US11327093B2 - Interposer, socket, socket assembly, and wiring board assembly - Google Patents

Interposer, socket, socket assembly, and wiring board assembly Download PDF

Info

Publication number
US11327093B2
US11327093B2 US16/742,982 US202016742982A US11327093B2 US 11327093 B2 US11327093 B2 US 11327093B2 US 202016742982 A US202016742982 A US 202016742982A US 11327093 B2 US11327093 B2 US 11327093B2
Authority
US
United States
Prior art keywords
interposer
socket
wiring board
contactor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/742,982
Other languages
English (en)
Other versions
US20200300890A1 (en
Inventor
Takashi Kawashima
Akihiko Ito
Keishi Oku
Natsuki Shiota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Assigned to ADVANTEST CORPORATION reassignment ADVANTEST CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ITO, AKIHIKO, KAWASHIMA, TAKASHI, OKU, KEISHI, SHIOTA, NATSUKI
Publication of US20200300890A1 publication Critical patent/US20200300890A1/en
Application granted granted Critical
Publication of US11327093B2 publication Critical patent/US11327093B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2887Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/045Sockets or component fixtures for RF or HF testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0416Connectors, terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/0466Details concerning contact pieces or mechanical details, e.g. hinges or cams; Shielding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06772High frequency probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2889Interfaces, e.g. between probe and tester

