US20030119666A1 - Catalyst for producing both end-hydroxyl group-terminated diols, process for producing the catalyst, process for producing the diols by using the catalyst, and both end-hydroxyl group-terminated diols obtained by the process - Google Patents
Catalyst for producing both end-hydroxyl group-terminated diols, process for producing the catalyst, process for producing the diols by using the catalyst, and both end-hydroxyl group-terminated diols obtained by the process Download PDFInfo
- Publication number
- US20030119666A1 US20030119666A1 US10/088,485 US8848502A US2003119666A1 US 20030119666 A1 US20030119666 A1 US 20030119666A1 US 8848502 A US8848502 A US 8848502A US 2003119666 A1 US2003119666 A1 US 2003119666A1
- Authority
- US
- United States
- Prior art keywords
- group
- catalyst
- producing
- autoclave
- hydroxyl group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 226
- 150000002009 diols Chemical class 0.000 title claims abstract description 124
- 238000000034 method Methods 0.000 title claims description 89
- 239000002904 solvent Substances 0.000 claims abstract description 67
- -1 alicyclic hydrocarbon compounds Chemical class 0.000 claims abstract description 65
- 238000007327 hydrogenolysis reaction Methods 0.000 claims abstract description 37
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical compound OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 claims abstract description 35
- 230000000737 periodic effect Effects 0.000 claims abstract description 14
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims abstract description 11
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims abstract description 11
- 150000002148 esters Chemical class 0.000 claims abstract description 10
- 150000002170 ethers Chemical class 0.000 claims abstract description 10
- 229910021478 group 5 element Inorganic materials 0.000 claims abstract description 9
- 229910021476 group 6 element Inorganic materials 0.000 claims abstract description 9
- 229910021474 group 7 element Inorganic materials 0.000 claims abstract description 9
- 229910021472 group 8 element Inorganic materials 0.000 claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 120
- 239000001257 hydrogen Substances 0.000 claims description 118
- 229910052739 hydrogen Inorganic materials 0.000 claims description 118
- 125000004432 carbon atom Chemical group C* 0.000 claims description 76
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 73
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 claims description 65
- 239000000377 silicon dioxide Substances 0.000 claims description 65
- 150000001875 compounds Chemical class 0.000 claims description 27
- 125000000217 alkyl group Chemical group 0.000 claims description 26
- 125000003118 aryl group Chemical group 0.000 claims description 25
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 25
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 24
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 22
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 20
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 15
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 239000005909 Kieselgur Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- MKUWVMRNQOOSAT-UHFFFAOYSA-N methylvinylmethanol Natural products CC(O)C=C MKUWVMRNQOOSAT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052707 ruthenium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052702 rhenium Inorganic materials 0.000 claims description 5
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 claims description 4
- LEJLUUHSOFWJSW-UHFFFAOYSA-N 1-(oxiran-2-yl)ethanol Chemical compound CC(O)C1CO1 LEJLUUHSOFWJSW-UHFFFAOYSA-N 0.000 claims description 4
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 claims description 4
- AVSUMWIDHQEMPD-UHFFFAOYSA-N 2-(oxiran-2-yl)ethanol Chemical compound OCCC1CO1 AVSUMWIDHQEMPD-UHFFFAOYSA-N 0.000 claims description 4
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910021536 Zeolite Inorganic materials 0.000 claims description 4
- 229940043232 butyl acetate Drugs 0.000 claims description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 4
- 229940093499 ethyl acetate Drugs 0.000 claims description 4
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 claims description 4
- 229940011051 isopropyl acetate Drugs 0.000 claims description 4
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 claims description 4
- 229940090181 propyl acetate Drugs 0.000 claims description 4
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000008096 xylene Substances 0.000 claims description 4
- 239000010457 zeolite Substances 0.000 claims description 4
- ZSPTYLOMNJNZNG-UHFFFAOYSA-N 3-Buten-1-ol Chemical compound OCCC=C ZSPTYLOMNJNZNG-UHFFFAOYSA-N 0.000 claims description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 194
- 239000006228 supernatant Substances 0.000 description 111
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 100
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 70
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 62
- 229910052757 nitrogen Inorganic materials 0.000 description 62
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 55
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 54
- XLSMFKSTNGKWQX-UHFFFAOYSA-N hydroxyacetone Chemical compound CC(=O)CO XLSMFKSTNGKWQX-UHFFFAOYSA-N 0.000 description 54
- 238000010908 decantation Methods 0.000 description 52
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 48
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 48
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 47
- 150000002431 hydrogen Chemical class 0.000 description 47
- 150000001728 carbonyl compounds Chemical class 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 33
- 230000000694 effects Effects 0.000 description 30
- AKXKFZDCRYJKTF-UHFFFAOYSA-N 3-Hydroxypropionaldehyde Chemical compound OCCC=O AKXKFZDCRYJKTF-UHFFFAOYSA-N 0.000 description 28
- 238000004817 gas chromatography Methods 0.000 description 28
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 27
- 0 [4*]C1([3*]O)CO1 Chemical compound [4*]C1([3*]O)CO1 0.000 description 27
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 27
- 238000004364 calculation method Methods 0.000 description 27
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 27
- 235000013772 propylene glycol Nutrition 0.000 description 27
- 239000010935 stainless steel Substances 0.000 description 27
- 229910001220 stainless steel Inorganic materials 0.000 description 27
- 239000012298 atmosphere Substances 0.000 description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 24
- 239000007864 aqueous solution Substances 0.000 description 21
- 239000003446 ligand Substances 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 19
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 15
- 239000003426 co-catalyst Substances 0.000 description 13
- BRARRAHGNDUELT-UHFFFAOYSA-N 3-hydroxypicolinic acid Chemical compound OC(=O)C1=NC=CC=C1O BRARRAHGNDUELT-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 239000000376 reactant Substances 0.000 description 12
- 239000004593 Epoxy Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000002638 heterogeneous catalyst Substances 0.000 description 9
- 239000011369 resultant mixture Substances 0.000 description 9
- 239000007858 starting material Substances 0.000 description 9
- 238000006757 chemical reactions by type Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000002815 homogeneous catalyst Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 5
- 238000006735 epoxidation reaction Methods 0.000 description 5
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 238000007142 ring opening reaction Methods 0.000 description 5
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- ACIAHEMYLLBZOI-ZZXKWVIFSA-N Unsaturated alcohol Chemical compound CC\C(CO)=C/C ACIAHEMYLLBZOI-ZZXKWVIFSA-N 0.000 description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 3
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- GWYFCOCPABKNJV-UHFFFAOYSA-M isovalerate Chemical compound CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 150000003839 salts Chemical group 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- SSZWWUDQMAHNAQ-UHFFFAOYSA-N 3-chloropropane-1,2-diol Chemical compound OCC(O)CCl SSZWWUDQMAHNAQ-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- NMJJFJNHVMGPGM-UHFFFAOYSA-N butyl formate Chemical compound CCCCOC=O NMJJFJNHVMGPGM-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- YWWDBCBWQNCYNR-UHFFFAOYSA-N trimethylphosphine Chemical compound CP(C)C YWWDBCBWQNCYNR-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 1
- DNZZPKYSGRTNGK-PQZOIKATSA-N (1z,4z)-cycloocta-1,4-diene Chemical compound C1C\C=C/C\C=C/C1 DNZZPKYSGRTNGK-PQZOIKATSA-N 0.000 description 1
- POILWHVDKZOXJZ-ONEGZZNKSA-M (E)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C/C(C)=O POILWHVDKZOXJZ-ONEGZZNKSA-M 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- ATPOZSUPSQATIN-UHFFFAOYSA-N 1-(oxiran-2-yl)butan-1-ol Chemical compound CCCC(O)C1CO1 ATPOZSUPSQATIN-UHFFFAOYSA-N 0.000 description 1
- VKMBCHKSMBUPPG-UHFFFAOYSA-N 1-(oxiran-2-yl)pentan-1-ol Chemical compound CCCCC(O)C1CO1 VKMBCHKSMBUPPG-UHFFFAOYSA-N 0.000 description 1
- HJCWXVWXDOBZTQ-UHFFFAOYSA-N 1-(oxiran-2-yl)propan-1-ol Chemical compound CCC(O)C1CO1 HJCWXVWXDOBZTQ-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- 125000001917 2,4-dinitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C(=C1*)[N+]([O-])=O)[N+]([O-])=O 0.000 description 1
- HORQAOAYAYGIBM-UHFFFAOYSA-N 2,4-dinitrophenylhydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O HORQAOAYAYGIBM-UHFFFAOYSA-N 0.000 description 1
- GDUKJERMEWMMMD-UHFFFAOYSA-N 2-(oxiran-2-yl)propan-2-ol Chemical compound CC(C)(O)C1CO1 GDUKJERMEWMMMD-UHFFFAOYSA-N 0.000 description 1
- CRWNQZTZTZWPOF-UHFFFAOYSA-N 2-methyl-4-phenylpyridine Chemical compound C1=NC(C)=CC(C=2C=CC=CC=2)=C1 CRWNQZTZTZWPOF-UHFFFAOYSA-N 0.000 description 1
- SOGGLVJYVOCYTB-UHFFFAOYSA-N 3-(oxiran-2-yl)propan-1-ol Chemical compound OCCCC1CO1 SOGGLVJYVOCYTB-UHFFFAOYSA-N 0.000 description 1
- RYBPVYPKDOBJQK-UHFFFAOYSA-N 4-(oxiran-2-yl)butan-1-ol Chemical compound OCCCCC1CO1 RYBPVYPKDOBJQK-UHFFFAOYSA-N 0.000 description 1
- KMHQJKFCDQXYLS-UHFFFAOYSA-N 6-(oxiran-2-yl)hexan-1-ol Chemical compound OCCCCCCC1CO1 KMHQJKFCDQXYLS-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910020679 Co—K Inorganic materials 0.000 description 1
- 229910020512 Co—Te Inorganic materials 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- UAXUUTJPGCTGPL-UHFFFAOYSA-N cyclohexyl(oxiran-2-yl)methanol Chemical compound C1CCCCC1C(O)C1CO1 UAXUUTJPGCTGPL-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000007037 hydroformylation reaction Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- FXADMRZICBQPQY-UHFFFAOYSA-N orthotelluric acid Chemical compound O[Te](O)(O)(O)(O)O FXADMRZICBQPQY-UHFFFAOYSA-N 0.000 description 1
- QHUCJYPNJYZEOQ-UHFFFAOYSA-N oxiran-2-yl(phenyl)methanol Chemical compound C=1C=CC=CC=1C(O)C1CO1 QHUCJYPNJYZEOQ-UHFFFAOYSA-N 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229960005235 piperonyl butoxide Drugs 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- GTCKPGDAPXUISX-UHFFFAOYSA-N ruthenium(3+);trinitrate Chemical compound [Ru+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GTCKPGDAPXUISX-UHFFFAOYSA-N 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- FEPMHVLSLDOMQC-UHFFFAOYSA-N virginiamycin-S1 Natural products CC1OC(=O)C(C=2C=CC=CC=2)NC(=O)C2CC(=O)CCN2C(=O)C(CC=2C=CC=CC=2)N(C)C(=O)C2CCCN2C(=O)C(CC)NC(=O)C1NC(=O)C1=NC=CC=C1O FEPMHVLSLDOMQC-UHFFFAOYSA-N 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/75—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J25/00—Catalysts of the Raney type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J25/00—Catalysts of the Raney type
- B01J25/02—Raney nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
Definitions
- the present invention relates to a catalyst for producing a diol terminated with a hydroxyl group at both ends thereof (hereinafter, referred to as “both end-hydroxyl group-terminated diol”), a process for producing such a catalyst, a process for producing both end-hydroxyl group-terminated diols by using the catalyst, and both end-hydroxyl group-terminated diols which have been obtained by such a production process.
- the present invention relates to a catalyst for producing both end-hydroxyl group-terminated diols, which is useful when both end-hydroxyl group-terminated diols are produced by the hydrogenolysis of an epoxy alcohol compound; a process for producing the catalyst; a process for producing both end-hydroxyl group-terminated diols by using the catalyst, and both end-hydroxyl group-terminated diols which have been obtained by the production process.
- Both end-hydroxyl group-terminated diols are industrially useful as starting materials for resins such as polyester resins and polyurethane resins.
- 1,3-propanediol is a compound having a great potential demand as a starting material for synthetic resins, particularly as a starting material for polyester fiber. Therefore, studies are being made to develop a process for producing this compound, at low cost, by a chemical production procedure, a biological production procedure, etc.
- 1,3-propanediol is produced by finally hydrogenating 3-HPA, and therefore, these processes have a problem that unreacted 3-HPA is liable to remain in the resultant 1,3-propanediol product.
- polyester is synthesized by using 1,3-propanediol containing a carbonyl compound such as 3-HPA, it has been pointed out that such 1,3-propanediol is liable to cause odor or coloring in the polyester.
- the 1,3-propanediol product should preferably contain no carbonyl compound such as 3-HPA, as completely as possible.
- JP-A Hei. 6-40973 discloses a method of subjecting 3-HPA to a hydrogenation reaction through two stages
- JP-A Hei. 11-509828 discloses a method of removing carbonyl compounds which have been contained in 3-HPA by utilizing the reaction of the carbonyl compounds with an alkali.
- Such a removing operation increases the load on the production process for 1,3-propanediol, and this becomes a cause for increasing the production cost of 1,3-propanediol.
- U.S. Pat. No. 3,975,449 discloses a process wherein a both end-hydroxyl group-terminated diol is produced by subjecting a hydroxyl group-terminated epoxy alcohol having a di-substituted oxirane ring represented by the following formula (4) to hydrogenolysis in a solvent of water, alcohol or amide.
- R 3 represents an alkylene group having 1 to 5 carbon atoms
- R 4 represents an alkyl group having 1 to 5 carbon atoms or a hydroxyalkyl group having 1 to 5 carbon atoms
- German Patent No. 1,139,477 discloses a process wherein a hydroxyl group-terminated alcohol is produced with a relatively good selectivity by the hydrogenolysis of 1,2-epoxyalkane which is a hydroxyl group-terminated epoxide having a mono-substituted oxirane ring.
- This patent publication has achieved an improvement in the selectivity for hydroxyl group-terminated alcohols in the hydrogenolysis of hydroxyl group-terminated 1,2-epoxyalkane having a mono-substituted oxirane ring, while such an improvement had been difficult until that time.
- An object of the present invention is to provide a novel catalyst for producing both end-hydroxyl group-terminated diols, which is useful in efficiently producing both end-hydroxyl group-terminated diols by the hydrogenolysis reaction of an epoxy alcohol compound.
- Another object of the present invention is to provide a process for producing the above-mentioned catalyst, a process for producing both end-hydroxyl group-terminated diols by using the catalyst, and both end-hydroxyl group-terminated diols which have been obtained by the above production process.
- the present inventors have found that, when a both end-hydroxyl group-terminated diol is intended to be produced by the hydrogenolysis reaction of an epoxy alcohol compound having a mono-substituted oxirane ring with the substituent having 6 or less carbon atoms, the both end-hydroxyl group-terminated diol can be produced with a high selectivity by conducting the hydrogenolysis reaction by use of a catalyst in the presence of a specific solvent.
