporation Isoquinoline poly (ADP-ribose) polymerase inhibitors to treat skin diseases associated with cellular senescence
IT1276225B1 (it) * 1995-10-17 1997-10-27 Sigma Tau Ind Farmaceuti Composizioni farmaceutiche contenenti l-carnitina e alcanoil l- carnitine in associazione con resveratrolo o suoi derivati utili per
FR2741238B1 (fr) * 1995-11-17 2001-11-30 Goemar Lab Sa Utilisation du chlorure d'aluminium comme agent eliciteur de la synthese du resveratrol
US6124125A (en) 1996-01-08 2000-09-26 Trustees Of Dartmouth College AMP activated protein kinase
US5837252A (en) * 1996-07-01 1998-11-17 Larreacorp, Ltd. Nontoxic extract of Larrea tridentata and method of making same
US6184248B1 (en) * 1996-09-05 2001-02-06 Robert K. K. Lee Compositions and methods for treatment of neurological disorders and neurodegenerative diseases
US5827898A (en) 1996-10-07 1998-10-27 Shaman Pharmaceuticals, Inc. Use of bisphenolic compounds to treat type II diabetes
IT1291113B1 (it) * 1997-03-20 1998-12-29 Sigma Tau Ind Farmaceuti Composizione nutritiva terapeutica per soggetti affetti da diabete mellito
AU7589598A (en) * 1997-06-16 1999-01-04 American Home Products Corporation Elevation of hdl cholesterol by 2-(4-chloro -1-aryl-butylidene) -hydrazinecarbothioamides
FR2766176B1 (fr) 1997-07-15 1999-10-29 Caudalie Compositions a base de derives de resveratrol
US6270780B1 (en) 1997-07-25 2001-08-07 Chesebrough-Pond's Usa Co., Division Of Conopco Cosmetic compositions containing resveratrol
BR9803596A (pt) 1997-09-23 2000-04-25 Pfizer Prod Inc Derivados do resorcinol.
ATE555780T1 (de) * 1997-10-24 2012-05-15 John P Blass Nahrungsergänzungsmittel für metabolische hirnleistungsstörungen
JP4738592B2 (ja) * 1997-10-31 2011-08-03 アーチ・デヴェロップメント・コーポレイション 5α−還元酵素活性を調節するための方法及び組成物
US6414037B1 (en) 1998-01-09 2002-07-02 Pharmascience Pharmaceutical formulations of resveratrol and methods of use thereof
US6008260A (en) * 1998-01-09 1999-12-28 Pharmascience Cancer chemopreventative composition and method
AT407821B (de) 1998-03-24 2001-06-25 Franz Dr Stueckler Mittel auf der basis von naturstoffen
US6245814B1 (en) * 1998-05-08 2001-06-12 Calyx Therapeutics, Inc. Diphenylethylene compounds
US6448450B1 (en) 1998-05-08 2002-09-10 Calyx Therapeutics, Inc. 1-(3,5-dimethoxyphenyl)-2-(4-hydroxyphenyl)-ethylene for diabetes treatment
US6624197B1 (en) 1998-05-08 2003-09-23 Calyx Therapeutics, Inc. Diphenylethylene compounds
US6331633B1 (en) 1998-05-08 2001-12-18 Calyx Therapeutics Inc. Heterocyclic analogs of diphenylethylene compounds
US6022901A (en) * 1998-05-13 2000-02-08 Pharmascience Inc. Administration of resveratrol to prevent or treat restenosis following coronary intervention
US20030086986A1 (en) * 1998-08-06 2003-05-08 Bruijn Chris De Ophthalmic, pharmaceutical and other healthcare preparations with naturally occurring plant compounds, extracts and derivatives
ATE324105T1 (de) 1998-09-08 2006-05-15 Cornell Res Foundation Inc Verwendung von cyclooxygenase-2-inhibitoren zur behandlung von entzündungserkrankungen von kopf und nacken
US6656925B2 (en) * 1998-09-09 2003-12-02 Advanced Medical Instruments Composition and method of treating arthritis
IT1302365B1 (it) * 1998-10-09 2000-09-05 Sigma Tau Healthscience Spa Uso di carnitine e resveratrolo per produrre una composizione per laprevenzione o il trattamento terapeutico di alterazioni cerebrali
US20030078212A1 (en) * 1998-10-30 2003-04-24 Jia-He Li Pharmaceutical compositions containing poly(adp-ribose) glycohydrolase inhibitors and methods of using the same
US6361815B1 (en) 1998-12-21 2002-03-26 Pure World Botanicals, Inc. Products comprising trihydroxystilbenes and derivatives thereof and methods for their manufacture and use
US6190716B1 (en) * 1999-02-17 2001-02-20 Scott O. Galbreath, Jr. Method for preparing a grape derived product
FR2790645B1 (fr) 1999-03-12 2001-06-08 Arkopharma Laboratoires Complement alimentaire et procede de traitement cosmetique a base d' un extrait de raisin riche en polyphenols
US6878381B2 (en) 1999-03-22 2005-04-12 Pfizer, Inc Resorcinol composition
EP1169647B1 (de) * 1999-04-12 2007-06-20 Sumitomo Chemical Company, Limited Verfahren zur analyse der menge an intraabdominalem fettgewebe
FR2795643B1 (fr) * 1999-07-02 2004-06-11 Oreal Composition cosmetique raffermissante comprenant au moins un hydroxystilbene en association avec de l'acide ascorbique
CA2380924C (en) 1999-08-13 2008-02-19 University Of Maryland Biotechnology Institute Compositions for treating viral infections, and methods therefor
CA2383814C (en) * 1999-09-03 2010-08-17 Sigma-Tau Healthscience S.P.A. Ultrafine l-carnitine, methods of preparing the same, compositions containing the same, and methods of using the same
US6573299B1 (en) * 1999-09-20 2003-06-03 Advanced Medical Instruments Method and compositions for treatment of the aging eye
WO2001021165A1 (en) * 1999-09-21 2001-03-29 Rutgers, The State University Resveratrol analogs for prevention of disease
US6264995B1 (en) * 1999-10-19 2001-07-24 Thomas Newmark Herbal composition for reducing inflammation and methods of using same
US6358517B1 (en) * 1999-10-22 2002-03-19 Unilever Home & Personal Care Usa, Division Of Conopco Cosmetic compositions containing resveratrol and retinoids
US20020002200A1 (en) * 2000-02-04 2002-01-03 Bishwagit Nag Novel diphenylethylene compounds
US6416806B1 (en) * 2000-03-20 2002-07-09 James H. Zhou Herbal caffeine replacement composition and food products incorporating same
WO2001070212A2 (en) 2000-03-23 2001-09-27 Interhealth Nutraceuticals Incorporated Method and composition for preventing or reducing the symptoms of menopause
IT1318425B1 (it) 2000-03-24 2003-08-25 D B P Dev Biotechnological Pro Impiego del resveratrolo per il trattamento di eczema desquamativo,acne e psoriasi.
IT1317034B1 (it) * 2000-05-30 2003-05-26 Istituto Di Medicina Speriment Metodo di estrazione di prodotti ad attivita' farmaceutica da piantespermatofite, prodotti cosi' ottenuti e loro impiego in medicina, in
US6475530B1 (en) 2000-05-31 2002-11-05 Eric H. Kuhrts Methods and compositions for producing weight loss
ITNA20000037A1 (it) * 2000-06-02 2001-12-02 Dev Biotechnological Proces Se Filtro solare multifunzione innovativo.
IT1318565B1 (it) * 2000-06-09 2003-08-27 World Pharma Tech Ltd Integratore alimentare proenergetico a base di nadh octocosanolo evitamina e.
US20020120008A1 (en) 2000-06-29 2002-08-29 Seymour Benzer Life extension of drosophila by a drug treatment
US6319523B1 (en) 2000-06-29 2001-11-20 James H. Zhou Composition and method for inhibiting oral bacteria
AU2001271824A1 (en) * 2000-07-05 2002-01-14 Johns Hopkins School Of Medicine Prevention and treatment of neurodegenerative diseases by glutathione and phase ii detoxification enzymes
DE10034320A1 (de) * 2000-07-14 2002-02-07 Inst Pflanzenbiochemie Ipb Verfahren zur Beeinflussung des Sinapingehalts in transgenen Pflanzenzellen und Pflanzen
FR2812195B1 (fr) * 2000-07-28 2003-07-11 Oreal Compositions a application topique comprenant des hydroxystilbenes glucosyles et utilations
US20020110604A1 (en) * 2000-08-11 2002-08-15 Ashni Naturaceuticals, Inc. Composition exhibiting synergistic antioxidant activity
US6541522B2 (en) * 2000-08-16 2003-04-01 Insmed Incorporated Methods of using compositions containing hypotriglyceridemically active stilbenoids
US6410596B1 (en) * 2000-08-16 2002-06-25 Insmed Incorporated Compositions containing hypoglycemically active stillbenoids
US6552085B2 (en) * 2000-08-16 2003-04-22 Insmed Incorporated Compositions containing hypoglycemically active stilbenoids
WO2002017959A2 (en) * 2000-08-28 2002-03-07 Wisconsin Alumni Research Foundation Immunosuppression using piceatannol and a calcineurin inhibitor
WO2002038141A2 (en) 2000-11-08 2002-05-16 Massachusetts Institute Of Technology Compositions and methods for treatment of mild cognitive impairment
WO2002039956A2 (en) 2000-11-15 2002-05-23 Rutgers, The State University Of New Jersey Black tea extract for prevention of disease
US20030082647A1 (en) * 2000-12-12 2003-05-01 Reenan Robert A. Transporter protein
US7572575B2 (en) * 2000-12-13 2009-08-11 Massachusetts Institute Of Technology SIR2 activity
US20040005574A1 (en) * 2002-07-08 2004-01-08 Leonard Guarente SIR2 activity
WO2002056823A2 (en) * 2001-01-18 2002-07-25 Arnold Hoffman Redox therapy for tumors
US20020192310A1 (en) 2001-02-02 2002-12-19 Bland Jeffrey S. Medical composition for managing hormone balance
FR2820320B1 (fr) 2001-02-02 2003-04-04 Oreal Suspension de nanospheres de principe actif lipophile stabilisee par des polymeres hydrodispersibles
WO2002081651A2 (en) 2001-02-20 2002-10-17 Uab Research Foundation Polyphenolics for enhancing endothelial cell-mediated fibrinolysis
US6300377B1 (en) 2001-02-22 2001-10-09 Raj K. Chopra Coenzyme Q products exhibiting high dissolution qualities
EP1370294A2 (de) * 2001-02-27 2003-12-17 The Regents Of The University Of Michigan Verwendung von natürlichen egfr hemmern zur verhüttung der nebenwirkungen bei der retinoid therapie
ITPI20010014A1 (it) 2001-03-05 2002-09-05 Ivo Pera Composto per filtri per sigarette,o altri articoli da fumo,a base di sostanze antiossidanti ed il filtro cosi'ottenuto
ITMI20010528A1 (it) 2001-03-13 2002-09-13 Istituto Biochimico Pavese Pha Complessi di resveratrolo con fosfolipidi loro preparazione e composizioni farmaceutiche e cosmetiche
US20030044946A1 (en) * 2001-04-03 2003-03-06 Longo Valter D. Genes, mutations, and drugs that increase cellular resistance to damage and extend longevity in organisms from yeast to humans
US6387416B1 (en) * 2001-04-05 2002-05-14 Thomas Newmark Anti-Inflammatory herbal composition and method of use
US20030004142A1 (en) * 2001-04-18 2003-01-02 Prior Christopher P. Use of NSAIDs for prevention and treatment of cellular abnormalities of the lung or bronchial pathway
WO2002085327A2 (en) * 2001-04-18 2002-10-31 Oraltech Pharmaceuticals, Inc. Use of nsaids for prevention and treatment of cellular abnormalities of the female reproductive tract
US6964969B2 (en) 2001-04-19 2005-11-15 Mccleary Edward Larry Composition and method for treating impaired or deteriorating neurological function
US6426061B1 (en) * 2001-04-20 2002-07-30 Weiwei Li Method and composition for preventing sweat-related odor
CA2440017A1 (en) 2001-05-03 2002-11-14 Cornell Research Foundation, Inc. Treatment of hpv caused diseases
US6368617B1 (en) * 2001-05-15 2002-04-09 Reliv' International, Inc. Dietary supplement
WO2002102981A2 (en) * 2001-06-15 2002-12-27 The Trustees Of Columbia University In The City Of New York SIR2α-BASED THERAPEUTIC AND PROPHYLACTIC METHODS
US20030014926A1 (en) * 2001-07-18 2003-01-23 Mirko Champa Pitch pocket
CN1398838A (zh) * 2001-07-26 2003-02-26 中国人民解放军军事医学科学院放射医学研究所 二苯乙烯类化合物制备以及它们在治疗和预防糖尿病中的应用
US20030044474A1 (en) * 2001-08-03 2003-03-06 Shaklee Corporation High molecular weight, lipophilic, orally ingestible bioactive agents in formulations having improved bioavailability
CA2457370A1 (en) * 2001-08-15 2003-02-27 Elixir Pharmaceuticals, Inc. Age-associated markers
AU2002341566A1 (en) * 2001-08-16 2003-04-01 Mucosal Therapeutics, Inc. Treatment and prevention of mucositis in cancer patients
US6680342B2 (en) * 2001-09-20 2004-01-20 Mayo Foundation For Medical Education And Research Methods and compositions for inhibiting the proliferation of prostate cancer cells
US20030055114A1 (en) * 2001-09-20 2003-03-20 Charles Young Methods and compositions for inhibiting the proliferation of prostate cancer cells
US6656969B2 (en) * 2001-09-20 2003-12-02 Mayo Foundation For Medical Education And Research Methods and compositions for inhibiting the proliferation of prostate cancer cells
US20030054053A1 (en) * 2001-09-20 2003-03-20 Charles Young Methods and compositions for inhibiting the proliferation of prostate cancer cells
WO2003028527A2 (en) * 2001-09-21 2003-04-10 The Administrators Of The Tulane Educational Fund Diagnostic or therapeutic somatostatin or bombesin analog conjugates and uses thereof
US20030082116A1 (en) * 2001-09-28 2003-05-01 Closure Medical Corporation Adhesive compositions containing dual function stabilizers and active agents
US7119110B2 (en) * 2001-10-05 2006-10-10 Interhealth Nutraceuticals Incorporated Method and composition for preventing or reducing the symptoms of insulin resistance syndrome
EP1304161B1 (de) * 2001-10-19 2007-02-28 Pacific Corporation Thermotropische, flüssigkristalline, polymerische Mikrokapseln, ihr Herstellungsverfahren sowie kosmetische Zubereitungen
DE60105820D1 (de) * 2001-10-22 2004-10-28 Pera Ivo E Zusammensetzung zur Reduzierung oder Entwöhnung von Nikotinabhängigkeit
US6767563B2 (en) * 2001-10-30 2004-07-27 Michael D. Farley Immune functions
JP2003137727A (ja) * 2001-11-01 2003-05-14 Noevir Co Ltd 皮膚外用剤
KR100567125B1 (ko) * 2001-11-01 2006-03-31 주식회사 안지오랩 칼콘 또는 이의 유도체를 함유하는 매트릭스메탈로프로테아제 활성 억제용 약학 조성물
US20030118536A1 (en) * 2001-11-06 2003-06-26 Rosenbloom Richard A. Topical compositions and methods for treatment of adverse effects of ionizing radiation
US6544564B1 (en) * 2001-11-27 2003-04-08 Michael Donald Farley Cytotoxic pharmaceutical composition
FR2832630B1 (fr) * 2001-11-28 2005-01-14 Oreal Composition cosmetique et/ou dermatologique contenant au moins un actif hydrophile sensible a l'oxydation stabilise par au moins un copolymere de n-vinylimidazole
US20030118617A1 (en) * 2001-12-21 2003-06-26 Avon Products, Inc. Resveratrol analogues
CA2483340A1 (en) * 2002-04-24 2003-11-06 Research Development Foundation Synergistic effects of nuclear transcription factor nf-.kappa.b inhibitors and anti-neoplastic agents
WO2003094833A2 (en) * 2002-05-10 2003-11-20 Orchid Chemicals & Pharmaceuticals Limited A new stereoselective route to produce tris-o-substituted-(e)-( 3,5-dihydroxyphenyl)-2-(4- hydroxyphenyl)ethene
US7351542B2 (en) * 2002-05-20 2008-04-01 The Regents Of The University Of California Methods of modulating tubulin deacetylase activity
WO2003103583A2 (en) * 2002-06-10 2003-12-18 Oklahoma Medical Research Foundation A method for using tethered bis(polyhydroxyphenyls) and o-alkyl derivatives thereof in treating inflammatory conditions of the central nervous system
DE10230961A1 (de) * 2002-07-10 2004-02-12 Lorenz, Peter, Dr. Verwendung von Oxyresveratrol als Neuroprotektivum
WO2004009539A2 (en) * 2002-07-19 2004-01-29 Orchid Chemicals And Pharmaceuticals Limited Method for the conversion of a z-isomer into e-isomer
DE10244282A1 (de) * 2002-09-23 2004-04-01 Merck Patent Gmbh Zubereitung mit antioxidanten Eigenschaften
US20050002051A1 (en) * 2002-10-04 2005-01-06 Canon Kabushiki Kaisha Resource display method
AU2003282100A1 (en) 2002-10-21 2004-05-04 L'oreal Process for dissolving lipophilic compounds, and cosmetic composition
EP1418164A1 (de) * 2002-11-07 2004-05-12 Institut National De La Sante Et De La Recherche Medicale (Inserm) Neue Stilbenderivate und deren Verwendung als Antagonisten der aryl hydrocarbon receptor Liganden
US7691296B2 (en) 2002-11-25 2010-04-06 Amorepacific Corporation Method for stabilizing active components using polyol/polymer microcapsule, and cosmetic composition containing the microcapsule
US20060025337A1 (en) * 2003-07-01 2006-02-02 President And Fellows Of Harvard College Sirtuin related therapeutics and diagnostics for neurodegenerative diseases
EP2289504A3 (de) * 2003-07-01 2012-05-23 President and Fellows of Harvard College SIRT1 Modulatoren zur Veränderung der Lebensdauer/Stressreaktion von Zellen/Organismen
WO2005002527A2 (en) * 2003-07-03 2005-01-13 Massachusetts Institute Of Technology Sirt1 modulation of adipogenesis and adipose function
US20050038125A1 (en) * 2003-08-15 2005-02-17 Smit Hobbe Friso Method for the treatment of arthritis and pain
US20050049208A1 (en) * 2003-09-03 2005-03-03 Kaufmann Doug A. Method of treating and method of preventing diabetes
US8017634B2 (en) * 2003-12-29 2011-09-13 President And Fellows Of Harvard College Compositions for treating obesity and insulin resistance disorders
AU2005257883A1 (en) * 2004-06-04 2006-01-05 Washington University Methods and compositions for treating neuropathies
JP2008503479A (ja) * 2004-06-16 2008-02-07 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Bax媒介性アポトーシスを調節する方法及び組成物
WO2006004722A2 (en) * 2004-06-30 2006-01-12 Biomol Research Laboratories, Inc. Compositions and methods for selectively activating human sirtuins
US7838503B2 (en) * 2005-06-15 2010-11-23 Children's Medical Center Corporation Methods for extending the replicative lifespan of cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147121A (en) * 1998-04-10 2000-11-14 Societe L'oreal S.A. Skin toning by stimulating collagen synthesis/proliferation of dermal fibroblasts
US6355692B2 (en) * 1998-09-01 2002-03-12 Northeastern Ohio Universities College Of Medicine Method of inhibiting formation of infectious microorganisms
US20030190337A1 (en) * 2002-03-28 2003-10-09 The Procter & Gamble Company Methods for regulating the condition of mammalian keratinous tissue via topical application of vitamin B6 compositions
US20040265861A1 (en) * 2003-02-28 2004-12-30 Goldfarb David S Materials and methods for identifying genes and/or agents that alter replicative lifespan

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060025337A1 (en) * 2003-07-01 2006-02-02 President And Fellows Of Harvard College Sirtuin related therapeutics and diagnostics for neurodegenerative diseases
US20100035885A1 (en) * 2003-07-01 2010-02-11 President And Fellows Of Harvard College Compositions for manipulating the lifespan and stress response of cells and organisms
US20050136537A1 (en) * 2003-07-01 2005-06-23 President And Fellows Of Harvard College Compositions for manipulating the lifespan and stress response of cells and organisms
US8242171B2 (en) 2003-12-29 2012-08-14 President And Fellows Of Harvard College Method for reducing the weight of a subject or inhibiting weight gain in a subject
US8846724B2 (en) 2003-12-29 2014-09-30 President And Fellows Of Harvard College Compositions for treating obesity and insulin resistance disorders
US20050171027A1 (en) * 2003-12-29 2005-08-04 President And Fellows Of Harvard College Compositions for treating or preventing obesity and insulin resistance disorders
US8017634B2 (en) 2003-12-29 2011-09-13 President And Fellows Of Harvard College Compositions for treating obesity and insulin resistance disorders
US9597347B2 (en) 2003-12-29 2017-03-21 President And Fellows Of Harvard College Compositions for treating obesity and insulin resistance disorders
US8841477B2 (en) 2004-01-20 2014-09-23 Brigham Young University Sirtuin activating compounds and processes for making the same
US20100185006A1 (en) * 2004-01-20 2010-07-22 Brigham Young University Novel sirtuin activating compounds and processes for making the same
US20060014705A1 (en) * 2004-06-30 2006-01-19 Howitz Konrad T Compositions and methods for selectively activating human sirtuins
US8741901B2 (en) 2004-07-15 2014-06-03 Albany Molecular Research, Inc. Aryl- and heteroaryl-substituted tetrahydroisoquinolines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
US9085531B2 (en) 2004-07-15 2015-07-21 Albany Molecular Research, Inc. Aryl- and heteroaryl-substituted tetrahydroisoquinolines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
US9499531B2 (en) 2004-07-15 2016-11-22 Albany Molecular Research, Inc. Aryl- and heteroaryl-substituted tetrahydroisoquinolines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
US20060276393A1 (en) * 2005-01-13 2006-12-07 Sirtris Pharmaceuticals, Inc. Novel compositions for preventing and treating neurodegenerative and blood coagulation disorders
US20090215681A1 (en) * 2005-02-15 2009-08-27 Joslin Diabetes Center Methods of Diagnosis and Treatment of Metabolic Disorders
US20090142335A1 (en) * 2005-02-15 2009-06-04 Joslin Diabetes Center Methods of diagnosis and treatment of metabolic disorders
US20070014833A1 (en) * 2005-03-30 2007-01-18 Sirtris Pharmaceuticals, Inc. Treatment of eye disorders with sirtuin modulators
US20060229265A1 (en) * 2005-03-30 2006-10-12 Sirtris Pharmaceuticals, Inc. Nicotinamide riboside and analogues thereof
US20090137681A1 (en) * 2005-04-08 2009-05-28 David A Sinclair Sirtuin Inhibiting Compounds
US9527816B2 (en) 2005-05-10 2016-12-27 Intermune, Inc. Method of modulating stress-activated protein kinase system
US10010536B2 (en) 2005-05-10 2018-07-03 Intermune, Inc. Method of modulating stress-activated protein kinase system
US8741936B2 (en) 2005-05-10 2014-06-03 Intermune, Inc. Method of modulating stress-activated protein kinase system
US20060292099A1 (en) * 2005-05-25 2006-12-28 Michael Milburn Treatment of eye disorders with sirtuin modulators
US9241916B2 (en) 2005-06-14 2016-01-26 President And Fellows Of Harvard College Cognitive performance with sirtuin activators
US20080194803A1 (en) * 2005-06-14 2008-08-14 Sinclair David A Cognitive Performance With Sirtuin Activators
US20070149466A1 (en) * 2005-07-07 2007-06-28 Michael Milburn Methods and related compositions for treating or preventing obesity, insulin resistance disorders, and mitochondrial-associated disorders
US20090221020A1 (en) * 2005-12-02 2009-09-03 Sirtris Pharmaceuticals, Inc Mass Spectrometry Assays for Acetyltransferase/Deacetylase Activity
US8304206B2 (en) * 2005-12-02 2012-11-06 Sirtris Pharmaceuticals, Inc. Mass spectrometry assays for identifying compounds that activate deacetylases
US20090163580A1 (en) * 2007-12-24 2009-06-25 Natrol, Inc. Anti-aging composition containing resveratrol and method of administration
WO2009082459A2 (en) * 2007-12-24 2009-07-02 Natrol, Inc. Anti-aging composition containing resveratrol and method of administration
WO2009082459A3 (en) * 2007-12-24 2009-09-17 Natrol, Inc. Anti-aging composition containing resveratrol and method of administration
WO2009126700A1 (en) * 2008-04-08 2009-10-15 Kent State University Hydroxylated tolans and related compounds as cosmetics or therapeutics for skin conditions
US20090318455A1 (en) * 2008-06-03 2009-12-24 Intermune, Inc. Compounds and methods for treating inflammatory and fibrotic disorders
USRE47142E1 (en) 2008-06-03 2018-11-27 Intermune, Inc. Compounds and methods for treating inflammatory and fibrotic disorders
US8969347B2 (en) 2008-06-03 2015-03-03 Intermune, Inc. Compounds and methods for treating inflammatory and fibrotic disorders
US8304413B2 (en) 2008-06-03 2012-11-06 Intermune, Inc. Compounds and methods for treating inflammatory and fibrotic disorders
US9290450B2 (en) 2008-06-03 2016-03-22 Intermune, Inc. Compounds and methods for treating inflammatory and fibrotic disorders
US9498476B2 (en) 2008-06-04 2016-11-22 Albany Molecular Research, Inc. Crystalline form of 6-[(4S)-2-methyl-4-(2-naphthyl)-1,2,3,4-tetrahydroisoquinolin-7-yl]pyridazin-3-amine
US9034899B2 (en) 2009-05-12 2015-05-19 Albany Molecular Research, Inc. Aryl, heteroaryl, and heterocycle substituted tetrahydroisoquinolines and use thereof
US20100292243A1 (en) * 2009-05-12 2010-11-18 Albany Molecular Research, Inc. 7-([1,2,4]TRIAZOLO[1,5-a]PYRIDIN-6-YL)-4-(3,4-DICHLOROPHENYL)-1,2,3,4-TETRAHYDROISOQUINOLINE AND USE THEREOF
US20100292242A1 (en) * 2009-05-12 2010-11-18 Albany Molecular Research, Inc. Aryl, heteroaryl, and heterocycle substituted tetrahydroisoquinolines and use thereof
US20100292250A1 (en) * 2009-05-12 2010-11-18 Albany Molecular Research, Inc. CRYSTALLINE FORMS OF (S)-7-([1,2,4]TRIAZOLO[1,5-a]PYRIDIN-6-YL)-4-(3,4-DICHLOROPHENYL)-1,2,3,4- TETRAHYDROISOQUINOLINE AND USE THEREOF
US9604960B2 (en) 2009-05-12 2017-03-28 Albany Molecular Research, Inc. Aryl, heteroaryl, and heterocycle substituted tetrahydroisoquinolines and use thereof
US8815894B2 (en) 2009-05-12 2014-08-26 Bristol-Myers Squibb Company Crystalline forms of (S)-7-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydroisoquinoline and use thereof
US9173879B2 (en) 2009-05-12 2015-11-03 Bristol-Myers Squibb Company Crystalline forms of (S)-7-([1,2,4]triazolo[1,5-a ]pyridin-6-yl)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydroisoquinoline and use thereof
US8802696B2 (en) 2009-05-12 2014-08-12 Albany Molecular Research, Inc. 7-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydroisoqu inoli and use thereof
US10376497B2 (en) 2012-10-02 2019-08-13 Intermune, Inc. Anti-fibrotic pyridinones
US9359379B2 (en) 2012-10-02 2016-06-07 Intermune, Inc. Anti-fibrotic pyridinones
US10898474B2 (en) 2012-10-02 2021-01-26 Intermune, Inc. Anti-fibrotic pyridinones
US9675593B2 (en) 2012-10-02 2017-06-13 Intermune, Inc. Anti-fibrotic pyridinones
US8907108B2 (en) 2012-10-26 2014-12-09 Industrial Technology Research Institute P-type organic semiconductor material and optoelectronic device utilizing the same
US10544161B2 (en) 2014-04-02 2020-01-28 Intermune, Inc. Anti-fibrotic pyridinones
US10233195B2 (en) 2014-04-02 2019-03-19 Intermune, Inc. Anti-fibrotic pyridinones
US10398674B2 (en) 2014-11-26 2019-09-03 Flavocure Biotech Llc Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
US10045950B2 (en) 2015-04-08 2018-08-14 BioMendics, LLC Formulation and process for modulating wound healing
AU2016246616B2 (en) * 2015-04-08 2021-04-01 BioMendics, LLC Formulation and process for modulating wound healing
US11786481B2 (en) 2015-04-08 2023-10-17 BioMendics, LLC Formulation and process for modulating wound healing
WO2016178713A1 (en) * 2015-05-02 2016-11-10 Flavocure Biotech Llc Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
US11939328B2 (en) 2021-10-14 2024-03-26 Incyte Corporation Quinoline compounds as inhibitors of KRAS
US11820747B2 (en) 2021-11-02 2023-11-21 Flare Therapeutics Inc. PPARG inverse agonists and uses thereof

Also Published As

Publication number Publication date
CA2529510A1 (en) 2005-01-13
EP2289504A3 (de) 2012-05-23
WO2005002555A3 (en) 2005-11-03
WO2005002555A2 (en) 2005-01-13
AU2011201238A1 (en) 2011-04-07
US20050096256A1 (en) 2005-05-05
EP1648437A2 (de) 2006-04-26
AU2004253579B2 (en) 2010-12-23
US7544497B2 (en) 2009-06-09
AU2011201238B2 (en) 2012-12-06
JP2007326872A (ja) 2007-12-20
AU2004253579A1 (en) 2005-01-13
JP2014159448A (ja) 2014-09-04
US20050136537A1 (en) 2005-06-23
JP2007530417A (ja) 2007-11-01
JP2012025750A (ja) 2012-02-09
US20100035885A1 (en) 2010-02-11
WO2005002672A3 (en) 2005-11-10
EP2236131A3 (de) 2011-03-02
WO2005002672A2 (en) 2005-01-13
EP2236131A2 (de) 2010-10-06
EP2289504A2 (de) 2011-03-02

Similar Documents

Publication Publication Date Title
US20060084135A1 (en) Compositions for manipulating the lifespan and stress response of cells and organisms
JP5075112B2 (ja) 神経変性疾患のサーチュイン関連治療法及び診断法
US20060276416A1 (en) Methods and compositions for treating flushing and drug induced weight gain
US8242171B2 (en) Method for reducing the weight of a subject or inhibiting weight gain in a subject
US8017634B2 (en) Compositions for treating obesity and insulin resistance disorders
JP2008503479A5 (de)
US20060084085A1 (en) Methods and compositions for modulating Bax-mediated apoptosis
AU2013201279B2 (en) Sirt1 modulators for manipulating cells/organism lifespan/stress response

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIOMOL RESEARCH LABORATORIES, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOWITZ, KONRAD T.;ZIPKIN, ROBERT E.;REEL/FRAME:016243/0598

Effective date: 20050202

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION

AS Assignment

Owner name: BIOMOL INTERNATIONAL, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOMOL RESEARCH LABORATORIES, INC.;REEL/FRAME:020952/0423

Effective date: 20080508