Definitions

  • the present invention relates to an interposer and a socket used for testing an electronic component under test (DUT: Device Under Test) such as a semiconductor integrated circuit device, and to a socket assembly and a wiring board assembly including the interposer and the socket.
  • DUT Device Under Test
  • Patent Document 1 paragraph [0038] and FIG. 1
  • PATENT DOCUMENT 1 JP 2013-234912 A
  • An object of the present invention is to provide an interposer and a socket, and a socket assembly and a wiring board assembly comprising the interposer and the socket, which can achieve a low cost.
  • An interposer is an interposer which is to be interposed between a socket and a wiring board, the interposer comprising: a substrate which has a first through hole into which a first contactor of the socket is to be inserted; and a first conductive path which is disposed on the substrate, wherein the first conductive path has a first contact portion with which a second contactor of the socket is to contact.
  • the interposer may further comprise a circuit which is connected to the first conductive path.
  • the interposer may further comprise a connector which is mounted on the substrate and to which the first conductive path is connected.
  • a socket according to the present invention is a socket to which a DUT is to be electrically connected, the socket comprising: a first contactor which has a first end which is to contact with a first terminal of the DUT; a second contactor which has a second end which is to contact with a second terminal of the DUT; and a holding member which holds the first contactor and the second contactor so that the first end and the second end are located on substantially the same virtual plane, wherein the second contactor has a length shorter than the length of the first contact.
  • the socket may further comprise air layer forming means which is to form an air layer between the holding member and an interposer.
  • a socket assembly is a socket assembly comprising: the above-described interposer; and a socket to which a DUT is to be electrically connected and to which the interposer is attached, wherein the socket comprises: a first contactor which has a first end and which is inserted into the first through hole of the interposer, the first end being to contact with the first terminal of the DUT; a second contactor which has a second end and which contacts with the first contact portion of the interposer, the second end being to contact with the second terminal of the DUT; and a holding member which holds the first contactor and the second contactor so that the first end and the second end are located on substantially the same virtual plane, and the second contactor has a length shorter than the length of the first contactor.
  • an air layer may be formed between the holding member and the interposer.
  • the substrate of the interposer may have an exposed region which is exposed from the socket, and the connector may be disposed on the exposed region so as to be located on the same side of the substrate as the socket.
  • a wiring board assembly according to the present invention is a wiring board assembly comprises: the above-described interposer; and a wiring board to which the interposer is attached, wherein the wiring board comprises a second conductive path which has a second contact portion which is disposed so as to face the first through hole of the interposer.
  • the wiring board assembly further comprises a socket which is attached to the wiring board via the interposer, the socket comprises: a first contactor which has a first end, which is inserted into the first through hole of the interposer and which contacts with the second contact portion of the wiring board, the first end being to contact with the first terminal of the DUT; a second contactor which has a second end and which contacts the first contact portion of the interposer, the second end being to contact with the second terminal of the DUT; and a holding member which holds the first contactor and the second contactor so that the first end and the second end are located on substantially the same virtual plane, and the second contactor may have a length shorter than a length of the first contactor.
  • an air layer may be formed between the holding member and the interposer.
  • the substrate of the interposer may have an exposed region which is exposed from the socket, and the connector may be mounted on an opposite main surface opposite to a main surface which faces the wiring board in the exposed region.
  • the wiring board may have a second through hole into which the connector is inserted.
  • the connector is mounted on an opposite main surface on a side opposite to the main surface which faces the wiring board in the substrate of the interposer, and the substrate may have a third through hole into which the connector is inserted.
  • the substrate has a first through hole into which the first contactor of the socket is to be inserted, and the first conductive path has a first contact portion with which the second contactor of the socket is to contact.
  • the ends of the first and second contactors are located on substantially the same virtual plane, and the length of the second contactor is shorter than the length of the first contactor. Therefore, since the first contactor can be connected to the wiring board and the second contactor can be connected to the interposer having the circuit, cost reduction can be achieved.
  • FIG. 1 is a schematic cross-sectional view showing an entire configuration of an electronic component testing apparatus in the first embodiment of the present invention.
  • FIG. 2 is a plan view showing a wiring board assembly in the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a wiring board assembly in the first embodiment of the present invention and is a cross-sectional view along line III-III of FIG. 2 .
  • FIG. 4 is an exploded cross-sectional view of a wiring board assembly in the first embodiment of the present invention.
  • FIG. 5 is a plan view showing an interposer in the first embodiment of the present invention.
  • FIG. 6 is a plan view showing a modification of the interposer in the first embodiment of the present invention.
  • FIG. 7 is a plan view showing a test wiring board in the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a wiring board assembly in the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a wiring board assembly in the third embodiment of the present invention.
  • FIG. 10 is a bottom view showing a socket assembly in the third embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a wiring board assembly in the fourth embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an entire configuration of an electronic component testing apparatus in the first embodiment of the present invention.
  • the electronic component testing apparatus 1 of the present embodiment is an apparatus for testing electric characteristics of a DUT 90 (refer to FIG. 3 ).
  • Specific examples of the DUT 90 to be tested include a SoC (System on a chip) and a logic-based device.
  • the DUT 90 to be tested by the electronic component testing device 1 is not particularly limited to the above as long as it is an electronic component, and may be, for example, a memory-based device.
  • the electronic component testing apparatus 1 includes a handler 2 which handles a DUT 90 , a test head 3 which is electrically connected to a DUT 90 at the time of testing, and a tester main body 4 which sends test signals to a DUT 90 via the test head 3 and executes a test of the DUT 90 .
  • the electronic component testing apparatus 1 tests a DUT 90 while applying a high-temperature or low-temperature thermal stress to the DUTs, and classifies the DUT 90 according to the test result.
  • a wiring board assembly 5 for relaying electric connections between the DUT 90 and the test head 3 is mounted on an upper portion of the test head 3 .
  • the wiring board assembly 5 includes a test wiring board 10 , a socket 20 mounted on the test wiring board 10 , and an interposer 30 (refer to FIG. 3 ) interposed between the test wiring board 10 and the socket 20 .
  • the test wiring board 10 in the present embodiment corresponds to an example of the “wiring board” in the present invention.
  • the socket 20 enters the inside of the handler 2 through an opening 2 a formed in the handler 2 , and the DUT 90 conveyed in the handler 2 is pressed against the socket 20 , and the DUT 90 is electrically connected to the socket 20 .
  • the handler 2 has an arm for holding and moving the DUT 90 , and a temperature adjusting mechanism for adjusting the temperature of the DUT 90 is provided at a distal end of the arm of the handler 2 .
  • the arm presses the DUT 90 against the sockets 20 with thermal stress applied to the DUT 90 .
  • FIG. 2 and FIG. 3 are a plan view and a cross-sectional view showing a wiring board assembly in the present embodiment
  • FIG. 4 is an exploded cross-sectional view of a wiring board assembly in the present embodiment
  • FIG. 5 is a plan view showing an interposer in the present embodiment
  • FIG. 6 is a plan view showing a modification of the interposer in the present embodiment
  • FIG. 7 is a plan view showing a test wiring board in the present embodiment.
  • the socket 20 includes two types of contact probes 21 and 22 , an inner housing 23 , and an outer housing 26 .
  • the first contact probe 21 in the present embodiment corresponds to an example of the “first contactor” in the present invention
  • the second contact probe 22 in the present embodiment corresponds to an example of the “second contactor” in the present invention
  • the inner housing 23 in the present embodiment corresponds to an example of the “holding member” in the present invention
  • the outer housing 26 in the present embodiment corresponds to an example of the “air layer forming means” in the present invention.
  • both of the first and second contact probes 21 and 22 are so-called POGO pin.
  • the first contact probes 21 are held by the inner housings 23 so that the plungers 211 abut the first terminals 91 of the DUT 90 .
  • the first terminal 91 of DUT 90 is a terminal for a low-frequency signal, a power source, or a ground, and the first contact probe 21 is also a contactor for a low-frequency signal, a power source, or a ground.
  • the second contact probes 22 are held by the inner housings 23 so that the plungers 221 abut the second terminals 92 of the DUT 90 .
  • the second terminal 92 of DUT 90 is a terminal for a high-frequency signal, and the second contact probe 22 is also a contactor for a high-frequency signal.
  • the inner housing 23 is a member having a first body portion 24 and a second body portion 25 .
  • the first main body portion 24 is made of a material having electrical insulating properties, such as a resin material.
  • the second main body 25 is made of a conductive material such as a metal material, and the second main body 25 is connected to the ground.
  • the first body portion 24 is a rectangular plate-shaped member.
  • a plurality of holding holes 241 which penetrate the first main body 24 are formed in the first main body 24 .
  • 16 holding holes 241 are arranged at equal intervals in an array of 4 rows and 4 columns.
  • the first contact probes 21 are inserted into the plurality of holding holes 241 , respectively.
  • the inner surface of the holding hole 241 is in contact with the side surface of the first contact probe 21 , and each of the first contact probes 21 is directly held by the first body portion 24 .
  • the second body portion 25 is a frame-shaped member surrounding the first body portion 24 .
  • the first body portion 24 is inserted into the opening 251 of the second body portion 25 , and the first body portion 24 is held by the second body portion 25 .
  • a plurality of holding holes 252 which penetrate the second main body 25 are also formed in the second main body 25 .
  • 20 holding holes 252 are annularly arranged along the opening 251 .
  • the pitch of the holding holes 252 of the second body portion 25 is substantially the same as the pitch of the holding holes 241 of the first body portion 24 , and as a result, 36 holding holes 241 and 252 are arranged at equal intervals in an array of 6 rows and 6 columns.
  • the second contact probes 22 are inserted into the plurality of holding holes 252 , respectively.
  • the inner diameter of the holding hole 252 is larger than the outer diameter of the second contact probe 22 . Therefore, the second contact probe 22 is held by the second main body 25 via the resin members 253 provided on the upper portion and the lower part portion of the contact probe 22 .
  • an air layer 254 is formed between the inner surface of the holding hole 252 and the side surface of the second contact probe 22 except for the resin members 253 , and the coaxial structure of the second contact probe 22 is secured by the air layer 254 and the metallic second body portion 25 .
  • the number and arrangement of the first contact probes 21 included in the socket 20 are not particularly limited to the above.
  • the number and arrangement of the second contact probes 22 included in the socket 20 are not particularly limited to the above.
  • the number and arrangement of the contact probes 21 and 22 included in the sockets 20 are set in accordance with the number and arrangement of the terminals 91 and 92 of the DUT 90 .
  • the tip of the plunger 211 of the first contact probe 21 and the tip of the plunger 221 of the second contact probe 22 are located on substantially the same virtual plane VP.
  • the total length L 2 of the second contact probe 22 is shorter than the total length L 1 of the first contact probe 21 (L 2 ⁇ L 1 ).
  • the lower end portion of the second contact probe 22 is positioned above the lower end portion of the first contact probe 21 , and a step is formed between the lower end portion of the second contact probe 22 and the lower end portion of the first contact probe 21 . Since the first and second contact probes 21 and 22 have such a stepped structure, in the present embodiment, the second contact probe 22 is in contact with the interposer 30 , whereas the first contact probe 21 penetrates the interposer 30 and contacts the test wiring board 10 .
  • the tip of the plunger 211 of the first contact probe 21 in the present embodiment corresponds to an example of the “first end” in the present invention
  • the tip of the plunger 221 of the second contact probe 22 in the present embodiment corresponds to an example of the “second end” in the present invention.
  • the outer housing 26 has a rectangular frame shape.
  • the opening 261 of the outer housing 26 includes a first portion 262 , a second portion 263 , and a third portion 264 .
  • the first portion 262 is open toward the side opposite to the test wiring board 10 .
  • the first portion 262 expands in a tapered shape toward the outside.
  • the second portion 263 is connected to the first portion 262 and has an inner shape larger than the outer shape of the DUT 90 .
  • the DUT 90 enters the outer housing 26 through the first and second portions 262 , 263 .
  • a groove 263 a is formed on the entire circumference of the inner surface of the second portion 263 .
  • the outer edge of the inner housing 23 is inserted into the groove 263 a so that the inner housing 23 is held by the outer housing 26 .
  • the third portion 264 is open toward the test wiring board 10 .
  • the third portion 264 has an inner shape larger than the inner shape of the second portion 263 , and a step is formed between the second portion 263 and the third portion 264 .
  • the inner shape of the third portion 264 is larger than the outer shape of the interposer 30 , and the interposer 30 is accommodated in the third portion 264 .
  • the outer housing 26 holds the inner housing 23 so that a predetermined space, i.e., the air layer 35 , is formed between the interposer 30 and the inner housing 23 .
  • the interposer 30 includes a substrate 31 , a wiring pattern 32 , a circuit 33 , and a coaxial connector 34 .
  • the substrate 31 in the present embodiment corresponds to an example of the “substrate” in the present invention
  • the wiring pattern 32 in the present embodiment corresponds to an example of the “first conductive path” in the present invention
  • the coaxial connector 34 in the present embodiment corresponds to an example of the “connector” in the present invention.
  • the substrate 31 is made of an electrically insulating material.
  • examples of the material constituting the substrate 31 include a resin material, silicon, glass, ceramics, and the like.
  • Specific examples of the resin material of the substrate 31 include polyimide (PI), polyetheretherketone (PEEK), and the like.
  • the substrate 31 has an outer shape smaller than the outer shape of the socket 20 .
  • 16 through holes 311 are formed in the substrate 31 in an array of 4 rows and 4 columns.
  • the through-holes 311 are arranged coaxially with the holding holes 241 of the first main body portion 24 of the inner housing 23 , and the first contact probes 21 are respectively inserted into the through-holes 311 .
  • the number and arrangement of the through holes 311 included in the substrate 31 are not particularly limited to the above, and are set in accordance with the number and arrangement of the first contact probes 21 .
  • the through hole 311 in the present embodiment corresponds to an example of the “first through hole” in the present invention.
  • a pair of through holes 312 are formed in the substrate 31 .
  • the through hole 312 penetrates the substrate 31 , and the fitting portion 341 of the coaxial connector 34 is inserted into each of the through holes 312 .
  • the through hole 312 in the present embodiment corresponds to an example of the “third through hole” in the present invention.
  • one through hole 311 ′ may be formed in the substrate 31 .
  • the through hole 311 ′ has a shape facing all the holding holes 241 of the first main body portion 24 of the inner housing 23 .
  • a wiring pattern 32 is provided on the upper surface 31 a of the substrate 31 .
  • the wiring pattern 32 extends linearly on the upper surface 31 a of the substrate 31 , and the wiring pattern 32 has a pad 321 at one end thereof.
  • the pad 321 is disposed so as to face the holding hole 252 of the second body portion 25 of the inner housing 23 , and the second contact probe 22 is in contact with the pad 321 .
  • the number and arrangement of the pads 321 are not particularly limited to the above, and are set in accordance with the number and arrangement of the second contact probes 22 .
  • the pad 321 in the present embodiment corresponds to an example of the “first contact portion” in the present invention.
  • the circuit 33 is provided in the wiring pattern 32 .
  • the circuit 33 is a fine circuit for a high-frequency signal and includes at least one of a portion (wiring pattern, resistor, or the like) directly formed on the upper surface 31 a of the substrate 31 and a portion (electronic component or the like) mounted on the upper surface 31 a .
  • a millimeter wave band signal distribution circuit can be exemplified as a specific example of the circuit section 33 .
  • a coaxial connector 34 is connected to the other end of the wiring pattern 32 .
  • the coaxial connector 34 is a SMT (Surface Mount Type) type coaxial connector and includes a cylindrical fitting portion 341 into which the counterpart coaxial connector 50 fits, and a base portion 342 which supports the fitting portion 341 .
  • the coaxial connector 34 is mounted on the upper surface 31 a of the substrate 31 in a state where the base portion 342 is located on the upper surface 31 a side of the substrate 31 and the fitting portion 341 is inserted into the through hole 312 of the substrate 31 . More specifically, the base portion 342 is connected to the other end of the wiring pattern 32 on the upper surface 31 a of the substrate 31 , and the fitting portion 341 protrudes downward from the base portion 342 and penetrates the substrate 31 through the through hole 312 .
  • the counterpart coaxial connector 50 is connected to the fitting portion 341 of the coaxial connector 34 from below. A coaxial cable 51 is led out from the counterpart coaxial connector 50 .
  • FIG. 8 is a cross-sectional view showing a wiring board assembly 5 B in the second embodiment of the present invention.
  • the substrate 31 B has an exposed region 313 exposed from the socket 20 by making the width of the substrate 31 B larger than the width of the socket 20 , and the coaxial connector 34 is mounted on the upper surface 31 a of the exposed region 313 .
  • the coaxial connector 34 may be mounted on the lower surface 31 b of the substrate 31 .
  • the first conductive path includes, in addition to the wiring pattern 32 , a through conductive path penetrating the substrate 31 such as a via.
  • the test wiring board 10 is a so-called performance board (a load board). As shown in FIG. 3 , FIG. 4 , and FIG. 7 , the test wiring board 10 includes a substrate 11 made of an electrically insulating material, a conductive path 12 provided in the substrate 11 , and a connector 13 mounted on a lower surface 11 b of the substrate 11 .
  • the test wiring board 10 may be a so-called socket board.
  • the conductive path 12 in the present embodiment corresponds to an example of the “second conductive path” in the present invention.
  • a pair of through holes 111 are formed in the substrate 11 .
  • Each of the through holes 111 is disposed so as to correspond to the coaxial connector 34 of the interposer 30 , and penetrates the substrate 11 .
  • the through hole 111 in the present embodiment corresponds to an example of the “second through hole” in the present invention.
  • the conductive path 12 is composed of a wiring pattern provided on the upper surface 11 a and/or the lower surface 11 b of the substrate 11 , a via penetrating the substrate 11 , and the like, and the conductive path 12 has a pad 121 at one end thereof.
  • the pad 121 is disposed so as to face the through hole 311 of the interposer 30 .
  • the first contact probes 21 are respectively in contact with the pads 121 .
  • the pad 121 is buried in the substrate 11 , but the pad 121 is actually provided on the upper surface 11 a of the substrate 11 .
  • the number and arrangement of the pads 121 are not particularly limited to the above, and are set in accordance with the number and arrangement of the first contact probes 21 .
  • the pad 121 in the present embodiment corresponds to an example of the “second contact portion” in the present invention.
  • the other end of the wiring pattern 12 is connected to a connector 13 .
  • a cable 61 is led out from a counterpart connector 60 which fits into the connector 13 . Since the connectors 13 and 60 are connectors for low-frequency signals, power supply, or ground, the connectors 13 and 60 do not have a coaxial structure unlike the coaxial connectors 34 and 50 described above.
  • test wiring board 10 The test wiring board 10 , the socket 20 , and the interposer 30 described above are assembled as follows.
  • the socket 20 is attached to the test wiring board 10 in a state in which the interposer 30 is sandwiched between the socket 20 and the test wiring board 10 .
  • the first contact probe 21 is brought into contact with the pad 121 of the test wiring board 10 via the through hole 311 of the interposer 30
  • the second contact probe 22 is brought into contact with the pad 321 of the interposer 30 .
  • the coaxial connector 34 is inserted into the through hole 111 of the test wiring board 10 .
  • the bolt 41 is inserted into the fixing holes 265 and 112 of the outer housing 26 and the test wiring board 10 and is screwed with the nut 42 .
  • the socket 20 is fixed to the test wiring board 10 , and the interposer 30 is sandwiched between the socket 20 and the test wiring board 10 , thereby the wiring board assembly 5 is completed.
  • the method of fixing the socket 20 to the test wiring board 10 is not particularly limited, and may be a method other than bolt fastening.
  • the interposer 30 in a condition in which the socket 20 is fixed to the test wiring board 10 as described above, the interposer 30 is accommodated in the third portion 263 of the opening 261 of the outer housing 26 of the socket 20 , and the air layer 35 is formed between the interposer 30 and the inner housing 23 .
  • the microstrip line structure of the wiring pattern 32 of the interposer 30 is secured by the air layer 35 and the metallic second main body portion 25 .
  • a strip line structure of the wiring pattern 32 of the interposer 30 may be secured by forming a ground wiring pattern on the lower surface 31 b of the substrate 31 of the interposer 30 .
  • the socket assembly 6 composed of the socket 20 and the interposer 30 may be assembled in advance, and the socket assembly 6 may be attached to the test wiring board 10 .
  • the interposer 30 is fixed to the socket 20 by bolts 45 , thereby the socket assembly 6 is formed.
  • the method of fixing the interposer 30 to the socket 20 is not particularly limited, and may be a method other than bolt fastening.
  • FIG. 9 is a cross-sectional view showing the wiring board assembly 5 C in the third embodiment of the present invention
  • FIG. 10 is a bottom view showing the socket assembly 6 in the third embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing the wiring board assembly 5 D in a fourth embodiment of the present invention.
  • the wiring board assembly 5 is mounted on the test head 3 .
  • the counterpart coaxial connector 50 is connected to the coaxial connector 34 of the interposer 30
  • the counterpart connector 60 is connected to the connector 13 of the test wiring board 10 .
  • the wiring board assembly 5 is electrically connected to the test head 3 .
  • the first contact probe 21 contacts the first terminal 91 of the DUT 90
  • the second contact probe 22 contacts the second terminal 92 of the DUT 90 .
  • the second terminal 92 of the DUT 90 and the testing head 3 are electrically connected to each other via the second contact probes 22 , the interposers 30 (wiring patterns 32 , circuits 33 , and coaxial connectors 34 ), the coaxial connectors 50 , and the coaxial cables 51 .
  • the first terminal 91 of the DUT 90 and the test head 3 are electrically connected to each other via the first contact probes 21 , the test wiring board 10 (conductive paths 12 and connector 13 ), the connector 60 , and the connector 61 .
  • the path for the high-frequency signal is independent from the path for the low-frequency signal, the power source and the ground, and the DUT 90 and the test head 3 are electrically connected through the interposer 30 .
  • the interposer 30 it is possible to form a fine circuit 33 for high-frequency signals such as a millimeter wave band signal distribution circuit in the interposer 30 smaller than the test wiring board 10 , instead of the large test wiring board 10 , and it is possible to achieve cost reduction.
  • the substrate 31 has a through hole 311 into which the first contact probe 21 is to be inserted, and the wiring pattern 32 has a pad 321 with which the second contact probe 22 is to contact. Therefore, while the first contact probe 21 for the low frequency signal, the power supply and the ground can be connected to the test wiring board 10 , the second contact probe 22 for the high frequency signal can be connected to the interposer 30 having the circuit 33 for the high frequency signal.
  • the tip of the first contact probe 21 and the tip of the second contact probe 22 are located on substantially the same virtual plane VP, and the total length L 2 of the second contact probe 22 is shorter than the total length L 1 of the first contact probe 21 (L 2 ⁇ L 1 ). Therefore, the first contact probe 21 can be connected to the test wiring board 10 , while the second contact probe 22 can be connected to the interposer 30 .
  • the interposer 30 is disposed closer to the DUT 90 than the test wiring board 10 and the circuit 33 is formed in the interposer 30 , the accuracy of the DUT 90 test can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)
  • Connecting Device With Holders (AREA)
US16/742,982 2019-03-20 2020-01-15 Interposer, socket, socket assembly, and wiring board assembly Active 2040-03-04 US11327093B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP2019-053516 2019-03-20
JP2019053516A JP7198127B2 (ja) 2019-03-20 2019-03-20 インタポーザ、ソケット、ソケット組立体、及び、配線板組立体
JP2019-053516 2019-03-20

Publications (2)

Publication Number Publication Date
US20200300890A1 US20200300890A1 (en) 2020-09-24
US11327093B2 true US11327093B2 (en) 2022-05-10

Family

ID=72516134

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/742,982 Active 2040-03-04 US11327093B2 (en) 2019-03-20 2020-01-15 Interposer, socket, socket assembly, and wiring board assembly

Country Status (5)

Country Link
US (1) US11327093B2 (ja)
JP (1) JP7198127B2 (ja)
KR (1) KR102401214B1 (ja)
CN (1) CN111796177B (ja)
TW (1) TWI758677B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214473541U (zh) * 2021-01-08 2021-10-22 迪科特测试科技(苏州)有限公司 测试探针模块
US11879934B2 (en) * 2021-06-11 2024-01-23 Mediatek Inc. Test kit for testing a device under test
TWI780813B (zh) * 2021-07-13 2022-10-11 美商全球連接器科技有限公司 具有屏蔽效果的電性檢測載板裝置
EP4119958B1 (en) * 2021-07-16 2023-09-27 Cohu GmbH Contact socket module and method of testing electronic components using a contact socket module
WO2024016294A1 (en) * 2022-07-22 2024-01-25 Nvidia Corporation High-bandwidth coaxial interface test fixture
KR102456348B1 (ko) * 2022-08-12 2022-10-19 주식회사 비이링크 인터포저 및 이를 구비하는 테스트 소켓

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050262A (ja) 2001-08-08 2003-02-21 Hitachi Ltd 高周波icソケット、半導体試験装置および半導体試験方法ならびに半導体装置の製造方法
US20070001692A1 (en) * 2005-06-30 2007-01-04 Hiroshi Yamada Socket and electronic appliances using socket
US20090219043A1 (en) * 2005-12-05 2009-09-03 Nhk Spring Co., Ltd. Probe Card
JP2013234912A (ja) 2012-05-09 2013-11-21 Seiko Epson Corp ソケットガイド、ハンドラーおよび部品検査装置
US20130330945A1 (en) 2012-06-07 2013-12-12 Hon Hai Precision Industry Co., Ltd. Electrical connector assembly with an adaptor for electrical connecting the electrical connector and the pcb

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624144B2 (ja) * 1993-09-24 1997-06-25 日本電気株式会社 テストボード
JP3157782B2 (ja) * 1998-07-23 2001-04-16 茨城日本電気株式会社 Icソケット
US6888362B2 (en) 2000-11-09 2005-05-03 Formfactor, Inc. Test head assembly for electronic components with plurality of contoured microelectronic spring contacts
FR2822949B1 (fr) * 2001-03-27 2004-01-09 Commissariat Energie Atomique Spectrometre optique integre a haute resolution spectrale, notamment pour les telecommunications a haut debit et la metrologie, et procede de fabrication
US6894516B1 (en) 2003-11-20 2005-05-17 International Business Machines Corporation Method and apparatus for implementing very high density probing (VHDP) of printed circuit board signals
US7279911B2 (en) 2005-05-03 2007-10-09 Sv Probe Pte Ltd. Probe card assembly with dielectric structure
WO2006126279A1 (ja) * 2005-05-23 2006-11-30 Kabushiki Kaisha Nihon Micronics プローブ組立体、その製造方法および電気的接続装置
JP2007071699A (ja) * 2005-09-07 2007-03-22 Rika Denshi Co Ltd 垂直型プローブカード
JP4842640B2 (ja) * 2005-12-28 2011-12-21 日本発條株式会社 プローブカードおよび検査方法
US7405582B2 (en) 2006-06-01 2008-07-29 Advantest Corporation Measurement board for electronic device test apparatus
US8134381B2 (en) * 2007-03-26 2012-03-13 Advantest Corporation Connection board, probe card, and electronic device test apparatus comprising same
JP5079806B2 (ja) * 2007-07-13 2012-11-21 東京エレクトロン株式会社 検査用構造体
JP5915470B2 (ja) * 2012-08-31 2016-05-11 株式会社島津製作所 分光光度計
JP6084140B2 (ja) * 2013-09-06 2017-02-22 ヤマハファインテック株式会社 電気検査装置
WO2015109208A2 (en) 2014-01-17 2015-07-23 Nuvotronics, Llc Wafer scale test interface unit: low loss and high isolation devices and methods for high speed and high density mixed signal interconnects and contactors
WO2015132747A1 (en) * 2014-03-06 2015-09-11 Technoprobe S.P.A. High-planarity probe card for a testing apparatus for electronic devices
JP6691762B2 (ja) * 2015-11-03 2020-05-13 日本特殊陶業株式会社 検査用配線基板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050262A (ja) 2001-08-08 2003-02-21 Hitachi Ltd 高周波icソケット、半導体試験装置および半導体試験方法ならびに半導体装置の製造方法
US20070001692A1 (en) * 2005-06-30 2007-01-04 Hiroshi Yamada Socket and electronic appliances using socket
JP2007012475A (ja) 2005-06-30 2007-01-18 Fujitsu Ltd ソケット及び電子機器
US20090219043A1 (en) * 2005-12-05 2009-09-03 Nhk Spring Co., Ltd. Probe Card
JP2013234912A (ja) 2012-05-09 2013-11-21 Seiko Epson Corp ソケットガイド、ハンドラーおよび部品検査装置
US20130330945A1 (en) 2012-06-07 2013-12-12 Hon Hai Precision Industry Co., Ltd. Electrical connector assembly with an adaptor for electrical connecting the electrical connector and the pcb
TWI574473B (zh) 2012-06-07 2017-03-11 鴻海精密工業股份有限公司 電連接器組合

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Office Action issued in corresponding Korean Patent Application No. 10-2020-0001162 dated Oct. 29, 2021 (8 pages).
Office Action issued in the counterpart Taiwanese Patent Application No. 109100296, dated Feb. 9, 2021 (8 pages).
Office Action issued in the counterpart Taiwanese Patent Application No. 109100296, dated May 27, 2021 (6 pages).

Also Published As

Publication number Publication date
JP7198127B2 (ja) 2022-12-28
TW202103397A (zh) 2021-01-16
KR102401214B1 (ko) 2022-05-23
US20200300890A1 (en) 2020-09-24
JP2020153861A (ja) 2020-09-24
CN111796177B (zh) 2023-07-14
KR20200112637A (ko) 2020-10-05
CN111796177A (zh) 2020-10-20
TWI758677B (zh) 2022-03-21

Similar Documents

Publication Publication Date Title
US11327093B2 (en) Interposer, socket, socket assembly, and wiring board assembly
US7772858B2 (en) Probe card
US4996478A (en) Apparatus for connecting an IC device to a test system
KR101482911B1 (ko) 탄성체 에스 컨택터를 가지는 반도체 디바이스 테스트용 소켓
CN101176008A (zh) 用于电测试的弹性探针
US9606143B1 (en) Electrically conductive pins for load boards lacking Kelvin capability for microcircuit testing
KR100353788B1 (ko) 프로브 카드
JPH10142291A (ja) Ic試験装置
JPWO2009011201A1 (ja) 検査用構造体
US10024883B2 (en) Contact unit and inspection jig
US20030030462A1 (en) Tester for semiconductor device
KR20040090164A (ko) 전기 부품 테스트장치
KR0155573B1 (ko) 반도체 디바이스의 검사장치
KR101446146B1 (ko) 검사장치
JP2004178951A (ja) 電気部品用ソケット
KR100480665B1 (ko) 수직식 프로브 장치
KR100560113B1 (ko) 전기 부품 시험장치
KR102456348B1 (ko) 인터포저 및 이를 구비하는 테스트 소켓
KR102520860B1 (ko) 열변형 개선 스티프너 프로브 카드
KR100868635B1 (ko) 반도체 소자 검사 장치
KR101895012B1 (ko) 삽입형 고주파수 신호 전송커넥터 및 상기 삽입형 고주파수 신호 전송커넥터를 사용하는 프로브카드
JPH05215814A (ja) 半導体デバイスの検査装置
KR100632482B1 (ko) 고주파용 프로브 카드
KR20160086510A (ko) 반도체 디바이스 테스트용 컨택터
JPH0541416A (ja) プローブカード及びフロツグリング

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: ADVANTEST CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAWASHIMA, TAKASHI;ITO, AKIHIKO;OKU, KEISHI;AND OTHERS;REEL/FRAME:051530/0625

Effective date: 20191225

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE