TWI797383B - 遮罩基底、轉印用遮罩以及半導體元件之製造方法 - Google Patents

遮罩基底、轉印用遮罩以及半導體元件之製造方法 Download PDF

Info

Publication number
TWI797383B
TWI797383B TW108133948A TW108133948A TWI797383B TW I797383 B TWI797383 B TW I797383B TW 108133948 A TW108133948 A TW 108133948A TW 108133948 A TW108133948 A TW 108133948A TW I797383 B TWI797383 B TW I797383B
Authority
TW
Taiwan
Prior art keywords
film
mask
etching stopper
light
transfer
Prior art date
Application number
TW108133948A
Other languages
English (en)
Other versions
TW202028876A (zh
Inventor
大久保亮
前田仁
穐山圭司
野澤順
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW202028876A publication Critical patent/TW202028876A/zh
Application granted granted Critical
Publication of TWI797383B publication Critical patent/TWI797383B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/34Phase-edge PSM, e.g. chromeless PSM; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Thin Film Transistor (AREA)

Abstract

提供一種遮罩基底,係具備相對於在將圖案形成用薄膜圖案化時所使用的氟系氣體之乾蝕刻的耐受性會較高,且進一步地相對於曝光光線之穿透率會較高的蝕刻阻止膜。
一種具備在透光性基板上依序層積有蝕刻阻止膜與圖案形成用薄膜的構造之遮罩基底,薄膜係由含矽材料所構成,蝕刻阻止膜係由含有鉿、鋁及氧的材料所構成,蝕刻阻止膜之氧缺損率為6.4%以下。

Description

遮罩基底、轉印用遮罩以及半導體元件之製造方法
本發明係關於一種遮罩基底、使用該遮罩基底所製造之轉印用遮罩。又,本發明係關於一種使用上述轉印用遮罩的半導體元件之製造方法。
一般而言,在半導體元件之製造工序中,係使用光微影法來進行微細圖案之形成。此圖案之形成通常會使用數片轉印用遮罩,特別是在形成微細圖案之情況,大多會使用藉由利用相位差來提高以解析度為代表的轉印性能之相位轉移遮罩。又,在將半導體元件圖案之微細化時,除了相位轉移遮罩所代表的轉印用遮罩之改良、改善之外,還需要使光微影法所使用的曝光光源之波長短波長化。因此,在半導體元件製造時所使用的曝光光源在近年來便從KrF準分子雷射(波長248nm)朝ArF準分子雷射(波長193nm)進展為短波長化。
作為轉印遮罩一態樣已知一種具備透光性基板與由矽材料所構成之圖案形成用薄膜者。由矽材料所構成之圖案形成用薄膜一般而言係藉由以氟系氣體為蝕刻氣體之乾蝕刻來形成薄膜圖案。然而,由矽材料所構成之圖案形成用薄膜在與由玻璃材料所構成之基板之間,氟系氣體的乾蝕刻之蝕刻選擇性並不太高。專利文獻1中,係使由相對於氟系氣體之乾蝕刻的耐受性較高的材料之Al2O3等所構成的蝕刻阻止膜介設在基板與相位轉移膜之間。藉由此般構 成,便可在以氟系氣體之乾蝕刻來在相對轉移膜形成相位轉移圖案時,抑止挖凹基板表面。又,專利文獻2中,Al2O3膜係欠缺化學穩定性,而會輕易地溶解於光罩洗淨程序所使用之酸,故會在蝕刻阻止膜之材料使用氧化鉿。進一步地,專利文獻3中,係在基板表面設置由Al2O3與MgO、ZrO、Ta2O3或HfO之混合物所構成之蝕刻阻止膜。
[先前技術文獻]
[專利文獻]
專利文獻1:日本特開2005-208660號公報
專利文獻2:日本特開平7-36176號公報
專利文獻3:日本特許3210705號公報
氧化鉿膜相對於曝光光線之穿透率會相較於氧化矽膜或氧化鋁膜要低。特別是,氧化鉿膜相對於ArF準分子雷射(波長:約193nm)的曝光光線(以下,稱為ArF曝光光線。)之穿透率會較低,而在適用ArF曝光光線之轉印用遮罩的蝕刻阻止膜使用氧化鉿之情況,便會產生增加曝光光線之光量的需要,而會有導致半導體元件製造中之曝光轉印工序的產率下降之問題。
氧化鋁膜相對於ArF曝光光線的穿透率相較於氧化鉿膜會大幅地較高。又,氧化鋁膜的相對於使用氟系氣體之乾蝕刻的蝕刻耐受性亦會較高。由上述情事,由氧化鉿與氧化鋁的混合物所構成之蝕刻阻止膜應可達成相對於使用氟系氣體之乾蝕刻會有較高的蝕刻耐受性,以及相對於ArF曝光光線會有較高之穿透率。然而,卻得知由氧化鉿與氧化鋁的混合物所構成之蝕刻阻止膜會有因為混合比率而使相對於ArF曝光光線之穿透率會較氧化鉿膜要低之問題。
本發明係為了解決上述以往課題所完成者。亦即,目的在於提供一種遮罩基底,係具備依序層積有蝕刻阻止膜與圖案形成用薄膜的構造之遮罩基底,具備相對於在將圖案形成用薄膜圖案化時所使用的氟系氣體之乾蝕刻的耐受性會較高,且進一步地相對於曝光光線之穿透率會較高的蝕刻阻止膜。又,目的在於提供一種使用此遮罩基底所製造之轉印用遮罩。然後,本發明之目的在於提供一種使用此般之轉印用遮罩的半導體元件之製造方法。
為了達成上述課題,本發明係具有以下構成。
(構成1)
一種遮罩基底,係具備在透光性基板上依序層積有蝕刻阻止膜與圖案形成用之薄膜的構造之遮罩基底;
該薄膜係由含矽材料所構成;
該蝕刻阻止膜係由含有鉿、鋁及氧的材料所構成;
該蝕刻阻止膜之氧缺損率為6.4%以下。
(構成2)
如構成1之遮罩基底,其中該蝕刻阻止膜之該鉿含量相對於該鉿與該鋁的總計含量之原子%比率為0.85以下。
(構成3)
如構成1或2之遮罩基底,其中該蝕刻阻止膜之該鉿含量相對於該鉿與該鋁的總計含量之原子%比率為0.60以上。
(構成4)
如構成1至3中任一者之遮罩基底,其中該蝕刻阻止膜係具有包含鉿及氧之鍵結與鋁及氧之鍵結的狀態的非晶構造。
(構成5)
如構成1至4中任一者之遮罩基底,其中該蝕刻阻止膜係由鉿、鋁及氧所構成。
(構成6)
如構成1至5中任一者之遮罩基底,其中該蝕刻阻止膜係相接於該透光性基板之主表面來加以形成。
(構成7)
如構成1至6中任一者之遮罩基底,其中該蝕刻阻止膜之厚度係2nm以上。
(構成8)
如構成1至7中任一者之遮罩基底,其中該薄膜係相位轉移膜,該相位轉移膜係具有讓相對於穿透該相位轉移膜之曝光光線而使在空氣中通過與該相位轉移膜之厚度相同距離的曝光光線之間會產生150度以上,200度以下的相位差之功能。
(構成9)
如構成8之遮罩基底,其中在該相位轉移膜上具備有遮光膜。
(構成10)
如構成9之遮罩基底,其中該遮光膜係由含鉻材料所構成。
(構成11)
一種轉印用遮罩,係具備在透光性基板上依序層積有蝕刻阻止膜與具有轉印圖案之薄膜的構造之轉印用遮罩;
該薄膜係由含矽材料所構成;
該蝕刻阻止膜係由含有鉿、鋁及氧的材料所構成;
該蝕刻阻止膜之氧缺損率為6.4%以下。
(構成12)
如構成11中任一者之轉印用遮罩,其中該蝕刻阻止膜之該鉿含量相對於該鉿與該鋁的總計含量之原子%比率為0.85以下。
(構成13)
如構成11或12之轉印用遮罩,其中該蝕刻阻止膜之該鉿含量相對於該鉿與該鋁的總計含量之原子%比率為0.60以上。
(構成14)
如構成11至13中任一者之轉印用遮罩,其中該蝕刻阻止膜係具有包含鉿及氧之鍵結與鋁及氧之鍵結的狀態的非晶構造。
(構成15)
如構成11至14中任一者之轉印用遮罩,其中該蝕刻阻止膜係由鉿、鋁及氧所構成。
(構成16)
如構成11至15中任一者之轉印用遮罩,其中該蝕刻阻止膜係相接於該透光性基板之主表面來加以形成。
(構成17)
如構成11至16中任一者之轉印用遮罩,其中該蝕刻阻止膜之厚度係2nm以上。
(構成18)
如構成11至17中任一者之轉印用遮罩,其中該薄膜係相位轉移膜,該相位轉移膜係具有讓相對於穿透該相位轉移膜之曝光光線而使在空氣中通過與該相位轉移膜之厚度相同距離的曝光光線之間會產生150度以上,200度以下的相位差之功能。
(構成19)
如構成18之轉印用遮罩,其中在該相位轉移膜上具備具有包含遮光帶之遮光帶圖案的遮光膜。
(構成20)
如構成19之轉印用遮罩,其中該遮光膜係由含鉻材料所構成。
(構成21)
一種半導體元件之製造方法,係具備使用如構成11至20中任一者之轉印用遮罩,來將轉印用遮罩上之圖案曝光轉印於半導體基板上之阻劑膜的工序。
本發明之遮罩基底,係具備在透光性基板上依序層積有蝕刻阻止膜與圖案形成用之薄膜的構造之遮罩基底;薄膜係由含矽材料所構成;蝕刻阻止膜係由含有鉿、鋁及氧的材料所構成;蝕刻阻止膜之氧缺損率為6.4%以下。藉由此般構造之遮罩基底,蝕刻阻止膜便可同滿足相對於在將圖案形成用薄膜圖案化時所使用的氟系氣體之乾蝕刻的耐受性會較高,且進一步地相對於曝光光線之穿透率會較高的功能。
1:透光性基板
2:蝕刻阻止膜
3:相位轉移膜(圖案形成用薄膜)
3a、3e:相位轉移圖案(轉印圖案)
4:遮光膜
4a、4b、4f:遮光圖案
5、9、11、12:硬遮罩膜
5a、9a、11e、11f、12f:硬遮罩圖案
6a、7a、10a、17f、18e:阻劑圖案
8:遮光膜(圖案形成用薄膜)
8a:遮光圖案(轉印圖案)
100、110、120:遮罩基底
200:轉印用遮罩(相位轉移遮罩)
210:轉印用遮罩(二元遮罩)
220:轉印用遮罩(CPL遮罩)
圖1係顯示本發明第1實施形態之遮罩基底構成的剖面圖。
圖2係顯示本發明第1實施形態之轉印用遮罩(相位轉移遮罩)構成的剖面圖。
圖3係顯示本發明第1實施形態的轉印用遮罩之製造工序的概略剖面圖。
圖4係顯示本發明第2實施形態之遮罩基底構成的剖面圖。
圖5係顯示本發明第2實施形態之轉印用遮罩(二元遮罩)構成的剖面圖。
圖6係顯示本發明第2實施形態的轉印用遮罩之製造工序的概略剖面圖。
圖7係顯示本發明第3實施形態之轉印用遮罩(CPL遮罩)構成的剖面圖。
圖8係顯示本發明第3實施形態的轉印用遮罩之製造工序的概略剖面圖。
圖9係顯示本發明第3實施形態的轉印用遮罩之製造工序的概略剖面圖。
圖10係顯示蝕刻阻止膜之氧缺損率與相對於ArF曝光光線的穿透率之關係的圖表。
首先,便闡述致使完成本發明完成之過程。本發明人係為了解決由氧化鉿與氧化鋁之混合物所構成的蝕刻阻止膜所具有的技術課題而進行努力研究。其結果,得知氧化鋁係相對於氧化鉿容易產生氧缺損。又,得知氧化鋁之氧缺損特別是會對相對於ArF曝光光線的穿透率下降造成影響。進一步地,得知在由氧化鉿與氧化鋁的混合物所構成之蝕刻阻止膜的情況,會因為氧化鉿與氧化鋁的混合比率,而使相對於ArF曝光光線的穿透率會較由氧化鉿所構成之蝕刻阻止膜要低。進一步地,得知在藉由氧化鉿與氧化鋁的混合物來形成蝕刻阻止膜之情況,若是使該蝕刻阻止膜之氧缺損率為6.4%以下的話,便可使相對於ArF曝光光線的穿透率高於由氧化鉿所構成之蝕刻阻止膜。
會產生使得由氧化鉿與氧化鋁之混合物所構成的蝕刻阻止膜之相對於ArF曝光光線的穿透率會低於由氧化鉿所構成之蝕刻阻止膜的現象推測 是因為下述機制所致。另外,以下考察是基於申請時本發明人的推測,而不會限制本發明任何範圍。
以往,由氧化鉿所構成之蝕刻阻止膜係藉由濺鍍法所形成。即便以氧化鉿來形成靶材,仍會在氬等惰性氣體之電漿衝撞於靶材,而從靶材飛出濺鍍粒子時,讓大部分的氧化鉿都會斷開與氧之鍵結,而在鉿粒子與氧粒子的狀態下從靶材飛出。然後,鉿粒子在濺鍍室內飛翔的期間會與周圍氧粒子再次鍵結,而沉積於透光性基板上來構成蝕刻阻止膜。然而,濺鍍室內之氣體會不斷進行交替,而會產生使得部分鉿粒子在化學計量上無法與氧進行穩定之鍵結(HfO2之鍵結),便沉積在透光性基板上,且殘留的氧會從濺鍍室被排出之情事。這應該是在濺鍍法所形成之氧化鉿產生氧缺損率之主要原因。同樣的理由,在藉由濺鍍法來形成由氧化鋁所構成之蝕刻阻止膜的情況,亦應會在氧化鋁產生氧缺損率。
在藉由濺鍍法來形成由氧化鉿與氧化鋁之混合物所構成的蝕刻阻止膜之情況,針對以氧化鉿與氧化鋁所構成之靶材(包含將由氧化鉿所構成之靶材與由氧化鋁所構成之靶材的2個靶材配置於濺鍍室內的情況,以及將氧化鉿與氧化鋁之混合靶材配置於濺鍍室內的情況。),係讓惰性氣體之電漿衝撞於靶材,而讓濺鍍粒子從靶材飛出。此時,大部分的氧化鉿與氧化鋁都會斷開與氧之鍵結,而在鉿粒子、鋁粒子與氧粒子(主要為自由基狀態)的狀態下從靶材飛出。
如上述,在濺鍍室內,氣體會不斷進行交替,而使一部分氧粒子維持在不會與鉿與鋁之任一者鍵結下,從濺鍍室被排出。因此,濺鍍室內之鉿粒子與鋁粒子便會成為競爭氧的狀態。鉿具有較鋁要容易與氧鍵結的傾向,而會使HfO2之鍵結的氧化鉿容易沉積於透光性基板上。又,受此影響而氧化不夠 充分(並非化學計量上的穩定Al2O3之鍵結。)的氧化鋁便會容易沉積於透光性基板上。鉿與鋁都會隨著與氧之鍵結數增加(氧化度上升)而使消光係數k下降。HfO2之氧化鉿的消光係數k相較於Al2O3鍵結之氧化鋁會較大。因此,在氧化鉿混合有氧化鋁之蝕刻阻止膜的消光係數k應會較氧化鉿要小。然而,在濺鍍室內之鋁粒子相對於鉿粒子的比率大幅地小的情況,便會使多數之鉿粒子成為HfO2之鍵結,而使鋁粒子難以成為Al2O3之鍵結。
Al2O3鍵結的存在比率較少之氧化鉿的消光係數k會有較HfO2之氧化鉿要大的傾向。因此,在蝕刻阻止膜中鋁含量相對於鉿與鋁之總計含量的比率較小的範圍(亦即,鉿含量相對於鉿與鋁之總計含量的比率較大的範圍)下,相較於起因於存在於該蝕刻阻止膜的氧化鉿中之HfO2鍵結的存在比率上升而使蝕刻阻止膜之消光係數k下降的作用,起因於存在於該蝕刻阻止膜的氧化鋁中之Al2O3鍵結的存在比率下降而使蝕刻阻止膜之消光係數k上升的作用會較強,該蝕刻阻止膜之消光係數k應會較僅由氧化鉿所構成之蝕刻阻止膜之消光係數k要大。然後,此現象由於會隨著蝕刻阻止膜中之鋁含量相對於鉿與鋁之總計含量的比率變大(亦即,鉿含量相對於鉿與鋁之總計含量的比率變小),藉由減少容易與氧鍵結的鉿粒子,來改善鋁粒子難以成為Al2O3鍵結之狀況,故此蝕刻阻止膜之消光係數k應會較僅由氧化鉿所構成之蝕刻阻止膜的消光係數k要小。
由上述機制,便推測出在蝕刻阻止膜中之鋁含量相對於鉿與鋁之總計含量的比率較小的範圍中,便會產生蝕刻阻止膜之消光係數k會較僅由氧化鉿所構成之蝕刻阻止膜的消光係數k要大(亦即,蝕刻阻止膜之相對於ArF曝光光線的穿透率會較僅由氧化鉿所構成之蝕刻阻止膜之相對於ArF曝光光線的穿透率要低)之現象。
以上努力探討的結果,為了解決由氧化鉿與氧化鋁之混合物所構成的蝕刻阻止膜所具有的技術課題,本發明之遮罩基底係具備在透光性基板上依序層積有蝕刻阻止膜與圖案形成用之薄膜的構造之遮罩基底;該薄膜係由含矽材料所構成;該蝕刻阻止膜係由含有鉿、鋁及氧的材料所構成;該蝕刻阻止膜之氧缺損率為6.4%以下。其中,氧缺損率[%]係在該蝕刻阻止膜中之氧含量為OR,存在於該蝕刻阻止膜中的所有鉿與鋁為化學計量上穩定的氧化物狀態(亦即,膜中之鉿與鋁僅以HfO2與Al2O3之氧化物來存在的狀態)時之氧含量為OI時,以100×[OI-OR]/OI來加以計算。接著,便就本發明各實施形態來加以說明。
<第1實施形態>
[遮罩基底與其製造]
本發明之第1實施形態相關的遮罩基底係將圖案形成用薄膜作為會相對於曝光光線而賦予既定穿透率與相位差的膜之相位轉移膜者,且是為了製造相位轉移遮罩(轉印用遮罩)所使用者。在圖1顯示此第1實施形態之遮罩基底構成。此第1實施形態相關之遮罩基底100係在透光性基板1主表面上具備蝕刻阻止膜2、相位轉移膜(圖案形成用薄膜)3、遮光膜4、硬遮罩膜5。
透光性基板1只要為相對於曝光光線而具有高穿透率者的話,便不特別限制。本發明係可使用合成石英玻璃基板、其他各種玻璃基板(例如鈉鈣玻璃、鋁矽酸鹽玻璃等)。該等基板中,特別是合成石英玻璃基板由於在ArF準分子雷射(波長193nm)或較其要短波長之區域中穿透率會較高,故較佳地能作為高精細之轉印圖案形成用的本發明之遮罩基底的基板。其中,該等玻璃基板都是相對於氟系氣體之乾蝕刻而容易被蝕刻的材料。因此,在透光性基板1上設置蝕刻阻止膜2便具有很大的意義。
蝕刻阻止膜2係以含有鉿、鋁及氧的材料來加以形成。此蝕刻阻止膜2係在相位轉移遮罩200完成後的階段中,至少在轉印圖案形成區域整面中未被去除而殘留者(參照圖2)。亦即,在未有相位轉移圖案之相位轉移膜3的區域之透光部亦會成為殘存有蝕刻阻止膜2之形態。因此,蝕刻阻止膜2較佳地係不會在與透光性基板1之間透過其他膜,而相接於透光性基板1之主表面來加以形成。
此第1實施形態之蝕刻阻止膜2係以含有鉿、鋁及氧的材料來加以形成,蝕刻阻止膜2之氧缺損率係6.4%以下。圖10係描繪出針對在透光性基板上以不同之氧缺損率來成膜出2nm或3nm之膜厚的蝕刻膜來分別測量相對於ArF曝光光線之穿透率(以由合成石英玻璃所構成的透光性基板之穿透率為100%時的相對穿透率。)之結果者。另外,在此,蝕刻阻止膜之氧缺損率會藉由調整蝕刻阻止膜之鉿與鋁的混合比來加以改變。由圖10之結果看來,得知若是蝕刻阻止膜之氧缺損率為6.4%以下的話,不論在任一膜厚之蝕刻阻止膜中,穿透率都會較僅以氧化鉿所形成的蝕刻阻止膜(圖10中之氧缺損率為8.70%之膜。)要高(即便在膜厚為3nm之情況,穿透率仍為85%以上)。
然後,可在任一膜厚中,相較於僅以氧化鉿所形成的蝕刻阻止膜要能提高相對於氟系氣體的乾蝕刻耐受性。因此,即便相對於相位轉移膜3進行過蝕刻,仍不會使蝕刻阻止膜2消失,而可抑制容易以高偏移蝕刻來生成的微溝槽(microtrench)。另外,蝕刻阻止膜2之氧缺損率更佳地係4.2%以下。在此情況,即便蝕刻阻止膜之膜厚為3nm,仍可使相對於ArF曝光光線的穿透率成為90%以上。
雖蝕刻阻止膜2相對於曝光光線之穿透率愈高便愈佳,但由於蝕刻阻止膜2亦同時要求在與透光性基板1之間相對於氟系氣體的充分蝕刻選擇性,故難以使相對於曝光光線之穿透率成為與透光性基板1相同之穿透率(亦即,以相對於曝光光線之透光性基板1(合成石英玻璃)的穿透率為100%時之蝕刻阻止膜2之穿透率未達100%)。以相對於曝光光線之透光性基板1的穿透率為100%時之蝕刻阻止膜2之穿透率較佳地係85%以上,更佳地係90%以上。
蝕刻阻止膜2之氧含量較佳地係60原子%以上,更佳地係61.5%以上,最佳地係62原子%以下。使相對於曝光光線之穿透率成為上述數值以上是因為除了讓氧缺損率下降之外,還要求要讓蝕刻阻止膜2中含有較多氧之故。另一方面,蝕刻阻止膜2之氧含量較佳地係66原子%以下。
蝕刻阻止膜2之鉿含量相對於鉿與鋁的總計含量的原子%之比率(以下,有表記為Hf/[Hf+Al]比率的情況)較佳地係0.85以下。在此情況,便可使蝕刻阻止膜2之氧缺損率成為6.4%以下。又,蝕刻阻止膜2之Hf/[Hf+Al]比率更佳地係0.75以下。在此情況,便可使蝕刻阻止膜2之氧缺損率成為4.2%以下。
另一方面,從相對於藥液洗淨(特別是氨、過氧化氫或TMAH等的鹼洗淨)的耐受性之觀點看來,蝕刻阻止膜2之Hf/[Hf+Al]比率較佳地係0.40以上。又,從稱為SC-1洗淨而使用氨水、過氧化氫水及去離子水的混合液之藥液洗淨的觀點看來,蝕刻阻止膜2之Hf/[Hf+Al]比率較佳地係0.60以上。
蝕刻阻止膜2較佳地係使鋁及鉿以外之金屬含量成為2原子%以下,更佳地係1原子%以下,最佳地係在利用X射線光電分光分析法來進行組成分析時為檢測下限值以下。這是因為在蝕刻阻止膜2含有鋁及鉿以外的金屬時,便會成為使相對於曝光光線之穿透率下降之原因。又,蝕刻阻止膜2之鋁、鉿及 氧以外的元素之總計含量較佳地係5原子%以下,更佳地係3原子%以下,最佳地係1原子%以下。換言之,蝕刻阻止膜2之鋁、鉿及氧的總計含量較佳地係95原子%以上,更佳地係97原子%以上,最佳地係99原子%以上。
蝕刻阻止膜2只要以由鉿、鋁及氧所構成之材料來加以形成即可。所謂由鉿、鋁及氧所構成之材料是指除了該等構成元素之外,在以濺鍍法來成膜時,僅含有被包含在蝕刻阻止膜2所不可避免的元素(氦(He)、氖(Ne)、氬(Ar)、氪(Kr)及氙(Xe)等的惰性氣體、氫(H)、碳(C)等)之材料。藉由使蝕刻阻止膜2中會與鉿及鋁鍵結的其他元素之存在成為極小,便可大幅提高蝕刻阻止膜2中之鉿與氧的鍵結以及鋁與氧的鍵結比率。藉此,便可更提高氟系氣體之乾蝕刻的蝕刻耐受性,而更提高相對於藥液洗淨的耐受性,並更提高相對於曝光光線之穿透率。蝕刻阻止膜2較佳地係非晶構造。更具體而言,蝕刻阻止膜2較佳地係包含鉿與氧之鍵結以及鋁與氧之鍵結的狀態之非晶構造。可使蝕刻阻止膜2之表面粗度成為良好,並提高相對於曝光光線之穿透率。
蝕刻阻止膜2之厚度較佳地係2nm以上。在考量從遮罩基底到製造轉印用遮罩為止所進行之氟系氣體的乾蝕刻所致的影響、藥液洗淨所致的影響時,蝕刻阻止膜2之厚度更佳地係3nm以上。
雖蝕刻阻止膜2係適用相對於曝光光線之穿透率會較高的材料,但穿透率會隨著厚度變厚而下降。又,蝕刻阻止膜2之折射率會較形成透光性基板1之材料要高,而蝕刻阻止膜2之厚度愈厚,則在設置出實際形成於相位轉移膜3之遮罩圖案(賦予Bias修正或OPC或SRAF等的圖案)時所造成的影響便會愈大。在考量該等情況時,蝕刻阻止膜2最好是10nm以下,較佳地係8nm以下,更佳地係6nm以下。
蝕刻阻止膜2相對於ArF準分子雷射之曝光光線的折射率n(以下僅稱為折射率n。)較佳地係2.90以下,更佳地係2.86以下。這是因為會使在設計出實際形成於相位轉移膜3之遮罩圖案時所造成的影響降低之故。由於蝕刻阻止膜2係以含有鉿與鋁之材料來加以形成,故無法成為與透光性基板1相同折射率n。蝕刻阻止膜2之折射率n較佳地係2.20以上。另一方面,蝕刻阻止膜2相對於ArF準分子雷射之曝光光線的消光係數k(以下僅稱為消光係數k。)較佳地係0.3以下,更佳地係0.29以下。這是因為要使蝕刻阻止膜2相對於曝光光線之穿透率提高之故。蝕刻阻止膜2之消光係數k較佳地係0.06以上。
蝕刻阻止膜2較佳地係在厚度方向組成的均勻性較高(厚度方向之各構成元素的含量差會收斂在5原子%以內的變動幅度。)。另一方面,蝕刻阻止膜2亦可為在厚度方向上使組成傾斜之膜構造。在此情況,較佳地係使蝕刻阻止膜2之透光性基板1側的Hf/[Hf+Al]比率成為較相位轉移膜3側的Hf/[Hf+Al]比率要低。這是因為蝕刻阻止膜2最好優先地使相位轉移膜3側藥液耐受性會較高,另一方面則是最好是使透光性基板1側相對於曝光光線之穿透率會較高之故。
可在透光性基板1與蝕刻阻止膜2之間介設其他膜。在此情況,該其他膜係被要求要適用相對於曝光光線之穿透率會較蝕刻阻止膜2要高,且折射率n會較小的材料。在從遮罩基底來製造相位轉移遮罩時,該相位轉移遮罩中無相位轉移膜3之圖案的區域之透光部係存在有該其他膜與蝕刻阻止膜2之層積構造。透光部係被要求有相對於曝光光線之高穿透率。這是因為需要提高此層積構造整體之相對於曝光光線的穿透率之故。該其他材料舉例有例如由矽與氧所構成之材料,或是於該等材料含有選自鉿、鋯、鈦、釩及硼的1種以上的元素之 材料等。可以含有鉿與鋁及氧的材料,且Hf/[Hf+Al]比率會較蝕刻阻止膜2要低之材料來形成該其他膜。
相位轉移膜3係由含矽材料所構成。相位轉移膜3較佳地係具有:以1%以上的穿透率來讓曝光光線穿透之功能,以及讓相對於穿透相位轉移膜3之該曝光光線而使在空氣中通過與該相位轉移膜3之厚度相同距離的該曝光光線之間會產生150度以上,210度以下的相位差之功能。又,相位轉移膜3之穿透率更佳地係2%以上。相位轉移膜3之穿透率較佳地係30%以下,更佳地係20%以下。
相位轉移膜3之厚度較佳地係80nm以下,更佳地係70nm以下。又,為了使上述相位轉移圖案之圖案線寬所致的最佳焦點的變動幅度下降,相位轉移膜3之厚度特佳地係65nm以下。相位轉移膜3之厚度較佳地係50nm以上。這是因為為了以非晶材料來形成相位轉移膜3,並使相位轉移膜3之相位差成為150度以上,便需要為50nm以上之故。
在相位轉移膜3中,為了滿足上述光學特性與膜厚度相關的各種條件,相位轉移膜相對於曝光光線(ArF曝光光線)之折射率n較佳地係1.9以上,更佳地係2.0以上。又,相位轉移膜3之折射率n較佳地係3.1以下,更佳地係2.7以下。相位轉移膜3相對於ArF曝光光線的消光係數k較佳地係0.26以上,更佳地係0.29以上。又,相位轉移膜3之消光係數k較佳地係0.62以下,更佳地係0.54以下。
另一方面,亦有層積有1組以上會以相對於曝光光線之穿透率相對較低之材料來形成相位轉移膜3的低穿透層與以相對於曝光光線之穿透率相對較高之材料來形成相位轉移膜3的高穿透層之構造的情況。在此情況,低穿透 層較佳地係以相對於ArF曝光光線的折射率n未達2.5(較佳地係2.5以下,更佳地係2.2以下,最佳地係2.0以下),且消光係數k為1.0以上(較佳地係1.1以上,更佳地係1.4以上,最佳地係1.6以上)的材料來加以形成。高穿透層較佳地係以相對於ArF曝光光線的折射率n為2.5以上(較佳地係2.6以上),且消光係數k未達1.0(較佳地係0.9以下,更佳地係0.7以下,最佳地係0.4以下)的材料來加以形成。
另外,包含相位轉移膜3之薄膜的折射率n與消光係數k並非僅以該薄膜之組成來決定。該薄膜之膜密度或結晶狀態等亦會是左右折射率n及消光係數k的要素。因此,便調整以反應性濺鍍來成膜出薄膜時之各種條件,並以使該薄膜會成為所欲折射率n以及消光係數k的方式來加以成膜。為了成為上述折射率n與消光係數k的範圍,在以反應性濺鍍來成膜出相位轉移膜3時,調整惰性氣體與反應性氣體(氧氣、氮氣等)之混合氣體的比率是有效的,但並不限於此。還涉及在以反應性濺鍍來成膜時之成膜室內的壓力、施加至濺鍍靶材的電力、靶材與透光性基板1之間的距離等的位置關係等各面向。又,該等成膜條件在成膜裝置中為固有,而可以使所形成之相位轉移膜3成為所欲折射率n及消光係數k的方式來適當調整。
一般而言,由含矽材料所構成之相位轉移膜3會以氟系氣體之乾蝕刻來被圖案化。由玻璃材料所構成之透光性基板1會容易以氟系氣體之乾蝕刻來被蝕刻,特別是相對於含碳之氟系氣體的耐受性會較低。因此,在將相位轉移膜3圖案化時,大多適用以不含碳之氟系氣體(SF6等)為蝕刻氣體的乾蝕刻。在氟系氣體之乾蝕刻的情況,會較容易提高蝕刻之異向性。然而,在以阻劑圖案等的蝕刻遮罩圖案為遮罩,並以氟系氣體之乾蝕刻來將相位轉移膜3圖案化時,於乾蝕刻最先到達相位轉移膜3下端的階段(將其稱為最佳蝕刻時間(just etching),將從蝕刻開始到最佳蝕刻階段所需要的時間稱為最佳蝕刻時間。)便停止時,相位轉移圖案側壁的垂直性便會較低,而會作為相位轉移遮罩之曝光轉印性能造成影響。又,形成在相位轉移膜3之圖案係在遮罩基底面內具有疏密差,而在圖案較密之部分會使乾蝕刻的進行變慢。
由該等情事看來,在相位轉移膜3之乾蝕刻時,即便到達至最佳蝕刻之階段,仍會進一步地進行持續追加蝕刻(過蝕刻),以提高相位轉移圖案側壁之垂直性,而提高面內之相位轉移圖案的CD均勻性(將從最佳蝕刻結束到過蝕刻結束的時間稱為過蝕刻時間。)。在透光性基板1與相位轉移膜3之間不具有蝕刻阻止膜2的情況,於針對相位轉移膜進行過蝕刻時,由於在相位轉移膜3之圖案側壁進行蝕刻同時,透光性基板1表面之蝕刻亦會進行,故無法進行太長時間的過蝕刻(透光性基板從表面被蝕刻掉4nm左右的程度便停止。),而使提高相位轉移圖案之垂直性的性能受到限制。
以更提高相位轉移圖案側壁之垂直性為目的,來進行將相對轉移膜3之乾蝕刻時所施加的偏壓電壓高於以往(以下,稱為「高偏壓蝕刻」。)。在此高偏壓蝕刻中,會有產生以局部性地蝕刻來蝕刻掉相位圖案側壁附近的透光性基板1之現象,亦即微溝槽之問題。此微溝槽之產生應是起因於因為對透光性基板1施加偏壓電壓所產生的充電,而使離子化後之蝕刻氣體繞進至阻抗值會較透光性基板1要低之相位轉移圖案側壁側之故。
相位轉移膜3可以含有矽及氮之材料來加以形成。藉由在矽含有氮,便可使折射率n大於僅由矽所構成之材料(可以更薄之厚度來得到較大之相位差。)且使消光係數k小於僅由矽所構成之材料(可提高穿透率。),而可得到作為相位轉移膜的較佳光學特性。
相位轉移膜3係可以由矽與氮所構成之材料,或是由選自類金屬元素、非金屬元素及惰性氣體的1種以上的元素與矽與氮所構成的材料(以下將該等材料統稱為「氮化矽系材料」。)來加以形成。氮化矽系材料的相位轉移膜3可含有任一者的類金屬元素。由於在此類金屬元素中含有選自硼、鍺、銻及碲的一種以上的元素,會在以濺鍍法來成膜出相位轉移膜3時,可期待能提高作為靶材所使用的矽之導電性,故較佳。
氮化矽系材料之相位轉移膜3可含有氦(He)、氖(Ne)、氬(Ar)、氪(Kr)及氙(Xe)等的惰性氣體。氮化矽系材料之相位轉移膜3可含有氧。含有氧之氮化矽系材料之相位轉移膜3係可達成相對於ArF準分子雷射之曝光光線而具有20%以上的穿透率之功能以及具有上述範圍之相位差之功能。
氮化矽系材料之相位轉移膜3除了無法避免氧化之表層(氧化層)之外,係可以單層來加以構成,或以複數層之層積來加以構成。在複數層之層積構造的相位轉移膜3之情況,可為在氮化矽系材料(SiN、SiON等)之層組合氧化矽系材料(SiO2等)之層的層積構造。
氮化矽系材料之相位轉移膜3雖可藉由濺鍍來加以形成,但亦可適用DC濺鍍、RF濺鍍及離子束濺鍍等的任一種濺鍍。在使用導電性較低之靶材(矽靶材、不含類金屬元素或含量較少的矽化合物靶材等)之情況,較佳地係適用RF濺鍍或離子束濺鍍,但考量到成膜速率時,更佳地係適用RF濺鍍。
EB缺陷修正之蝕刻終點檢測係藉由在對黑缺陷照射電子線時,檢測出從接收照射的部分所釋放出之歐傑電子(Auger electron)、2次電子、特性X射線、後方散射電子的至少任一種來加以進行。例如,在檢測出從接收電子線照射之部分所釋放出之歐傑電子的情況,便會藉由歐傑電子分光法(AES)而主要 觀察材料構成之變化。又,在檢測出2次電子的情況,便會從SEM影像來主要觀察表面形狀之變化。進一步地,在檢測出特性X射線的情況,便會藉由能量分散型X射線分光法(EDX)或波長分散X射線分光法(WDX)來主要觀察材料組成之變化。在檢測出後方散射電子的情況,便會藉由電子線後方散射繞射法(EBSD)來主要觀察材料之組成及結晶狀態之變化。
相接於由玻璃材料所構成之透光性基板1主表面而設置有矽系材料之相位轉移膜(單層膜、多層膜)3之構成的遮罩基底係相對於相位轉移膜3大部分之成分為矽、氮及氧,而透光性基板1則大部分之成分為矽與氧,兩者在實質上差異較小。因此,是難以進行EB缺陷修正之蝕刻修正的檢測的組合。相對於此,在相接於蝕刻阻止膜2表面而設置有相位轉移膜3之構成的情況,相對於相位轉移膜3大部分之成分為矽與氮,而蝕刻阻止膜2則是包含鉿、鋁及氧。因此,在EB缺陷修正之蝕刻修正中,只要將鋁或鉿之檢測作為標準即可,而可較容易進行終點檢測。
另一方面,相位轉移膜3係可以含有過渡金屬、矽及氮的材料來加以形成。在此情況下之過渡金屬係舉例有鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)、鉻(Cr)、鎳(Ni)、釩(V)、鋯(Zr)、釕(Ru)、銠(Rh)、鋅(Zn)、鈮(Nb)及鈀(Pd)等的任一種金屬或該等金屬之合金。相位轉移膜3之材料除上述元素之外,還可包含有氮(N)、氧(O)、碳(C)、氫(H)及硼(B)等的元素。又,相位轉移膜3之材料係可包含氦(He)、氬(Ar)、氪(Kr)及氙(Xe)等的非活性氣體。在考量到EB缺陷修正之蝕刻終點的檢測時,此相位轉移膜3較佳地係含有鋁及鉿。
相位轉移膜3係要求膜中之過渡金屬(M)的含量除以過渡金屬(M)與矽(Si)之總計含量[原子%]所計算出的比率(以下,稱為M/(M+Si)比率。)為0.15 以下。此相位轉移膜3會隨著過渡金屬之含量變多,而使不含碳之氟系氣體(SF6)的乾蝕刻之蝕刻速率變快,而能輕易得到與透光性基板1之間的蝕刻選擇性,但即便如此能難以說是已足夠。又,相位轉移膜3之M/(M+Si)比率較其要多時,為了得到所欲穿透率便需要較多氧,而有使相位轉移膜3之厚度變厚之虞,而較不佳。
另一方面,相位轉移膜3之M/(M+Si)比率較佳地係0.01以上。這是因為在從遮罩基底100來製作相位轉移遮罩200時,在針對存在於相位轉移膜3之圖案的黑缺陷適用電子線照射與XeF2等的非激發氣體的缺陷修正時,相位轉移膜3之薄膜電阻較低為佳之故。
另一方面,相接於透光性基板1主表面而設置蝕刻阻止膜2,進一步地相接於蝕刻阻止膜2上面而設置相位轉移膜3,再進一步地,可藉由調整蝕刻阻止膜2與相位轉移膜3之條件,來提高相對於ArF曝光光線之內面反射率(從透光性基板側入射的相對於ArF曝光光線的反射率。)(例如,20%以上)。例如,只要調整為以下條件即可。蝕刻阻止膜2係使相對於ArF曝光光線之折射率n成為2.3以上,2.9以下,消光係數k成為0.06以上,0.30以下,膜厚成為2nm以上,6nm以下。相位轉移膜3在單層構造之情況下會就其整體,而在2層以上的構造之情況下則會就相接於蝕刻阻止膜2側之層,使相對於ArF曝光光線之折射率n成為2.0以上,3.1以下,消光係數k成為0.26以上,0.54以下,膜厚成為50nm以上。又,蝕刻阻止膜2係可使氧缺損率成為6.4%以下,膜厚成為2nm以上,6nm以下。進一步地,蝕刻阻止膜2係可使Hf/[Hf+Al]比率成為0.50以上,0.86以下,氧含量成為61.5原子%以上,膜厚成為2nm以上,6nm以下。
具備上述構成之遮罩基底100相對於ArF曝光光線之內面反射率會高於以往。從此遮罩基底100所製造出之相位轉移遮罩200係將該相位轉移遮罩200設置於曝光裝置,而可降低從透光性基板1側來照射ArF曝光光線時所產生之相位轉移膜3的發熱所致之溫度上升。藉此,便可抑制藉由將相位轉移膜3之熱量傳導至蝕刻阻止膜2及透光性基板1,來使蝕刻阻止膜2及透光性基板1熱膨脹,而使相位轉移膜3之圖案移動的現象。又,可提高相位轉移膜3相對於ArF曝光光線之照射的耐受性(ArF耐光性)。
遮光膜4可適用單層構造及2層以上之層積構造的任一者。又,單層構造的遮光膜以及2層以上之層積構造的遮光膜的各層可構成為在膜或層的厚度方向上為幾乎相同的組成,或是構成為在層的厚度方向上使組成傾斜。
圖1所記載形態之遮罩基底100係構成為於相位轉移膜3上不透過其他膜來層積有遮光膜4。此構成情況的遮光膜4必須適用相對於在相位轉移膜3形成圖案時所使用的蝕刻氣體具有充分蝕刻選擇性之材料。
在此情況下的遮光膜4較佳地係以含鉻材料來加以形成。形成遮光膜4之含鉻材料除了鉻金屬之外,還舉例有於鉻(Cr)含有選自氧(O)、氮(N)、碳(C)、硼(B)及氟(F)之一種以上的元素之材料。
另外,本發明之遮罩基底並不限於圖1所示者,亦可構成為在相位轉移膜3與遮光膜4之間介設其他膜(蝕刻遮罩兼阻止膜)。在此情況下,較佳地係構成為以該含鉻材料來形成蝕刻遮罩兼阻止膜,以含矽材料來形成遮光膜4。
形成遮光膜4之含矽材料係可含有過渡金屬,亦可含有過渡金屬以外的金屬元素。形成於遮光膜4之圖案基本上係外周區域之遮光帶圖案,這是因為相對於轉印用圖案區域,ArF曝光光線之累積照射量會較少,以及會在此外 周區域配置有微細圖案較為稀少,即便ArF耐光性較低,仍難以產生實質問題之故。又,這是因為在遮光膜4含有過渡金屬時,遮光性能相較於未含有的情況會大幅提高,而可使遮光膜4之厚度變薄之故。包含在遮光膜4之過渡金屬係舉例有鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)、鉻(Cr)、鉿(Hf)、鎳(Ni)、釩(V)、鋯(Zr)、釕(Ru)、銠(Rh)、鈮(Nb)、鈀(Pd)等的任一種金屬或該等金屬的合金。
遮光膜4會在相位轉移遮罩200完成後,在與相對轉移膜3之層積構造中形成遮光帶。因此,遮光膜4會被要求在與相位轉移膜3之層積構造中要確保有大於2.0的光學濃度(OD),較佳地係2.8以上之OD,更佳地係3.0以上之OD。
本實施形態中,係以相對於蝕刻遮光膜4時所使用之蝕刻氣體而具有蝕刻選擇性之材料來形成會層積於遮光膜4上的硬遮罩膜5。藉此,便如下所述般,可使阻劑膜之厚度相較於直接將阻劑膜作為遮光膜4之遮罩來使用的情況要大幅地變薄。
由於遮光膜4如上所述,係需要確保既定光學濃度而具有充分之遮光功能,故其厚度之減少是有限度的。另一方面,硬遮罩膜5只要在於此正下方之遮光膜4形成圖案之乾蝕刻結束為止的期間,具有能夠作為蝕刻遮罩之功能的膜厚的話便已足夠,故基本上不會收到光學面上的限制。因此,硬遮罩膜5之厚度係可較遮光膜4之厚度要大幅地變薄。然後,有機系材料的阻劑膜只要在於此硬遮罩膜5形成圖案之乾蝕刻結束為止的期間,具有能夠作為蝕刻遮罩之功能的膜厚的話便已足夠,故可使阻劑膜之厚度較將阻劑膜作為遮光膜4來直接使用之情況要大幅地變薄。如此般,由於可將阻劑膜薄膜化,故可提高阻劑解析度,並防止所形成之圖案的傾倒。
如此般,雖較佳地係以上述材料來形成會層積於遮光膜4上的硬遮罩膜5,但本發明並不限於此實施形態,亦可在遮罩基底100中不形成硬遮罩膜5,而在遮光膜4上直接形成阻劑圖案,而將該阻劑圖案作為遮罩來直接進行遮光膜4之蝕刻。
在此硬遮罩膜5係以含鉻材料來形成有遮光膜4之情況,較佳地係以該含矽材料來加以形成。在此,由於此情況下之硬遮罩膜5係有與有機系材料之阻劑膜的密合性較低的傾向,故較佳地係對硬遮罩膜5表面施予HMDS(Hexamethyldisilazane)處理,來提高表面的密合性。另外,此情況下之硬遮罩膜5更佳地係由SiO2、SiN、SiON等來加以形成。
又,在以含鉻材料來形成遮光膜4情況下之硬遮罩膜5材料亦可適用含鉭材料。作為此情況下之含鉭材料,除了鉭金屬之外,還舉例有於鉭含有選自氮、氧、硼及碳之一種以上的元素之材料等。
遮罩基底100中,較佳地係相接於硬遮罩膜5表面,並以100nm以下的膜厚來形成有機系材料的阻劑膜。
蝕刻阻止膜2、相位轉移膜3、遮光膜4、硬遮罩膜5雖可藉由濺鍍來加以形成,但亦可適用DC濺鍍、RF濺鍍及離子束濺鍍等的任一種濺鍍。在使用導電性較低之靶材之情況,較佳地係適用RF濺鍍或離子束濺鍍,但考量到成膜速率時,更佳地係適用RF濺鍍。
關於蝕刻阻止膜2之成膜方法,較佳地係將鉿與氧的混合靶材以及鋁與氧的混合靶材之2個靶材配置於成膜室內,而在透光性基板1上形成蝕刻阻止膜2。具體而言,係將透光性基板1配置於該成膜室內之基板台,而在氬氣等的惰性氣體氛圍下(或是在與氧氣或含氧氣體之混合氣體氛圍),將既定電壓分 別施加在2個靶材(在此情況,RF電源為佳。)。藉此,便會使電漿化後之惰性氣體粒子衝撞於2個靶材,而分別產生濺鍍現象,以於透光性基板1表面形成有含有鉿、鋁及氧的蝕刻阻止膜2。另外,更佳地係將HfO2靶材與Al2O3靶材適用在此情況下的2個靶材。
另外,亦可僅以鉿、鋁及氧的混合靶材(較佳地係HfO2與Al2O3之混合靶材,以下相同。)來形成蝕刻阻止膜2。又,亦可讓鉿、鋁及氧的混合靶材與鉿靶材,或是鉿與鋁的混合靶材與鋁靶材的2個靶材同時放電,來形成蝕刻阻止膜2。進一步地,亦可在惰性氣體與氧氣或含氧氣體的混合氣體氛圍下,讓鉿靶材與鋁靶材的2個靶材同時放電,以形成蝕刻阻止膜2。
如上述,此第1實施形態之遮罩基底100係在透光性基板1與為圖案形成用薄膜之相位轉移膜3之間具備含有鉿、鋁及氧的蝕刻阻止膜2,並使蝕刻阻止膜2之氧缺損率為6.4%以下。然後,此蝕刻阻止膜2係可同時滿足相較於由氧化鉿所構成之蝕刻阻止膜,會使得相對於在相位轉移膜3形成圖案時所進行的氟系氣體之乾蝕刻的耐受性會較高,且相對於曝光光線之穿透率亦會較高之特性。藉此,由於便可在以氟系氣體之乾蝕刻來在相位轉移膜3形成轉印圖案時,不蝕凹透光性基板1之主表面,來進行過蝕刻,故可提高圖案側壁之垂直性及圖案面內之CD均勻性。
另一方面,在從此第1實施形態之遮罩基底100來製造轉印用遮罩(相位轉移遮罩)200的情況,由於此蝕刻阻止膜2相對於曝光光線的穿透率會較以往的蝕刻阻止膜要高,故可提高為去除相位轉移膜3後之區域的透光部之穿透率。藉此,便可提高會在穿透過蝕刻阻止膜2與相位轉移膜3之圖案的曝光光線與僅穿透過蝕刻阻止膜2之曝光光線之間所產生的相位轉移效果。因此,在使用 此轉印用遮罩來對半導體基板上之阻劑膜進行曝光轉印時,便得到高圖案解析度。
[轉印用遮罩(相位轉移遮罩)與其製造]
此第1實施形態相關之轉印用遮罩(相位轉移遮罩)200(參照圖2)係使遮罩基底100之蝕刻阻止膜2殘留在透光性基板1之主表面上的整面,而在相位轉移膜3形成有轉印用圖案(相位轉移圖案3a),並在遮光膜4形成有包含遮光帶之圖案(遮光圖案4b:遮光帶、遮光塊等)。在構成為於遮罩基底100設置有硬遮罩膜5的情況,硬遮罩膜5會在此相位轉移遮罩200之製作途中被去除。
亦即,此第1實施形態相關之轉印用遮罩(相位轉移遮罩)200係具備在透光性基板1之主表面上依序層積有蝕刻阻止膜2與為具有轉印圖案之相位轉移膜的相位轉移圖案3a的構造,相位轉移圖案3a係由含矽材料所構成,蝕刻阻止膜之氧缺損率係6.4%以下。其中,氧缺損率[%]係在該蝕刻阻止膜中之氧含量為OR,存在於該蝕刻阻止膜中的所有鉿與鋁為化學計量上穩定的氧化物狀態時之氧含量為OI時,以100×[OI-OR]/OI來加以計算。又,此相位轉移遮罩200係具備在相位轉移圖案3a具有為包含遮光帶之圖案的遮光膜之遮光圖案4b。
此第1實施形態相關之相位轉移遮罩之製造方法係使用該遮罩基底100者,並具備:藉由乾蝕刻來在遮光膜4形成轉印用圖案之工序;以具有轉印用圖案之遮光膜4為遮罩,藉由使用氟系氣體之乾蝕刻來在相位轉移膜3形成轉印用圖案之工序;以及藉由乾蝕刻來在遮光膜4形成包含遮光帶之圖案(遮光帶、遮光塊等)之工序。以下,便依照圖3所示之製造工序,來說明此第1實施形態相關之相位轉移遮罩200之製造方法。另外,在此便就使用於遮光膜4上層積 有硬遮罩膜5之遮罩基底100的相位轉移遮罩200之製造方法來加以說明。又,就在遮光膜4適用含鉻材料,在硬遮罩膜5適用含矽材料的情況來加以說明。
首先,會相接於遮罩基底100之硬遮罩膜5,而藉由旋塗法來形成阻劑膜。接著,便針對阻劑膜,而以電子線來描繪出為應形成在相位轉移膜3的轉印用圖案(相位轉移圖案)之第1圖案,進一步地,進行顯影處理等的既定處理,以形成具有相位轉移圖案之第1阻劑圖案6a(參照圖3(a))。接著,以第1阻劑圖案6a為遮罩,進行使用氟系氣體之乾蝕刻,來在硬遮罩膜5形成第1圖案(硬遮罩圖案5a)(參照圖3(b))。
接著,在去除阻劑圖案6a後,以硬遮罩圖案5a為遮罩,進行使用氯系氣體與氧氣的混合氣體之乾蝕刻,以在遮光膜4形成第1圖案(遮光圖案4a)(參照圖3(c))。接著,便以遮光圖案4a為遮罩,進行使用氟系氣體之乾蝕刻,以在相位轉移膜3形成第1圖案(相位轉移圖案3a),且亦同時去除硬遮罩圖案5a(參照圖3(d))。
在此相位轉移膜3進行氟系氣體之乾蝕刻時,為了提高相位轉移圖案3a之圖案側壁的垂直性,及為了提高相位轉移圖案3a面內的CD均勻性,會進行追加蝕刻(過蝕刻)。在該過蝕刻後,蝕刻阻止膜2表面便會成為被微小蝕刻的程度,而在相位轉移圖案3a之透光部中,透光性基板1表面不會露出。
接著,在遮罩基底100上藉由旋塗法來形成阻劑膜。之後,針對阻劑膜,以電子線來描繪出為應形成於遮光膜4之圖案(遮光圖案)的第2圖案,進一步地進行顯影處理等之既定處理,以形成具有遮光圖案之第2阻劑圖案7b(參照圖3(e))。在此,由於第2圖案係較大之圖案,故可使用產率較高之雷射描繪裝置的雷射光之曝光描繪來替代使用電子線之描繪。
接著,以第2阻劑圖案7b為遮罩,進行使用氯系氣體與氧氣之混合氣體的乾蝕刻,以在遮光膜4形成第2圖案(遮光圖案4b)。進一步地,便去除第2阻劑圖案7b,而藉由洗淨等的既定處理,來得到相位轉移遮罩200(參照圖3(f))。在洗淨工序中,係使用上述SC-1洗淨,而會如下述實施例及比較例所示,因為氧缺損率(100×[OI-OR]/OI)而在蝕刻阻止膜2之減膜量產生差異。
作為該乾蝕刻所使用之氯系氣體只要包含有氯(Cl)的話便不特別限制。舉例有Cl2、SiCl2、CHCl3、CH2Cl2、BCl3等。又,由於遮罩基底100係在透光性基板1具備蝕刻阻止膜2,故該乾蝕刻所使用之氟系氣體只要包含有氟(F)的話便不特別限制。舉例有CHF3、CF4、C2F6、C4F8、SF6等。
此第1實施形態之相位轉移遮罩200係使用該遮罩基底100所製作者。蝕刻阻止膜2會同時滿足相較於由氧化鉿所構成之蝕刻阻止膜,而使得相對於在相位轉移膜3形成圖案時所進行之氟系氣體之乾蝕刻之耐受性會較高,且相對於曝光光線之穿透率亦會較高之特性。藉此,便可在以氟系氣體之乾蝕刻來在相位轉移膜3形成相位轉移圖案(轉印圖案)3a時,不蝕凹透光性基板1之主表面,來進行過蝕刻。因此,此第1實施形態之相位轉移遮罩200係相位轉移圖案3a側壁之垂直性會較高及相位轉移圖案3a面內之CD均勻性亦會較高。
另一方面,由於此第1實施形態之相位轉移遮罩200的蝕刻阻止膜2相對於曝光光線之穿透率會較以往的蝕刻阻止膜要高,故可提高為去除相位轉移膜3之區域的透光部之穿透率。藉此,便可提高會在穿透過蝕刻阻止膜2與相位轉移膜3之圖案的曝光光線與僅穿透過蝕刻阻止膜2之曝光光線之間所產生的相位轉移效果。因此,在使用此相位轉移遮罩200來對半導體基板上之阻劑膜進行曝光轉印時,便可得到高圖案解析度。
[半導體元件之製造]
第1實施形態之半導體元件之製造方法係具備下述工序:使用第1實施形態之轉印用遮罩(相位轉移遮罩)200或使用第1實施形態之遮罩基底100所製造出之轉印用遮罩(相位轉移遮罩)200,來將轉印用圖案曝光轉印在半導體基板上之阻劑膜之工序。第1實施形態之相位轉移遮罩200係相位轉移圖案3a側壁的垂直性會較高,且相轉移移圖案3a面內的CD均勻性亦會較高。因此,在使用第1實施形態之相位轉移遮罩200來曝光轉印在半導體元件上的阻劑膜時,便能以充分滿足設計式樣之精確度來將圖案形成在半導體元件上的阻劑膜。
又,由於第1實施形態之相位轉移遮罩200的蝕刻阻止膜2相對於曝光光線之穿透率會較以往的蝕刻阻止膜要高,故可提高為去除相位轉移膜3之區域的透光部之穿透率。藉此,便可提高會在穿透過蝕刻阻止膜2與相位轉移膜3之圖案的曝光光線與僅穿透過蝕刻阻止膜2之曝光光線之間所產生的相位轉移效果。因此,在使用此相位轉移遮罩200來對半導體基板上之阻劑膜進行曝光轉印時,便可得到高圖案解析度。然後,在以此阻劑圖案為遮罩來乾蝕刻被加工膜而形成電路圖案的情況,便能以不會有起因於精確度不足或轉印不良所致的配線短路或斷線之高精確度來形成高良率的電路圖案。
<第2實施形態>
[遮罩基底與其製造]
本發明第2實施形態相關之遮罩基底係使圖案形成用薄膜成為具有既定光學濃度的遮光膜,且為被用於製造二元遮罩(轉印用遮罩)者。在圖4顯示此第2實施形態之遮罩基底的構成。此第2實施形態之遮罩基底110係由在透光性基板1上依序層積有蝕刻阻止膜2、遮光膜(圖案形成用薄膜)8及硬遮罩膜9之構造所構 成。此外,關於與第1實施形態之遮罩基底相同的構成,係使用相同的符號而省略在此處的說明。
遮光膜8係在從遮罩基底110來製造二元遮罩210時,形成有轉印圖案之圖案形成用薄膜。二元遮罩中會對遮光膜8之圖案要求高遮光性能。單靠遮光膜8相對於曝光光線之OD要求要在2.8以上,更佳地係具有3.0以上的OD。遮光膜8亦可適用單層構造及2層以上之層積構造的任一者。又,單層構造的遮光膜以及2層以上之層積構造的遮光膜的各層可構成為在膜或層的厚度方向上為幾乎相同的組成,或是構成為在層的厚度方向上使組成傾斜。
遮光膜8係以可用氟系氣體之乾蝕刻來將轉印圖案圖案化之材料來加以形成。具有此般特性之材料除了含矽材料之外,還舉例有含有過渡金屬及矽之材料。含有過渡金屬及矽之材料的遮光性能會較不含有過渡金屬之含矽材料要高,而可使遮光膜8之厚度變薄。包含在遮光膜8之過渡金屬係舉例有鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)、鉻(Cr)、鎳(Ni)、釩(V)、鋯(Zr)、釕(Ru)、銠(Rh)、鈮(Nb)、鈀(Pd)等的任一種金屬或該等金屬的合金。
以含矽材料來形成遮光膜8之情況,亦可含有過渡金屬以外的金屬(錫(Sn)銦(In)、鎵(Ga)等)。其中,在含矽材料含有鋁及鉿時,便會有在與蝕刻阻止膜2之間的利用氟系氣體之乾蝕刻的蝕刻選擇性下降之情況,以及針對遮光膜8進行EB缺陷修正時會難以檢測出蝕刻終點之情況。
遮光膜8係可以由矽與氮所構成之材料,或是由選自類金屬元素、非金屬元素及惰性氣體的1種以上的元素與矽與氮所構成之材料來加以形成。在此情況下的遮光膜8可含有任何類金屬元素。由於在此類金屬元素中,含 有選自硼、鍺、銻及碲之一種以上的元素時,便能期待會提高以濺鍍法來成膜遮光膜8時作為靶材來使用的矽之導電性,故較佳。
遮光膜8在為包含下層及上層的層積構造的情況,係以由矽所構成的材料或於矽包含有選自碳、硼、鍺、銻及碲之1種以上的元素之材料來加以形成下層,並以由矽與氮所構成的材料或於矽與氮所構成的材料包含有選自類金屬元素、非金屬元素及惰性氣體之1種以上的元素之材料來形成上層。
形成遮光膜8之材料只要在不會讓光學濃度大幅降低之範圍的話,便可含有選自氧、氮、碳、硼、氫之1種以上的元素。為了降低遮光膜8之透光性基板1相反側的表面的相對於曝光光線之反射率,便可使該透光性基板1相反側的表層(在下層與上層之2層構造的情況下為上層。)含有較多的氧或氮。
遮光膜8係可由含鉭材料來加以形成。此情況下,遮光膜8的矽含量較佳地係5原子%以下,更佳地係3原子%以下,最佳地係實質上不含有。該等含鉭材料係可以氟系氣體之乾蝕刻來將轉印圖案圖案化之材料。此情況下之含鉭材料除了鉭金屬之外,還舉例有於鉭包含有選自氮、氧、硼及碳之1種以上的元素之材料等。例如,舉例有Ta、TaN、TaO、TaON、TaBN、TaBO、TaBON、TaCN、TaCO、TaCON、TaBCN、TaBOCN等。
此第2實施形態之遮罩基底中,亦會在遮光膜8上具備硬遮罩膜9。此硬遮罩膜9需要以相對於蝕刻遮光膜8時所使用的蝕刻氣體而具有蝕刻選擇性之材料來加以形成。藉此,便可使阻劑膜之厚度相較於直接將阻劑膜作為遮光膜8之遮罩來使用的情況要大幅地變薄。
此硬遮罩膜9較佳地係以含鉻材料來加以形成。又,硬遮罩膜9更佳地係除了鉻之外,還含有選自氮、氧、碳、氫及硼之1種以上的元素之材料來 加以形成。硬遮罩膜9亦可以於該等含鉻材料包含有選自銦(In)、錫(Sn)及鉬(Mo)之至少1種以上的金屬元素(以下,將該等金屬元素稱作「銦等金屬元素」。)之材料來加以形成。
在此遮罩基底110中,較佳地係相接於硬遮罩膜9表面,並以100nm以下的膜厚來形成有機系材料的阻劑膜。
如上述,此第2實施形態之遮罩基底110係在透光性基板1與為圖案形成用薄膜之遮光膜8之間具備含有鉿、鋁及氧的蝕刻阻止膜2,此蝕刻阻止膜2之氧缺損率為6.4%以下。然後,此蝕刻阻止膜2係同時滿足相較於由氧化鉿所構成之蝕刻阻止膜,使得相對於在遮光膜8形成圖案時所進行的氟系氣體之乾蝕刻的耐受性會較高,且相對於曝光光線之穿透率亦會較高之特性。藉此,由於可在以氟系氣體之乾蝕刻來在遮光膜8形成轉印圖案時,不蝕凹透光性基板1之主表面,來進行過蝕刻,故可提高圖案側壁之垂直性及圖案面內之CD均勻性。
另一方面,在從此第2實施形態之遮罩基底110來製造轉印用遮罩(二元遮罩)210的情況,由於此蝕刻阻止膜2之相對於曝光光線的穿透率會較以往的蝕刻阻止膜要高,故可提高為去除遮光膜8後之區域的透光部之穿透率。藉此,便可提高在遮光膜8之圖案中讓曝光光線被遮光的遮光部與會讓曝光光線穿透蝕刻阻止膜2之透光部之間的對比。因此,在使用此轉印用遮罩來對半導體基板上之阻劑膜進行曝光轉印時,便可得到高圖案解析度。另外,此第2實施形態之遮罩基底110係可適用於用以製造挖掘雷文生型(Levenson)相位轉移遮罩或CPL(Chromeless Phase Lithography)遮罩之遮罩基底。
[轉印用遮罩與其製造]
此第2實施形態相關之轉印用遮罩210(參照圖5)係使遮罩基底110之蝕刻阻止膜2殘留在透光性基板1之主表面上的整面,而在遮光膜8形成有轉印用圖案(遮光圖案8a)。在構成為於遮罩基底110設置有硬遮罩膜9的情況,硬遮罩膜9會在此轉印用遮罩210之製作途中被去除。
亦即,此第2施形態相關之轉印用遮罩210係具備在透光性基板1上依序層積有蝕刻阻止膜2與為具有轉印圖案(遮光圖案8a)之遮光膜的薄膜之構造,遮光圖案8a係由含矽材料所構成,蝕刻阻止膜2係由含有鉿、鋁及氧的材料所構成,此蝕刻阻止膜2之氧缺損率係6.4%以下。其中,氧缺損率[%]係在蝕刻阻止膜2中之氧含量為OR,存在於蝕刻阻止膜2中的所有鉿與鋁為化學計量上穩定的氧化物狀態時之氧含量為OI時,以100×[OI-OR]/OI來加以計算。
此第2實施形態相關之轉印用遮罩(二元遮罩)210之製造方法係使用該遮罩基底110者,並具備:藉由使用氟系氣體之乾蝕刻來在遮光膜8形成轉印用圖案之工序。以下,便依照圖6所示之製造工序,來說明此第2實施形態相關之轉印用遮罩210之製造方法。另外,在此便就使用於遮光膜8上層積有硬遮罩膜9之遮罩基底110的轉印用遮罩210之製造方法來加以說明。又,就在遮光膜8適用含有過渡金屬及矽之材料,在硬遮罩膜9適用含鉻材料的情況來加以說明。
首先,會相接於遮罩基底110之硬遮罩膜9,而藉由旋塗法來形成阻劑膜。接著,便針對阻劑膜,而以電子線來描繪出應形成在遮光膜8的轉印用圖案(遮光圖案),進一步地,進行顯影處理等的既定處理,以形成具有遮光圖案之阻劑圖案10a(參照圖6(a))。接著,以阻劑圖案10a為遮罩,進行使用氯系氣體與氧氣之混合氣體的乾蝕刻,來在硬遮罩膜9形成轉印圖案(硬遮罩圖案9a)(參照圖6(b))。
接著,在去除阻劑圖案10a後,以硬遮罩圖案9a為遮罩,進行使用氟系氣體之乾蝕刻,以在遮光膜8形成轉印圖案(遮光圖案8a)(參照圖6(c))。在此遮光膜8於氟系氣體的乾蝕刻時,為了提高遮光圖案8a之圖案側壁的垂直性,及為了提高遮光圖案8a面內的CD均勻性,會進行追加蝕刻(過蝕刻)。在該過蝕刻後,蝕刻阻止膜2表面便會成為被微小蝕刻的程度,而在遮光圖案10a之透光部中,透光性基板1表面不會露出。
進一步地,以使用氯系氣體與氧氣之混合氣體的乾蝕刻來去除殘留之硬遮罩膜9a,經由洗淨等的既定處理,來得到轉印用遮罩210(參照圖6(d))。在洗淨工序中,係使用上述SC-1洗淨,而會如下述實施例及比較例所示,因為氧缺損率(100×[OI-OR]/OI)而在蝕刻阻止膜2之減膜量產生差異。另外,在該乾蝕刻所使用之氯系氣體及氟系氣體係與第1實施形態所使用者相同。
此第2實施形態之轉印用遮罩210係使用該遮罩基底100所製作者。蝕刻阻止膜2會同時滿足相較於由氧化鉿所構成之蝕刻阻止膜,使得相對於在遮光膜8形成圖案時所進行之氟系氣體之乾蝕刻之耐受性會較高,且相對於曝光光線之穿透率亦會較高之特性。藉此,便可在以氟系氣體之乾蝕刻來在遮光膜8形成遮光圖案8a時,不蝕凹透光性基板1之主表面,來進行過蝕刻。因此,此第2實施形態之轉印用遮罩210係遮光圖案8a側壁之垂直性會較高及遮光圖案8a面內之CD均勻性亦會較高。
另一方面,由於此第2實施形態之轉印用遮罩210的蝕刻阻止膜2相對於曝光光線之穿透率會較以往的蝕刻阻止膜要高,故可提高為去除遮光膜8之區域的透光部之穿透率。藉此,便可提高在遮光膜8之圖案中讓曝光光線被遮光的遮光部與會讓曝光光線穿透蝕刻阻止膜2之透光部之間的對比。因此,在使 用此轉印用遮罩來對半導體基板上之阻劑膜進行曝光轉印時,便可得到高圖案解析度。
[半導體元件之製造]
第2實施形態之半導體元件之製造方法係使用第2實施形態之轉印用遮罩210或使用第2實施形態之遮罩基底110所製造出之轉印用遮罩210,來將轉印用圖案曝光轉印在半導體基板上之阻劑膜。第2實施形態之轉印用遮罩200係遮光圖案8a側壁的垂直性會較高,且遮光圖案8a面內的CD均勻性亦會較高。因此,在使用第2實施形態之轉印用遮罩210來曝光轉印在半導體元件上的阻劑膜時,便能以充分滿足設計式樣之精確度來將圖案形成在半導體元件上的阻劑膜。
又,由於第2實施形態之轉印用遮罩210的蝕刻阻止膜2相對於曝光光線之穿透率會較以往的蝕刻阻止膜要高,故可提高為去除遮光膜8之區域的透光部之穿透率。藉此,便可提高在遮光膜8之圖案中讓曝光光線被遮光的遮光部與會讓曝光光線穿透蝕刻阻止膜2之透光部之間的對比。因此,在使用此轉印用遮罩來對半導體基板上之阻劑膜進行曝光轉印時,便可得到高圖案解析度。因此,在使用此轉印用遮罩210來對半導體基板上之阻劑膜進行曝光轉印時,便可得到高圖案解析度。然後,在以此阻劑圖案為遮罩來乾蝕刻被加工膜而形成電路圖案的情況,便能以不會有起因於精確度不足或轉印不良所致的配線短路或斷線之高精確度來形成高良率的電路圖案。
<第3實施形態>
[遮罩基底與其製造]
本發明第3實施形態相關之遮罩基底120(參照圖7)係在第1實施形態所說明之遮罩基底構造中,於相位轉移膜3與遮光膜4之間設置硬遮罩膜11,於遮光膜4 上設置硬遮罩膜12。此實施形態中之遮光膜4係含有選自矽及鉭之至少1種以上的元素之膜,硬遮罩膜11、12係含有鉻之膜。此第3實施形態相關之遮罩基底120的用途特別適於製造CPL(Chromeless Phase Lithography)遮罩。另外,在此第3實施形態之遮罩基底120為製造CPL遮罩之用途的情況下,相位轉移膜3相對於曝光光線之穿透率較佳地係90%以上,更佳地係92%以上。
此第3實施形態之相位轉移膜3較佳地係以含有矽與氧之材料來加以形成。此相位轉移膜3之矽與氧的總計含量較佳地係95原子%以上。又,此相位轉移膜3之氧含量較佳地係60原子%以上。此相位轉移膜3之厚度較佳地係210nm以下,更佳地係200nm以下,最佳地係190nm以下。此相位轉移膜3之厚度較佳地係100nm以上,更佳地係160nm以上。此相位轉移膜3相對於ArF曝光光線之折射率n較佳地係1.52以上,更佳地係1.54以上。又,相位轉移膜3之折射率n較佳地係1.68以下,更佳地係1.63以下。相位轉移膜3相對於ArF準分子雷射之曝光光線的消光係數k較佳地係0.02以下,更佳地係趨近於0。
另一方面,此相位轉移膜3係可以含有矽、氧及氮之材料來加以形成。在此情況,相位轉移膜3相對於曝光光線之穿透率較佳地係70%以上,更佳地係80%以上。相位轉移膜3之矽、氧及氮的總計含量較佳地係95原子%以上。此相位轉移膜3之氧含量較佳地係40原子%以上。此相位轉移膜3之氧含量較佳地係60原子%以下。此相位轉移膜3之氮含量較佳地係7原子%以上。此相位轉移膜3之氮含量較佳地係20原子%以下。
在此情況下之相位轉移膜3之厚度較佳地係150nm以下,更佳地係140nm以下。又,此相位轉移膜3之厚度較佳地係100nm以上,更佳地係110nm以上。此相位轉移膜3相對於ArF曝光光線之折射率n較佳地係1.70以上,更佳地 係1.75以上。又,相位轉移膜3之折射率n較佳地係2.00以下,更佳地係1.95以下。相位轉移膜3相對於ArF準分子雷射之曝光光線的消光係數k較佳地係0.05以下,更佳地係0.03。
[轉印用遮罩與其製造]
此第3實施形態相關之轉印用遮罩220(參照圖8)係相位轉移遮罩一種的CPL遮罩,遮罩基底120之蝕刻阻止膜2係殘留在透光性基板1之主表面上的整面,而在相位轉移膜3形成有相位轉移圖案3e,並在硬遮罩膜11形成有硬遮罩圖案11f,在遮光膜4形成有遮光圖案4f。硬遮罩膜12會在此轉印用遮罩220之製作途中被去除(參照圖9)。
亦即,此第3施形態相關之轉印用遮罩220係具備在透光性基板1上依序層積有蝕刻阻止膜2、相位轉移圖案3e、硬遮罩圖案11f以及遮光圖案4f之構造,相位轉移圖案3e係由含有矽與氧之材料所構成,硬遮罩圖案11f係由含鉻材料所構成,遮光膜4係由選自矽及鉭之至少1種以上之元素的材料所構成。
此第3實施形態相關之轉印用遮罩220之製造方法係使用該遮罩基底120者,並具備:藉由使用氯系氣體之乾蝕刻來在硬遮罩膜12形成遮光圖案之工序;以具有遮光圖案之硬遮罩膜(硬遮罩圖案)12f為遮罩,藉由使用氟系氣體之乾蝕刻,來在遮光膜4形成遮光圖案4f之工序;藉由使用氯系氣體之乾蝕刻來在硬遮罩膜11形成相位轉移圖案之工序;以具有相位轉移圖案之硬遮罩膜(硬遮罩圖案)11e為遮罩,藉由使用氟系氣體之乾蝕刻,來在相位轉移膜3形成相位轉移圖案3e之工序;以及以遮光圖案4f為遮罩,藉由使用氯系氣體之乾蝕刻,來在硬遮罩膜11形成硬遮罩圖案11f之工序(參照圖9)。
以下,便依照圖9所示之製造工序,來說明此第3實施形態相關之轉印用遮罩220之製造方法。另外,在此便就在遮光膜4適用含矽材料的情況來加以說明。
首先,會相接於遮罩基底120之硬遮罩膜12,而藉由旋塗法來形成阻劑膜。接著,便針對阻劑膜,而以電子線來描繪出應形成在遮光膜4的遮光圖案,進一步地,藉由進行顯影處理等的既定處理,來形成阻劑圖案17f(參照圖9(a))。接著,以阻劑圖案17f為遮罩,進行使用氯系氣體與氧氣之混合氣體的乾蝕刻,來在硬遮罩膜12形成硬遮罩圖案12f(參照圖9(b))。
接著,在去除阻劑圖案17f後,以硬遮罩圖案12f為遮罩,進行使用CF4等的氟系氣體之乾蝕刻,以在遮光膜4形成遮光圖案4f(參照圖9(c))。
接著,藉由旋塗法來形成阻劑膜,之後,針對阻劑膜,而以電子線來描繪出應形成在相位轉移膜3的相位轉移圖案,進一步地,藉由進行顯影處理等的既定處理,來形成阻劑圖案18e(參照圖9(d))。
之後,以阻劑圖案18e為遮罩,進行使用氯系氣體與氧氣之混合氣體的乾蝕刻,來在硬遮罩膜11形成硬遮罩圖案11e(參照圖9(e))。接著,在去除阻劑圖案18e後,進行使用CF4等的氟系氣體之乾蝕刻,以在相位轉移膜3形成相位轉移圖案3e(參照圖9(f))。
接著,以遮光圖案4f為遮罩,進行使用氯系氣體與氧氣之混合氣體的乾蝕刻,來形成硬遮罩圖案11f。此時,硬遮罩圖案12f便會同時被去除。
之後,便進行洗淨工序,而依需要來進行遮罩缺陷檢查。進一步地,根據缺陷檢查之結果,來依需要進行缺陷修正,以製造出轉印用遮罩220。 在洗淨工序中,係使用上述SC-1洗淨,而會如下述實施例及比較例所示,因為氧缺損率(100×[OI-OR]/OI)而在蝕刻阻止膜2之減膜量產生差異。
此第3實施形態之轉印用遮罩(CPL遮罩)220係使用該遮罩基底120所製作者。因此,此第3實施形態之轉印用遮罩220係相位轉移圖案3e側壁之垂直性會較高,且相位轉移圖案3e面內之CD均勻性亦會較高。由相位轉移圖案3e與蝕刻阻止膜2之底面所構成之各構造體在面內之高度方向(厚度方向)的均勻性亦大幅較高。因此,此轉印用遮罩220在面內的相位轉移效果會較高。
另一方面,此第3實施形態之CPL遮罩220的蝕刻阻止膜2相對於曝光光線之穿透率會較以往的蝕刻阻止膜要高。因此,便可一併提高為殘留相位轉移膜3之區域的相位轉移部以及為去除相位轉移膜3之區域的透光部之各穿透率。藉此,便可提高會在穿透過蝕刻阻止膜2與相位轉移膜3之圖案的曝光光線與僅穿透過蝕刻阻止膜2之曝光光線之間所產生的相位轉移效果。因此,在使用此CPL遮罩220來對半導體基板上之阻劑膜進行曝光轉印時,便可得到高圖案解析度。
[半導體元件之製造]
第3實施形態之半導體元件之製造方法係具備:使用第3實施形態之轉印用遮罩(CPL遮罩)220或使用第3實施形態之遮罩基底120所製造出之轉印用遮罩(CPL遮罩)220,來將轉印用圖案曝光轉印在半導體基板上之阻劑膜之工序。第3實施形態之相位轉移遮罩220係相位轉移圖案3e側壁的垂直性會較高,且相轉移移圖案3e面內的CD均勻性亦會較高,且面內之相位轉移效果的均勻性會較高。因此,在使用第3實施形態之相位轉移遮罩220來曝光轉印在半導體元件上的阻劑膜時,便能以充分滿足設計式樣之精確度來將圖案形成在半導體元件上的阻劑膜。
又,第3實施形態之轉印用遮罩220的蝕刻阻止膜2相對於曝光光線之穿透率會較以往的蝕刻阻止膜要高。因此,便可一併提高為殘留相位轉移膜3之區域的相位轉移部以及為去除相位轉移膜3之區域的透光部之各穿透率。藉此,便可提高會在穿透過蝕刻阻止膜2與相位轉移膜3之圖案的曝光光線與僅穿透過蝕刻阻止膜2之曝光光線之間所產生的相位轉移效果。因此,在使用轉印用遮罩220來對半導體基板上之阻劑膜進行曝光轉印時,便可得到高圖案解析度。然後,在以此阻劑圖案為遮罩來乾蝕刻被加工膜而形成電路圖案的情況,便能以不會有起因於精確度不足或轉印不良所致的配線短路或斷線之高精確度來形成高良率的電路圖案。
另一方面,構成本發明之蝕刻阻止膜2的材料亦可適用為會構成其他形態之遮罩基底所設置的保護膜之材料,該其他形態之遮罩基底係用以製造以極紫外(Extreme Ultra Violet,以下稱作EUV)光為曝光光源之EUV微影用反射型遮罩。亦即,此其他形態之遮罩基底係具有於基板上依序層積有多層反射膜、保護膜及吸收體膜之構造的遮罩基底,該保護膜係由含有鉿、鋁及氧之材料所構成,該保護膜之氧缺損率係6.4%以下。另外,所謂EUV光係指軟X射線區域或真空紫外光區域之波長帶域的光線,具體而言,係指波長為0.2~100nm左右的光線。
關於此其他形態之遮罩基底之保護膜的構成,係可適用上述本發明之蝕刻阻止膜2的構成。此般保護膜係相對於氟系氣體之乾蝕刻,以及氯系氣體之乾蝕刻的任一者皆是具有高耐受性。因此,吸收體膜不僅是含鉭材料,且亦可適用多種材料。該吸收體膜係可使用例如含鉻材料、含矽材料及含有過渡金屬之材料中的任一者。
基板係可適用合成石英玻璃、石英玻璃、鋁矽酸鹽玻璃、鈉鈣玻璃、低熱膨脹玻璃(SiO2-TiO2玻璃等)、會析出β石英固溶體之結晶化玻璃、單晶矽及SiC等材料。
多層反射膜係將由相對於EUV光的折射率會較低之低折射率材料所構成的低折射率層與相對於EUV光的折射率會較高之高折射率材料所構成的高折射率層之積層來作為1週期,並複數週期地層積出此之多層膜。通常,低折射率層係以輕元素或其化合物來加以形成,高折射率層係以重元素或其化合物來加以形成。多層反射膜的週期數較佳地係20~60週期,更佳地係30~50週期。在將波長13~14nm的EUV光適用為曝光光線之情況,作為多層反射膜係可適當地使用交互層積有20~60週期的Mo層與Si層之多層膜。又,除此之外,可適用於EUV光之多層反射膜係舉例有Si/Ru週期多層膜、Be/Mo週期多層膜、Si化合物/Mo化合物週期多層膜、Si/Nb週期多層膜、Si/Mo/Ru週期多層膜、Si/Mo/Ru/Mo週期多層膜及Si/Ru/Mo/Ru週期多層膜等。可對應於所適用之EUV光的波長帶來適當選擇材質及各層的膜厚。多層反射膜最好是以濺鍍法(DC濺鍍法、RF濺鍍法及離子束濺鍍法等)來加以成膜。特別最好是適用能容易控制膜厚之離子束濺鍍法。
可由此其他形態之遮罩基底來製造反射型遮罩。亦即,此其他形態之反射型遮罩係具備於基板上依序層積有多層反射膜、保護膜及吸收體膜之構造的遮罩基底,該吸收體膜係具備轉印圖案,該保護膜係由含有鉿、鋁及氧之材料所構成,該保護膜之氧缺損率係6.4%以上。
[實施例]
以下,便參照圖7~圖9並藉由實施例來進一步地具體說明本發明實施形態。
(實施例1)
[遮罩基底之製造]
準備主表面的尺寸為約152mm×約152mm且厚度為約6.35mm並由合成石英玻璃所構成的透光性基板1。此透光性基板1係將端面及主表面研磨為既定表面粗度以下(均方根粗糙度Rq為0.2nm以下)後,再施予既定洗淨處理及乾燥處理者。
接著,相接於透光性基板1表面,而以3nm的厚度來形成由鉿、鋁及氧所構成的蝕刻阻止膜2(HfAlO膜)。具體而言,係將透光性基板1設置在枚葉式RF濺鍍裝置內,並使Al2O3靶材與HfO2靶材同時放電,而藉由將氬(Ar)氣體作為濺鍍氣體之濺鍍(RF濺鍍)來形成蝕刻阻止膜2。針對以相同條件來形成於其他透光性基板上之蝕刻阻止膜進行X射線光電分光分析法之分析的結果,係Hf:Al:O=32.8:5.6:61.6(原子%比)。又,在此蝕刻阻止膜中,存在於此膜中的鉿與鋁為化學計量上穩定的氧化物狀態時之組成比係Hf:Al:O=29.2:5.0:65.8(原子%比)。亦即,此蝕刻阻止膜2中,OR:OI=61.6:65.8(原子%比),由此計算出之氧缺損率[%]係6.38。
又,此蝕刻阻止膜2的Hf/[Hf+Al]為0.85。另外,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量此蝕刻阻止膜的各光學特性後,在波長193nm的光線中之折射率n為2.851,消光係數k為0.278。
接著,相接於蝕刻阻止膜2的表面,而以177nm的厚度來形成由矽及氧所構成的相位轉移膜(SiO2膜)3。具體而言,係將形成有蝕刻阻止膜2後的透光性基板1設置在枚葉式RF濺鍍裝置內,並使用二氧化矽(SiO2)靶材,藉由將氬(Ar)氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來形成相位轉移膜3。
針對以相同條件來形成於其他透光性基板上並施予加熱處理後的相位轉移膜,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量相位 轉移膜的各光學特性後,在波長193nm的光線中之折射率n為1.563,消光係數k為0.000(測量下限)。
接下來,相接於相位轉移膜3的表面,而以5nm的厚度來形成由鉻及氮所構成的硬遮罩膜(CrN膜)11。具體而言,係將加熱處理後的透光性基板1設置在枚葉式DC濺鍍裝置內,並使用鉻(Cr)靶材,而藉由將氬(Ar)、氮(N2)、氦(He)的混合氣體作為濺鍍氣體之反應性濺鍍(DC濺鍍)來形成硬遮罩膜11。針對以相同條件來形成於其他透光性基板上之硬遮罩膜,進行X射線光電分光分析法之分析的結果,係Cr:N=75:25(原子%比)。
接下來,相接於硬遮罩膜11表面,而以48nm的厚度來形成由矽及氮所構成的遮光膜(SiN膜)4。具體而言,係將加熱處理後的透光性基板1設置在枚葉式RF濺鍍裝置內,並使用矽(Si)靶材,而藉由將氬(Ar)與氮(N2)與氦(He)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來形成遮光膜4。針對以相同條件來形成於其他透光性基板上之遮光膜,進行X射線光電分光分析法之分析的結果,係Si:N:O=75.5:23.2:1.3(原子%比)。另外,在相位轉移膜3、硬遮罩膜11及遮光膜4的積層構造中,波長(193nm)的ArF準分子雷射之光學濃度為2.8以上。
接著,相接於遮光膜4的表面,而以5nm的厚度來形成由鉻及氮所構成的硬遮罩膜(CrN膜)12。關於硬遮罩膜12的具體構成及製法係與上述硬遮罩膜11相同。以上述順序來製造實施例1之遮罩基底120。
另外,以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚3nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率後,得知在透光性基板的穿透率為100%時之穿透率為85.1%,而藉由設置有此實施例1之蝕刻 阻止膜所發生之穿透率降低的影響便會較小。又,以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率後,透光性基板的穿透率為100%時之穿透率為90.5%。又,使用稱為SC-1洗淨之氨水、過氧化氫水及去離子水的混合液之洗淨液來將形成有該蝕刻阻止膜之透光性基板進行下般之旋轉洗淨。在利用旋轉洗淨法之SC-1洗淨中,首先,會將洗淨液滴下至以低速來旋轉之遮罩基底100的旋轉中心部附近,使洗淨液因旋轉而塗佈擴散並佈滿在遮罩基底100的表面整面。之後,到洗淨結束時間為止會持續供給洗淨液,並以低速來旋轉遮罩基底100以持續洗淨,在洗淨時間結束後,會供給純水來將洗淨液置換為純水,最後進行旋轉乾燥。在測量進行10次此洗淨工序後之蝕刻阻止膜的減膜量後,為0.34nm。由上述結果看來,便可確認到此實施例1之蝕刻阻止膜2係相對於由遮罩基底來製造相位轉移遮罩之過程中所進行的藥液洗淨而具有充分的耐受性。
針對其他透光性基板所形成之蝕刻阻止膜,來進行將SF6與He的混合氣體用於蝕刻氣體之乾蝕刻,並測量蝕刻阻止膜的減膜量後,為0.53nm。
[相位轉移遮罩之製造]
接著,便使用此實施例1之遮罩基底120並以下順序來製作實施例1之相位轉移遮罩(CPL遮罩)220。首先,藉由旋塗法而相接於硬遮罩膜12表面並以膜厚150nm來形成由電子線描繪用化學增幅型阻劑所構成的阻劑膜。接著,針對此阻劑膜,將包含有應形成於遮光膜4的遮光帶之遮光圖案進行電子線描繪,並進行既定的顯影處理,以形成具有遮光圖案之阻劑圖案17f(參照圖9(a))。
接著,以阻劑圖案17f為遮罩,來進行使用氯與氧的混合氣體(氣體流量比Cl2:O2=4:1)之乾蝕刻,以於硬遮罩膜12形成圖案(硬遮罩圖案12f)(參照圖9(b))。
接著,便藉由TMAH來去除阻劑圖案17f。接著,以硬遮罩圖案12f為遮罩,並進行使用氟系氣體(SF6+He)之乾蝕刻,來於遮光膜4形成包含遮光帶之圖案(遮光圖案4f)(參照圖9(c))。
接著,藉由旋塗法來在遮光圖案4f及硬遮罩膜11上以膜厚80nm形成由電子線描繪用化學增幅型阻劑所構成的阻劑膜。接著,針對阻劑膜,將應形成於相位轉移膜3之圖案的轉印圖案進行描繪,進一步地進行顯影處理等既定處理,來形成具有轉印圖案之阻劑圖案18e(參照圖9(d))。
接著,以阻劑圖案18e為遮罩,並進行使用氯與氧的混合氣體(氣體流量比Cl2:O2=15:1)之乾蝕刻,來於硬遮罩膜11形成轉印圖案(硬遮罩圖案11e)(參照圖9(e))。接著,在藉由TMAH來去除阻劑圖案18e後,以硬遮罩圖案11e為遮罩,並進行使用氟系氣體(SF6+He)之乾蝕刻,以在相位轉移膜3形成轉印圖案(相位轉移圖案3e)(參照圖9(f))。在此氟系氣體之乾蝕刻中,除了從相位轉移膜3之蝕刻開始至使得蝕刻朝相位轉移膜3之厚度方向進行而使蝕刻阻止膜2表面開始露出為止之蝕刻時間(最佳蝕刻時間)之外,還會進行再另外追加該最佳蝕刻時間的20%之時間(過蝕刻時間)之蝕刻(過蝕刻)。另外,上述氟系氣體之乾蝕刻會以25W的電功率來施加偏壓,並以所謂的高偏壓蝕刻條件來加以進行。
接著,以遮光圖案4f為遮罩,並進行使用氯與氧的混合氣體(氣體流量比Cl2:O2=4:1)之乾蝕刻,以在硬遮罩膜11形成圖案(硬遮罩圖案11f)。此時,硬遮罩圖案12f會同時地被去除。進一步地,經由SC-1洗淨等既定處理來得到相位轉移遮罩220(參照圖9(g))。
在使用其他遮罩基底並以相同順序來製造相位轉移遮罩,並檢查相位轉移圖案面內之CD均勻性時,結果為良好。又,以STEM(Scanning Transmission Electron Microscopy)來觀察相位轉移圖案的剖面時,相位轉移圖案側壁的垂直性會較高,且朝蝕刻阻止膜之挖凹未達1nm而非常地微小,而並未產生微溝槽。
針對實施例1之相位轉移遮罩(CPL遮罩)220,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。驗證此模擬的曝光轉印像時,已充分滿足設計式樣。因設置有蝕刻阻止膜2而導致透光部之穿透率的下降對於曝光轉印所造成之影響非常微小。由上述結果看來,便可說是即便將實施例1之相位轉移遮罩220設置於曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜,仍可高精確度地形成最終被形成於半導體元件上之電路圖案。
(實施例2)
[遮罩基底之製造]
此實施例2之遮罩基底120除了蝕刻阻止膜2之外,係與實施例1之遮罩基底同樣地被加以製造。以下,便就與實施例1之遮罩基底不同的部分來加以說明。
此實施例2之蝕刻阻止膜2係適用由鉿、鋁及氧所構成HfAlO膜(Hf:Al:O=28.0:9.5:62.5(原子%比)),而相接於透光性基板1的表面,並以厚度3nm來加以形成。又,在此蝕刻阻止膜中,存在於此膜中的鉿與鋁為化學計量上穩定的氧化物狀態時之組成比係Hf:Al:O=26.0:8.8:65.2(原子%比)。亦即,此蝕刻阻止膜2中,OR:OI=62.5:65.2(原子%比),由此所計算出之氧缺損率[%] 係4.14。又,此蝕刻阻止膜2的Hf/[Hf+Al]係0.75。又,此蝕刻阻止膜2在波長193nm的光線中之折射率n為2.630,消光係數k為0.181。
在以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚3nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率時,以透光性基板的穿透率為100%時之穿透率為90.3%,而得知藉由設置有此實施例2之蝕刻阻止膜所發生之穿透率下降的影響會較小。以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率時,以透光性基板的穿透率為100%時之穿透率為94.0%。將形成有該蝕刻阻止膜之透光性基板測量進行10次以實施例1所述之SC-1洗淨的洗淨工序後之蝕刻阻止膜的減膜量時,為0.60nm。由此結果看來,可確認到此實施例2之蝕刻阻止膜2係相對於在從遮罩基底來製造相位轉移遮罩之過程中所進行的藥液洗淨而具有充分的耐受性。
針對其他透光性基板所形成之蝕刻阻止膜,以與實施例1之情況相同條件來進行將SF6與He的混合氣體用於蝕刻氣體之乾蝕刻,而測量蝕刻阻止膜的減膜量時,為0.44nm。
[相位轉移遮罩之製造]
接著,使用此實施例2之遮罩基底120並以與實施例1相同順序來製造實施例2之相位轉移遮罩220。在使用其他遮罩基底並以相同順序來製造相位轉移遮罩,而檢查相位轉移圖案的面內CD均勻性時,結果為良好。又,以STEM來觀察相位轉移圖案的剖面時,相位轉移圖案側壁的垂直性會較高,且朝蝕刻阻止膜之挖凹為1nm左右而非常地微小,且未產生微溝槽。
針對實施例2之相位轉移遮罩(CPL遮罩)220,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而被曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。在驗證此模擬的曝光轉印像時,已充分滿足設計式樣。因設置有蝕刻阻止膜2而導致透光部之穿透率的下降對於曝光轉印所造成之影響非常微小。由上述結果看來,便可說是即便將實施例2之相位轉移遮罩220設置於曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜,仍可高精確度地形成最終被形成於半導體元件上之電路圖案。
[實施例3]
[遮罩基底之製造]
此實施例3之遮罩基底120除了蝕刻阻止膜2之外,係與實施例1之遮罩基底同樣地被加以製造。此實施例3之蝕刻阻止膜2係適用由鉿、鋁及氧所構成HfAlO膜(Hf:Al:O=24.3:13.0:62.7(原子%比)),而相接於透光性基板1的表面,並以厚度3nm來加以形成。又,在此蝕刻阻止膜中,存在於此膜中的鉿與鋁為化學計量上穩定的氧化物狀態時之組成比係Hf:Al:O=23.1:12.3:64.6(原子%比)。亦即,此蝕刻阻止膜2中,OR:OI=62.7:64.6(原子%比),由此所計算出之氧缺損率[%]係2.94。又,此蝕刻阻止膜2的Hf/[Hf+Al]係0.65。又,此蝕刻阻止膜2在波長193nm的光線中之折射率n為2.434,消光係數k為0.094。
在以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚3nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率時,以透光性基板的穿透率為100%時之穿透率為94.0%,而得知藉由設置有此實施例3之蝕刻阻止膜所發生之穿透率下降的影響會較小。以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中 之穿透率時,以透光性基板的穿透率為100%時之穿透率為96.4%。將形成有該蝕刻阻止膜之透光性基板測量進行10次以實施例1所述之SC-1洗淨的洗淨工序後之蝕刻阻止膜的減膜量時,為0.76nm。由此結果看來,可確認到此實施例3之蝕刻阻止膜2係相對於在從遮罩基底來製造相位轉移遮罩之過程中所進行的藥液洗淨而具有充分的耐受性。
針對其他透光性基板所形成之蝕刻阻止膜,以與實施例1之情況相同條件來進行將SF6與He的混合氣體用於蝕刻氣體之乾蝕刻,而測量蝕刻阻止膜的減膜量時,為0.35nm。
[相位轉移遮罩之製造]
接著,使用此實施例3之遮罩基底120並以與實施例1相同順序來製造實施例3之相位轉移遮罩220。在使用其他遮罩基底並以相同順序來製造相位轉移遮罩,而檢查相位轉移圖案的面內CD均勻性時,結果為良好。又,以STEM來觀察相位轉移圖案的剖面時,相位轉移圖案側壁的垂直性會較高,且朝蝕刻阻止膜之挖凹為1nm左右而非常地微小,且未產生微溝槽。
針對實施例3之相位轉移遮罩(CPL遮罩)220,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而被曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。在驗證此模擬的曝光轉印像時,已充分滿足設計式樣。因設置有蝕刻阻止膜2而導致透光部之穿透率的下降對於曝光轉印所造成之影響非常微小。由上述結果看來,便可說是即便將實施例3之相位轉移遮罩220設置於曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜,仍可高精確度地形成最終被形成於半導體元件上之電路圖案。
(實施例4)
[遮罩基底之製造]
此實施例4之遮罩基底120除了蝕刻阻止膜2之外,係與實施例1之遮罩基底同樣地被加以製造。此實施例4之蝕刻阻止膜2係適用由鉿、鋁及氧所構成HfAlO膜(Hf:Al:O=22.5:14.6:62.9(原子%比)),而相接於透光性基板1的表面,並以厚度3nm來加以形成。又,在此蝕刻阻止膜中,存在於此膜中的鉿與鋁為化學計量上穩定的氧化物狀態時之組成比係Hf:Al:O=21.7:14.0:64.3(原子%比)。亦即,此蝕刻阻止膜2中,OR:OI=62.9:64.3(原子%比),由此所計算出之氧缺損率[%]係2.18。又,此蝕刻阻止膜2的Hf/[Hf+Al]係0.61。又,此蝕刻阻止膜2在波長193nm的光線中之折射率n為2.366,消光係數k為0.070。
在以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚3nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率時,以透光性基板的穿透率為100%時之穿透率為95.1%,而得知藉由設置有此實施例4之蝕刻阻止膜所發生之穿透率下降的影響會較小。以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率時,以透光性基板的穿透率為100%時之穿透率為97.1%。將形成有該蝕刻阻止膜之透光性基板測量進行10次以實施例1所述之SC-1洗淨的洗淨工序後之蝕刻阻止膜的減膜量時,為0.95nm。由此結果看來,可確認到此實施例4之蝕刻阻止膜2係相對於在從遮罩基底來製造相位轉移遮罩之過程中所進行的藥液洗淨而具有充分的耐受性。
針對其他透光性基板所形成之蝕刻阻止膜,以與實施例1之情況相同條件來進行將SF6與He的混合氣體用於蝕刻氣體之乾蝕刻,而測量蝕刻阻止膜的減膜量時,為0.32nm。
[相位轉移遮罩之製造]
接著,使用此實施例4之遮罩基底120並以與實施例1相同順序來製造實施例4之相位轉移遮罩220。在使用其他遮罩基底並以相同順序來製造相位轉移遮罩,而檢查相位轉移圖案的面內CD均勻性時,結果為良好。又,以STEM來觀察相位轉移圖案的剖面時,相位轉移圖案側壁的垂直性會較高,且朝蝕刻阻止膜之挖凹為1nm左右而非常地微小,且未產生微溝槽。
針對實施例4之相位轉移遮罩(CPL遮罩)220,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而被曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。在驗證此模擬的曝光轉印像時,已充分滿足設計式樣。因設置有蝕刻阻止膜2而導致透光部之穿透率的下降對於曝光轉印所造成之影響非常微小。由上述結果看來,便可說是即便將實施例4之相位轉移遮罩220設置於曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜,仍可高精確度地形成最終被形成於半導體元件上之電路圖案。
(實施例5)
(遮罩基底之製造)
此實施例5之遮罩基底120除了蝕刻阻止膜2之外,係與實施例1之遮罩基底同樣地被加以製造。此實施例5之蝕刻阻止膜2係適用由鉿、鋁及氧所構成HfAlO膜(Hf:Al:O=19.9:16.9:63.2(原子%比)),而相接於透光性基板1的表面,並以厚度3nm來加以形成。又,在此蝕刻阻止膜中,存在於此膜中的鉿與鋁為化學計量上穩定的氧化物狀態時之組成比係Hf:Al:O=19.5:16.6:63.9(原子%比)。亦即,此蝕刻阻止膜2中,OR:OI=63.2:63.9(原子%比),由此所計算出之氧缺 損率[%]係1.10。又,此蝕刻阻止膜2的Hf/[Hf+Al]係0.54。又,此蝕刻阻止膜2在波長193nm的光線中之折射率n為2.324,消光係數k為0.069。
在以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚3nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率時,以透光性基板的穿透率為100%時之穿透率為96.3%,而得知藉由設置有此實施例5之蝕刻阻止膜所發生之穿透率下降的影響會較小。以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率時,以透光性基板的穿透率為100%時之穿透率為97.9%。將形成有該蝕刻阻止膜之透光性基板測量進行10次以實施例1所述之SC-1洗淨的洗淨工序後之蝕刻阻止膜的減膜量時,為1.10nm。
針對其他透光性基板所形成之蝕刻阻止膜,以與實施例1之情況相同條件來進行將SF6與He的混合氣體用於蝕刻氣體之乾蝕刻,而測量蝕刻阻止膜的減膜量時,為0.27nm。
[轉印用遮罩之製造]
接著,便使用此實施例5之遮罩基底120,並以與實施例1相同的順序來製作實施例5之相位轉移遮罩220。
在使用其他遮罩基底並以相同順序來製造相位轉移遮罩,而檢查相位轉移圖案的面內CD均勻性時,結果為良好。又,以STEM來觀察相位轉移圖案的剖面時,相位轉移圖案側壁的垂直性會較高,且朝蝕刻阻止膜之挖凹為1nm左右而非常地微小,且未產生微溝槽。
針對實施例5之相位轉移遮罩(CPL遮罩)220,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而被曝光轉印在半導體元件上的阻 劑膜時之轉印像的模擬。在驗證此模擬的曝光轉印像時,已充分滿足設計式樣。因設置有蝕刻阻止膜2而導致透光部之穿透率的下降對於曝光轉印所造成之影響非常微小。由上述結果看來,便可說是即便將實施例5之相位轉移遮罩220設置於曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜,仍可高精確度地形成最終被形成於半導體元件上之電路圖案。
(比較例)
(遮罩基底之製造)
比較例1之遮罩基底除了蝕刻阻止膜之外,係具備與實施例1之遮罩基底同樣的構成。此比較例1之蝕刻阻止膜係相接於透光性基板的表面,並以厚度3nm來形成由鉿與氧所構成之蝕刻阻止膜(HfO膜)。具體而言,係將透光性基板設置在片葉式RF濺鍍裝置內,並使用HfO2靶材,藉由以氬氣(Ar)為濺鍍氣體之濺鍍(RF濺鍍)來形成蝕刻阻止膜。針對以相同條件來形成於其他透光性基板上之蝕刻阻止膜進行X射線光電分光分析法之分析的結果,係Hf:Al:O=39.1:0.0:60.9(原子%比)。又,在此蝕刻阻止膜中,存在於此膜中的鉿與鋁為化學計量上穩定的氧化物狀態時之組成比係Hf:Al:O=33.3:0.0:66.7(原子%比)。亦即,此蝕刻阻止膜2中,OR:OI=60.9:66.7(原子%比),由此所計算出之氧缺損率[%]係8.70。又,此蝕刻阻止膜2的Hf/[Hf+Al]係1.00。又,此蝕刻阻止膜在波長193nm的光線中之折射率n為2.949,消光係數k為0.274。
在以該相位轉移量測量裝置來測量其他透光性基板所形成之蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率時,以透光性基板的穿透率為100%時之穿透率為84.2%。在以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率 時,以透光性基板的穿透率為100%時之穿透率為89.9%。將形成有該蝕刻阻止膜之透光性基板測量進行10次以實施例1所述之SC-1洗淨的洗淨工序後之蝕刻阻止膜的減膜量時,為0.10nm。
針對其他透光性基板所形成之蝕刻阻止膜,進行將SF6與He之混合氣體用於蝕刻氣體的乾蝕刻,而測量蝕刻阻止膜之減膜量時,為0.66nm,而無法忽視此影響。
[相位轉移遮罩之製造]
接著,使用此比較例1之遮罩基底並以與實施例1相同的順序來製作比較例1之相位轉移遮罩。針對比較例1之半色調式相位轉移遮罩,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。驗證此模擬的曝光轉印像時,並無法滿足設計式樣。其主要原因是起因於蝕刻阻止膜的穿透率較低而導致解析度降低。由上述結果看來,在將比較例1之相位轉移遮罩裝設在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜之情況,可預料到最終被形成於半導體元件上之電路圖案會常常發生電路圖案的斷線或短路。
(比較例2)
[遮罩基底之製造]
比較例2之遮罩基底除了蝕刻阻止膜之外,係具備與實施例1之遮罩基底同樣的構成。此比較例2之蝕刻阻止膜係適用由鉿、鋁與氧所構成之HfAlO膜(Hf:Al:O=35.1:3.6:61.3(原子%比)),而相接於透光性基板的表面,並以厚度3nm來加以形成。具體而言,係將透光性基板設置在片葉式RF濺鍍裝置內,並使用HfO2靶材,藉由以氬氣(Ar)為濺鍍氣體之濺鍍(RF濺鍍)來形成蝕刻阻止膜。又, 在此蝕刻阻止膜中,存在於此膜中的鉿與鋁為化學計量上穩定的氧化物狀態時之組成比係Hf:Al:O=30.7:3.2:66.1(原子%比)。亦即,此蝕刻阻止膜2中,OR:OI=61.3:66.1(原子%比),由此所計算出之氧缺損率[%]係7.26。又,此蝕刻阻止膜的Hf/[Hf+Al]係0.91。又,此蝕刻阻止膜在波長193nm的光線中之折射率n為2.908,消光係數k為0.309。
在以該相位轉移量測量裝置來測量其他透光性基板所形成之蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率時,以透光性基板的穿透率為100%時之穿透率為83.4%。以該相位轉移量測量裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻阻止膜在波長(193nm)的ArF準分子雷射中之穿透率時,以透光性基板的穿透率為100%時之穿透率為89.2%。將形成有該蝕刻阻止膜之透光性基板測量進行10次以實施例1所述之SC-1洗淨的洗淨工序後之蝕刻阻止膜的減膜量時,為0.20nm。
針對其他透光性基板所形成之蝕刻阻止膜,進行將SF6與He之混合氣體用於蝕刻氣體的乾蝕刻,而測量蝕刻阻止膜之減膜量時,為0.60nm,而無法忽視此影響。
[相位轉移遮罩之製造]
接著,使用此比較例2之遮罩基底並以與實施例1相同的順序來製作比較例2之相位轉移遮罩。針對比較例2之半色調式相位轉移遮罩,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。驗證此模擬的曝光轉印像時,並無法滿足設計式樣。其主要原因是起因於蝕刻阻止膜的穿透率較低而導致解析度降低。由此結果看來,在將比較例2之相位轉移遮罩裝設在曝光裝置的遮罩台來曝光轉印在半導體 元件上的阻劑膜之情況,可預料到最終被形成於半導體元件上之電路圖案會常常發生電路圖案的斷線或短路。
1:透光性基板
2:蝕刻阻止膜
3:相位轉移膜(圖案形成用薄膜)
4:遮光膜
5:硬遮罩膜
100:遮罩基底

Claims (21)

  1. 一種遮罩基底,係具備在透光性基板上依序層積有蝕刻阻止膜與圖案形成用之薄膜的構造之遮罩基底;
    該薄膜係由含矽材料所構成;
    該蝕刻阻止膜係由含有鉿、鋁及氧的材料所構成;
    該蝕刻阻止膜之氧缺損率為6.4%以下。
  2. 如申請專利範圍第1項之遮罩基底,其中該蝕刻阻止膜之該鉿含量相對於該鉿與該鋁的總計含量之原子%比率為0.85以下。
  3. 如申請專利範圍第1或2項之遮罩基底,其中該蝕刻阻止膜之該鉿含量相對於該鉿與該鋁的總計含量之原子%比率為0.60以上。
  4. 如申請專利範圍第1或2項之遮罩基底,其中該蝕刻阻止膜係具有包含鉿及氧之鍵結與鋁及氧之鍵結的狀態的非晶構造。
  5. 如申請專利範圍第1或2項之遮罩基底,其中該蝕刻阻止膜係由鉿、鋁及氧所構成。
  6. 如申請專利範圍第1或2項之遮罩基底,其中該蝕刻阻止膜係相接於該透光性基板之主表面來加以形成。
  7. 如申請專利範圍第1或2項之遮罩基底,其中該蝕刻阻止膜之厚度係2nm以上。
  8. 如申請專利範圍第1或2項之遮罩基底,其中該薄膜係相位轉移膜,該相位轉移膜係具有讓相對於穿透該相位轉移膜之曝光光線而使在空氣中通過與該相位轉移膜之厚度相同距離的曝光光線之間會產生150度以上,200度以下的相位差之功能。
  9. 如申請專利範圍第8項之遮罩基底,其中在該相位轉移膜上具備有遮光膜。
  10. 如申請專利範圍第9項之遮罩基底,其中該遮光膜係由含鉻材料所構成。
  11. 一種轉印用遮罩,係具備在透光性基板上依序層積有蝕刻阻止膜與具有轉印圖案之薄膜的構造之轉印用遮罩;
    該薄膜係由含矽材料所構成;
    該蝕刻阻止膜係由含有鉿、鋁及氧的材料所構成;
    該蝕刻阻止膜之氧缺損率為6.4%以下。
  12. 如申請專利範圍第11項之轉印用遮罩,其中該蝕刻阻止膜之該鉿含量相對於該鉿與該鋁的總計含量之原子%比率為0.85以下。
  13. 如申請專利範圍第11或12項之轉印用遮罩,其中該蝕刻阻止膜之該鉿含量相對於該鉿與該鋁的總計含量之原子%比率為0.60以上。
  14. 如申請專利範圍第11或12項之轉印用遮罩,其中該蝕刻阻止膜係具有包含鉿及氧之鍵結與鋁及氧之鍵結的狀態的非晶構造。
  15. 如申請專利範圍第11或12項之轉印用遮罩,其中該蝕刻阻止膜係由鉿、鋁及氧所構成。
  16. 如申請專利範圍第11或12項之轉印用遮罩,其中該蝕刻阻止膜係相接於該透光性基板之主表面來加以形成。
  17. 如申請專利範圍第11或12項之轉印用遮罩,其中該蝕刻阻止膜之厚度係2nm以上。
  18. 如申請專利範圍第11或12項之轉印用遮罩,其中該薄膜係相位轉移膜,該相位轉移膜係具有讓相對於穿透該相位轉移膜之曝光光線而使在空氣中通過與該相位轉移膜之厚度相同距離的曝光光線之間會產生150度以上,200度以下的相位差之功能。
  19. 如申請專利範圍第18項之轉印用遮罩,其中在該相位轉移膜上具備具有包含遮光帶之遮光帶圖案的遮光膜。
  20. 如申請專利範圍第19項之轉印用遮罩,其中該遮光膜係由含鉻材料所構成。
  21. 一種半導體元件之製造方法,係具備使用如申請專利範圍第11至20項中任一項之轉印用遮罩,來將轉印用遮罩上之圖案曝光轉印於半導體基板上之阻劑膜的工序。
TW108133948A 2018-09-27 2019-09-20 遮罩基底、轉印用遮罩以及半導體元件之製造方法 TWI797383B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018181764 2018-09-27
JP2018-181764 2018-09-27

Publications (2)

Publication Number Publication Date
TW202028876A TW202028876A (zh) 2020-08-01
TWI797383B true TWI797383B (zh) 2023-04-01

Family

ID=69952084

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133948A TWI797383B (zh) 2018-09-27 2019-09-20 遮罩基底、轉印用遮罩以及半導體元件之製造方法

Country Status (7)

Country Link
US (1) US20220043335A1 (zh)
JP (1) JP6821865B2 (zh)
KR (1) KR20210062012A (zh)
CN (1) CN112740106A (zh)
SG (1) SG11202102270QA (zh)
TW (1) TWI797383B (zh)
WO (1) WO2020066591A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059890A1 (ja) * 2019-09-25 2021-04-01 Hoya株式会社 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
TWI833171B (zh) * 2021-03-29 2024-02-21 日商Hoya股份有限公司 光罩基底、光罩之製造方法及顯示裝置之製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134686A (ja) * 1991-04-25 1993-05-28 Nelson Ind Inc 多チヤネル能動音響減衰システム
JPH08297358A (ja) * 1995-04-25 1996-11-12 Dainippon Printing Co Ltd 位相シフトフォトマスクの製造方法
JP2006114896A (ja) * 2004-10-14 2006-04-27 Samsung Electronics Co Ltd 半導体装置の製造方法、湿式エッチングに対する耐性を有するエッチング阻止層の形成方法、及び半導体装置
TW201447473A (zh) * 2013-05-23 2014-12-16 Hoya Corp 遮罩基底及轉印用遮罩以及該等製造方法
JP2014239191A (ja) * 2013-06-10 2014-12-18 富士通セミコンダクター株式会社 半導体装置の製造方法
TW201514613A (zh) * 2013-06-21 2015-04-16 Hoya Corp 遮罩基底用基板、遮罩基底、轉印用遮罩及其等之製造方法以及半導體元件之製造方法
TW201516563A (zh) * 2013-09-10 2015-05-01 Hoya Corp 遮罩基底、轉印用遮罩及轉印用遮罩的製造方法
TW201516560A (zh) * 2013-09-24 2015-05-01 Hoya Corp 遮罩基底、轉印用遮罩及轉印用遮罩之製造方法
JP2017227847A (ja) * 2016-06-24 2017-12-28 アルバック成膜株式会社 フォトマスクブランクおよびフォトマスク、製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3210705B2 (ja) * 1991-11-12 2001-09-17 大日本印刷株式会社 位相シフトフォトマスク
JP3301556B2 (ja) 1993-07-20 2002-07-15 大日本印刷株式会社 位相シフトフォトマスク用ブランク及び位相シフトフォトマスク
US7201947B2 (en) * 2002-09-10 2007-04-10 Headway Technologies, Inc. CPP and MTJ reader design with continuous exchange-coupled free layer
JP4643902B2 (ja) * 2003-12-26 2011-03-02 富士通セミコンダクター株式会社 半導体装置とその製造方法
JP2005208660A (ja) 2004-01-22 2005-08-04 Schott Ag 超高透過率の位相シフト型のマスクブランク
US7141511B2 (en) * 2004-04-27 2006-11-28 Micron Technology Inc. Method and apparatus for fabricating a memory device with a dielectric etch stop layer
JP4590556B2 (ja) * 2005-03-11 2010-12-01 国立大学法人 奈良先端科学技術大学院大学 半導体装置の製造方法
KR100720334B1 (ko) * 2005-05-13 2007-05-21 주식회사 에스앤에스텍 하프톤형 위상반전 블랭크 마스크 및 그 제조방법
JP5032056B2 (ja) * 2005-07-25 2012-09-26 株式会社東芝 不揮発性半導体メモリ装置の製造方法
JP4181195B2 (ja) * 2006-09-14 2008-11-12 株式会社東芝 絶縁膜、およびそれを用いた半導体装置
KR100805018B1 (ko) * 2007-03-23 2008-02-20 주식회사 하이닉스반도체 반도체 소자의 제조 방법
JP4358252B2 (ja) * 2007-03-27 2009-11-04 株式会社東芝 不揮発性半導体メモリのメモリセル
US8283258B2 (en) * 2007-08-16 2012-10-09 Micron Technology, Inc. Selective wet etching of hafnium aluminum oxide films
KR102006586B1 (ko) * 2010-08-06 2019-08-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9646829B2 (en) * 2011-03-04 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8691681B2 (en) * 2012-01-04 2014-04-08 United Microelectronics Corp. Semiconductor device having a metal gate and fabricating method thereof
WO2016147518A1 (ja) * 2015-03-19 2016-09-22 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
JP6573806B2 (ja) * 2015-08-31 2019-09-11 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP3210705U (ja) 2017-03-21 2017-06-01 怡利電子工業股▲ふん▼有限公司 狭隅角拡散片ヘッドアップディスプレイデバイス

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134686A (ja) * 1991-04-25 1993-05-28 Nelson Ind Inc 多チヤネル能動音響減衰システム
JPH08297358A (ja) * 1995-04-25 1996-11-12 Dainippon Printing Co Ltd 位相シフトフォトマスクの製造方法
JP2006114896A (ja) * 2004-10-14 2006-04-27 Samsung Electronics Co Ltd 半導体装置の製造方法、湿式エッチングに対する耐性を有するエッチング阻止層の形成方法、及び半導体装置
TW201447473A (zh) * 2013-05-23 2014-12-16 Hoya Corp 遮罩基底及轉印用遮罩以及該等製造方法
JP2014239191A (ja) * 2013-06-10 2014-12-18 富士通セミコンダクター株式会社 半導体装置の製造方法
TW201514613A (zh) * 2013-06-21 2015-04-16 Hoya Corp 遮罩基底用基板、遮罩基底、轉印用遮罩及其等之製造方法以及半導體元件之製造方法
TW201732416A (zh) * 2013-06-21 2017-09-16 Hoya Corp 遮罩基底用基板、遮罩基底、轉印用遮罩及其等之製造方法以及半導體元件之製造方法
TW201516563A (zh) * 2013-09-10 2015-05-01 Hoya Corp 遮罩基底、轉印用遮罩及轉印用遮罩的製造方法
TW201516560A (zh) * 2013-09-24 2015-05-01 Hoya Corp 遮罩基底、轉印用遮罩及轉印用遮罩之製造方法
TW201738653A (zh) * 2013-09-24 2017-11-01 Hoya Corp 遮罩基底、轉印用遮罩、轉印用遮罩之製造方法以及半導體元件之製造方法
JP2017227847A (ja) * 2016-06-24 2017-12-28 アルバック成膜株式会社 フォトマスクブランクおよびフォトマスク、製造方法

Also Published As

Publication number Publication date
SG11202102270QA (en) 2021-04-29
JP6821865B2 (ja) 2021-01-27
KR20210062012A (ko) 2021-05-28
WO2020066591A1 (ja) 2020-04-02
CN112740106A (zh) 2021-04-30
JPWO2020066591A1 (ja) 2021-02-15
TW202028876A (zh) 2020-08-01
US20220043335A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP6297734B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP6599281B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
TWI651583B (zh) 光罩基底、光罩基底之製造方法、相移光罩、相移光罩之製造方法、及半導體裝置之製造方法
WO2011108470A1 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法
TWI683174B (zh) 遮罩基底、相位轉移遮罩、相位轉移遮罩之製造方法及半導體元件之製造方法
WO2017029981A1 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP6545795B2 (ja) マスクブランク、転写用マスク、マスクブランクの製造方法、転写用マスクの製造方法および半導体デバイスの製造方法
JP6573806B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6321265B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
WO2018056033A1 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
JP6430155B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
WO2019102990A1 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP2018116269A (ja) 表示装置製造用の位相シフトマスクブランク、表示装置製造用の位相シフトマスクの製造方法、並びに表示装置の製造方法
WO2020179463A1 (ja) マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
TWI797383B (zh) 遮罩基底、轉印用遮罩以及半導體元件之製造方法
WO2019188397A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
TWI801663B (zh) 遮罩基底、轉印用遮罩及半導體元件之製造方法
JP6896694B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
TW202326280A (zh) 光罩基底、相移光罩及半導體裝置之製造方法
TW202125093A (zh) 遮罩基底、相移遮罩及半導體元件之製造方法