- the present invention has been accomplished based on such a discovery.
- the present invention relates to a catalyst for producing both end-hydroxyl group-terminated diols, which is usable in a process for producing a both end-hydroxyl group-terminated diol represented by general formula (2) by subjecting an epoxy alcohol compound represented by general formula (1) to a hydrogenolysis reaction in the presence of at least one solvent selected from the group consisting of ethers, esters, aromatic hydrocarbon compounds, alicyclic hydrocarbon compounds and aliphatic hydrocarbon compounds, the catalyst comprising at least one element selected from the group consisting of Group V, Group VI, Group VII, Group VIII, Group IX, Group X and Group XI of the periodic table.
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6);
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6).
- the present invention relates to a process for producing the catalyst for producing both end-hydroxyl group-terminated diols according to the first aspect of the present invention.
- the present invention relates to a process for producing both end-hydroxyl group-terminated diols by using the catalyst for producing both end-hydroxyl group-terminated diols according to the first aspect of the present invention.
- the present invention relates to both end-hydroxyl group-terminated diols which have been produced by the process for producing both end-hydroxyl group-terminated diols of the third aspect of the present invention.
- the present invention may include the following embodiments.
- a catalyst which contains at least one element selected from the group consisting of Group V elements, Group VI elements, Group VII elements, Group VIII elements, Group IX elements, Group X elements, and Group XI elements in the periodic table, and is to be used for subjecting an epoxy alcohol represented by the following general formula (1) to a hydrogenolysis reaction in the presence of at least one solvent selected from the group consisting of ethers, esters, aromatic hydrocarbon compounds, alicyclic hydrocarbon compounds and aliphatic hydrocarbon compounds, to thereby obtain a both end-hydroxyl group-terminated diol represented by the following general formula (2).
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6);
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carton atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6).
- a process for producing a both end-hydroxyl group-terminated diol wherein an epoxy alcohol represented by the following general formula (1) is subjected to a hydrogenolysis reaction in the presence of a catalyst for producing both end-hydroxyl group-terminated diols according to any of the above embodiments (1) to (5), in the presence of at least one solvent selected from the group consisting of ethers, esters, aromatic hydrocarbon compounds, alicyclic hydrocarbon compounds and aliphatic hydrocarbon compounds, to thereby obtain a both end-hydroxyl group-terminated diol represented by the following general formula (2).
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6);
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6).
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6).
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6);
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6)
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6);
- a both end-hydroxyl group-terminated diol which has been produced by a process for producing a both end-hydroxyl group-terminated diol according to any of above embodiments (8) to (13)
- the present invention relates to a catalyst for producing both end-hydroxyl group-terminated diols, which is usable in a process for producing both end-hydroxyl group-terminated diols represented by general formula (2) by subjecting an epoxy alcohol compound represented by general formula (1) to a hydrogenolysis reaction in the presence of at least one solvent selected from the group consisting of ethers, esters, aromatic hydrocarbon compounds, alicyclic hydrocarbon compounds and aliphatic hydrocarbon compounds, the catalyst comprising at least one element selected from the group consisting of Group V, Group VI, Group VII, Group VIII, Group IX, Group X and Group XI of the periodic table;
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6);
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6).
- the catalyst for producing both end-hydroxyl group-terminated diols comprises at least one element selected from the group consisting of Group V, Group VI, Group VII, Group VIII, Group IX, Group X and Group XI of the periodic table.
- the “periodic table” refers to that according to Nomenclature of Inorganic Chemistry, Revised Edition, 1989, International Union of Pure and Applied Chemistry.
- the catalyst may preferably comprise at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, W, Re and Ru.
- the catalyst may more preferably comprise at least one element selected from the group consisting of Fe, Co, Ni, Cu, Re and Ru.
- the catalyst for producing both end-hydroxyl group-terminated diols according to the first aspect of the present invention may contain any element other than the above-described elements or any compound, as long as it does not substantially inhibit the intended reaction.
- the above-mentioned at least one element selected from the group consisting of Group V, Group VI, Group VII, Group VIII, Group IX, Group X and Group XI of the periodic table may preferably be contained in the catalyst in an amount of 1% or more, more preferably 2% or more, particularly preferably 5% or more (based on the total mass of the catalyst including the at least one element per se).
- the form or shape of the catalyst for producing both end-hydroxyl group-terminated diols according to the first aspect of the present invention is not particularly limited and may be either of the homogeneous-type catalyst or heterogeneous-type catalyst.
- the heterogeneous catalyst is preferred.
- the homogeneous catalyst is also usable in the present invention.
- the homogeneous catalyst may have any form or shape, as long as the catalyst can be dissolved in a reaction mixture at the time of the reaction. More specifically, for example, the catalyst may have a salt form of the element, such as chloride, bromide, iodide, nitrate, sulfate, carboxylate or carbonate, or a so-called complex form where a ligand is bonded to the element.
- a salt form of the element such as chloride, bromide, iodide, nitrate, sulfate, carboxylate or carbonate, or a so-called complex form where a ligand is bonded to the element.
- the ligand which is usable in the formation of a complex is not particularly limited, and the ligand may be at least one species selected from known ligands. Specific examples thereof may include: carbonyl ligands; phosphorus-containing ligands such as triphenylphosphine, trimethylphosphine, triphenyl phosphite and triphenylphosphine oxide; nitrogen-containing ligands such as ammonia, ethylenediamine and pyridine; ether ligands such as diethyl ether, ethylene glycol dimethyl ether, tetrahydrofuran and 1,4-dioxane; olefin ligands such as ethylene, 1,4-cyclooctadiene and cyclopentadienyl anion; diketonate ligands such as acetylacetonate anion; cyano ligands; halogen ligands such as chloro,
- the homogeneous catalyst may be used in an embodiment wherein the catalyst is preliminarily dissolved in a solvent and then the resultant mixture is used for the reaction, or the catalyst may be used in an embodiment wherein it is preliminarily dissolved in the reactant epoxy alcohol and then the resultant mixture is used for the reaction.
- the catalyst is simultaneously charged to a reaction system together with a solvent and starting material, and then the resultant mixture is subjected to the reaction.
- the catalyst dissolved in a solvent is preliminarily brought into contact with hydrogen so as to be activated, and then the activated catalyst is subjected to the reaction with an epoxy alcohol.
- the form or shape of the element or compound usable in the catalyst is not particularly limited.
- the heterogeneous catalyst may preferably be used in any form of a metal type, a sponge type, an oxide, a hydroxide, a boride, a phosphide, etc.
- an element in the above-described form or a compound containing the element may be used as it is in the intended reaction, or such an element or compound may be used in the reaction as a so-called carrier-type catalyst which has been obtained by causing the element or compound to be carried on an appropriate carrier (or support).
- one preferred example of the catalyst is a sponge-type catalyst.
- the term “sponge-type catalyst” as used herein means a porous metal-containing catalyst. “Sponge Ni” which is one example of the sponge-type catalyst is described, for example, in Tetrahedron Lett. , Vol. 32, No. 40, pp. 5885-5888 (1999).
- examples thereof may include: sponge catalysts such as sponge Fe, sponge-Co, sponge-Ni, sponge-Cu and sponge-Ru; oxide catalysts such as V oxide, Cr oxide, Fe oxide, Co oxide, Ni oxide, Cu oxide, Mo oxide, W oxide, Re oxide, Ru oxide, Rh oxide, Pd oxide, Pt oxide, Cr oxide-Fe oxide, Cr oxide-Cu oxide, Cr oxide-Ni oxide, Cr oxide-Zn oxide and Cr oxide-Cu oxide-Zn oxide; hydroxide catalysts such as Cr hydroxide, Mn hydroxide, Fe hydroxide, Co hydroxide, Ni hydroxide, Cu hydroxide, Ru hydroxide, Rh hydroxide, Pd hydroxide and Pt hydroxide; boride catalysts such as Co boride and Ni boride; and phosphide catalysts such as Ni phosphide. These catalysts may be used individually or in combination of two or more species thereof.
- sponge catalysts such as sponge Fe, sponge-Co, sponge-Ni, sponge-Cu and sponge-Ru
- the carrier usable in such an embodiment is not particularly limited and may appropriately be selected from known carriers. Specific examples thereof may include: activated carbon (hereinafter sometimes simply referred to as “carbon”), silica, alumina, silica alumina, zeolite, titania, zirconia, magnesia, diatomaceous earth (or kieselguhr), barium sulfate, barium carbonate, calcium carbonate and magnesium carbonate.
- carbon activated carbon
- activated carbon silica, alumina, silica alumina, zeolite, titania, zirconia and diatomaceous earth, in view of the effect thereof on reaction, the surface area at the preparation of the catalyst or the industrial practicability such as strength of carrier.
- the amount of the element or compound containing the element and the carrier are preferably such that the amount of the element or compound containing the element is from 0.01 to 150 mass % (or % by mass) based on the total mass of the carrier. If the amount of the element or compound containing the element is less than 0.01 mass %, the concentration of active sites of the catalyst is relatively low and, therefore, a sufficiently high catalytic activity which is practically acceptable cannot be obtained and such an amount is not preferred. On the other hand, if the amount exceeds 150 mass %, the effect of the carrier cannot be exhibited sufficiently, and such an amount is not preferred.
- the amount of the element or compound containing the element is more preferably from 0.05 to 100 mass %, more preferably from 0.1 to 90 mass %, particularly from 0.3 to 30 mass %.
- Specific examples of the carrier-type catalyst for producing both end-hydroxyl group-terminated diols according to the first aspect of the present invention may include: Cr oxide-alumina, Cr oxide-silica, Cr oxide-silica alumina, Cu oxide-alumina, Cu oxide-silica, Mo oxide-alumina, Mo oxide-silica, Re-alumina, Re-silica, Re-activated carbon, Co-diatomaceous earth, Co-alumina, Co-silica, Co-silica alumina, Co-carbon, Ni-diatomaceous earth, Ni-alumina, Ni-silica, Ni-silica alumina, Ni-carbon, Ni—Cu-alumina, Ru-alumina, Ru-silica, Ru-silica alumina, Ru-carbon, Pd-alumina, Pd-silica, Pd-silica alumina, Pd-carbon, Pd-barium sulfate, Pd-calcium carbonate, Pt-alumina, Pt-silica, Pt-silica alumina, P
- the heterogeneous catalyst may most preferably be a sponge-type or carrier-type catalyst containing at least one element selected from the group consisting of Fe, Co, Ni, Cu, Re and Ru, and/or a compound containing at least one of these elements.
- the shape, form, size, etc., of these catalysts are not particularly limited.
- Specific examples of the shape or form of the catalyst may include: powder-type, solid ground or crushed product-type, flake-type, spherical molded article-type, columnar molded article-type and circular molded article-type.
- the size of the catalyst it is possible to use a catalyst having an average particle size of 1 to 1,000 ⁇ m, preferably about 10 to 200 ⁇ m, in the case of the suspension or fluidized bed-type reaction. In the case of the fixed bed-type reaction, it is possible to use a catalyst having an average particle size of about 1 to 20 mm, preferably 3 to 15 mm.
- the shape or form and the particle size of the heterogeneous catalyst may appropriately be selected in view of the suitability for the reaction type.
- the second aspect of the present invention relates to a process for producing the catalyst for producing both end-hydroxyl group-terminated diols according to the first aspect of the present invention.
- the process for producing the catalyst for producing both end-hydroxyl group-terminated diols according to the second aspect of the present invention may be conducted by selecting an optimal method in view of the catalyst for producing both end-hydroxyl group-terminated diols, which is to be produced in this process. In the preparation of this catalyst, it is possible to use any of those processes which, per se, are known in the art.
- each of these catalysts can be produced by a production process comprising the following steps.
- the production process for the catalyst is not limited to these specific processes, but the catalysts may be produced by any of those processes which, per se, are known in the art.
- the sponge-type catalyst can be produced by a production process comprising the following Step (A) and Step (B):
- the carrier-type catalyst can be produced by a production process comprising the following Step (C) and Step (D):
- a metal-type catalyst can be produced by a process wherein a salt, an oxide, a hydroxide, etc., of a metal is treated with a reducing agent such as hydrogen.
- An oxide or hydroxide catalyst can be produced by a process wherein a metal hydroxide or oxide is precipitated by using an alkali, etc., in a metal salt solution, or a method wherein the resultant precipitate is calcined.
- a boride catalyst can be produced by a process wherein a metal salt is treated with tetrahydroborate.
- a phosphide catalyst can be produced by a process wherein a metal solution is treated with a phosphite.
- examples of the production process may include: in addition to the above-describe production processes, a method wherein a hydroxide or oxide of a metal is deposited on a carrier, and the resultant carrier is calcined; a method wherein a carrier is impregnated with a metal salt solution, and the resultant carrier is calcined; a method wherein a carrier having thereon a deposited metal hydroxide or oxide, or a carrier impregnated with a metal salt solution is calcined and then is reduced with a reducing agent, to thereby prepare a catalyst.
- the second aspect of the present invention is not limited to the above-mentioned specific processes, but any process may be used as long as it can produce the catalyst for producing both end-hydroxyl group-terminated diols according to the first aspect of the present invention,
- the third aspect of the present invention relates to a process for producing both end-hydroxyl group-terminated diols, wherein an epoxy alcohol represented by the following general formula (1) is subjected to a hydrogenolysis reaction in the presence of a catalyst for producing both end-hydroxyl group-terminated diols according to any of claims 1-5, in the presence of at least one solvent selected from the group consisting of ethers, esters, aromatic hydrocarbon compounds, alicyclic hydrocarbon compounds and aliphatic hydrocarbon compounds, to thereby obtain a both end-hydroxyl group-terminated diol represented by the following general formula (2).
- an epoxy alcohol represented by the following general formula (1) is subjected to a hydrogenolysis reaction in the presence of a catalyst for producing both end-hydroxyl group-terminated diols according to any of claims 1-5, in the presence of at least one solvent selected from the group consisting of ethers, esters, aromatic hydrocarbon compounds, alicyclic hydrocarbon compounds and aliphatic hydrocarbon compounds, to thereby obtain a both
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6);
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6).
- the compound represented by the general formula (1) to be used in the process for producing both end-hydroxyl group-terminated diols according to the third aspect of the present invention is an epoxy alcohol compound. More specifically, the compound represented by the general formula (1) may include: a compound where a mono-substituted oxirane ring and a hydroxyl group are bonded through a methylene chain having 1 to 6 carbon atoms, or a methylene chain having 1 to 6 carbon atoms which has been substituted with a cycloalkyl group, an aryl group or an alkyl group having 1 to 8 carbon atoms.
- epoxy alcohol compound may include: glycidol, 3,4-epoxy-2-butanol, 1,2-epoxy-3-pentanol, 1,2-epoxy-3-hexanol, 1,2-epoxy-3-heptanol, 2-methyl-3,4-epoxy-2-butanol, 1-phenyl-2,3-epoxy-1-propanol, 1-cyclohexyl-2,3-epoxy-1-propanol, 3,4-epoxy-1-butanol, 4,5-epoxy-1-pentanol, 5,6-epoxy-1-hexanol and 7,8-epoxy-1-octanol.
