TWI801663B - 遮罩基底、轉印用遮罩及半導體元件之製造方法 - Google Patents

遮罩基底、轉印用遮罩及半導體元件之製造方法 Download PDF

Info

Publication number
TWI801663B
TWI801663B TW108133521A TW108133521A TWI801663B TW I801663 B TWI801663 B TW I801663B TW 108133521 A TW108133521 A TW 108133521A TW 108133521 A TW108133521 A TW 108133521A TW I801663 B TWI801663 B TW I801663B
Authority
TW
Taiwan
Prior art keywords
film
mask
light
phase shift
pattern
Prior art date
Application number
TW108133521A
Other languages
English (en)
Other versions
TW202028875A (zh
Inventor
大久保亮
前田仁
穐山圭司
野澤順
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW202028875A publication Critical patent/TW202028875A/zh
Application granted granted Critical
Publication of TWI801663B publication Critical patent/TWI801663B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/34Phase-edge PSM, e.g. chromeless PSM; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本發明係提供一種具有蝕刻停止膜之遮罩基底,該蝕刻停止膜會相對於在將圖案形成用薄膜予以圖案化之際所使用的氟系氣體所致之乾蝕刻而具有高耐受性,且進一步地相對於曝光光線而具有高透光率。
一種遮罩基底,係具有於透光性基板上依序層積有蝕刻停止膜與圖案形成用薄膜之構造;薄膜係由含矽材料所形成;蝕刻停止膜係由含有鉿、鋁及氧之材料所形成;蝕刻停止膜中,鉿含量相對於鉿及鋁的總含量之原子%的比率為0.86以下。

Description

遮罩基底、轉印用遮罩及半導體元件之製造方法
本發明係關於一種遮罩基底、使用該遮罩基底所製造之轉印用遮罩。又,本發明係關於一種使用上述轉印用遮罩之半導體元件的製造方法。
一般來說,在半導體元件之製造工序中會使用光微影法來進行微細圖案的形成。此圖案形成通常係使用多片轉印用遮罩,尤其在形成微細圖案的情況,大多是使用相移遮罩,其係利用相位差來提高以解析度為代表的轉印性能。又,使半導體元件的圖案微細化時,除了相移遮罩所代表之轉印用遮罩的改良、改善以外,亦必須使光微影中所使用之曝光光源的波長變短。因此,在半導體元件的製造之際所使用之曝光光源近年來從KrF準分子雷射(波長248nm)演進為ArF準分子雷射(波長193nm)來讓波長縮短。
作為轉印用遮罩之一樣態,已知有一種具有透光性基板與矽系材料所構成的圖案形成用薄膜之遮罩。矽系材料所構成的圖案形成用薄膜一般來說係藉由以氟系氣體作為蝕刻氣體之乾蝕刻來形成薄膜圖案。但矽系材料所構成的圖案形成用薄膜與玻璃材料所構成的基板之間,使用氟系氣體之乾蝕刻的蝕刻選擇性並不太高。專利文獻1中,係使相對於氟系氣體的乾蝕刻而耐受性較高之材料(即Al2O3等)所構成的蝕刻停止膜介設在基板與相移膜之間。藉由上述般之構成,則藉由使用氟系氣體之乾蝕刻來於相移膜形成相移圖案時,便可抑制基板表面的挖掘。又,專利文獻2中,由於Al2O3膜缺乏化學穩定性而會簡單地溶解於光罩洗淨製程所使用的酸,故會將氧化鉿使用於蝕刻停止膜的材料。另外,專利文獻3係於基板表面設置有Al2O3與MgO、ZrO、Ta2O3或HfO的混合物所構成之蝕刻停止膜。
[先前技術文獻] [專利文獻]
專利文獻1:日本特開2005-208660號公報
專利文獻2:日本特開平7-36176號公報
專利文獻3:日本專利第3210705號公報
氧化鉿膜相對於曝光光線之透光率係較氧化矽膜或氧化鋁膜要來得低。尤其是氧化鉿膜相對於ArF準分子雷射(波長:約193nm)的曝光光線(以下稱作ArF曝光光線。)之透光率較低,若將氧化鉿使用於ArF曝光光線所被應用之轉印用遮罩的蝕刻停止膜之情況,則必須使曝光光線的光量較多,而在半導體元件之製造中,會有導致曝光轉印工序的產能降低之問題。
氧化鋁膜相對於ArF曝光光線之透光率係較氧化鉿膜要來得高很多。又,氧化鋁膜相對於使用氟系氣體之乾蝕刻的蝕刻耐受性亦較高。因此,過去被認為氧化鉿與氧化鋁的混合物所構成之蝕刻停止膜可同時達成相對於使用氟系氣體之乾蝕刻而具有高蝕刻耐受性與相對於ArF曝光光線而具有高透光率。但已被證實氧化鉿與氧化鋁的混合物所構成之蝕刻停止膜依混合比率而有相對於ArF曝光光線之透光率會較氧化鉿膜變得更低之問題。
本發明係為了解決上述過往課題而完成的發明。亦即,其目的為提供一種在具有於透光性基板上依序層積有蝕刻停止膜與圖案形成用薄膜的構造之遮罩基底中,會具有下述蝕刻停止膜之遮罩基底,該蝕刻停止膜係相對於在將圖案形成用薄膜予以圖案化之際所使用的氟系氣體所致之乾蝕刻而具有高耐受性,且進一步地相對於曝光光線而具有高透光率。又,其目的為提供一種使用該遮罩基底所製造之轉印用遮罩。此外,本發明之目的為提供一種使用上述般轉印用遮罩之半導體元件的製造方法。
為達成上述課題,本發明係具有以下構成。
(構成1)
一種遮罩基底,係具有於透光性基板上依序層積有蝕刻停止膜與圖案形成用薄膜之構造;該薄膜係由含矽材料所形成;該蝕刻停止膜係由含有鉿、鋁及氧之材料所形成;該蝕刻停止膜中,該鉿含量相對於該鉿及該鋁的總含量之原子%的比率為0.86以下。
(構成2)
如構成1之遮罩基底,其中該蝕刻停止膜中,該鉿含量相對於該鉿及該鋁的總含量之原子%的比率為0.60以上。
(構成3)
如構成1或2之遮罩基底,其中該蝕刻停止膜的氧含量為60原子%以上。
(構成4)
如構成1至3中任一遮罩基底,其中該蝕刻停止膜係具有包含有鉿及氧的鍵結與鋁及氧的鍵結之狀態的非晶質構造。
(構成5)
如構成1至4中任一遮罩基底,其中該蝕刻停止膜係由鉿、鋁及氧所形成。
(構成6)
如構成1至5中任一遮罩基底,其中該蝕刻停止膜係相接於該透光性基板的主表面所形成。
(構成7)
如構成1至6中任一遮罩基底,其中該蝕刻停止膜的厚度為2nm以上。
(構成8)
如構成1至7中任一遮罩基底,其中該薄膜為相移膜,係具有會使穿透該相移膜之曝光光線,而與在空氣中通過和該相移膜的厚度相同距離之曝光光線之間產生150度以上210度以下的相位差之功能。
(構成9)
如構成8之遮罩基底,其係於該相移膜上具有遮光膜。
(構成10)
如構成9之遮罩基底,其中該遮光膜係由含鉻材料所形成。
(構成11)
一種轉印用遮罩,係具有於透光性基板上依序層積有蝕刻停止膜與具轉印圖案的薄膜之構造;該薄膜係由含矽材料所形成;該蝕刻停止膜係由含有鉿、鋁及氧之材料所形成;該蝕刻停止膜中,該鉿含量相對於該鉿及該鋁的總含量之原子%的比率為0.86以下。
(構成12)
如構成11之轉印用遮罩,其中該蝕刻停止膜中,該鉿含量相對於該鉿及該鋁的總含量之原子%的比率為0.60以上。
(構成13)
如構成11或12之轉印用遮罩,其中該蝕刻停止膜的氧含量為60原子%以上。
(構成14)
如構成11至13中任一轉印用遮罩,其中該蝕刻停止膜係具有包含有鉿及氧的鍵結與鋁及氧的鍵結之狀態的非晶質構造。
(構成15)
如構成11至14中任一轉印用遮罩,其中該蝕刻停止膜係由鉿、鋁及氧所形成。
(構成16)
如構成11至15中任一轉印用遮罩,其中該蝕刻停止膜係相接於該透光性基板的主表面所形成。
(構成17)
如構成11至16中任一轉印用遮罩,其中該蝕刻停止膜的厚度為2nm以上。
(構成18)
如構成11至17中任一轉印用遮罩,其中該薄膜為相移膜,該相移膜係具有會使穿透該相移膜之曝光光線,而與在空氣中通過和該相移膜的厚度相同距離之曝光光線之間產生150度以上210度以下的相位差之功能。
(構成19)
如構成18之轉印用遮罩,其係於該相移膜上具備有具有含遮光帶的遮光圖案之遮光膜。
(構成20)
如構成19之轉印用遮罩,其中該遮光膜係由含鉻材料所形成。
(構成21)
一種半導體元件之製造方法,具有以下工序:使用如構成11至20中任一轉印用遮罩,來將轉印用遮罩上的圖案曝光轉印在半導體基板上的阻劑膜。
本發明之遮罩基底的特徵係具有於透光性基板上依序層積有蝕刻停止膜與圖案形成用薄膜之構造,薄膜係由含矽材料所構成,蝕刻停止膜係由含有鉿、鋁及氧之材料所構成,蝕刻停止膜中,鉿含量相對於鉿及鋁的總含量之原子%的比率為0.86以下。藉由成為上述般構造的遮罩基底,便可同時滿足蝕刻停止膜會相對於在將圖案形成用薄膜予以圖案化之際所使用的氟系氣體所致之乾蝕刻而具有高耐受性,且進一步地相對於曝光光線而具有高透光率之功能。
1:透光性基板
2:蝕刻停止膜
3:相移膜(圖案形成用薄膜)
3a、3e:相移圖案(轉印圖案)
4:遮光膜
4a、4b、4f:遮光圖案
5、9、11、12:硬遮罩膜
5a、9a、11e、11f、12f:硬遮罩圖案
6a、7b、10a、17f、18e:阻劑圖案
8:遮光膜(圖案形成用薄膜)
8a:遮光圖案(轉印圖案)
100、110、120:遮罩基底
200:轉印用遮罩(相移遮罩)
210:轉印用遮罩(二元式遮罩)
220:轉印用遮罩(CPL遮罩)
圖1係顯示本發明第1實施型態中遮罩基底的構成之剖面圖。
圖2係顯示本發明第1實施型態中轉印用遮罩(相移遮罩)的構成之剖面圖。
圖3係顯示本發明第1實施型態中轉印用遮罩的製造工序之剖面示意圖。
圖4係顯示本發明第2實施型態中遮罩基底的構成之剖面圖。
圖5係顯示本發明第2實施型態中轉印用遮罩(二元式遮罩)的構成之剖面圖。
圖6係顯示本發明第2實施型態中轉印用遮罩的製造工序之剖面示意圖。
圖7係顯示本發明第3實施型態中轉印用遮罩(CPL遮罩)的構成之剖面圖。
圖8係顯示本發明第3實施型態中轉印用遮罩的製造工序之剖面示意圖。
圖9係顯示本發明第3實施型態中相移遮罩的製造工序之剖面示意圖。
圖10係顯示蝕刻停止膜中鉿與鋁的混合比與相對於ArF曝光光線之透光率(ArF透光率)的關係之圖表。
首先敘述直到本發明完成為止的經過。本案發明人係為了解決氧化鉿與氧化鋁的混合物所構成之蝕刻停止膜具有的技術課題而苦心進行研究。結果發現藉由使構成蝕刻停止膜之材料中,鉿(Hf)含量[原子%]相對於鉿(Hf)及鋁(Al)的總含量[原子%]之比率(Hf/[Hf+Al]比率)為0.86以下,則相較於氧化鉿所構成的蝕刻停止膜,便可提高相對於ArF曝光光線之透光率,且提高相對於使用氟系氣體之乾蝕刻的耐受性。
經由以上苦心檢討的結果,為了解決氧化鉿與氧化鋁的混合物所構成之蝕刻停止膜具有的技術課題,本發明之遮罩基底的特徵為具有於透光性基板上依序層積有蝕刻停止膜與圖案形成用薄膜之構造,該薄膜係由含矽材料所構成,該蝕刻停止膜係由含有鉿、鋁及氧之材料所構成,該蝕刻停止膜中,該鉿含量相對於該鉿及該鋁的總含量之原子%的比率為0.86以下。接下來,針對本發明之各實施型態來加以說明。
<第1實施型態>
[遮罩基底與其之製造]
本發明第1實施型態相關之遮罩基底,係將圖案形成用薄膜作為會相對於曝光光線而賦予特定的透光率與相位差之膜的相移膜,會被使用來製造相移遮罩(轉印用遮罩)。圖1係顯示此第1實施型態之遮罩基底的構成。此第1實施型態相關之遮罩基底100係於透光性基板1的主表面上具有蝕刻停止膜2、相移膜(圖案形成用薄膜)3、遮光膜4及硬遮罩膜5。
透光性基板1只要是相對於曝光光線會具有高透光率,則未特別限制。本發明中可使用合成石英玻璃基板或其他各種玻璃基板(例如鹼石灰玻璃、矽酸鋁玻璃等)。該等基板當中又以合成石英玻璃基板在ArF準分子雷射或波長較其要短之區域的透光率較高,故適合作為被使用於高精細轉印圖案的形成之本發明遮罩基底的基板。其中,該等玻璃基板皆是相對於使用氟系氣體之乾蝕刻而容易被蝕刻之材料。因此,在透光性基板1上設置蝕刻停止膜2的意義很大。
蝕刻停止膜2係由含有鉿、鋁及氧之材料所形成。此蝕刻停止膜2在相移遮罩200完成後的階段中,至少在轉印圖案形成區域的整面並未被去除而會殘留(參見圖2)。亦即,為一種相移圖案之未具有相移膜3的區域(即透光部)亦會殘留有蝕刻停止膜2之型態。因此,蝕刻停止膜2較佳宜與透光性基板1之間並未介設有其他膜,而是相接於透光性基板1的主表面來加以形成。
蝕刻停止膜2中,鉿含量相對於鉿及鋁的總含量之原子%比率(以下亦有記載為Hf/[Hf+Al]比率的情況。)較佳為0.86以下。針對這一點,使用圖10來做說明。圖10為顯示蝕刻停止膜中,鉿與鋁的混合比率與相對於ArF曝光光線之透光率(ArF透光率。其為使透光性基板1相對於ArF曝光光線之透光率為100%時的透光率。)的關係之圖表。如同圖所示,本案發明人係針對改變鉿與鋁的混合比率並以2nm或3nm的膜厚而於複數基板上成膜有蝕刻停止膜者,來測量相對於ArF曝光光線之透光率。其結果,鉿含量相對於鉿及鋁的總含量之原子%比率只要是0.86以下,則在任一膜厚的蝕刻停止膜中,透光率皆會較僅由氧化鉿所形成之蝕刻停止膜(圖10中的比率為1.0之情況)要來得高。此外,在任一膜厚中,皆可較僅由氧化鉿所形成之蝕刻停止膜而更為提高相對於氟系氣體之乾蝕刻耐受性。
又,蝕刻停止膜2中的Hf/[Hf+Al]比率更佳為0.80以下。蝕刻停止膜2中的Hf/[Hf+Al]比率再更佳為0.75以下。此情況下,即便是使蝕刻停止膜2的膜厚為3nm,而仍可使相對於ArF曝光光線之透光率為90%以上。
另一方面,由相對於藥液洗淨(尤其是氨水-過氧化氫或TMAH等鹼洗淨)的耐受性之觀點來看,蝕刻停止膜2中的Hf/[Hf+Al]比率較佳為0.40以上。又,由稱作SC-1洗淨之使用氨水、過氧化氫水及去離子水的混合液之藥液洗淨的觀點來看,蝕刻停止膜2中的Hf/[Hf+Al]比率更佳為0.60以上。
蝕刻停止膜2中,鋁及鉿以外之金屬的含量較佳為2原子%以下,更佳為1原子%以下,且利用X射線光電子光譜法來進行組成分析時再更佳為檢測下限值以下。這是因為若蝕刻停止膜2含有鋁及鉿以外的金屬,則會成為使相對於曝光光線之透光率降低的原因之緣故。又,蝕刻停止膜2中,鋁、鉿及氧以外之元素的總含量較佳為5原子%以下,更佳為3原子%以下。換言之,蝕刻停止膜2中,鋁、鉿及氧的總含量較佳為95原子%以上,更佳為97原子%以上。
蝕刻停止膜2可由鉿、鋁及氧構成的材料所形成。鉿、鋁及氧構成的材料係指除了該等構成元素以外,僅包含有當以濺射法來進行成膜之際,會無法避免地被包含於蝕刻停止膜2的元素(氦(He)、氖(Ne)、氬(Ar)、氪(Kr)及氙(Xe)等惰性氣體、氫(H)、碳(C)等)之材料。藉由使蝕刻停止膜2中與鉿或鋁鍵結之其他元素的存在極少,便可大幅地提高蝕刻停止膜2中之鉿及氧的鍵結與鋁及氧的鍵結之比率。藉此,便可更加提高使用氟系氣體的乾蝕刻之蝕刻耐受性,並更加提高相對於藥液洗淨之耐受性,且更加提高相對於曝光光線之透光率。蝕刻停止膜2較佳為非晶質構造。更具體而言,蝕刻停止膜2較佳為包含有鉿及氧的鍵結與鋁及氧的鍵結之狀態的非晶質構造。藉此,便可使蝕刻停止膜2的表面粗糙度良好,且提高相對於曝光光線之透光率。
蝕刻停止膜2雖然相對於曝光光線之透光率愈高者為佳,但蝕刻停止膜2為了亦同時追求在與透光性基板1之間相對於氟系氣體而具有充分的蝕刻選擇性,便會難以使相對於曝光光線之透光率為與透光性基板1相同的透光率(亦即,使透光性基板1(合成石英玻璃)相對於曝光光線的透光率為 100%時,蝕刻停止膜2的透光率會變成小於100%。)。使透光性基板1相對於曝光光線的透光率為100%時,則蝕刻停止膜2的透光率較佳為85%以上,更佳為90%以上。
蝕刻停止膜2的氧含量較佳為60原子%以上,更佳為61.5原子%以上,再更佳為62原子%以上。這是因為為了使相對於曝光光線之透光率成為上述數值以上,而被要求需使蝕刻停止膜2中含有較多的氧之緣故。另一方面,蝕刻停止膜2的氧含量較佳為66原子%以下。
蝕刻停止膜2的厚度較佳為2nm以上。若考慮由遮罩基底來製造轉印用遮罩為止所進行之使用氟系氣體的乾蝕刻所造成之影響,或藥液洗淨所造成之影響,則蝕刻停止膜2的厚度更佳為3nm以上。
蝕刻停止膜2雖是應用相對於曝光光線的透光率較高之材料,但透光率會隨著厚度變厚而降低。又,當蝕刻停止膜2的折射率較形成透光性基板1之材料要高,且蝕刻停止膜2的厚度變得愈厚,則在設計實際形成於相移膜3之遮罩圖案(已施予Bias修正、OPC或SRAF等之圖案)時,對其造成的影響便會變得愈大。若考慮上述因素,則蝕刻停止膜2期望是10nm以下,較佳為8nm以下,更佳為6nm以下。
蝕刻停止膜2相對於ArF準分子雷射的曝光光線之折射率n(以下簡稱作折射率n。)較佳為2.90以下,更佳為2.86以下。這是為了在設計實際形成於相移膜3的遮罩圖案時,能夠減少對其造成的影響之緣故。由於蝕刻停止膜2係由含有鉿與鋁之材料所形成,故無法使其為與透光性基板1相同的折射率n。蝕刻停止膜2的折射率n較佳為2.10以上,更佳為2.20以上。另一方面,蝕刻停止膜2相對於ArF準分子雷射的曝光光線之消光係數k(以下簡稱作消光係數k。)較佳為0.30以下,更佳為0.29以下。這是為了使蝕刻停止膜2相對於曝光光線的透光率較高之緣故。蝕刻停止膜2的消光係數k較佳為0.06以上。
蝕刻停止膜2較佳為厚度方向上之組成的均勻性高(厚度方向上之各構成元素的含量差會收斂在5原子%以內的變化幅度。)。另一方面,蝕刻停止膜2亦可為厚度方向上的組成呈傾斜之膜構造。此情況下,較佳為使蝕刻停止膜2之透光性基板1側的Hf/[Hf+Al]比率較相移膜3側的Hf/[Hf+Al] 比率要來得低之傾斜組成。這是因為蝕刻停止膜2在相移膜3側的部分被優先地期望藥液耐受性較高,另一方面,在透光性基板1側的部分則是被期望相對於曝光光線之透光率較高的緣故。
透光性基板1與蝕刻停止膜2之間亦可介設有其他膜。此情況下,上述其他膜已被要求必須應用較蝕刻停止膜2而相對於曝光光線的透光率較高且折射率n較小之材料。由遮罩基底來製造相移遮罩時,在該相移遮罩中,未具有相移膜3的圖案之區域的透光部會存在有上述其他膜與蝕刻停止膜2的積層構造。這是因為透光部被要求相對於曝光光線需有高透光率,且必須提高該積層構造整體相對於曝光光線的透光率之緣故。上述其他膜的材料舉例有矽與氧所構成的材料,或是使該等含有選自鉿、鋯、鈦、釩及硼之1種以上的元素之材料等。亦可使上述其他膜為含有鉿、鋁及氧之材料,並以Hf/[Hf+Al]比率較蝕刻停止膜2要低之材料來形成。
相移膜3係由含矽材料所構成。
相移膜3較佳為具有能夠使曝光光線以1%以上的透光率穿透之功能(透光率),以及相對於穿透相移膜3之前述曝光光線,會與在空氣中通過與前述相移膜3的厚度相同距離之前述曝光光線之間產生150度以上210度以下的相位差之功能。又,相移膜3的透光率更佳為2%以上。相移膜3的透光率較佳為30%以下,更佳為20%以下。
相移膜3的厚度較佳為80nm以下,更佳為70nm以下。又,為了縮小因上述相移圖案的圖案線寬所導致最佳焦距的變化幅度,則相移膜3的厚度特佳為65nm以下。相移膜3的厚度較佳為50nm以上。這是因為若為了以非晶質的材料來形成相移膜3,同時使相移膜3的相位差為150度以上,則相移膜3的厚度便必須為50nm以上之緣故。
相移膜3中,為了滿足前述光學特性與膜厚相關的諸條件,則相移膜相對於曝光光線(ArF曝光光線)之折射率n較佳為1.9以上,更佳為2.0以上。又,相移膜3的折射率n較佳為3.1以下,更佳為2.7以下。相移膜3相對於ArF曝光光線之消光係數k較佳為0.26以上,更佳為0.29以上。又,相移膜3的消光係數k較佳為0.62以下,更佳為0.54以下。
另一方面,亦有使得相移膜3為層積有1組以上以相對於曝光光線的透光率相對地較低之材料所形成的低透光層與以相對於曝光光線的透光率相對地較高之材料所形成的高透光層之構造的情況。此情況下,低透光層較佳宜由相對於ArF曝光光線的折射率n為小於2.5(較佳為2.4以下,更佳為2.2以下,再更佳為2.0以下),且消光係數k為1.0以上(較佳為1.1以上,更佳為1.4以上,再更佳為1.6以上)之材料所形成。又,高透光層較佳宜由相對於ArF曝光光線的折射率n為2.5以上(較佳為2.6以上),且消光係數k為小於1.0(較佳為0.9以下,更佳為0.7以下,再更佳為0.4以下)之材料所形成。
此外,包含有相移膜3之薄膜的折射率n與消光係數k並非僅依該薄膜的組成而決定。該薄膜的膜密度或結晶狀態等亦為左右折射率n或消光係數k之要素。因此,在反應性濺射中係調整形成薄膜時的諸條件來將該薄膜成膜為所需的折射率n及消光係數k。以反應性濺射來進行成膜之際,雖然調整惰性氣體與反應性氣體(氧氣、氮氣等)之混合氣體的比率對於使相移膜3成為上述折射率n與消光係數k的範圍來說為有效的,但並非僅限於此方法。亦有調整以反應性濺射來進行成膜時的成膜室內壓力、施加在濺射靶材之電功率、或靶材與透光性基板1間的距離等位置關係之多種方法。又,該等成膜條件為成膜裝置所固有的,係被適當地調整為所形成之相移膜3會成為所需的折射率n及消光係數k。
一般來說,含矽材料所構成的相移膜3係經由使用氟系氣體之乾蝕刻而被圖案化。玻璃材料所構成的透光性基板1在使用氟系氣體之乾蝕刻中容易被蝕刻,尤其相對於含有碳之氟系氣體的耐受性較低。因此,將相移膜3圖案化之際,大多是應用以不含碳的氟系氣體(SF6等)來作為蝕刻氣體之乾蝕刻。但以阻劑圖案等蝕刻遮罩圖案來作為遮罩並藉由使用氟系氣體之乾蝕刻來將相移膜3圖案化時,若在最先到達相移膜3下端的階段(將此稱作最佳蝕刻,並將從蝕刻開始到最佳蝕刻的階段所需之時間稱作最佳蝕刻時間。)便停止乾蝕刻,則相移圖案之側壁的垂直性會較低,而對作為相移遮罩之曝光轉印性能會造成影響。又,形成於相移膜3之圖案會在遮罩基底的面內具有疏密差,而導致乾蝕刻的進行在圖案較密之部分會變慢。
基於上述該等情事,在相移膜3之乾蝕刻時,即使已到達最佳蝕刻的階段,仍會持續進行追加蝕刻(過蝕刻),來提高相移圖案之側壁的垂直性,以提高面內之相移圖案的CD均勻性(將從最佳蝕刻結束到過蝕刻結束之時間稱作過蝕刻時間。)。當透光性基板1與相移膜3之間未有蝕刻停止膜2的情況,若對相移膜3進行過蝕刻,由於蝕刻在相移膜3的圖案側壁進行的同時,蝕刻亦會在透光性基板1的表面進行,故便無法進行太長時間的過蝕刻(透光性基板從表面被挖掘4nm左右之程度便停止。),而對於提高相移圖案的垂直性來說有其極限。
為了更加提高相移圖案之側壁的垂直性,會進行使得相移膜3之乾蝕刻時所施加的偏壓較過去要來得高(以下稱作「高偏壓蝕刻」。)。在此高偏壓蝕刻中,會有發生相移圖案之側壁附近的透光性基板1被局部地蝕刻而被挖掘之現象,即所謂的微小溝槽之問題。此微小溝槽的發生被認為是因為對透光性基板1施加偏壓而產生的蓄電,導致離子化後的蝕刻氣體相較於透光性基板1而會繞到電阻值較低之相移圖案的側壁側之緣故。
由於此第1實施型態之蝕刻停止膜2係由含有鉿、鋁及氧之材料所形成,且Hf/[Hf+Al]比率為0.86以下,故即便是對相移膜3進行過蝕刻,而仍不會發生蝕刻停止膜2消失般的情況,且亦可抑制容易因高偏壓蝕刻而產生的微小溝槽。
相移膜3可由含有矽及氮之材料所形成。藉由使矽含有氮,便可使折射率n較僅由矽所構成的材料要來得大(能夠以較薄的厚度來獲得大相位差。),且使消光係數k較僅由矽所構成的材料要來得小(可提高透光率。),從而可獲得作為相移膜之較佳的光學特性。
相移膜3可由矽及氮所構成的材料,或是選自類金屬元素、非金屬元素及惰性氣體之1種以上的元素與矽及氮所構成的材料(以下,將該等材料總稱為「氮化矽系材料」。)所形成。亦可使氮化矽系材料的相移膜3包含有任一種金屬元素。此類金屬元素當中,若使其含有選自硼、鍺、銻及碲之一種以上的元素,當以濺射法來成膜出相移膜3時,由於可期待能夠提升作為靶材所使用之矽的導電性,故較佳。
亦可使氮化矽系材料的相移膜3含有氦(He)、氖(Ne)、氬(Ar)、氪(Kr)及氙(Xe)等惰性氣體。亦可使氮化矽系材料的相移膜3含有氧。含有氧之氮化矽系材料的相移膜3會容易同時發揮相對於ArF準分子雷射的曝光光線而具有20%以上的透光率之功能,與具有上述範圍的相位差之功能。
氮化矽系材料的相移膜3除了無法避免氧化之表層(氧化層)以外,可由單層所構成,或是由複數層的積層所構成。複數層之積層構造的相移膜3之情況,亦可使其為於氮化矽系材料(SiN、SiON等)的層組合有氧化矽系材料(SiO2等)的層之積層構造。
氮化矽系材料的相移膜3雖係藉由濺射所形成,但亦可應用DC濺射、RF濺射及離子束濺射等濺射。在使用導電性較低的靶材(不含矽靶材、類金屬元素或含量較少的矽化合物靶材等)之情況中,雖然較佳為應用RF濺射或離子束濺射,但若考慮成膜率,則更佳為應用RF濺射。
EB缺陷修正之蝕刻終點的檢測係藉由在對黑缺陷照射電子線時,會檢測從受到照射的部分所釋放出之歐傑電子、2次電子、特性X射線、背向散射電子的至少任一者來進行。例如,在檢測從受到電子線的照射之部分所釋放出的歐傑電子之情況,主要是藉由歐傑電子光譜法(AES)來觀看材料組成的變化。又,在檢測2次電子之情況,主要是由SEM像來觀看表面形狀的變化。另外,在檢測特性X射線之情況,主要是藉由能量分散型X射線光譜法(EDX)或波長分散X射線光譜法(WDX)來觀看材料組成的變化。在檢測背向散射電子之情況,主要是藉由電子線背向散射繞射法(EBSD)來觀看材料的組成或結晶狀態的變化。
相接於玻璃材料所構成之透光性基板1的主表面而設置有矽系材料的相移膜(可為單層膜或多層膜)3所構成之遮罩基底中,相對於相移膜3大部分的成分為矽、氮及氧,而透光性基板1大部分的成分則為矽與氧,兩者的差異很小。因此,EB缺陷修正之蝕刻終點的檢測便為很困難的組合。相對於此,相接於蝕刻停止膜2的表面而設置有相移膜3之構成的情況,相對於相移膜3大部分的成分為矽與氮,而蝕刻停止膜2則是包含有鉿、鋁及氧。因此,在EB缺陷修正的蝕刻終點,只要以鋁或鉿的檢測為基準即可,終點檢測會變得較為容易。
另一方面,相移膜3可由含有過渡金屬、矽及氮之材料所形成。此情況之過渡金屬舉例有鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)、鉻(Cr)、鎳(Ni)、釩(V)、鋯(Zr)、釕(Ru)、銠(Rh)、鋅(Zn)、鈮(Nb)及鈀(Pd)等當中之任一者以上的金屬或該等金屬的合金。相移膜3的材料除了前述元素以外,亦可包含有氮(N)、氧(O)、碳(C)、氫(H)及硼(B)等元素。又,相移膜3的材料亦可包含有氦(He)、氬(Ar)、氪(Kr)及氙(Xe)等非活性氣體。若考慮EB缺陷修正之蝕刻終點的檢測,則較佳宜使該相移膜3不含鋁及鉿。
相移膜3已被要求為將膜中之過渡金屬(M)的含量[原子%]除以過渡金屬(M)與矽(Si)的總含量[原子%]所計算出之比率(以下稱作M/[M+Si]比率。)需在0.15以下。此相移膜3隨著過渡金屬的含量變多,雖然不含碳之氟系氣體(SF6等)所致乾蝕刻的蝕刻率會變快,而與透光性基板1之間會變得容易獲得蝕刻選擇性,但仍難以謂言此已足夠。又,若相移膜3的M/[M+Si]比率較上述要更多,則為了獲得所需透光率,便必須使其含有很多氧,而有相移膜3的厚度變厚之虞,並不佳。
另一方面,相移膜3中的M/[M+Si]比率較佳為0.01以上。這是因為由遮罩基底100來製作相移遮罩200之際,當將電子線照射與利用XeF2等非激發氣體之缺陷修正應用在相移膜3的圖案所存在之黑缺陷時,則相移膜3的片電阻較低者為佳之緣故。
另一方面,藉由相接於透光性基板1的主表面而設置有蝕刻停止膜2,且相接於蝕刻停止膜2的上面而設置有相移膜3,並進一步地調整蝕刻停止膜2與相移膜3的條件,便可提高(例如20%以上)相對於ArF曝光光線之內面反射率(相對於從透光性基板1側所入射的ArF曝光光線之反射率。)。例如,調整為以下的條件即可。使得蝕刻停止膜2相對於ArF曝光光線的折射率n為2.3以上2.9以下,消光係數k為0.06以上0.30以下,膜厚為2nm以上6nm以下。當相移膜3為單層構造的情況則為其整體,為2層以上之構造的情況則是相接於蝕刻停止膜2一側的層,係使得相對於ArF曝光光線之折射率n為2.0以上3.1以下,消光係數k為0.26以上0.54以下,膜厚為50nm以上。又,亦可使得蝕刻停止膜2中的Hf/[Hf+Al]比率為0.50以上0.86以下,氧含量為61.5原子%以上,膜厚為2nm以上6nm以下。
具有上述構成之遮罩基底100相對於ArF曝光光線的內面反射率會較過去變得更高。由此遮罩基底100所製造之相移遮罩200可降低將該相移遮罩200安裝在曝光裝置,且從透光性基板1側來照射ArF曝光光線時所產生之相移膜3的發熱而導致的溫度上升。藉此,便可抑制因相移膜3的熱傳導至蝕刻停止膜2及透光性基板1,導致蝕刻停止膜2及透光性基板1發生熱膨脹,而讓相移膜3的圖案移動之現象。又,可提高相移膜3相對於ArF曝光光線的照射之耐受性(ArF耐光性)。
遮光膜4可應用單層構造及2層以上的積層構造之任一者。又,單層構造的遮光膜及2層以上的積層構造之遮光膜的各層可為在膜或層的厚度方向上呈大致相同的組成之構成,或是在層的厚度方向上呈傾斜的組成之構成。
圖1所記載之遮罩基底100係於相移膜3並未介設有其他膜而層積有遮光膜4之構成。此構成之情況的遮光膜4中,必須應用會相對於在相移膜3形成圖案之際所使用的蝕刻氣體而具有充分的蝕刻選擇性之材料。
此情況之遮光膜4較佳宜由含鉻材料所形成。形成遮光膜4之含鉻材料除了鉻金屬以外,舉例有於鉻(Cr)含有選自氧(O)、氮(N)、碳(C)、硼(B)及氟(F)之1種以上的元素之材料。
此外,本發明之遮罩基底並未侷限於圖1所示者,而亦可為相移膜3與遮光膜4之間介設有其他膜(蝕刻遮罩兼停止膜)之構成。此情況下較佳為以前述含鉻材料來形成蝕刻遮罩兼停止膜,且以含矽材料來形成遮光膜4之構成。
可使形成遮光膜4之含矽材料含有過渡金屬,或是含有過渡金屬以外的金屬元素。這是因為形成於遮光膜4之圖案基本上為外周區域的遮光帶圖案,相較於轉印用圖案區域,ArF曝光光線的累積照射量較少,或是於此外周區域配置有微細圖案之情況較為稀少,則縱使ArF耐光性較差,而仍不易產生實質的問題之緣故。又,這是因為若使遮光膜4含有過渡金屬,則相較於未含有的情況,可大幅地提升遮光性能且使遮光膜4的厚度較薄之緣故。被包含於遮光膜4之過渡金屬舉例有鉬(Mo)、鉭(Ta)、鎢(W)、鈦 (Ti)、鉻(Cr)、鉿(Hf)、鎳(Ni)、釩(V)、鋯(Zr)、釕(Ru)、銠(Rh)、鈮(Nb)、鈀(Pd)等任一金屬或該等金屬的合金。
遮光膜4在相移遮罩200的完成後,會以和相移膜3之積層構造而形成有遮光帶等。因此,遮光膜4在與相移膜3之積層構造中,便被要求須確保大於2.0的光學濃度(OD),較佳為2.8以上的OD,更佳為3.0以上的OD。
本實施型態中,遮光膜4上所層積之硬遮罩膜5係由會相對於蝕刻遮光膜4時所使用的蝕刻氣體而具有蝕刻選擇性之材料所形成。藉此,如以下所述,便可使阻劑膜的厚度較直接使用阻劑膜來作為遮光膜4的遮罩之情況要大幅地變薄。
由於遮光膜4如以上所述,必須確保特定光學濃度來具有充分的遮光功能,故其厚度的減少有所極限。另一方面,硬遮罩膜5則是只要具有下述膜厚便足夠,故基本上並未受到光學面的限制,該膜厚係直到於其正下方的遮光膜4形成圖案之乾蝕刻結束為止的期間,能夠發揮作為蝕刻遮罩之功能。因此,便可使硬遮罩膜5的厚度較遮光膜4的厚度要大幅地變薄。此外,由於有機系材料的阻劑膜只要在直到於此硬遮罩膜5形成圖案之乾蝕刻結束為止的期間,能夠發揮作為蝕刻遮罩之功能便足夠,故可使阻劑膜的厚度較直接使用阻劑膜來作為遮光膜4的遮罩之情況要大幅地變薄。如此般地,由於可使阻劑膜薄膜化,故可提高阻劑解析度,且可防止所形成之圖案的傾倒。
如此般地,雖然較佳為以上述材料來形成遮光膜4上所層積的硬遮罩膜5,但本發明並未限定於此實施型態,遮罩基底100中,亦可不形成硬遮罩膜5,而是在遮光膜4上直接形成阻劑圖案,並以此阻劑圖案作為遮罩來直接進行遮光膜4的蝕刻。
此硬遮罩膜5當遮光膜4是由含鉻材料所形成之情況,則較佳宜由前述含矽材料所形成。此處,由於此情況之硬遮罩膜5會具有與有機系材料之阻劑膜的密著性很低之傾向,故較佳宜對硬遮罩膜5的表面施予HMDS(Hexamethyldisilazane)處理,來提高表面的密著性。此外,此情況之硬遮罩膜5更佳宜由SiO2、SiN、SiON等所形成。
又,當遮光膜4係由含鉻材料所形成之情況,則亦可應用含鉭材料來作為硬遮罩膜5的材料。此情況之含鉭材料除了鉭金屬以外,舉例有使鉭含有選自氮、氧、硼及碳之1種以上的元素之材料等。
遮罩基底100中,較佳宜相接於硬遮罩膜5的表面來形成膜厚為100nm以下之有機系材料的阻劑膜。
蝕刻停止膜2、相移膜3、遮光膜4及硬遮罩膜5雖係藉由濺射所形成,但亦可應用DC濺射、RF濺射及離子束濺射等任一濺射。當使用導電性較低的靶材之情況,雖然較佳為應用RF濺射或離子束濺射,但若考慮成膜率,則更佳為應用RF濺射。
關於蝕刻停止膜2的成膜方法,較佳宜在成膜室內配置有鉿與氧的混合靶材以及鋁與氧的混合靶材之2個靶材,來於透光性基板1上形成蝕刻停止膜2。具體而言,係將透光性基板1配置在成膜室內的基板台,並在氬氣等惰性氣體氛圍(或是氧氣或含有氧之氣體的混合氣體氛圍)下,來對2個靶材分別施加特定電壓(此情況下,較佳為RF電源。)。藉此,電漿化後的惰性氣體粒子便會衝撞2個靶材而分別發生濺射現象,則透光性基板1的表面便會形成有包含有鉿、鋁及氧之蝕刻停止膜2。此外,更佳地,宜將HfO2靶材與Al2O3靶材應用在此情況的2個靶材。
除此之外,亦可僅由鉿、鋁及氧的混合靶材(較佳為HfO2與Al2O3的混合靶材,以下相同。)來形成蝕刻停止膜2。又,亦可使鉿、鋁及氧的混合靶材與鉿靶材,或是鉿及氧的混合靶材與鋁靶材之2個靶材同時放電來形成蝕刻停止膜2。進一步地,亦可在包含有惰性氣體與氧氣或氧的氣體之混合氣體氛圍下,使鉿靶材與鋁靶材之2個靶材同時放電來形成蝕刻停止膜2。
如以上所述,此第1實施型態之遮罩基底100係在透光性基板1與圖案形成用薄膜(即相移膜3)間具備包含有鉿、鋁及氧之蝕刻停止膜2,且蝕刻停止膜2中,鉿含量相對於該鉿及該鋁的總含量之原子%的比率為0.86以下。此外,此蝕刻停止膜2係較氧化鉿所構成的蝕刻停止膜,會同時滿足相對於在相移膜3形成圖案時所進行之使用氟系氣體的乾蝕刻,其耐受性很高,且相對於曝光光線的透光率亦很高之特性。藉此,則藉由使用氟系 氣體之乾蝕刻來於相移膜3形成轉印圖案之際,由於不須挖掘透光性基板1的主表面即可進行過蝕刻,故可提高圖案側壁的垂直性且提高圖案面內的CD均勻性。
另一方面,由此第1實施型態之遮罩基底100來製造轉印用遮罩(相移遮罩)200的情況,由於此蝕刻停止膜2係較傳統蝕刻停止膜,其相對於曝光光線之透光率較高,故可提高相移膜3被去除之區域(即透光部)的透光率。藉此,便可提高穿透蝕刻停止膜2與相移膜3的圖案之曝光光線和僅穿透蝕刻停止膜2之曝光光線間所產生的相移效果。於是,當使用此轉印用遮罩來對半導體基板上的阻劑膜進行曝光轉印時,便可獲得高圖案解析性。
[轉印用遮罩(相移遮罩)與其之製造]
此第1實施型態相關之轉印用遮罩(相移遮罩)200(參見圖2)的特徵為遮罩基底100的蝕刻停止膜2係殘留在透光性基板1之主表面上的整面,且於相移膜3形成有轉印用圖案(相移圖案3a),並於遮光膜4形成有包含有遮光帶之圖案(遮光圖案4b:遮光帶、遮光貼片等)。於遮罩基底100設置有硬遮罩膜5之構成的情況,則在製作此相移遮罩200的中途,硬遮罩膜5會被去除。
亦即,此第1實施型態相關之轉印用遮罩(相移遮罩)200的特徵係具有於透光性基板1的主表面上依序層積有蝕刻停止膜2,以及具有轉印圖案的相移膜(即相移圖案3a)之構造,相移圖案3a係由含矽材料所構成,蝕刻停止膜2係由含有鉿、鋁及氧之材料所構成,且鉿含量相對於鉿及鋁的總含量之原子%的比率為0.86以下。又,此相移遮罩200係於相移圖案3a上具有為遮光膜之遮光圖案4b,該遮光圖案4b係具備包含有遮光帶之圖案。
此第1實施型態相關之相移遮罩的製造方法係使用前述遮罩基底100,其特徵為具有以下工序:藉由乾蝕刻來於遮光膜4形成轉印用圖案之工序;以具有轉印用圖案之遮光膜4作為遮罩,並藉由使用氟系氣體之乾蝕刻來於相移膜3形成轉印用圖案之工序;以及藉由乾蝕刻來於遮光膜4形成包含有遮光帶的圖案(遮光帶、遮光貼片等)之工序。以下,便依據圖3所示之製造工序來加以說明此第1實施型態相關之相移遮罩200的製造方法。此外,此處係針對使用於遮光膜4上層積有硬遮罩膜5的遮罩基底100之相移 遮罩200的製造方法來加以說明。又,係針對將含鉻材料應用於遮光膜4,且將含矽材料應用於硬遮罩膜5之情況來加以說明。
首先,相接於遮罩基底100中的硬遮罩膜5,並藉由旋轉塗佈法來形成阻劑膜。接下來,以電子線來將欲形成於相移膜3之轉印用圖案(相移圖案,即第1圖案)描繪在阻劑膜,並進一步地進行顯影處理等特定處理,來形成具有相移圖案之第1阻劑圖案6a(參見圖3(a))。接著,以第1阻劑圖案6a作為遮罩,並使用氟系氣體來進行乾蝕刻,而於硬遮罩膜5形成第1圖案(硬遮罩圖案5a)(參見圖3(b))。
接下來,在去除阻劑圖案6a後,以硬遮罩圖案5a作為遮罩,並使用氯系氣體與氧氣的混合氣體來進行乾蝕刻,而於遮光膜4形成第1圖案(遮光圖案4a)(參見圖3(c))。接著,以遮光圖案4a作為遮罩,並使用氟系氣體來進行乾蝕刻,而於相移膜3形成第1圖案(相移圖案3a),且同時地亦去除硬遮罩圖案5a(參見圖3(d))。
使用氟系氣體來對此相移膜3進行乾蝕刻之際,為了提高相移圖案3a之圖案側壁的垂直性,又,為了提高相移圖案3a面內的CD均勻性,會進行追加蝕刻(過蝕刻)。在此過蝕刻後,蝕刻停止膜2的表面亦為被微小地蝕刻之程度,且在相移圖案3a的透光部處,透光性基板1的表面並未露出。
接下來,藉由旋轉塗佈法來於遮罩基底100上形成阻劑膜。之後,以電子線來將欲形成於遮光膜4之圖案(遮光圖案,即第2圖案)描繪在阻劑膜,並進一步地進行顯影處理等特定處理,來形成具有遮光圖案之第2阻劑圖案7b(參見圖3(e))。此處,由於第2圖案為較大的圖案,故亦可取代使用電子線之描繪,而藉由產能較高的雷射描繪裝置來進行使用雷射光之曝光描繪。
接著,以第2阻劑圖案7b作為遮罩,並使用氯系氣體與氧氣的混合氣體來進行乾蝕刻,而於遮光膜4形成第2圖案(遮光圖案4b)。進一步地,去除第2阻劑圖案7b並經由洗淨等特定處理來獲得相移遮罩200(參見圖3(f))。在洗淨工序中,雖係使用上述SC-1洗淨,但如後述實施例及比較例所示,會因Hf/[Hf+Al]比率而於蝕刻停止膜2的膜減少量產生差異。
在前述乾蝕刻中所使用之氯系氣體只要是含有氯(Cl),則未特別限制。例如,舉例有Cl2、SiCl2、CHCl3、CH2Cl2、BCl3等。又,由於遮罩基底100係於透光性基板1上具有蝕刻停止膜2,故前述乾蝕刻中所使用之氟系氣體只要是含有氟(F),則未特別限制。例如,舉例有CHF3、CF4、C2F6、C4F8、SF6等。
此第1實施型態之相移遮罩200係使用前述遮罩基底100所製作。蝕刻停止膜2係較氧化鉿所構成的蝕刻停止膜,會同時滿足相對於在相移膜3形成圖案時所進行之使用氟系氣體的乾蝕刻,其耐受性很高,且相對於曝光光線之透光率亦很高之特性。藉此,當藉由使用氟系氣體之乾蝕刻來於相移膜3形成相移圖案(轉印圖案)3a之際,則不須挖掘透光性基板1的主表面即可進行過蝕刻。因此,此第1實施型態之相移遮罩200中,相移圖案3a之側壁的垂直性會較高,且相移圖案3a面內的CD均勻性亦較高。
另一方面,由於此第1實施型態之相移遮罩200的蝕刻停止膜2係較傳統蝕刻停止膜,其相對於曝光光線之透光率較高,故可提高相移膜3被去除之區域(即透光部)的透光率。藉此,便可提高穿透蝕刻停止膜2與相移膜3的圖案之曝光光線和僅穿透蝕刻停止膜2之曝光光線間所產生的相移效果。於是,當使用此相移遮罩200來對半導體基板上的阻劑膜進行曝光轉印時,便可獲得高圖案解析性。
[半導體元件之製造]
第1實施型態之半導體元件之製造方法的特徵為具有以下工序:使用第1實施型態之轉印用遮罩(相移遮罩)200或使用第1實施型態之遮罩基底100所製造之轉印用遮罩(相移遮罩)200來將轉印用圖案曝光轉印在半導體基板上的阻劑膜之工序。第1實施型態之相移遮罩200中,相移圖案3a之側壁的垂直性很高,且相移圖案3a面內的CD均勻性亦很高。因此,若使用第1實施型態之相移遮罩200來曝光轉印在半導體元件上的阻劑膜,便能夠以充分滿足設計式樣之精確度來將圖案形成於半導體元件上的阻劑膜。
又,由於第1實施型態之相移遮罩200的蝕刻停止膜2係較傳統蝕刻停止膜,其相對於曝光光線之透光率較高,故可提高相移膜3被去除之區域(即 透光部)的透光率。藉此,便可提高穿透蝕刻停止膜2與相移膜3的圖案之曝光光線和僅穿透蝕刻停止膜2之曝光光線間所產生的相移效果。因此,當使用此相移遮罩200來對半導體基板上的阻劑膜進行曝光轉印時,便可獲得高圖案解析性。又,當以此阻劑圖案作為遮罩來乾蝕刻被加工膜而形成電路圖案的情況,便能夠以高精確度來形成良率高的電路圖案,而不會有因精確度不足或轉印不良所導致的配線短路或斷線。
<第2實施型態>
[遮罩基底與其之製造]
本發明第2實施型態相關之遮罩基底係使圖案形成用薄膜為具有特定光學濃度的遮光膜,且被使用來製造二元式遮罩(轉印用遮罩)。圖4係顯示此第2實施型態之遮罩基底的構成。此第2實施型態之遮罩基底110係由在透光性基板1上依序層積有蝕刻停止膜2、遮光膜(圖案形成用薄膜)8及硬遮罩膜9之構造所構成。此外,針對與第1實施型態之遮罩基底相同的構成,係使用相同的符號而省略在此處的說明。
遮光膜8為一種當由遮罩基底110來製造二元式遮罩210時會形成有轉印圖案之圖案形成用薄膜。二元式遮罩中,遮光膜8的圖案被要求需有高遮光性能。當僅有遮光膜8時,相對於曝光光線之OD被要求需為2.8以上,更佳為3.0以上的OD。遮光膜8可應用單層構造及2層以上的積層構造之任一者。又,單層構造的遮光膜及2層以上的積層構造之遮光膜的各層可為在膜或層的厚度方向上呈大致相同的組成之構成,或是在層的厚度方向上呈傾斜的組成之構成。
遮光膜8係由可藉由使用氟系氣體之乾蝕刻來將轉印圖案予以圖案化之材料所形成。具有上述般特性之材料除了含矽材料以外,舉例有含有過渡金屬及矽之材料。含有過渡金屬及矽之材料相較於不含過渡金屬之含矽材料,其遮光性能較高,故可使遮光膜8的厚度較薄。被包含於遮光膜8之過渡金屬舉例有鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)、鉻(Cr)、鎳(Ni)、釩(V)、鋯(Zr)、釕(Ru)、銠(Rh)、鈮(Nb)、鈀(Pd)等任一金屬或該等金屬的合金。
以含矽材料來形成遮光膜8之情況,亦可使其含有過渡金屬以外的金屬(錫(Sn)銦(In)、鎵(Ga)等)。其中,若使含矽材料含有鋁及鉿,則會有在與 蝕刻停止膜2之間,使用氟系氣體之乾蝕刻的蝕刻選擇性降低之情況,以及對遮光膜8進行EB缺陷修正時,會不易檢測出蝕刻終點之情況。
遮光膜8可由矽及氮所構成的材料,或選自類金屬元素、非金屬元素及惰性氣體之1種以上的元素與矽及氮構成的材料所形成。此情況之遮光膜8亦可包含有任一種金屬元素。此類金屬元素當中,若使其含有選自硼、鍺、銻及碲之一種以上的元素,當以濺射法來成膜出遮光膜8時,由於可期待能夠提升作為靶材所使用之矽的導電性,故較佳。
當遮光膜8為包含有下層與上層之積層構造的情況,可使下層由矽所構成的材料或於矽包含有選自碳、硼、鍺、銻及碲之1種以上的元素之材料所形成,並使上層由矽與氮所構成的材料或於矽與氮所構成的材料包含有選自類金屬元素、非金屬元素及惰性氣體之1種以上的元素之材料所形成。
形成遮光膜8之材料只要是在不會讓光學濃度大幅降低之範圍,則亦可含有選自氧、氮、碳、硼、氫之1種以上的元素。為了降低遮光膜8之與透光性基板1為相反側的表面相對於曝光光線之反射率,亦可使與該透光性基板1為相反側的表層(當下層與上層之2層構造的情況則為上層。)含有較多的氧或氮。
遮光膜8亦可由含鉭材料所形成。此情況下,遮光膜8的矽含量較佳為5原子%以下,更佳為3原子%以下。該等含鉭材料為一種可藉由使用氟系氣體之乾蝕刻來將轉印圖案予以圖案化之材料。此情況之含鉭材料除了鉭金屬以外,舉例有於鉭包含有選自氮、氧、硼及碳之1種以上的元素之材料等。例如,舉例有Ta、TaN、TaO、TaON、TaBN、TaBO、TaBON、TaCN、TaCO、TaCON、TaBCN、TaBOCN等。
此第2實施型態之遮罩基底中,亦是於遮光膜8上具有硬遮罩膜9。此硬遮罩膜9必須由相對於蝕刻遮光膜8時所使用的蝕刻氣體而具有蝕刻選擇性之材料所形成。藉此,便可較直接使用阻劑膜來作為遮光膜8的遮罩之情況,而讓阻劑膜的厚度大幅地變薄。
此硬遮罩膜9較佳宜由含鉻材料所形成。又,硬遮罩膜9更佳宜由除了鉻以外,亦含有選自氮、氧、碳、氫及硼之1種以上的元素之材料所形 成。硬遮罩膜9亦可由於該等含鉻材料包含有選自銦(In)、錫(Sn)及鉬(Mo)之至少1種以上的金屬元素(以下,將該等金屬元素稱作「銦等金屬元素」。)之材料所形成。
此遮罩基底110中,較佳宜相接於硬遮罩膜9的表面來將有機系材料的阻劑膜形成為100nm以下的膜厚。
如以上所述,此第2實施型態之遮罩基底110係在透光性基板1與圖案形成用薄膜(即遮光膜8)之間具備包含有鉿、鋁及氧之蝕刻停止膜2,此蝕刻停止膜2中,鉿含量相對於鉿及鋁的總含量之原子%的比率為0.86以下。此外,此蝕刻停止膜2係較氧化鉿所構成的蝕刻停止膜,會同時滿足相對於在遮光膜8形成圖案時所進行之使用氟系氣體的乾蝕刻,其耐受性很高,且相對於曝光光線之透光率亦很高之特性。藉此,則藉由使用氟系氣體之乾蝕刻來於遮光膜8形成轉印圖案之際,由於不須挖掘透光性基板1的主表面即可進行過蝕刻,故可提高圖案側壁的垂直性且提高圖案面內的CD均勻性。
另一方面,由此第2實施型態之遮罩基底110來製造轉印用遮罩(二元式遮罩)210的情況,由於此蝕刻停止膜2係較傳統蝕刻停止膜,其相對於曝光光線之透光率較高,故可提高遮光膜8被去除之區域(即透光部)的透光率。藉此,便可提高因遮光膜8的圖案而使得曝光光線被遮蔽之遮光部與能夠讓曝光光線穿透蝕刻停止膜2之透光部間的對比。於是,當使用此轉印用遮罩來對半導體基板上的阻劑膜進行曝光轉印時,便可獲得高圖案解析性。此外,此第2實施型態之遮罩基底110亦可被應用來作為用以製造挖掘雷文生型(Levenson)相移遮罩或CPL(Chromeless Phase Lithography)遮罩之遮罩基底。
[轉印用遮罩與其之製造]
此第2實施型態相關之轉印用遮罩210(參見圖5)的特徵為遮罩基底110的蝕刻停止膜2係殘留在透光性基板1之主表面上的整面,且於遮光膜8形成有轉印圖案(遮光圖案8a)。於遮罩基底110設置有硬遮罩膜9之構成的情況,則在製作此轉印用遮罩210的中途,硬遮罩膜9會被去除。
亦即,此第2實施型態相關之轉印用遮罩210的特徵係具有於透光性基板1上依序層積有蝕刻停止膜2與具有轉印圖案(遮光圖案8a)的遮光膜(即薄膜)之構造,遮光圖案8a係由含矽材料所構成,蝕刻停止膜2係由含有鉿、鋁及氧之材料所構成,此蝕刻停止膜2係包含有鉿含量相對於鉿及鋁的總含量之原子%的比率為0.86以下之矽、鋁及氧。
此第2實施型態相關之轉印用遮罩(二元式遮罩)210之製造方法的特徵係使用前述遮罩基底110,且具有藉由使用氟系氣體之乾蝕刻來於遮光膜8形成轉印用圖案之工序。以下,便依據圖6所示之製造工序,來加以說明此第2實施型態相關之轉印用遮罩210的製造方法。此外,此處係針對轉印用遮罩210的製造方法來加以說明,該轉印用遮罩210係使用於遮光膜8上層積有硬遮罩膜9之遮罩基底110。又,係針對將含有過渡金屬及矽的材料應用於遮光膜8,且將含有鉻的材料應用於硬遮罩膜9之情況來加以說明。
首先,藉由旋轉塗佈法而相接於遮罩基底110中的硬遮罩膜9來形成阻劑膜。接下來,以電子線來將應形成於遮光膜8之轉印圖案(遮光圖案)描繪在阻劑膜,並進一步地進行顯影處理等特定處理,來形成具有遮光圖案之阻劑圖案10a.(參見圖6(a))。接著,以阻劑圖案10a作為遮罩,並使用氯系氣體與氧氣的混合氣體來進行乾蝕刻,而於硬遮罩膜9形成轉印圖案(硬遮罩圖案9a)(參見圖6(b))。
接下來,在去除阻劑圖案10a後,以硬遮罩圖案9a作為遮罩並使用氟氣體來進行乾蝕刻,而於遮光膜8形成轉印圖案(遮光圖案8a)(參見圖6(c))。當藉由氟系氣體來乾蝕刻此遮光膜8之際,為了提高遮光圖案8a之圖案側壁的垂直性,又,為了提高遮光圖案8a面內的CD均勻性,會進行追加蝕刻(過蝕刻)。即便是在此過蝕刻後,蝕刻停止膜2的表面仍為被微小地蝕刻之程度,且即便是在遮光圖案8a的透光部而仍未露出有透光性基板1的表面。
進一步地,以使用氯系氣體與氧氣的混合氣體之乾蝕刻來去除所殘留之硬遮罩圖案9a,並經由洗淨等特定處理來獲得轉印用遮罩210(參見圖6(d))。洗淨工序中,雖係使用上述SC-1洗淨,但如後述實施例及比較例所 示,會因Hf/[Hf+Al]比率而導致蝕刻停止膜2的膜減少量產生差異。此外,在此乾蝕刻中所使用之氯系氣體及氟系氣體係與第1實施型態中所使用者相同。
此第2實施型態之轉印用遮罩210係使用前述遮罩基底100所製作。蝕刻停止膜2係較氧化鉿所構成的蝕刻停止膜,會同時滿足相對於在遮光膜8形成圖案時所進行之使用氟系氣體的乾蝕刻,其耐受性很高,且相對於曝光光線之透光率亦很高之特性。藉此,當藉由使用氟系氣體之乾蝕刻來於遮光膜8形成遮光圖案(轉印圖案)8a之際,則不須挖掘透光性基板1的主表面即可進行過蝕刻。因此,此第2實施型態之轉印用遮罩210中,遮光圖案8a之側壁的垂直性會較高,且遮光圖案8a面內的CD均勻性亦較高。
另一方面,由於此第2實施型態之轉印用遮罩210的蝕刻停止膜2係較傳統蝕刻停止膜,其相對於曝光光線之透光率較高,故可提高遮光膜8被去除之區域(即透光部)的透光率。藉此,便可提高因遮光膜8的圖案而使得曝光光線被遮蔽之遮光部與能夠讓曝光光線穿透蝕刻停止膜2之透光部間的對比。於是,當使用此轉印用遮罩來對半導體基板上的阻劑膜進行曝光轉印時,便可獲得高圖案解析性。
[半導體元件之製造]
第2實施型態之半導體元件之製造方法的特徵係使用第2實施型態之轉印用遮罩210或使用第2實施型態的遮罩基底110所製造之轉印用遮罩210來將轉印用圖案曝光轉印在半導體基板上的阻劑膜。第2實施型態之轉印用遮罩210中,遮光圖案8a之側壁的垂直性較高,且遮光圖案8a面內的CD均勻性亦較高。因此,當使用第2實施型態之轉印用遮罩210來曝光轉印在半導體元件上的阻劑膜,便能夠以充分滿足設計式樣之精確度來將圖案形成於半導體元件上的阻劑膜。
又,第2實施型態之轉印用遮罩210的蝕刻停止膜2係較傳統蝕刻停止膜,其相對於曝光光線之透光率較高,故可提高遮光膜8被去除之區域(即透光部)的透光率。藉此,便可提高因遮光膜8的圖案而使得曝光光線被遮蔽之遮光部與能夠讓曝光光線穿透蝕刻停止膜2之透光部間的對比。於是,當使用此轉印用遮罩210來對半導體基板上的阻劑膜進行曝光轉印時,便 可獲得高圖案解析性。然後,當以此阻劑圖案作為遮罩來乾蝕刻被加工膜而形成電路圖案的情況,便能夠以高精確度來形成良率高的電路圖案,而不會有因精確度不足或轉印不良所導致的配線短路或斷線。
<第3實施型態>
[遮罩基底與其之製造]
本發明第3實施型態相關之遮罩基底120(參見圖7)係在第1實施型態所說明之遮罩基底構造中,於相移膜3與遮光膜4間設置有硬遮罩膜11,且於遮光膜4上設置有硬遮罩膜12。此實施型態中,係使遮光膜4為包含有選自矽及鉭之至少1種以上的元素之膜,且使硬遮罩膜11、12為含有鉻之膜。此第3實施型態相關之遮罩基底120尤其在製造CPL(Chromeless Phase Lithography)遮罩之用途上為佳。此外,此第3實施型態之遮罩基底120為製造CPL遮罩之用途的情況,則相移膜3相對於曝光光線之透光率較佳為90%以上,更佳為92%以上。
此第3實施型態之相移膜3較佳宜由含有矽及氧之材料所形成。此相移膜3中,矽及氧的總含量較佳為95原子%以上。又,此相移膜3中,氧含量較佳為60原子%以上。此相移膜3的厚度較佳為210nm以下,更佳為200nm以下,再更佳為190nm以下。又,此相移膜3的厚度較佳為150nm以上,更佳為160nm以上。此相移膜3相對於ArF曝光光線的折射率n較佳為1.52以上,更佳為1.54以上。又,相移膜3的折射率n較佳為1.68以下,更佳為1.63以下。相移膜3相對於ArF準分子雷射曝光光線的消光係數k較佳為0.02以下,更佳為接近於0。
另一方面,此相移膜3亦可由含有矽、氧及氮之材料所形成。此情況下,相移膜3相對於曝光光線的透光率較佳為70%以上,更佳為80%以上。相移膜3中,矽、氧及氮的總含量較佳為95原子%以上。此相移膜3中,氧含量較佳為40原子%以上。此相移膜3中,氧含量較佳為60原子%以下。此相移膜3中,氮含量較佳為7原子%以上。此相移膜3中,氮含量較佳為20原子%以下。
此情況之相移膜3的厚度較佳為150nm以下,更佳為140nm以下。又,此相移膜3的厚度較佳為100nm以上,更佳為110nm以上。此相移膜3相 對於ArF曝光光線的折射率n較佳為1.70以上,更佳為1.75以上。又,相移膜3的折射率n較佳為2.00以下,更佳為1.95以下。相移膜3相對於ArF準分子雷射曝光光線的消光係數k較佳為0.05以下,更佳為0.03以下。
[轉印用遮罩與其之製造]
此第3實施型態相關之轉印用遮罩220(參見圖8)的特徵係一種CPL遮罩(相移遮罩的一種),且遮罩基底120的蝕刻停止膜2係殘留在透光性基板1之主表面上的整面,相移膜3係形成有相移圖案3e,硬遮罩膜11係形成有硬遮罩圖案11f,遮光膜4係形成有遮光圖案4f。在此轉印用遮罩220的製作中途,硬遮罩膜12會被去除(參見圖9)。
亦即,此第3實施型態相關之轉印用遮罩220係具有於透光性基板1上依序層積有蝕刻停止膜2、相移圖案3e、硬遮罩圖案11f及遮光圖案4f之構造,相移圖案3e係由含有矽及氧之材料所構成,硬遮罩圖案11f係由含鉻材料所構成,遮光膜4係由包含有選自矽及鉭之至少1種以上的元素之材料所構成。
此第3實施型態相關之轉印用遮罩220之製造方法的特徵係使用前述遮罩基底120,且具備有以下工序:藉由使用氯系氣體之乾蝕刻來於硬遮罩膜12形成遮光圖案之工序;以具有遮光圖案之硬遮罩膜(硬遮罩圖案)12f作為遮罩,並藉由使用氟系氣體之乾蝕刻,來於遮光膜4形成遮光圖案4f之工序;藉由使用氯系氣體之乾蝕刻來於硬遮罩膜11形成相移圖案之工序;以具有相移圖案之硬遮罩膜(硬遮罩圖案)11e作為遮罩,並藉由使用氟系氣體之乾蝕刻,來於相移膜3形成相移圖案3e之工序;以及,以遮光圖案4f作為遮罩,並藉由使用氯系氣體之乾蝕刻,來於硬遮罩膜11形成硬遮罩圖案11f之工序(參見圖9)。
以下,便依據圖9所示之製造工序,來加以說明此第3實施型態相關之轉印用遮罩220的製造方法。此外,此處係針對將含矽材料應用於遮光膜4之情況來加以說明。
首先,相接於遮罩基底120中的硬遮罩膜12,而藉由旋轉塗佈法來形成阻劑膜。接下來,以電子線來將欲形成於遮光膜4之遮光圖案描繪在阻劑膜,並進一步地進行顯影處理等特定處理來形成阻劑圖案17f(參見圖9(a))。 接著,以阻劑圖案17f作為遮罩,並使用氯系氣體與氧氣的混合氣體來進行乾蝕刻,而於硬遮罩膜12形成硬遮罩圖案12f(參見圖9(b))。
接下來,在去除阻劑圖案17f後,以硬遮罩圖案12f作為遮罩,並使用CF4等氟系氣體來進行乾蝕刻,而於遮光膜4形成遮光圖案4f(參見圖9(c))。
接著,藉由旋轉塗佈法來形成阻劑膜後,以電子線來將欲形成於相移膜3之相移圖案描繪在阻劑膜,並進行顯影處理等特定處理來形成阻劑圖案18e(參見圖9(d))。
之後,以阻劑圖案18e作為遮罩,並使用氯系氣體與氧氣的混合氣體來進行乾蝕刻,而於硬遮罩膜11形成硬遮罩圖案11e(參見圖9(e))。接著,在去除阻劑圖案18e後,使用CF4等氟系氣體來進行乾蝕刻,而於相移膜3形成相移圖案3e(參見圖9(f))。
接著,以遮光圖案4f作為遮罩,並使用氯系氣體與氧氣的混合氣體來進行乾蝕刻,而形成硬遮罩圖案11f。此時,硬遮罩圖案12f會同時地被去除。
之後,進行洗淨工序,並依需要來進行遮罩缺陷檢查。進一步地,依缺陷檢查的結果而依需要來進行缺陷修正,以製造出轉印用遮罩220。在洗淨工序中,雖係使用SC-1洗淨,但如後述實施例及比較例所示,會依Hf/[Hf+Al]比率而於蝕刻停止膜2的膜減少量產生差異。
此第3實施型態之轉印用遮罩(CPL遮罩)220係使用前述遮罩基底120所製作。因此,此第3實施型態之轉印用遮罩220中,相移圖案3e之側壁的垂直性會較高,相移圖案3e面內的CD均勻性亦較高。相移圖案3e與蝕刻停止膜2的底面所構成之各構造體在面內之高度方向(厚度方向)上的均勻性亦會大幅地提高。因此,此轉印用遮罩220在面內之相移效果的均勻性便會較高。
另一方面,此第3實施型態之CPL遮罩220的蝕刻停止膜2係較傳統蝕刻停止膜,其相對於曝光光線之透光率較高。因此,便可提高殘留有相移膜3之區域(即相位轉移部)與相移膜3被去除之區域(即透光部)的各透光率。藉此,便可提升穿透蝕刻停止膜2與相移膜3的圖案之曝光光線和僅穿透蝕刻停止膜2之曝光光線間所產生的相移效果。於是,當使用此CPL 遮罩220來對半導體基板上的阻劑膜進行曝光轉印時,便可獲得高圖案解析性。
[半導體元件之製造]
第3實施型態之半導體元件的製造方法的特徵係使用第3實施型態之轉印用遮罩(CPL遮罩)220或使用第3實施型態的遮罩基底120所製造之轉印用遮罩(CPL遮罩)220,來將轉印用圖案曝光轉印在半導體基板上的阻劑膜。第3實施型態之轉印用遮罩220中,相移圖案3e之側壁的垂直性較高,且相移圖案3e面內的CD均勻性亦較高。因此,當使用第3實施型態之轉印用遮罩220來曝光轉印在半導體元件上的阻劑膜,便能夠以充分滿足設計式樣之精確度來將圖案形成於半導體元件上的阻劑膜。
又,第3實施型態之轉印用遮罩220的蝕刻停止膜2係較傳統蝕刻停止膜,其相對於曝光光線之透光率較高。因此,可提高相移膜3殘留之區域(即相位轉移部)與相移膜3被去除之區域(即透光部)的各透光率。藉此,便可提升穿透蝕刻停止膜2與相移膜3的圖案之曝光光線,以及僅穿透蝕刻停止膜2之曝光光線間所產生的相移效果。於是,當使用轉印用遮罩220來對半導體基板上的阻劑膜進行曝光轉印時,便可獲得高圖案解析性。又,當以此阻劑圖案作為遮罩來乾蝕刻被加工膜而形成電路圖案的情況,便能夠以高精確度來形成良率高的電路圖案,而不會有因精確度不足或轉印不良所導致的配線短路或斷線。
另一方面,構成本發明之蝕刻停止膜2的材料亦可被應用來作為會構成其他型態之遮罩基底所設置的保護膜之材料,該其他型態之遮罩基底係用以製造以極紫外(Extreme Ultra Violet,以下稱作EUV)光來作為曝光光源之EUV微影用反射型遮罩。亦即,此其他型態之遮罩基底的特徵係具有於基板上依序層積有多層反射膜、保護膜及吸收體膜之構造,該保護膜係由含有鉿、鋁及氧之材料所構成,該保護膜中,該鉿含量相對於該鉿及該鋁的總含量之原子%的比率為0.60以上0.86以下。此外,EUV光係指軟X射線區域或真空紫外光區域之波長帶域的光線,具體而言,係指波長為0.2~100nm左右的光線。
關於此其他型態之遮罩基底之保護膜的構成,可應用上述本發明之蝕刻停止膜2的構成。上述般之保護膜相對於使用氟系氣體之乾蝕刻,以及使用氯系氣體之乾蝕刻皆是具有高耐受性。因此,吸收體膜不僅是含鉭材料,且亦可應用多種材料。前述吸收體膜亦可使用例如含鉻材料、含矽材料及含有過渡金屬之材料中的任一者。
基板可應用合成石英玻璃、石英玻璃、矽酸鋁玻璃、鹼石灰玻璃、低熱膨脹玻璃(SiO2-TiO2玻璃等)、會析出β石英固溶體之結晶化玻璃、單晶矽及SiC等材料。
多層反射膜係以相對於EUV光的折射率較低之低折射率材料所構成的低折射率層與相對於EUV光的折射率較高之高折射率材料所構成的高折射率層之積層來作為1週期,並複數週期地層積有此之多層膜。通常,低折射率層係由輕元素或其化合物所形成,高折射率層係由重元素或其化合物所形成。多層反射膜的週期數較佳為20~60週期,更佳為30~50週期。應用波長13~14nm的EUV光來作為曝光光線之情況,可適當使用交互地層積有20~60週期的Mo層與Si層之多層膜來作為多層反射膜。又,除此之外,可應用於EUV光之多層反射膜舉例有Si/Ru週期多層膜、Be/Mo週期多層膜、Si化合物/Mo化合物週期多層膜、Si/Nb週期多層膜、Si/Mo/Ru週期多層膜、Si/Mo/Ru/Mo週期多層膜及Si/Ru/Mo/Ru週期多層膜等。可對應於所應用之EUV光的波長帶域來適當地選擇材質及各層的膜厚。多層反射膜最好是藉由濺射法(DC濺射法、RF濺射法及離子束濺射法等)來成膜。尤其最好是應用能夠容易控制膜厚之離子束濺射法。
可由此其他型態之遮罩基底來製造反射型遮罩。亦即,此其他型態之反射型遮罩的特徵係具有於基板上依序層積有多層反射膜、保護膜及吸收體膜之構造,該吸收體膜係具有轉印圖案,該保護膜係由含有鉿、鋁及氧之材料所構成,該保護膜中,該鉿含量相對於該鉿及該鋁的總含量之原子%的比率為0.60以上0.86以下。
【實施例】
以下,藉由實施例並一邊參見圖7~圖9,來更加具體地說明本發明之實施型態。
(實施例1)
[遮罩基底之製造]
準備主表面的尺寸為約152mm×約152mm且厚度為約6.35mm之合成石英玻璃所構成的透光性基板1。此透光性基板1為將端面及主表面研磨成特定的表面粗糙度以下(以均方根粗糙度Rq來說為0.2nm以下)後,再施有特定的洗淨處理及乾燥處理者。
接下來,相接於透光性基板1的表面並以3nm的厚度來形成鉿、鋁及氧所構成的蝕刻停止膜2(HfAlO膜)。具體而言,係將透光性基板1設置在單片式RF濺射裝置內,並使Al2O3靶材與HfO2靶材同時放電,而藉由以氬(Ar)氣體作為濺射氣體之濺射(RF濺射)來形成蝕刻停止膜2。針對以相同條件來形成於其他透光性基板上之蝕刻停止膜,以X射線光電子光譜法進行分析後,結果為Hf:Al:O=33.0:5.4:61.6(原子%比)。亦即,此蝕刻停止膜2的Hf/[Hf+Al]為0.86。此外,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量此蝕刻停止膜的各光學特性後,結果為在波長193nm的光線中之折射率n為2.854,消光係數k為0.279。
接下來,相接於蝕刻停止膜2的表面並以177nm的厚度來形成矽及氧所構成的相移膜(SiO2膜)3。具體而言,係將形成有蝕刻停止膜2後的透光性基板1設置在單片式RF濺射裝置內,並使用二氧化矽(SiO2)靶材,而藉由以氬(Ar)氣體作為濺射氣體之反應性濺射(RF濺射)來形成相移膜3。
針對以相同條件來形成於其他透光性基板上並施予加熱處理後的相移膜,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量相移膜的各光學特性後,結果為在波長193nm的光線中之折射率n為1.563,消光係數k為0.000(量測下限)。
接下來,相接於相移膜3的表面並以5nm的厚度來形成鉻及氮所構成的硬遮罩膜(CrN膜)11。具體而言,係將加熱處理後的透光性基板1設置在單片式DC濺射裝置內,並使用鉻(Cr)靶材,而藉由以氬(Ar)、氮(N2)及氦(He)的混合氣體作為濺射氣體之反應性濺射(DC濺射)來形成硬遮罩膜11。針對以相同條件來形成於其他透光性基板上之硬遮罩膜,以X射線光電子光譜法進行分析後,結果為Cr:N=75:25(原子%比)。
接下來,相接於硬遮罩膜11的表面並以48nm的厚度來形成矽及氮所構成的遮光膜(SiN膜)4。具體而言,係將加熱處理後的透光性基板1設置在單片式RF濺射裝置內,並使用矽(Si)靶材,而藉由以氬(Ar)、氮(N2)及氦(He)的混合氣體作為濺射氣體之反應性濺射(RF濺射)來形成遮光膜4。針對以相同條件來形成於其他透光性基板上之遮光膜,以X射線光電子光譜法進行分析後,結果為Si:N:O=75.5:23.2:1.3(原子%比)。此外,相移膜3、硬遮罩膜11及遮光膜4的積層構造中,波長(193nm)的ArF準分子雷射之光學濃度為2.8以上。
接下來,相接於遮光膜4的表面並以5nm的厚度來形成鉻及氮所構成的硬遮罩膜(CrN膜)12。有關硬遮罩膜12的具體構成及製法,係與上述硬遮罩膜11相同。以上述步驟順序來製造實施例1之遮罩基底120。
此外,以前述相位轉移量測定裝置來測量其他透光性基板所形成之膜厚3nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為85.0%,可得知藉由設置有此實施例1之蝕刻停止膜,則所發生之透光率降低的影響會較小。又,以前述相位轉移量測定裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為91.3%。又,針對形成有該蝕刻停止膜之透光性基板,使用稱作SC-1洗淨之氨水、過氧化氫水及去離子水的混合液之洗淨液,來進行下述般之旋轉洗淨。在利用旋轉洗淨法之SC-1洗淨中,首先,將洗淨液滴下在以低速旋轉中之遮罩基底120的旋轉中心部附近,來使洗淨液因旋轉而塗佈擴散並佈滿遮罩基底120的表面整面。之後,直到洗淨結束時間為止會一邊持續供應洗淨液一邊使遮罩基底120以低速旋轉來持續洗淨,在洗淨時間結束後,會供應純水來將洗淨液置換為純水,最後進行旋轉乾燥。測量進行10次此洗淨工序後之蝕刻停止膜的膜減少量後,結果為0.35nm。由上述結果可確認此實施例1之蝕刻停止膜2係相對於由遮罩基底來製造相移遮罩之過程中所進行的藥液洗淨而具有充分的耐受性。
針對其他透光性基板所形成之蝕刻停止膜,將SF6與He的混合氣體使用於蝕刻氣體來進行乾蝕刻,並測量蝕刻停止膜的膜減少量後,結果為0.54nm。
[相移遮罩之製造]
接下來,使用此實施例1之遮罩基底120並以下述步驟順序來製作實施例1之相移遮罩(CPL遮罩)220。首先,藉由旋轉塗佈法而相接於硬遮罩膜12的表面來形成膜厚150nm之電子線描繪用化學增幅型阻劑所構成的阻劑膜。接下來,以電子線來將包含有欲形成於遮光膜4的遮光帶之遮光圖案描繪在此阻劑膜,並進行特定的顯影處理,來形成具有遮光圖案之阻劑圖案17f(參見圖9(a))。
接下來,以阻劑圖案17f作為遮罩,並使用氯與氧的混合氣體(氣體流量比Cl2:O2=4:1)來進行乾蝕刻,而於硬遮罩膜12形成圖案(硬遮罩圖案12f)(參見圖9(b))。接下來,藉由TMAH來去除阻劑圖案17f。接著,以硬遮罩圖案12f作為遮罩,並進行使用氟系氣體(SF6+He)之乾蝕刻,來於遮光膜4形成包含有遮光帶之圖案(遮光圖案4f)(參見圖9(c))。
接下來,藉由旋轉塗佈法來於遮光圖案4f及硬遮罩膜11上形成膜厚80nm之電子線描繪用化學增幅型阻劑所構成的阻劑膜。接下來,將欲形成於相移膜3之圖案(即轉印圖案)描繪在阻劑膜,並進一步地進行顯影處理等特定處理,來形成具有轉印圖案之阻劑圖案18e(參見圖9(d))。
接著,以阻劑圖案18e作為遮罩,並使用氯與氧的混合氣體(氣體流量比Cl2:O2=15:1)來進行乾蝕刻,而於硬遮罩膜11形成轉印圖案(硬遮罩圖案11e)(參見圖9(e))。接下來,藉由TMAH來去除阻劑圖案18e後,以硬遮罩圖案11e作為遮罩,並使用氟系氣體(SF6+He)來進行乾蝕刻,而於相移膜3形成轉印圖案(相移圖案3e)(參見圖9(f))。在此使用氟系氣體之乾蝕刻中,會進行以下蝕刻(過蝕刻),係在相移膜3的蝕刻開始後,蝕刻會在相移膜3的厚度方向上進行,而除了蝕刻停止膜2的表面開始露出為止之蝕刻時間(最佳蝕刻時間)以外,再另外追加該最佳蝕刻時間的20%之時間(過蝕刻時間)。此外,上述使用氟系氣體之乾蝕刻係以25W的電功率來施加偏壓,並以所謂的高偏壓蝕刻條件來進行。
接著,以遮光圖案4f作為遮罩並使用氯與氧的混合氣體(氣體流量比Cl2:O2=4:1)來進行乾蝕刻,而於硬遮罩膜11形成圖案(硬遮罩圖案11f)。此時,硬遮罩圖案12f會同時地被去除。進一步地,經由SC-1洗淨等特定處理來獲得相移遮罩220(參見圖9(g))。
使用其他遮罩基底並以相同的步驟順序來製造相移遮罩,且檢查相移圖案的面內CD均勻性後,為良好的結果。又,以STEM(Scanning Transmission Electron Microscopy)來觀察相移圖案的剖面後,發現相移圖案之側壁的垂直性很高,並且朝蝕刻停止膜之挖掘為小於1nm而非常地微小,且未產生微小溝槽。
針對實施例1之相移遮罩(CPL遮罩)220,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而被曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,發現已充分滿足設計式樣。因設置有蝕刻停止膜2而導致透光部之透光率的降低對於曝光轉印的影響非常微小。由上述結果可確認即便是將實施例1之相移遮罩220安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜,而仍可謂言能夠高精確度地形成最終地被形成於半導體元件上之電路圖案。
(實施例2)
[遮罩基底之製造]
此實施例2之遮罩基底120除了蝕刻停止膜2以外,係與實施例1之遮罩基底相同來加以製造。以下,便針對與實施例1之遮罩基底相異的部分來加以說明。
此實施例2之蝕刻停止膜2係應用由鉿、鋁及氧所構成HfAlO膜(Hf:Al:O=28.7:9.2:62.1(原子%比)),而相接於透光性基板1的表面並以厚度3nm所形成。亦即,此蝕刻停止膜2的Hf/[Hf+Al]為0.75。又,此蝕刻停止膜2在波長193nm的光線中之折射率n為2.642,消光係數k為0.186。
以前述相位轉移量測定裝置來測量其他透光性基板所形成之膜厚3nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為90.1%,可得知藉由設置有此實施例2之蝕刻停止膜,則所發生之透光率降低的影響會較小。以前述相位轉 移量測定裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為93.8%。針對形成有該蝕刻停止膜之透光性基板,來測量進行10次以實施例1所述之利用SC-1洗淨的洗淨工序後之蝕刻停止膜的膜減少量後,結果為0.53nm。由上述結果可確認此實施例2之蝕刻停止膜2係相對於由遮罩基底來製造相移遮罩之過程中所進行的藥液洗淨而具有充分的耐受性。
針對其他透光性基板所形成之蝕刻停止膜,以和實施例1之情況相同條件來進行將SF6與He的混合氣體使用於蝕刻氣體之乾蝕刻,並測量蝕刻停止膜的膜減少量後,結果為0.44nm。
[相移遮罩之製造]
接下來,使用此實施例2之遮罩基底120並以和實施例1相同的步驟順序來製造實施例2之相移遮罩220。使用其他遮罩基底並以相同的步驟順序來製造相移遮罩,且檢查相移圖案的面內CD均勻性後,為良好的結果。又,以STEM來觀察相移圖案的剖面後,發現相移圖案之側壁的垂直性很高,並且朝蝕刻停止膜之挖掘為小於1nm而非常地微小,且未產生微小溝槽。
針對實施例2之相移遮罩(CPL遮罩)220,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而被曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,發現已充分滿足設計式樣。因設置有蝕刻停止膜2而導致透光部之透光率的降低對於曝光轉印的影響非常微小。由上述結果可確認即便是將實施例2之相移遮罩220安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜,而仍可謂言能夠高精確度地形成最終地被形成於半導體元件上之電路圖案。
(實施例3)
[遮罩基底之製造]
此實施例3之遮罩基底120除了蝕刻停止膜2以外,係與實施例1之遮罩基底相同來加以製造。將鉿、鋁及氧所構成HfAlO膜(Hf:Al:O=25.3:12.3:62.4(原子%比))應用在此實施例3之蝕刻停止膜2,而相接於透光性基板1的表面並以厚度3nm所形成。亦即,此蝕刻停止膜2的Hf/[Hf+Al] 為0.67。又,此蝕刻停止膜2在波長193nm的光線中之折射率n為2.438,消光係數k為0.108。
以前述相位轉移量測定裝置來測量其他透光性基板所形成之膜厚3nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為93.4%,可得知藉由設置有此實施例3之蝕刻停止膜,則所發生之透光率降低的影響會較小。以前述相位轉移量測定裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為96.1%。針對形成有該蝕刻停止膜之透光性基板,來測量進行10次以實施例1所述之利用SC-1洗淨的洗淨工序後之蝕刻停止膜的膜減少量後,結果為0.70nm。由上述結果可確認此實施例3之蝕刻停止膜2係相對於由遮罩基底來製造相移遮罩之過程中所進行的藥液洗淨而具有充分的耐受性。
針對其他透光性基板所形成之蝕刻停止膜,以和實施例1之情況相同條件來進行將SF6與He的混合氣體使用於蝕刻氣體之乾蝕刻,並測量蝕刻停止膜的膜減少量後,結果為0.37nm。
[相移遮罩之製造]
接下來,使用此實施例3之遮罩基底120並以和實施例1相同的步驟順序來製造實施例3之相移遮罩220。使用其他遮罩基底並以相同的步驟順序來製造相移遮罩,且檢查相移圖案的面內CD均勻性後,為良好的結果。又,以STEM來觀察相移圖案的剖面後,發現相移圖案之側壁的垂直性很高,並且朝蝕刻停止膜之挖掘為1nm左右而非常地微小,且未產生微小溝槽。
針對實施例3之相移遮罩(CPL遮罩)220,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而被曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,發現已充分滿足設計式樣。因設置有蝕刻停止膜2而導致透光部之透光率的降低對於曝光轉印的影響非常微小。由上述結果可確認即便是將實施例3之相移遮罩220安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜,而仍可謂言能夠高精確度地形成最終地被形成於半導體元件上之電路圖案。
(實施例4)
[遮罩基底之製造]
此實施例4之遮罩基底120除了蝕刻停止膜2以外,係與實施例1之遮罩基底相同來加以製造。此實施例4之蝕刻停止膜2係應用由鉿、鋁及氧所構成HfAlO膜(Hf:Al:O=22.6:14.5:62.9(原子%比)),而相接於透光性基板1的表面並以厚度3nm所形成。亦即,此蝕刻停止膜2的Hf/[Hf+Al]為0.61。又,此蝕刻停止膜2在波長193nm的光線中之折射率n為2.357,消光係數k為0.067。
以前述相位轉移量測定裝置來測量其他透光性基板所形成之膜厚3nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為95.3%,可得知藉由設置有此實施例4之蝕刻停止膜,則所發生之透光率降低的影響會較小。以前述相位轉移量測定裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為97.2%。針對形成有該蝕刻停止膜之透光性基板,來測量進行10次以實施例1所述之利用SC-1洗淨的洗淨工序後之蝕刻停止膜的膜減少量後,結果為0.93nm。由上述結果可確認此實施例4之蝕刻停止膜2係相對於由遮罩基底來製造相移遮罩之過程中所進行的藥液洗淨而具有充分的耐受性。
針對其他透光性基板所形成之蝕刻停止膜,以和實施例1之情況相同條件來進行將SF6與He的混合氣體使用於蝕刻氣體之乾蝕刻,並測量蝕刻停止膜的膜減少量後,結果為0.31nm。
[相移遮罩之製造]
接下來,使用此實施例4之遮罩基底120並以和實施例1相同的步驟順序來製造實施例4之相移遮罩220。使用其他遮罩基底並以相同的步驟順序來製造相移遮罩,且檢查相移圖案的面內CD均勻性後,為良好的結果。又,以STEM來觀察相移圖案的剖面後,發現相移圖案之側壁的垂直性很高,並且朝蝕刻停止膜之挖掘為1nm左右而非常地微小,且未產生微小溝槽。
針對實施例4之相移遮罩(CPL遮罩)220,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而被曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,發現已充分滿足設計式樣。因設置有蝕刻停止膜2而導致透光部之透光率的降低對於曝光轉印的影響非常微小。由上述結果可確認到即便是將實施例4之相移遮罩220安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜,而仍可謂言能夠高精確度地形成最終地被形成於半導體元件上之電路圖案。
(實施例5)
[遮罩基底之製造]
此實施例5之遮罩基底120除了蝕刻停止膜2以外,係與實施例1之遮罩基底相同來加以製造。將鉿、鋁及氧所構成的蝕刻停止膜2(HfAlO膜Hf:Al:O=19.8:16.9:63.3(原子%比))應用在此實施例5之蝕刻停止膜2,而相接於透光性基板1的表面並以厚度3nm所形成。亦即,此蝕刻停止膜2的Hf/[Hf+Al]為0.54。又,此蝕刻停止膜2在波長193nm的光線中之折射率n為2.324,消光係數k為0.069。
以前述相位轉移量測定裝置來測量其他透光性基板所形成之膜厚3nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,使透光性基板的透光率為100%時之透光率為96.3%,可得知藉由設置有此實施例5之蝕刻停止膜,則所發生之透光率降低的影響會較小。以前述相位轉移量測定裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為97.9%。針對形成有該蝕刻停止膜之透光性基板,來測量進行10次以實施例1所述之利用SC-1洗淨的洗淨工序後之蝕刻停止膜的膜減少量後,結果為1.10nm。
針對其他透光性基板所形成之蝕刻停止膜,以和實施例1之情況相同條件來進行將SF6與He的混合氣體使用於蝕刻氣體之乾蝕刻,並測量蝕刻停止膜的膜減少量後,結果為0.27nm。
[轉印用遮罩之製造]
接下來,使用此實施例5之遮罩基底120並以和實施例1相同的步驟順序來製造實施例5之相移遮罩220。
使用其他遮罩基底並以相同的步驟順序來製造相移遮罩,且檢查相移圖案的面內CD均勻性後,為良好的結果。又,以STEM來觀察相移圖案的剖面後,發現相移圖案之側壁的垂直性很高,又,朝蝕刻停止膜之挖掘為1nm左右而非常地微小,且未產生微小溝槽。
針對實施例5之相移遮罩(CPL遮罩)220,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而被曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,發現已充分滿足設計式樣。因設置有蝕刻停止膜2而導致透光部之透光率的降低對於曝光轉印的影響非常微小。由上述結果可確認到即便是將實施例5之相移遮罩220安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜,而仍可謂言能夠高精確度地形成最終地被形成於半導體元件上之電路圖案。
(比較例1)
[遮罩基底之製造]
比較例1之遮罩基底除了蝕刻停止膜以外,係具有與實施例1之遮罩基底相同的構成。此比較例1之蝕刻停止膜係相接於透光性基板的表面,並以3nm的厚度來形成鉿及氧所構成的蝕刻停止膜(HfO膜)。具體而言,係將透光性基板設置在單片式RF濺射裝置內,並使用HfO2靶材,而藉由以氬(Ar)氣體作為濺射氣體之濺射(RF濺射)來形成蝕刻停止膜。針對以相同條件來形成於其他透光性基板上之蝕刻停止膜,藉由X射線光電子光譜法來進行分析後,結果為Hf:Al:O=39.1:0.0:60.9(原子%比)。亦即,此蝕刻停止膜的Hf/[Hf+Al]為1.00。又,此蝕刻停止膜在波長193nm的光線中之折射率n為2.949,消光係數k為0.274。
以前述相位轉移量測定裝置來測量其他透光性基板所形成之蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為84.2%。以前述相位轉移量測定裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為 89.8%。針對形成有該蝕刻停止膜之透光性基板,來測量進行10次以實施例1所述之利用SC-1洗淨的洗淨工序後之蝕刻停止膜的膜減少量後,結果為0.10nm。
針對其他透光性基板所形成之蝕刻停止膜,以和實施例1之情況相同條件來進行將SF6與He的混合氣體使用於蝕刻氣體之乾蝕刻,並測量蝕刻停止膜的膜減少量後,結果為0.66nm,而無法忽視其影響。
[相移遮罩之製造]
接下來,使用此比較例1之遮罩基底並以和實施例1相同的步驟順序來製作比較例1之相移遮罩。針對比較例1之半調式相移遮罩,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而被曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,發現無法滿足設計式樣。其主要原因為蝕刻停止膜的透光率較低而導致解析性降低。基於上述結果,將比較例1之相移遮罩安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜之情況,可預想最終地被形成於半導體元件上之電路圖案會常常發生電路圖案的斷線或短路。
(比較例2)
[遮罩基底之製造]
比較例2之遮罩基底除了蝕刻停止膜以外,係具有與實施例1之遮罩基底相同的構成。此比較例2之蝕刻停止膜係應用由鉿、鋁及氧所構成HfAlO膜(Hf:Al:O=35.0:3.7:61.4(原子%比)),並以3nm的厚度而相接於透光性基板的表面來形成。亦即,此蝕刻停止膜的Hf/[Hf+Al]為0.90。又,此蝕刻停止膜在波長193nm的光線中之折射率n為2.908,消光係數k為0.309。
以前述相位轉移量測定裝置來測量其他透光性基板所形成之蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為83.3%。以前述相位轉移量測定裝置來測量其他透光性基板所形成之膜厚2nm的蝕刻停止膜在波長(193nm)的ArF準分子雷射中之透光率後,結果為使透光性基板的透光率為100%時之透光率為89.2%。針對形成有該蝕刻停止膜之透光性基板,來測量進行10次以實施 例1所述之利用SC-1洗淨的洗淨工序後之蝕刻停止膜的膜減少量後,結果為0.20nm。
針對其他透光性基板所形成之蝕刻停止膜,將SF6與He的混合氣體使用於蝕刻氣體來進行乾蝕刻,並測量蝕刻停止膜的膜減少量後,結果為0.60nm,而無法忽視其影響。
[相移遮罩之製造]
接下來,使用此比較例2之遮罩基底並以和實施例1相同的步驟順序來製作比較例2之相移遮罩。針對比較例2之半調式相移遮罩,使用AIMS193(Carl Zeiss公司製)來進行以波長193nm的曝光光線而被曝光轉印在半導體元件上的阻劑膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,發現無法滿足設計式樣。其主要原因為蝕刻停止膜的透光率較低而導致解析性降低。基於上述結果,將比較例2之相移遮罩安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻劑膜之情況,可預想最終地被形成於半導體元件上之電路圖案會常常發生電路圖案的斷線或短路。
1:透光性基板
2:蝕刻停止膜
3:相移膜(圖案形成用薄膜)
4:遮光膜
5:硬遮罩膜
100:遮罩基底

Claims (21)

  1. 一種遮罩基底,係具有於透光性基板上依序層積有蝕刻停止膜與圖案形成用薄膜之構造;該薄膜係由含矽材料所形成;該蝕刻停止膜係由含有鉿、鋁及氧之材料所形成;該蝕刻停止膜中,該鉿的含量[原子%]相對於該鉿及該鋁的總含量[原子%]之比率為0.86以下。
  2. 如申請專利範圍第1項之遮罩基底,其中該蝕刻停止膜中,該鉿的含量[原子%]相對於該鉿及該鋁的總含量[原子%]之比率為0.60以上。
  3. 如申請專利範圍第1或2項之遮罩基底,其中該蝕刻停止膜的氧含量為60原子%以上。
  4. 如申請專利範圍第1或2項之遮罩基底,其中該蝕刻停止膜係具有包含有鉿及氧的鍵結與鋁及氧的鍵結之狀態的非晶質構造。
  5. 如申請專利範圍第1或2項之遮罩基底,其中該蝕刻停止膜係由鉿、鋁及氧所形成。
  6. 如申請專利範圍第1或2項之遮罩基底,其中該蝕刻停止膜係相接於該透光性基板的主表面所形成。
  7. 如申請專利範圍第1或2項之遮罩基底,其中該蝕刻停止膜的厚度為2nm以上。
  8. 如申請專利範圍第1或2項之遮罩基底,其中該薄膜為相移膜,係具有會使穿透該相移膜之曝光光線,而與在空氣中通過和該相移膜的厚度相同距離之曝光光線之間產生150度以上210度以下的相位差之功能。
  9. 如申請專利範圍第8項之遮罩基底,其係於該相移膜上具有遮光膜。
  10. 如申請專利範圍第9項之遮罩基底,其中該遮光膜係由含鉻材料所形成。
  11. 一種轉印用遮罩,係具有於透光性基板上依序層積有蝕刻停止膜與具轉印圖案的薄膜之構造;該薄膜係由含矽材料所形成;該蝕刻停止膜係由含有鉿、鋁及氧之材料所形成;該蝕刻停止膜中,該鉿的含量[原子%]相對於該鉿及該鋁的總含量[原子%]之比率為0.86以下。
  12. 如申請專利範圍第11項之轉印用遮罩,其中該蝕刻停止膜中,該鉿的含量[原子%]相對於該鉿及該鋁的總含量[原子%]之比率為0.60以上。
  13. 如申請專利範圍第11或12項之轉印用遮罩,其中該蝕刻停止膜的氧含量為60原子%以上。
  14. 如申請專利範圍第11或12項之轉印用遮罩,其中該蝕刻停止膜係具有包含有鉿及氧的鍵結與鋁及氧的鍵結之狀態的非晶質構造。
  15. 如申請專利範圍第11或12項之轉印用遮罩,其中該蝕刻停止膜係由鉿、鋁及氧所形成。
  16. 如申請專利範圍第11或12項之轉印用遮罩,其中該蝕刻停止膜係相接於該透光性基板的主表面所形成。
  17. 如申請專利範圍第11或12項之轉印用遮罩,其中該蝕刻停止膜的厚度為2nm以上。
  18. 如申請專利範圍第11或12項之轉印用遮罩,其中該薄膜為相移膜,該相移膜係具有會使穿透該相移膜之曝光光線,而與在空氣中通過和該相移膜的厚度相同距離之曝光光線之間產生150度以上210度以下的相位差之功能。
  19. 如申請專利範圍第18項之轉印用遮罩,其係於該相移膜上具備有具有含遮光帶的遮光圖案之遮光膜。
  20. 如申請專利範圍第19項之轉印用遮罩,其中該遮光膜係由含鉻材料所形成。
  21. 一種半導體元件之製造方法,具有以下工序:使用如申請專利範圍第11至20項中任一項之轉印用遮罩,來將轉印用遮罩上的圖案曝光轉印在半導體基板上的阻劑膜。
TW108133521A 2018-09-25 2019-09-18 遮罩基底、轉印用遮罩及半導體元件之製造方法 TWI801663B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018178888 2018-09-25
JP2018-178888 2018-09-25

Publications (2)

Publication Number Publication Date
TW202028875A TW202028875A (zh) 2020-08-01
TWI801663B true TWI801663B (zh) 2023-05-11

Family

ID=69949658

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133521A TWI801663B (zh) 2018-09-25 2019-09-18 遮罩基底、轉印用遮罩及半導體元件之製造方法

Country Status (7)

Country Link
US (1) US20220035235A1 (zh)
JP (1) JP6828221B2 (zh)
KR (1) KR20210056343A (zh)
CN (1) CN112740105A (zh)
SG (1) SG11202102268VA (zh)
TW (1) TWI801663B (zh)
WO (1) WO2020066590A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059890A1 (ja) * 2019-09-25 2021-04-01 Hoya株式会社 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP7380522B2 (ja) * 2020-10-30 2023-11-15 信越化学工業株式会社 位相シフトマスクブランク、位相シフトマスクの製造方法、及び位相シフトマスク

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561009A (en) * 1993-07-20 1996-10-01 Dai Nippon Printing Co., Ltd. Blanks for phase shift photomasks, and phase shift photomasks
TW200612484A (en) * 2004-10-14 2006-04-16 Samsung Electronics Co Ltd Etch stop structure and method of manufacture, and semiconductor device and method of manufacture
TW201636727A (zh) * 2014-08-29 2016-10-16 S&S技術股份有限公司 相移空白遮罩及光罩

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201947B2 (en) * 2002-09-10 2007-04-10 Headway Technologies, Inc. CPP and MTJ reader design with continuous exchange-coupled free layer
JP4643902B2 (ja) * 2003-12-26 2011-03-02 富士通セミコンダクター株式会社 半導体装置とその製造方法
JP2005208660A (ja) 2004-01-22 2005-08-04 Schott Ag 超高透過率の位相シフト型のマスクブランク
DE102005042732A1 (de) * 2004-10-14 2006-05-24 Samsung Electronics Co., Ltd., Suwon Verfahren zur Ätzstoppschichtbildung, Halbleiterbauelement und Herstellungsverfahren
KR100720334B1 (ko) * 2005-05-13 2007-05-21 주식회사 에스앤에스텍 하프톤형 위상반전 블랭크 마스크 및 그 제조방법
KR100805018B1 (ko) * 2007-03-23 2008-02-20 주식회사 하이닉스반도체 반도체 소자의 제조 방법
US8283258B2 (en) * 2007-08-16 2012-10-09 Micron Technology, Inc. Selective wet etching of hafnium aluminum oxide films
JP5257256B2 (ja) * 2009-06-11 2013-08-07 信越化学工業株式会社 フォトマスクの製造方法
US8691681B2 (en) * 2012-01-04 2014-04-08 United Microelectronics Corp. Semiconductor device having a metal gate and fabricating method thereof
JP5795992B2 (ja) * 2012-05-16 2015-10-14 信越化学工業株式会社 フォトマスクブランク及びフォトマスクの製造方法
JP5795991B2 (ja) * 2012-05-16 2015-10-14 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法、および位相シフトマスクの製造方法
WO2016147518A1 (ja) * 2015-03-19 2016-09-22 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
JP6573806B2 (ja) * 2015-08-31 2019-09-11 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6621626B2 (ja) * 2015-09-18 2019-12-18 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP6698438B2 (ja) * 2016-06-17 2020-05-27 Hoya株式会社 マスクブランク、転写用マスク、マスクブランクの製造方法、転写用マスクの製造方法および半導体デバイスの製造方法
JP3210705U (ja) 2017-03-21 2017-06-01 怡利電子工業股▲ふん▼有限公司 狭隅角拡散片ヘッドアップディスプレイデバイス
US11314161B2 (en) * 2018-03-14 2022-04-26 Hoya Corporation Mask blank, phase shift mask, and method of manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561009A (en) * 1993-07-20 1996-10-01 Dai Nippon Printing Co., Ltd. Blanks for phase shift photomasks, and phase shift photomasks
TW200612484A (en) * 2004-10-14 2006-04-16 Samsung Electronics Co Ltd Etch stop structure and method of manufacture, and semiconductor device and method of manufacture
TW201636727A (zh) * 2014-08-29 2016-10-16 S&S技術股份有限公司 相移空白遮罩及光罩

Also Published As

Publication number Publication date
WO2020066590A1 (ja) 2020-04-02
JPWO2020066590A1 (ja) 2021-03-11
SG11202102268VA (en) 2021-04-29
CN112740105A (zh) 2021-04-30
US20220035235A1 (en) 2022-02-03
TW202028875A (zh) 2020-08-01
JP6828221B2 (ja) 2021-02-10
KR20210056343A (ko) 2021-05-18

Similar Documents

Publication Publication Date Title
US10606164B2 (en) Mask blank, phase shift mask, and method for manufacturing semiconductor device
KR102205274B1 (ko) 마스크 블랭크, 마스크 블랭크의 제조 방법, 위상 시프트 마스크, 위상 시프트 마스크의 제조 방법, 및 반도체 디바이스의 제조 방법
JP6297734B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
WO2011108470A1 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法
WO2016103843A1 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6058757B1 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6271780B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP6545795B2 (ja) マスクブランク、転写用マスク、マスクブランクの製造方法、転写用マスクの製造方法および半導体デバイスの製造方法
JP6430155B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
CN111344633A (zh) 掩模坯料、相移掩模以及半导体器件的制造方法
TWI801663B (zh) 遮罩基底、轉印用遮罩及半導體元件之製造方法
WO2019188397A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
TWI797383B (zh) 遮罩基底、轉印用遮罩以及半導體元件之製造方法
JP6490786B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP6896694B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
WO2023037731A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
US20230314929A1 (en) Mask blank, phase shift mask, and method of manufacturing semiconductor device
CN117769682A (zh) 掩模坯料、相移掩模的制造方法及半导体器件的制造方法
TW202125093A (zh) 遮罩基底、相移遮罩及半導體元件之製造方法