- the epoxy alcohol compounds usable in the present invention are not limited to these specific compounds.
- glycidol, 3,4-epoxy-1-butanol and 3,4-epoxy-2-butanol are preferred in view of easy availability thereof, the industrial value of the both end-hydroxyl group-terminated diol as the reaction product, etc.
- the process for producing both end-hydroxyl group-terminated diols according to the third aspect of the present invention has a purpose of producing the both end-hydroxyl group-terminated diols with a high selectivity by the regioselective (or regiospecific) hydrogenolysis reaction of the epoxy ring of an epoxy alcohol and is characterized in that the reaction is conducted by using a solvent having a low polarity.
- the use of a solvent is preferred also in view of the control of the ring-opening reaction of the epoxy ring due to dilution therewith, the removal of the heat of reaction, or prevention of a decrease in the hydrogen diffusion efficiency which can be caused due to an increase in the viscosity of the reaction system.
- Specific examples of the solvent usable in the process for producing the both end-hydroxyl group-terminated diols according to the third aspect of the present invention may include: ether solvents such as diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, tetrahydrofuran and 1,4-dioxane;
- ether solvents such as diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether
- aromatic hydrocarbon solvents such as benzene, toluene and xylene
- alicyclic hydrocarbon solvents such as cyclohexane and methylcyclohexane
- aliphatic hydrocarbon solvents such as pentane, hexane, heptane and octane
- ester solvents such as methyl formate, ethyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and butyl acetate; and
- halogenated hydrocarbon solvents such as dichloromethane, chloroform and 1,2-dichloroethane. These solvents may be used individually or as a mixed solvent of two or more species thereof.
- diethyl ether dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, 1,4-dioxane, benzene, toluene, xylene, cyclohexane, hexane, ethyl acetate, propyl acetate, isopropyl acetate and butyl acetate. It is more preferred to use diethyl ether, ethylene glycol dimethyl ether, 1,4-dioxane, toluene, cyclohexane, hexane and ethyl acetate.
- the amount of the solvent to be used is not particularly limited.
- the solvent may be used in such a range that the concentration of the epoxy alcohol as a reactant becomes 1 to 100 mass %, based on the mass of the epoxy alchol as a reactant toward the sum the epoxy alchol as a reactant and the solvent. If the epoxy alcohol concentration is less than 1 mass %, a practically acceptable reaction rate is less liable to be obtained, or the load for the separation and purification of the product from the reaction mixture containing the solvent becomes heavier, and therefore such an amount of the solvent may be disadvantageous.
- the epoxy alcohol concentration may preferably be 3 to 100 mass %, more preferably from 5 to 100 mass %.
- the hydrogenolysis reaction of the epoxy alcohol can be conducted by contacting the epoxy alcohol with hydrogen in the presence of a catalyst.
- a catalyst As the reaction type, it is possible to use any of known reaction types to be used for hydrogenolysis reaction or hydrogenation reaction, such as continuous-type reaction or batch-type reaction.
- the catalyst to be used in this embodiment may be either a homogenous catalyst or a heterogeneous catalyst.
- the form of the catalyst is not particularly limited and an appropriate form may be selected depending on the type of the reaction.
- reaction type to be used in the third aspect of the present invention may include: in the case of a homogeneous catalyst, a simple stirring tank, a bubble tower-type reaction tank and a tubular reaction tank.
- reaction type may include: in the case of a heterogeneous catalyst, a suspension-bed simple stirring tank, a fluidized-bed bubble tower-type reaction tank, a fluidized-bed tubular reaction tank, a fixed-bed liquid phase flow-system tubular reaction tank, and a fixed-bed trickle bed-system tubular reaction tank.
- the reaction types usable in the present invention are not limited to these specific reaction types.
- the amount of the catalyst to be used for the hydrogenolysis reaction varies depending on the reaction type and is not particularly limited.
- the amount of the homogeneous catalyst used may usually be 0.001 to 10 mass %, preferably 0.01 to 5 mass %, more preferably 0.01 to 3 mass %, based on the reactant epoxy alcohol solution.
- the amount of the heterogeneous catalyst to be used may usually be 0.01 to 100 mass %, preferably 0.1 to 70 mass %, more preferably 0.1 to 50 mass %, based on the reactant epoxy alcohol compound.
- the amount of the catalyst is small, a practically sufficient reaction rate may not be obtained. On the other hand, if the amount of the catalyst is large, a reduction in the reaction yield or an increase in the catalyst cost may undesirably be provided due to an increase in the occurrence of the side reaction.
- the hydrogen pressure at the hydrogenolysis reaction is not particularly limited.
- the reaction may be conducted either under atmospheric pressure condition or under a pressurized condition.
- the reaction may preferably be conducted under a pressurized condition.
- the pressure in terms of the gauge pressure, may usually be in the range of 0 to 50 MPa, preferably 0 to 40 MPa, more preferably 0 to 30 MPa.
- the hydrogenolysis reaction may be conducted at any temperature within a range such that it does not substantially decrease the reaction efficiency due to the catalyst.
- the reaction may usually be conducted at 0 to 200° C., preferably 0 to 180° C. and more preferably 0 to 150° C. If the reaction temperature is less than 0° C., the hydrogenolysis reaction may not proceed at a practically acceptable reaction rate.
- the ring opening reaction of the epoxy ring in the epoxy alcohol compound represented by the general formula (1) is more liable to proceed due the reaction of the starting material epoxy alcohol compounds represented by the general formula (1) with each other, or the reaction between the product both end-hydroxyl group-terminated diol compound represented by the general formula (2) and the epoxy alcohol compound, so that undesired by-products may be disadvantageously produced.
- the epoxy alcohol compound represented by the general formula (1) to be used in the process for producing the both end-hydroxyl group-terminated diols according to the third aspect of the present invention may one which has been prepared by any method.
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6).
- reaction for obtaining the epoxy alcohol compound represented by the general formula (1) may include: a preparation process wherein an unsaturated alcohol is epoxidized (examined Japanese Patent publication (JP-B) Sho. 51-18407); a process wherein an epoxy alcohol is prepared through the hydrolysis of an epichlorohydrin to produce monochlorohydrin and subsequently the resultant monochlorohydrin is subjected to a ring-closing reaction ( Journal of American Chemical Society , Vol. 52, page 1521 (1930)); a preparation process wherein the carbon-carbon double bond of acrolein is epoxidized and the aldehyde group thereof is hydrogenated (U.S. Pat. No.
- the epoxy alcohol compound represented by the general formula (1) to be used in the process for producing the both end-hydroxyl group-terminated diols according to the third aspect of the present invention may preferably be an epoxy alcohol compound which has been obtained by the epoxidation reaction of an unsaturated alcohol, in view of the industrial importance or in view of a lower possibility of contamination due to industrially undesired impurities (such as chlorine-containing compound and aldehyde compound) which can function as a poisoning substance to the catalyst for the hydrogenation reaction.
- industrially undesired impurities such as chlorine-containing compound and aldehyde compound
- the epoxy alcohol compound represented by the general formula (1) to be used in the third aspect of the present invention may preferably be an epoxy alcohol compound represented by the general formula (1) which has been obtained by the epoxidation reaction of an unsaturated alcohol compound represented by formula (3):
- R 1 and R 2 each independently represents hydrogen, an alkyl group having 1 to B carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 13 carbon atoms and n represents an integer of 1 to 6).
- Specific examples of the unsaturated alcohol represented by formula (3) may include: allyl alcohol, 3-buten-1-ol and 3-buten-2-ol.
- the unsaturated alcohols usable in the present invention are not limited to these specific compounds.
- reaction mixture containing the epoxy alcohol compound which has been obtained by the epoxidation reaction of the unsaturated alcohol compound is used as the starting material as it is (i.e., substantially without purification), and the resultant reaction mixture is subjected to hydrogenolysis reaction so as to provide the both end-hydroxyl group-terminated diol.
- the product glycidol may be obtained at a conversion (rate) for the glycidol of 60% or more under a desirable condition, and 70% to 100% under a more desirable condition.
- the selectivity factor for the 1,3-propanediol may be 60% or more under a desirable condition.
- the fourth aspect of the present invention is described below.
- the fourth aspect of the present invention relates to a both end-hydroxyl group-terminated diol which has been produced by the process for producing the both end-hydroxyl group-terminated diols according to the third aspect of the present invention.
- the diol has been obtained by the hydrogenolysis reaction of an epoxy alcohol, and therefore, the product both end-hydroxyl group-terminated diol contains substantially no carbonyl compound as an impurity. Accordingly, the both end-hydroxyl group-terminated diol according to the fourth aspect of the present invention can provide an effect such that when polyester, etc., is produced by using such a diol, the generation of coloring or malodor attributable to the carbonyl compound can be suppressed to a low level.
- the amount of the carbonyl compound in the obtained product may preferably be less than 500 ppm, more preferably less than 100 ppm.
- the amount of the carbonyl compound may be measured, e.g., by qualitative determination according to ASTM E411-70 wherein a solution of the condensation product between the carbonyl compound and 2,4-dinitrophenyl hidrazine is qualitatively analysed by using the visible spectrum, etc.
- Carrier gas He 1 ml/min, split ratio: 1/30
- the reactor (vessel) was tightly closed and an operation of pressurizing the inside of the autoclave to 1.0 MPa (gauge pressure) with nitrogen and then depressurizing the inside of the autoclave to 0.0 Mpa (gauge pressure) was repeated 5 times to replace the air in the autoclave with nitrogen. Further, the nitrogen was replaced with hydrogen by the same operation, and a hydrogen pressure of 0.8 MPa (gauge pressure) was finally applied to the autoclave. Subsequently, while the contents of the autoclave were-being stirred at 400 rpm, the temperature in the autoclave was elevated and the reaction was conducted at 80° C. for 5 hours. During the reaction, hydrogen was introduced into the autoclave so as to maintain the reaction pressure at a constant level.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was tightly closed, and then the contents (atmosphere) of the autoclave were replaced with nitrogen, and further with hydrogen sequentially in the same manner as in Example 1, and a hydrogen pressure of 0.8 MPa (gauge pressure) was finally applied to the autoclave. Subsequently, while the contents of the autoclave were being stirred at 400 rpm, the temperature in the autoclave was elevated and the reaction was conducted at 60° C. for 5 hours. During the reaction, hydrogen was introduced into the autoclave so as to maintain the reaction pressure at a constant level.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the resultant silica carrier which had absorbed therein Aqueous Solution (1) was dried at 100° C. for one hour under a stream of nitrogen. The drying was carried out under a stream of nitrogen at a space velocity 2400 h ⁇ 1 under atmospheric pressure. Then, the silica carrier was reduced at 400° C. for two hours under a stream of hydrogen to thereby prepare a catalyst carrying metal-Co on the silica carrier. The reduction was carried out under a stream of hydrogen at a space velocity 2400 h ⁇ 1 under atmospheric pressure,
- the resultant silica carrier which had absorbed therein Aqueous Solution (2) was dried at 100° C. for one hour under a stream of nitrogen. Then, the silica carrier was reduced at 400° C. for two hours under a stream of hydrogen, to thereby prepare a catalyst carrying metal-Co on the silica carrier.
- the catalyst carrying metal-Co on the silica carrier, which had been prepared in Example 14 was transferred to an autoclave made of stainless steel (mfd. by Taiatsu Glass K.K.) equipped with a stirrer and having an internal volume of 120 ml, then 20 ml of ethanol was added to the catalyst and thoroughly mixed under shaking. Thereafter, the resultant supernatant was removed from the autoclave by decantation. This operation was further repeated twice, and then the same operation was conducted three times except for using 20 ml of 1,2-dimethoxyethane in place of ethanol to effect the solvent replacement. The resultant supernatant which had finally been obtained was removed from the catalyst by decantation, and thereafter, 30 g of 1,2-dimethoxyethane and 5.00 g of glycidol were added thereto.
- the resultant silica carrier which had absorbed therein Aqueous Solution (3) was dried at 100° C. for one hour under a stream of nitrogen. Then, the silica carrier was reduced at 400° C. for two hours under a stream of hydrogen, to thereby prepare a catalyst carrying metal-Co on the silica carrier.
- the catalyst carrying metal-Co on the silica carrier, which had been prepared in Example 16 was transferred to an autoclave made of stainless steel (mfd. by Taiatsu Glass K.K.) equipped with a stirrer and having an internal volume of 120 ml, then 20 ml of ethanol was added to the catalyst and thoroughly mixed under shaking. Thereafter, the resultant supernatant was removed from the autoclave by decantation. This operation was further repeated twice, and then the same operation was conducted three times except for using 20 ml of 1,2-dimethoxyethane in place of ethanol to effect the solvent replacement. The resultant supernatant which had finally been obtained was removed from the catalyst by decantation, and thereafter, 30 g of 1,2-dimethoxyethane and 5.00 g of glycidul were added thereto.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the catalyst carrying metal-Co on the silica carrier, which had been prepared in Example 12 was transferred to an autoclave made of stainless steel (mfd. by Taiatsu Glass K.K.) equipped with a stirrer and having an internal volume of 120 ml, then 20 ml of ethanol was added to the catalyst and thoroughly mixed under shaking. Thereafter, the resultant supernatant was removed from the autoclave by decantation. This operation was further repeated twice, and then the same operation was conducted three times except for using 20 ml of 1,2-dimethoxyethane in place of ethanol to effect the solvent replacement. The resultant supernatant which had finally been obtained was removed from the catalyst by decantation, and thereafter, 30 g of 1,2-dimethoxyethane and 5.00 g of glycidol were added thereto.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the catalyst carrying metal-Co on the silica carrier, which had been prepared in Example 12 was transferred to an autoclave made of stainless steel (mfd. by Taiatsu Glass K.K.) equipped with a stirrer and having an internal volume of 120 ml, then 20 ml of ethanol was added to the catalyst and thoroughly mixed under shaking. Thereafter, the resultant supernatant was removed from the autoclave by decantation. This operation was further repeated twice, and then the same operation was conducted three times except for using 20 ml of 1,2-dimethoxyethane in place of ethanol to effect the solvent replacement. The resultant supernatant which had finally been obtained was removed from the catalyst by decantation, and thereafter, 30 g of 1,2-dimethoxyethane and 5.00 g of glycidol were added thereto.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the resultant silica carrier which had absorbed therein Aqueous Solution (4) was dried at 100° C. for one hour under a stream of nitrogen. Then, the silica carrier was reduced at 400° C. for two hours under a stream of hydrogen, to thereby prepare a catalyst carrying metal-Ru on the silica carrier.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the resultant silica carrier which had absorbed therein Aqueous Solution (5) was dried at 100° C. for one hour under a stream of nitrogen. Then, the silica carrier was reduced at 400° C. for two hours under a stream of hydrogen, to thereby prepare a catalyst carrying metal-nickel carried on the silica carrier.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the catalyst carrying Ni carried on the silica carrier, which had been prepared in Example 25 was transferred to an autoclave made of stainless steel (mfd. by Taiatsu Glass K.K.) equipped with a stirrer and having an internal volume of 120 ml, then 20 ml of ethanol was added to the catalyst and thoroughly mixed under shaking. Thereafter, the resultant supernatant was removed from the autoclave by decantation. This operation was further repeated twice, and then the same operation was conducted three times except for using 20 ml of 1,2-dimethoxyethane in place of ethanol to effect the solvent replacement. The resultant supernatant which had finally been obtained was removed from the catalyst by decantation, and thereafter, 30 g of 1,2-dimethoxyethane and 5.00 g of glycidol were added thereto.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the catalyst carrying Ni carried on the silica carrier, which had been prepared in Example 25 was transferred to an autoclave made of stainless steel (mfd. by Taiatsu Glass K.K.) equipped with a stirrer and having an internal volume of 120 ml, then 20 ml of ethanol was added to the catalyst and thoroughly mixed under shaking. Thereafter, the resultant supernatant was removed from the autoclave by decantation. This operation was further repeated twice, and then the same operation was conducted three times except for using 20 ml of dioxane in place of ethanol to effect the solvent replacement. The resultant supernatant which had finally been obtained was removed from the catalyst by decantation, and thereafter, 30 g of dioxane and 5.00 g of glycidol were added thereto.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the catalyst carrying Ni carried on the silica carrier, which had been prepared in Example 25 was transferred to an autoclave made of stainless steel (mfd. by Taiatsu Glass K.K.) equipped with a stirrer and having an internal volume of 120 ml, then 20 ml of ethanol was added to the catalyst and thoroughly mixed under shaking. Thereafter, the resultant supernatant was removed from the autoclave by decantation. This operation was further repeated twice, and then the same operation was conducted three times except for using 20 ml of dioxane in place of ethanol to effect the solvent replacement. The resultant supernatant which had finally been obtained was removed from the catalyst by decantation, and thereafter, 30 g of dioxane and 5.00 g of glycidol were added thereto.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- the reactor was cooled to room temperature and depressurized, and the contents of the autoclave were replaced with nitrogen, and then the reactor was opened. Thereafter, the supernatant was removed from the autoclave and the supernatant was analyzed by GC.
- Urushibara-Co catalyst (U-Co-BA), which had been prepared in Example 31 was transferred to an autoclave made of stainless steel (mfd. by Taiatsu Glass K.K.) equipped with a stirrer and having an internal volume of 120 ml, then 20 ml of ethanol was added-to the catalyst and thoroughly mixed under shaking. Thereafter, the resultant supernatant was removed from the autoclave by decantation. This operation was further repeated twice, and then the same operation was conducted three times except for using 20 ml of 1,2-dimethoxyethane in place of ethanol to effect the solvent replacement. The resultant supernatant which had finally been obtained was removed from the catalyst by decantation, and thereafter, 30 g of 1,2-dimethoxyethane and 5.00 g of glycidol were added thereto.
- a both end-hydroxyl group-terminated diol e.g., propanediol
- a both end-hydroxyl group-terminated diol having an extremely low carbonyl impurity content
- the-catalyst for producing the both end-hydroxyl group-terminated diols or the process for producing the both end-hydroxyl group-terminated diols by using the catalyst according to the present invention.
- both end-hydroxyl group-terminated diols which can be obtained by the production process for such diols (particularly, 1,3-propanediol) according to the present invention have a high purity as compared with the 1,3-propanediols which had been obtained by conventional methods.
- resins such as polyester
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/876,687 US7230145B2 (en) | 2001-03-22 | 2004-06-28 | Catalyst for producing both end-hydroxyl group-terminated diols, process for producing the catalyst, process for producing the diols by using the catalyst, and both end-hydroxyl group-terminated diols obtained by the process |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001081783 | 2001-03-22 | ||
| JP2001-081783 | 2001-03-22 | ||
| JP2001373977A JP4296739B2 (ja) | 2001-03-22 | 2001-12-07 | 両末端ジオール類製造用触媒、該触媒の製造方法、該触媒を用いた両末端ジオール類の製造方法及び該製造方法で得られた両末端ジオール類 |
| JP2001-373977 | 2001-12-07 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/876,687 Division US7230145B2 (en) | 2001-03-22 | 2004-06-28 | Catalyst for producing both end-hydroxyl group-terminated diols, process for producing the catalyst, process for producing the diols by using the catalyst, and both end-hydroxyl group-terminated diols obtained by the process |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030119666A1 true US20030119666A1 (en) | 2003-06-26 |
Family
ID=26611748
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/088,485 Abandoned US20030119666A1 (en) | 2001-03-22 | 2002-03-22 | Catalyst for producing both end-hydroxyl group-terminated diols, process for producing the catalyst, process for producing the diols by using the catalyst, and both end-hydroxyl group-terminated diols obtained by the process |
| US10/876,687 Expired - Fee Related US7230145B2 (en) | 2001-03-22 | 2004-06-28 | Catalyst for producing both end-hydroxyl group-terminated diols, process for producing the catalyst, process for producing the diols by using the catalyst, and both end-hydroxyl group-terminated diols obtained by the process |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/876,687 Expired - Fee Related US7230145B2 (en) | 2001-03-22 | 2004-06-28 | Catalyst for producing both end-hydroxyl group-terminated diols, process for producing the catalyst, process for producing the diols by using the catalyst, and both end-hydroxyl group-terminated diols obtained by the process |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20030119666A1 (enExample) |
| EP (1) | EP1370358A1 (enExample) |
| JP (1) | JP4296739B2 (enExample) |
| CN (1) | CN1231437C (enExample) |
| TW (1) | TWI281913B (enExample) |
| WO (1) | WO2002076610A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20190381484A1 (en) * | 2018-06-18 | 2019-12-19 | Korea Institute Of Science And Technology | Calcium salts-supported metal catalyst, method for preparing the same, and method for hydrodeoxygenation reaction of oxygenates using the same |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9799893B2 (en) * | 2006-10-18 | 2017-10-24 | Daimler Ag | Catalyst support for fuel cell |
| US8889912B2 (en) | 2011-12-30 | 2014-11-18 | E I Du Pont De Nemours And Company | Process for preparing 1,6-hexanediol |
| US8884036B2 (en) | 2011-12-30 | 2014-11-11 | E I Du Pont De Nemours And Company | Production of hydroxymethylfurfural from levoglucosenone |
| CN104024197A (zh) | 2011-12-30 | 2014-09-03 | 纳幕尔杜邦公司 | 己二醇的制备方法 |
| BR112014015994A2 (pt) | 2011-12-30 | 2018-05-22 | Du Pont | processo. |
| US8962894B2 (en) | 2011-12-30 | 2015-02-24 | E I Du Pont De Nemours And Company | Process for preparing 1, 6-hexanediol |
| US8865940B2 (en) | 2011-12-30 | 2014-10-21 | E I Du Pont De Nemours And Company | Process for preparing 1,6-hexanediol |
| US8859826B2 (en) | 2012-04-27 | 2014-10-14 | E I Du Pont De Nemours And Company | Production of alpha, omega-diols |
| US8846985B2 (en) * | 2012-04-27 | 2014-09-30 | E I Du Pont De Nemours And Company | Production of alpha, omega-diols |
| US9018423B2 (en) | 2012-04-27 | 2015-04-28 | E I Du Pont De Nemours And Company | Production of alpha, omega-diols |
| CN108786804B (zh) * | 2018-05-31 | 2021-01-26 | 王鹏飞 | 氢化催化剂、其制备方法及应用 |
| CN109806871A (zh) * | 2019-02-27 | 2019-05-28 | 浙江大学 | 缩水甘油加氢制备1,3-丙二醇的钴-氧化铝催化剂及其制备方法 |
| CN109821538B (zh) * | 2019-02-27 | 2020-11-06 | 浙江大学 | 缩水甘油加氢制备1,3-丙二醇的碳膜包覆钴催化剂及其制备方法 |
| CN116408086B (zh) * | 2023-03-28 | 2025-03-07 | 湖北大学 | 环氧丙醇高选择氢化制1,3-丙二醇催化剂的制备方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US397449A (en) * | 1889-02-05 | Bottle-stopper | ||
| US2895819A (en) * | 1957-09-03 | 1959-07-21 | Bjorksten Res Lab Inc | Method for preparing a catalytic metal foam and use thereof |
| US4590313A (en) * | 1982-06-02 | 1986-05-20 | Atlantic Richfield Company | Method for producing primary alcohols by catalytic hydrogenation of terminal epoxides |
| US5744419A (en) * | 1994-12-19 | 1998-04-28 | Council Of Scientific And Industrial Research | Process for the preparation of an improved supported catalyst, containing nickel and cobalt, with or without noble metals, useful for the oxidative conversion of methane, natural gas and biogas to syngas |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US577166A (en) * | 1897-02-16 | Hay rake and loader combined | ||
| GB970790A (en) * | 1961-04-06 | 1964-09-23 | Henkel & Cie Gmbh | Process for the preparation of primary alcohols |
| US3975449A (en) * | 1974-08-05 | 1976-08-17 | Chevron Research Company | Hydrogenation of epoxides to primary alcohols |
| GB1581379A (en) * | 1976-12-28 | 1980-12-10 | Du Pont | Preparation of diols by hydrogenation and hyrdrolysis of cyclic acetals |
| BR9408460A (pt) | 1993-12-28 | 1997-08-05 | Rhone Poulenc Chimie | Processo de hidrogenação catalítica de nitrilas em aminas com o auxílio de um catalisador do tipo níquel de raney |
| CN1093003C (zh) | 1999-04-29 | 2002-10-23 | 中国石油化工集团公司 | 一种加氢精制催化剂及其制备方法 |
| KR100416404B1 (ko) * | 1999-04-29 | 2004-01-31 | 차이나 피트로케미컬 코포레이션 | 수소화 촉매 및 이의 제조 방법 |
-
2001
- 2001-12-07 JP JP2001373977A patent/JP4296739B2/ja not_active Expired - Fee Related
-
2002
- 2002-01-28 TW TW091101391A patent/TWI281913B/zh active
- 2002-03-22 US US10/088,485 patent/US20030119666A1/en not_active Abandoned
- 2002-03-22 EP EP02708647A patent/EP1370358A1/en not_active Ceased
- 2002-03-22 CN CNB028068386A patent/CN1231437C/zh not_active Expired - Fee Related
- 2002-03-22 WO PCT/JP2002/002797 patent/WO2002076610A1/en not_active Ceased
-
2004
- 2004-06-28 US US10/876,687 patent/US7230145B2/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US397449A (en) * | 1889-02-05 | Bottle-stopper | ||
| US2895819A (en) * | 1957-09-03 | 1959-07-21 | Bjorksten Res Lab Inc | Method for preparing a catalytic metal foam and use thereof |
| US4590313A (en) * | 1982-06-02 | 1986-05-20 | Atlantic Richfield Company | Method for producing primary alcohols by catalytic hydrogenation of terminal epoxides |
| US5744419A (en) * | 1994-12-19 | 1998-04-28 | Council Of Scientific And Industrial Research | Process for the preparation of an improved supported catalyst, containing nickel and cobalt, with or without noble metals, useful for the oxidative conversion of methane, natural gas and biogas to syngas |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20190381484A1 (en) * | 2018-06-18 | 2019-12-19 | Korea Institute Of Science And Technology | Calcium salts-supported metal catalyst, method for preparing the same, and method for hydrodeoxygenation reaction of oxygenates using the same |
| US10953387B2 (en) * | 2018-06-18 | 2021-03-23 | Korea Institute Of Science And Technology | Calcium salts-supported metal catalyst, method for preparing the same, and method for hydrodeoxygenation reaction of oxygenates using the same |
| US20210162376A1 (en) * | 2018-06-18 | 2021-06-03 | Korea Institute Of Science And Technology | Calcium salts-supported metal catalyst, method for preparing the same, and method for hydrodeoxygenation reaction of oxygenates using the same |
| US11583833B2 (en) * | 2018-06-18 | 2023-02-21 | Korea Institute Of Science And Technology | Calcium salts-supported metal catalyst, method for preparing the same, and method for hydrodeoxygenation reaction of oxygenates using the same |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1370358A1 (en) | 2003-12-17 |
| JP2002346390A (ja) | 2002-12-03 |
| US7230145B2 (en) | 2007-06-12 |
| CN1231437C (zh) | 2005-12-14 |
| JP4296739B2 (ja) | 2009-07-15 |
| US20040236156A1 (en) | 2004-11-25 |
| TWI281913B (en) | 2007-06-01 |
| CN1498132A (zh) | 2004-05-19 |
| WO2002076610A1 (en) | 2002-10-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7230145B2 (en) | Catalyst for producing both end-hydroxyl group-terminated diols, process for producing the catalyst, process for producing the diols by using the catalyst, and both end-hydroxyl group-terminated diols obtained by the process | |
| CN1144774C (zh) | 制备2,3-二卤代丙醇的方法 | |
| JP6060906B2 (ja) | 高純度1,5−ペンタンジオールの製造方法 | |
| CN1355160A (zh) | 由3-羟基酯制备1,3-链烷二醇的方法 | |
| CN1313425C (zh) | 1,6-己二醇的制备 | |
| CN102625790A (zh) | 脂环式醇的制造方法 | |
| CN101679157A (zh) | 1,5-戊二醇和/或1,6-己二醇的制造方法 | |
| US11623904B2 (en) | Method for producing cyclobutanediol compound | |
| KR20040086303A (ko) | α-할로케톤을 2급 α-할로알코올로 환원하는 방법 | |
| EP1090900B1 (en) | Method of producing cyclododecanone and cyclododecanol | |
| CN1956972A (zh) | 由乙烷制备表氯醇的方法 | |
| WO2005075392A2 (en) | Production process of 3-alkoxy-1-propanols, and 3-alkoxy-1-propanols obtained by the production process | |
| US12479782B2 (en) | Catalysts, preparation method thereof, and selective hydrogenation processes | |
| JPH0639409B2 (ja) | オクタン誘導体の製造法 | |
| CN1417186A (zh) | 由3-羟基酯制备1,3-烷二醇的方法 | |
| EP0333296B1 (en) | Process for the preparation of alkanediols | |
| JP2565561B2 (ja) | 7ーオクテンー1ーアールの製造法 | |
| CN1232492C (zh) | 生产二元醇丁醚的方法 | |
| EP0075952A1 (en) | Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol | |
| JP2003528065A (ja) | 1,3−ジオールを調製するための方法 | |
| JP2005247840A (ja) | 1,3−プロパンジオールの製造方法及び該製造方法で得られる1,3−プロパンジオール | |
| JP3387131B2 (ja) | 脂環式ジオールの製造方法 | |
| US4661643A (en) | Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol | |
| US4649225A (en) | Hydrogenolysis of polyalkylene glycols to produce monoethylene glycol monoalkyl ethers, monoethylene glycol and ethanol | |
| JP3103451B2 (ja) | 7−オクテン−1−アールの製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |