TW202125093A - 遮罩基底、相移遮罩及半導體元件之製造方法 - Google Patents

遮罩基底、相移遮罩及半導體元件之製造方法 Download PDF

Info

Publication number
TW202125093A
TW202125093A TW109131468A TW109131468A TW202125093A TW 202125093 A TW202125093 A TW 202125093A TW 109131468 A TW109131468 A TW 109131468A TW 109131468 A TW109131468 A TW 109131468A TW 202125093 A TW202125093 A TW 202125093A
Authority
TW
Taiwan
Prior art keywords
phase shift
film
mask
shift film
light
Prior art date
Application number
TW109131468A
Other languages
English (en)
Inventor
宍戶博明
前田仁
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW202125093A publication Critical patent/TW202125093A/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/34Phase-edge PSM, e.g. chromeless PSM; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

本發明提供一種遮罩基底,該遮罩基底係具有可提高相對於ArF準分子雷射的曝光光線之透光率,且在確保所需相位差時可抑制需要的膜厚之相移膜。
一種遮罩基底,係於透光性基板的主表面上具備相移膜之遮罩基底,相移膜係含有矽、氧及氮,相移膜之氮含量[原子%]相對於矽含量[原子%]的比率為0.20以上0.52以下,相移膜之氧含量[原子%]相對於矽含量[原子%]的比率為1.16以上1.70以下,相移膜相對於ArF準分子雷射之曝光光線的波長之折射率n為1.7以上2.0以下,消光係數k為0.05以下。

Description

遮罩基底、相移遮罩及半導體元件之製造方法
本發明係關於一種相移遮罩用的遮罩基底、相移遮罩及半導體元件之製造方法。
半導體元件的製造工序中係使用光微影法來進行微細圖案的形成。又,此微細圖案的形成通常會使用多片轉印用遮罩。使半導體元件的圖案微細化時,除了形成於轉印用遮罩之遮罩圖案的微細化以外,亦必須使光微影中所使用之曝光光源的波長變短。近年來,有愈來愈多將ArF準分子雷射(波長193nm)應用在製造半導體裝置之際的曝光光源之情況。
轉印用遮罩有一種無鉻相移遮罩(CPL遮罩)。CPL遮罩已知有一種於透光性基板上設置有蝕刻停止膜,且於該蝕刻停止膜上設置有含有矽及氧且具有與透光性基板幾乎同等透光率的相移膜之構成。又,CPL遮罩已知有一種在相對於曝光光線為透明的基板設置有凹陷部與非凹陷部,且藉由凹陷部與非凹陷部來構成轉印圖案者。
例如,專利文獻1中揭示一種光學遮罩基底,係於透明基板上依序具備蝕刻停止層、相移層圖案及遮光層圖案,且依序設置有氮化矽膜(Si3N4膜)來作為蝕刻停止層,設置有SiO2膜來作為相移層,並於其上設置有依序層積有氧化鉻膜、金屬鉻膜、氧化鉻膜來作為遮光層之低反射鉻遮光膜。
又,專利文獻2中揭示一種無鉻相移遮罩用光罩基底,係在相對於曝光光線為透明的基板設置有凹陷部以控制所穿透之光的相位之無鉻相移遮罩中包含有膜A,該膜A係以MoSi或MoSi化合物來作為主材料,上述MoSi或MoSi化合物為一種在使用以氟系氣體作為主體的蝕刻氣體之蝕刻製程中,可 將鄰接於該基板凹陷部的部分或基板周邊部所設置的遮光膜加以蝕刻之材料。
[先前技術文獻]
[專利文獻]
專利文獻1:日本特開平7-128839號公報
專利文獻2:日本特開2007-241136號公報
CPL遮罩基本上係構成為在俯視觀看下形成有凹陷部之區域中,僅藉由穿透凹陷部之曝光光線與穿透非凹陷部之曝光光線間所產生的強相移效果來製作出轉印像。凹陷部相對於曝光光線的透光率與非凹陷部相對於曝光光線的透光率之差異愈小,則相移效果便會愈強。又,CPL遮罩的情況,為了提高轉印像的CD均勻性(CD Uniformity),而被期望需減小面內處的凹陷部與非凹陷部間所產生之各相移效果的差異。亦即,被期望需使面內所設置之凹陷部的深度相同。傳統CPL遮罩的凹陷部係藉由以乾蝕刻來將透光性基板挖掘至特定深度而形成。然而,藉由乾蝕刻之蝕刻時間等的控制來使得透光性基板所設置之各凹陷部的深度相同會非常困難。又,亦難以藉由乾蝕刻來使凹陷部的底面為平坦。
因此,為了解決該等問題,而嘗試了介隔著蝕刻停止膜來將矽與氧所構成的相移膜設置在專利文獻1所揭示般之透光性基板上。亦即,係就取代傳統CPL遮罩的凹陷部,而以乾蝕刻來於矽與氧所構成的相移膜形成微細圖案一事做檢討。將ArF準分子雷射光(以下將此稱作ArF曝光光線。)應用在曝光光線之CPL遮罩的情況,為了產生所需相移效果,而被要求矽與氧所構成之相移膜的厚度需至少為170nm以上。挖掘為相同構造體之透光性基板來形成凹陷部的情況,縱使該凹陷部的深度很深,該凹陷部的圖案仍會不易傾倒或不易脫落。相對於此,於蝕刻停止膜上所設置之相移膜來形成微細圖案的情況,由於蝕刻停止膜與相移膜的圖案間之密著性並不是那麼地高,故會有相移膜的圖案容易傾倒或容易脫落之問題。此問題即便是在相接於透光性基板來設置相移膜之情況仍同樣地會發生。
本發明係為了解決既往課題而完成的發明,其目的為提供一種遮罩基底,該遮罩基底係具備有相移膜,該相移膜可提高相對於ArF準分子雷射的曝光 光線之透光率,且在確保期望相位差時可抑制所需的膜厚。又,本發明之目的為提供一種相移遮罩,該相移遮罩係具備有相移膜,該相移膜具有可提高相對於ArF準分子雷射的曝光光線之透光率且在確保所需相位差時可抑制所需的膜厚之轉印圖案。然後,本發明係提供一種使用上述般相移遮罩之半導體元件的製造方法。
本發明係具有以下的構成來作為解決上述課題之方法。
(構成1)
一種遮罩基底,係於透光性基板的主表面上具備相移膜之遮罩基底;
該相移膜係含有矽、氧及氮;
該相移膜之氮含量[原子%]相對於矽含量[原子%]的比率為0.20以上0.52以下;
該相移膜之氧含量[原子%]相對於矽含量[原子%]的比率為1.16以上1.70以下;
該相移膜相對於ArF準分子雷射之曝光光線的波長之折射率n為1.7以上2.0以下;
該相移膜相對於該曝光光線的波長之消光係數k為0.05以下。
(構成2)
如構成1之遮罩基底,其中該相移膜之氮含量[原子%]相對於氧含量[原子%]的比率為0.12以上0.45以下。
(構成3)
如構成1或2之遮罩基底,其中該相移膜的矽含量為30原子%以上。
(構成4)
如構成1至3任一遮罩基底,其中該相移膜係具有會使該曝光光線以70%以上的透光率穿透之功能,以及,使穿透該相移膜之該曝光光線會相對於在空氣中通過與該相移膜的厚度相同距離之曝光光線之間產生150度以上210度以下的相位差之功能。
(構成5)
如構成1至4任一遮罩基底,其中該相移膜的厚度為140nm以下。
(構成6)
如構成1至5任一遮罩基底,其係於該相移膜上具備遮光膜。
(構成7)
一種相移遮罩,係於透光性基板的主表面上具備有具轉印圖案的相移膜之相移遮罩;
該相移膜係含有矽、氧及氮;
該相移膜之氮含量[原子%]相對於矽含量[原子%]的比率為0.20以上0.52以下;
該相移膜之氧含量[原子%]相對於矽含量[原子%]的比率為1.16以上1.70以下;
該相移膜相對於ArF準分子雷射之曝光光線的波長之折射率n為1.7以上2.0以下;
該相移膜相對於該曝光光線的波長之消光係數k為0.05以下。
(構成8)
如構成7之相移遮罩,其中該相移膜之氮含量[原子%]相對於氧含量[原子%]的比率為0.12以上0.45以下。
(構成9)
如構成7或8之相移遮罩,其中該相移膜的矽含量為30原子%以上。
(構成10)
如構成7至9任一相移遮罩,其中該相移膜係具有會使該曝光光線以70%以上的透光率穿透之功能,以及,使穿透該相移膜之該曝光光線會相對於在空氣中通過與該相移膜的厚度相同距離之曝光光線之間產生150度以上210度以下的相位差之功能。
(構成11)
如構成7至10任一相移遮罩,其中該相移膜的厚度為140nm以下。
(構成12)
如構成7至11任一相移遮罩,其係於該相移膜上具備有包含遮光帶的圖案之遮光膜。
(構成13)
一種半導體元件之製造方法,係具有使用如構成12之相移遮罩,來將轉印圖案曝光轉印在半導體基板上的阻膜之工序。
具有以上構成的本發明之遮罩基底係一種於透光性基板的主表面上具備相移膜之遮罩基底,其特徵為該相移膜係含有矽、氧及氮,該相移膜之氮含量[原子%]相對於矽含量[原子%]的比率為0.20以上0.52以下,該相移膜之氧含量[原子%]相對於矽含量[原子%]的比率為1.16以上1.70以下,該相移膜相對於ArF準分子雷射之曝光光線的波長之折射率n為1.7以上2.0以下,該相移膜相對於該曝光光線的波長之消光係數k為0.05以下。因此,便可製造出一種具備有可提高相對於ArF準分子雷射的曝光光線之透光率,且在確保所需相位差時可抑制需要的膜厚並具轉印圖案的相移膜之相移遮罩。進一步地,在使用該相移遮罩之半導體元件的製造中,可精確度良好地來將圖案轉印在半導體元件上的阻膜等。
1:透光性基板
2:相移膜
2a:相移圖案
3:遮光膜
3a、3b:遮光圖案
4:硬遮罩膜
4a:硬遮罩圖案
5a:阻劑圖案
6b:阻劑圖案
100:遮罩基底
200:相移遮罩
圖1為遮罩基底的實施型態之剖面概略圖。
圖2係顯示相移遮罩的製造工序之剖面概略圖。
以下,針對本發明之各實施型態加以說明,首先說明本發明完成的經過。以相移膜來形成CPL遮罩的凹陷部之情況,為了產生強相移效果,而期望該相移膜會相對於ArF曝光光線具有高透光率(例如70%以上)。若只考慮透光率的觀點,則相移膜的材料較佳為與透光性基板相同材料系列的SiO2。但以SiO2所形成之相移膜相對於ArF曝光光線的折射率n很小。為了使該相移膜產生相移效果,便必須使得膜厚大幅地增厚。
在增大相移膜的折射率n之觀點中,較佳宜使矽與氧所構成的相移膜另含有金屬元素。但使相移膜含有金屬元素所伴隨消光係數k的上升程度很大,而難以確保高透光率。另一方面,藉由讓矽與氧所構成的相移膜含有氮(亦即,以主成分為矽、氧及氮之SiON系材料來形成相移膜。)雖不若含有金屬元素 般顯著,但能夠讓該相移膜的折射率n增大。然而,隨著增加相移膜中的氮含量,相移膜的折射率n雖會慢慢地上升,但連動於此而會有相移膜的消光係數k慢慢地降低之傾向。亦即,SiON系材料的相移膜係具有隨著氮含量增加,為了產生強相移效果而使所需的膜厚變薄,但透光率卻會降低之取捨(Trade Off)關係。於是,以SiON系材料來形成相移膜的情況,尋找即便是可讓為了產生強相移效果而使所需的膜厚變薄,而仍能確保相對於ArF曝光光線的高透光率般之氮含量與氧含量的範圍一事便相當重要。
另一方面,由於相移膜較佳為非晶質構造或微晶構造,故一般來說是以濺射法來形成。藉由調整以反應性濺射來形成相移膜時的成膜室內壓力或濺射電壓,便可使相移膜的內部構造成為某種程度疏鬆的狀態(間隙較多的狀態)。藉由使相移膜的內部構造成為疏鬆狀態,便可某種程度地提高相對於曝光光線之透光率。雖然看起來利用上述現象便可抑制因增加SiON系材料膜的氮含量而導致ArF透光率降低,但上述般之SiON系材料膜在以乾蝕刻來形成微細圖案後,圖案的物理耐受性較低,且抗化學藥品性亦較低。故上述般之SiON系材料膜不並適合相移膜。
本案發明人更加苦心進行研究,結果發現了可取代CPL遮罩的凹陷部之適當的相移膜。亦即,該相移膜係由含矽、氮及氧材料所形成。並且,該相移膜之氮含量[原子%]相對於矽含量[原子%]的比率為0.20以上0.52以下,且氮含量[原子%]相對於氧含量[原子%]的比率為1.16以上1.70以下。進一步地,相移膜相對於ArF曝光光線之折射率n為1.7以上2.0以下,且相對於ArF曝光光線之消光係數k為0.05以下。藉由成為上述般之構成,即便是內部構造緻密的相移膜且相對於ArF曝光光線之透光率較高,而仍能以較薄的膜厚來產生強相移效果。
以下,便依據圖式來加以說明上述本發明之詳細構成。此外,各圖式中針對相同的構成要素係賦予相同的符號來進行說明。
<遮罩基底>
本發明之實施型態相關的遮罩基底為用以製造CPL(Chromeless Phase Lithography)遮罩(即無鉻相移遮罩)所使用之遮罩基底。CPL遮罩乃一種在轉 印圖案形成區域內,除了大圖案的區域以外基本上並未設置有遮光膜,而是藉由透光性基板的凹陷部與非凹陷部來構成轉印圖案之型態的相移遮罩。
圖1係顯示遮罩基底之實施型態的概略構成。圖1所示遮罩基底100係於透光性基板1的一主表面上依序層積有相移膜2、遮光膜3及硬遮罩膜4之構成。遮罩基底100亦可為依需要而未設置有硬遮罩膜4之構成。又,遮罩基底100亦可為於硬遮罩膜4上依需要而層積有阻膜之構成。以下,便針對遮罩基底100之主要構成部的細節來加以說明。
[透光性基板]
透光性基板1係由相對於微影中之曝光工序中所使用的曝光光線而穿透性良好之材料所構成。上述般之材料可使用合成石英玻璃、矽酸鋁玻璃、鹼石灰玻璃、低熱膨脹玻璃(SiO2-TiO2玻璃等)、或其他各種玻璃基板。尤其是使用合成石英玻璃之基板,由於相對於ArF準分子雷射光(波長:約193nm)的穿透性很高,故可適當地使用來作為遮罩基底100的透光性基板1。
此外,此處所言之微影中的曝光工序係指使用了利用該遮罩基底100所製作的相移遮罩之微影中的曝光工序,曝光光線只要是未特別說明,則是指ArF準分子雷射光(波長:193nm)。
形成透光性基板1之材料在曝光光線中的折射率較佳為1.5以上1.6以下,更佳為1.52以上1.59以下,再更佳為1.54以上1.58以下。
[相移膜]
相移膜2較佳宜具有能夠讓曝光光線以70%以上的透光率穿透之功能。這是因為能夠讓穿透相移膜2的內部之曝光光線與穿透空氣中之曝光光線之間產生充分的相移效果之緣故。相移膜2更佳宜具有能夠讓曝光光線以75%以上的透光率穿透之功能。又,相移膜2相對於曝光光線之透光率較佳為93%以下,更佳為90%以下。這是為了將相移膜2的膜厚抑制在能夠確保光學性能的適當範圍之緣故。
為了獲得適當的相移效果,較佳宜將相移膜2調整為具有使穿透該相移膜2之曝光光線會相對於在空氣中通過與該相移膜2的厚度相同距離之曝光光線之間產生150度以上210度以下的相位差之功能。相移膜2中的前述相 位差更佳為155度以上,再更佳為160度以上。另一方面,相移膜2中的相位差更佳為200度以下,再更佳為190度以下。
相移膜2整體來說,為了至少滿足上述透光率、相位差之各條件,相對於曝光光線的波長之折射率n(以下簡稱作折射率n。)較佳為1.7以上,更佳為1.75以上。又,相移膜2的折射率n較佳為2.0以下,更佳為1.98以下。相移膜2相對於曝光光線的波長之消光係數k(以下簡稱作消光係數k。)較佳為0.05以下,更佳為0.04以下。又,相移膜2的消光係數k較佳為0.005以上,更佳為0.007以上。此外,相移膜2的折射率n及消光係數k為將相移膜2整體視作光學性為均勻的一層所導出之數值。
包含有相移膜2之薄膜的折射率n與消光係數k並非僅由該薄膜的組成而決定。該薄膜的膜密度或結晶狀態等亦為左右折射率n或消光係數k之要素。於是,便調整以反應性濺射成膜出薄膜時的諸條件來進行成膜,以使該薄膜成為所需的折射率n及消光係數k。使得相移膜2成為上述折射率n與消光係數k的範圍並非僅限於在以反應性濺射來進行成膜之際調整惰性氣體與反應性氣體(氧氣、氮氣等)之混合氣體的比率,而亦有很多種方法,例如,以反應性濺射來成膜之際的成膜室內壓力、施加在濺射靶材之電力、靶材與透光性基板1間的距離等位置關係等。該等成膜條件為成膜裝置所固有的,係將所形成之薄膜適當地調整成所需折射率n及消光係數k。但基於上述理由,而未對相移膜2進行會使得其內部構造成為疏鬆狀態般之過度調整。
為了降低圖案傾倒的發生,相移膜2的膜厚較佳為140nm以下。又,相移膜2的膜厚為了確保會產生所需相位差之功能,較佳為95nm以上,更佳為100nm以上。
相移膜2較佳宜含有矽、氮及氧。相移膜2之矽、氮及氧的總含量較佳為97原子%以上,更佳為98原子%以上,再更佳為99原子%以上。又,利用X射線光電子光譜分析來對相移膜2進行組成分析的情況,金屬元素的含量較佳為未達1原子%,更佳為檢測下限值以下。這是因為若使相移膜2含有金屬元素,則消光係數k便會上升的緣故。
相移膜2較佳宜由矽、氧及氮構成的材料所形成,又,亦可由選自類金屬元素及非金屬元素之1種以上的元素與矽、氧、氮構成的材料所形成。這 是因為類金屬元素與非金屬元素只要是某種程度的含量,則對相移膜2的光學特性所造成之影響便很輕微的緣故。另一方面,相移膜2亦可含有任一種類金屬元素。此類金屬元素當中又以若含有選自硼、鍺、銻及碲之一種以上的元素,則以濺射法來成膜出相移膜2時,由於可期待能夠提高作為靶材而使用之矽的導電性,故較佳。此相移膜2可藉由使用氟系氣體之乾蝕刻來加以圖案化,且相對於後述遮光膜3會具有充分的蝕刻選擇性。
相移膜2的氧含量由提高透光率之觀點來看,較佳為42原子%以上,更佳為43原子%以上。相移膜2的氧含量由抑制折射率n降低之觀點來看,較佳為60原子%以下,更佳為58原子%以下。
又,相移膜2的氮含量由提高折射率n之觀點來看,較佳為6原子%以上,更佳為7原子%以上。相移膜2的氮含量由抑制消光係數k上升之觀點來看,較佳為22原子%以下,更佳為20原子%以下。
又,相移膜2的矽含量由提高物理耐受性之觀點以及提高抗化學藥品性之觀點來看,較佳為30原子%以上,更佳為33原子%以上。相移膜2的矽含量由提高透光率之觀點來看,較佳為40原子%以下,更佳為38原子%以下。
又,相移膜2中的N/Si比率由提高折射率n之觀點來看,較佳為0.20以上,更佳為0.22以上。另一方面,該N/Si比率由抑制消光係數k上升之觀點來看,較佳為0.52以下,更佳為0.51以下。
又,相移膜2中的O/Si比率由提高透光率之觀點來看,較佳為1.16以上,更佳為1.17以上。另一方面,該O/Si比率由抑制折射率n降低之觀點來看,較佳為1.70以下,更佳為1.69以下。
又,相移膜2之氮含量[原子%]相對於氧含量[原子%]的比率(以下稱作N/O比率。)由提高折射率n之觀點來看,較佳為0.12以上,更佳為0.13以上。另一方面,該N/O比率由抑制消光係數k上升之觀點來看,較佳為0.45以下,更佳為0.44以下。
此外,相移膜2較佳為組成呈均勻的單層膜,但並未侷限於此,亦可為由複數層所形成之膜,且亦可為厚度方向上組成呈梯度的構成。
[遮光膜]
遮罩基底100係於相移膜2上具備遮光膜3。一般來說,相移遮罩中,形成有轉印圖案之區域(轉印圖案形成區域)的外周區域會被要求須確保特定值以上的光學濃度(OD),以便使用曝光裝置來曝光轉印在半導體晶圓上的阻膜之際,使阻膜不會因穿透外周區域之曝光光線而受到影響。相移遮罩之外周區域的OD較佳為2.8以上,更佳為3.0以上。如上所述,相移膜2係具有能夠讓曝光光線以70%以上的透光率穿透之功能,但只靠相移膜2會難以確保特定值的光學濃度。因此,在製造遮罩基底100的階段中,為了確保不足的光學濃度便須預先將遮光膜3層積在相移膜2上。藉由上述般遮罩基底100的構成,則在製造相移遮罩200(參照圖2)的中途,只要去除使用相移效果之區域(基本上為轉印圖案形成區域)的遮光膜3,便可製造出已於外周區域確保特定值的光學濃度之相移遮罩200。
遮光膜3亦可應用單層構造及2層以上之層積構造中任一者。又,單層構造之遮光膜3及2層以上的層積構造之遮光膜3的各層可為在膜或層的厚度方向上為大致相同組成之構成,亦可為在層的厚度方向上組成呈梯度之構成。
圖1所記載之實施型態中的遮罩基底100係於相移膜2上並未介設其他膜而層積有遮光膜3之構成。此構成之情況的遮光膜3必須使用會相對於將圖案形成在相移膜2之際所使用的蝕刻氣體,而具有充分的蝕刻選擇性之材料。此情況的遮光膜3較佳宜由含鉻材料所形成。形成遮光膜3之含鉻材料除了鉻金屬以外,舉例有於鉻包含有選自氧、氮、碳、硼及氟的一種以上元素之材料。
一般來說,鉻系材料雖會被氯系氣體與氧氣的混合氣體蝕刻,但鉻金屬相對於此蝕刻氣體的蝕刻率並不太高。若考慮提高相對於氯系氣體與氧氣之混合氣體的蝕刻氣體之蝕刻率這一點,則作為形成遮光膜3之材料較佳為於鉻包含有選自氧、氮、碳、硼及氟的一種以上元素之材料。又,亦可使形成遮光膜3之含鉻材料含有鉬、銦及錫當中一種以上的元素。藉由使遮光膜3含有鉬、銦及錫當中一種以上的元素,便可加速相對於氯系氣體與氧氣的混合氣體之蝕刻率。
此外,本發明之遮罩基底100並未限定於圖1所示者,而亦可構成為於相移膜2與遮光膜3之間介設有其他膜(蝕刻遮罩兼停止膜)。此情況下,較佳宜構成為以前述含鉻材料來形成蝕刻遮罩兼停止膜,而以含矽材料來形成遮光膜3。可使形成遮光膜3之含矽材料包含有過渡金屬,或包含有過渡金屬以外的金屬元素。形成於遮光膜3之圖案基本上為外周區域的遮光帶圖案,這是因為相較於轉印用圖案區域,ArF曝光光線的累積照射量會較少,或於該外周區域配置有微細圖案的情況會很少,即便ArF耐光性較低而仍不易發生實質的問題之緣故。又,這是因為若使遮光膜3含有過渡金屬,則相較於未含有的情況,可大幅提升遮光性能,且可使遮光膜3的厚度較薄之緣故。作為含有於遮光膜3之過渡金屬舉例有鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)、鉻(Cr)、鉿(Hf)、鎳(Ni)、釩(V)、鋯(Zr)、釕(Ru)、銠(Rh)、鈮(Nb)、鈀(Pd)等任一金屬或該等金屬的合金。
另一方面,遮光膜3亦可具備由相移膜2側依序層積有含鉻材料所構成的層以及含有過渡金屬與矽之材料所構成的層之構造。關於此情況下之含鉻材料以及含有過渡金屬與矽之材料的具體事項係與上述遮光膜3的情況相同。
[硬遮罩膜]
硬遮罩膜4係相接地設置於遮光膜3的表面。硬遮罩膜4為一種相對於在蝕刻遮光膜3之際所使用的蝕刻氣體會具有蝕刻耐受性之材料所形成的膜。此硬遮罩膜4只要直到用以於遮光膜3形成圖案之乾蝕刻結束為止的期間,會具有可發揮作為蝕刻遮罩之功能的膜厚即已足夠,基本上並未受到光學特性的限制。於是,便可使硬遮罩膜4的厚度相較於遮光膜3的厚度而大幅地變薄。
該硬遮罩膜4當遮光膜3是由含鉻材料所形成的情況,較佳宜由含矽材料所形成。此外,由於此情況的硬遮罩膜4會具有與有機系材料的阻膜之密著性很低之傾向,故較佳宜對硬遮罩膜4的表面施予HMDS(Hexamethyldisilazane)處理來提高表面的密著性。此外,此情況之硬遮罩膜4更佳宜由SiO2、SiN、SiON等所形成。
又,當遮光膜3是由含鉻材料所形成的情況,則硬遮罩膜4的材料除了前述以外亦可應用含鉭材料。此情況下之含鉭材料除了鉭金屬以外,舉例有使得鉭含有選自氮、氧、硼及碳的一種以上元素之材料等。例如,舉例有Ta、TaN、TaO、TaON、TaBN、TaBO、TaBON、TaCN、TaCO、TaCON、TaBCN、TaBOCN等。又,硬遮罩膜4當遮光膜3是由含矽材料所形成的情況,則較佳宜由前述含鉻材料所形成。
遮罩基底100中,較佳宜相接於硬遮罩膜4的表面而以100nm以下的膜厚來形成有機系材料的阻膜。對應於DRAM hp32nm世代之微細圖案的情況,會有將線寬40nm的SRAF(Sub-Resolution Assist Feature)設置在欲形成於硬遮罩膜4之轉印圖案(相移圖案)的情況。但即便是此情況,由於可使阻劑圖案的剖面深寬比低至1:2.5,故可抑制在阻膜的顯影時、沖洗時等發生阻劑圖案傾倒或脫離。此外,阻膜的膜厚更佳為80nm以下。
[阻膜]
遮罩基底100中,較佳宜相接於硬遮罩膜4的表面而以100nm以下的膜厚來形成有機系材料的阻膜。對應於DRAM hp32nm世代之微細圖案的情況,會有將線寬40nm的SRAF(Sub-Resolution Assist Feature)設置在欲形成於遮光膜3之遮光圖案的情況。但即便是此情況,藉由如上述般地設置有硬遮罩膜4,便可抑制阻膜的膜厚,藉此,便可使得以該阻膜所構成之阻劑圖案的剖面深寬比低至1:2.5。於是,便可抑制在阻膜的顯影時、沖洗時等發生阻劑圖案傾倒或脫離。此外,阻膜的膜厚更佳為80nm以下。阻膜較佳為電子線描繪曝光用的阻劑,進一步地該阻劑更佳為化學增幅型。
[蝕刻停止膜]
雖未圖示,遮罩基底100中,亦可於透光性基板1與相移膜2之間具備蝕刻停止膜。該蝕刻停止膜被要求須相對於將相移膜2圖案化時的乾蝕刻,而與相移膜2之間具有充分的蝕刻選擇性。進一步地,該蝕刻停止膜亦被要求相對於曝光光線須具有高透光率。蝕刻停止膜較佳宜由包含有選自鋁與鉿之1種以上的元素及氧之材料所形成。例如,蝕刻停止膜的材料舉例有含有鋁、矽、氧之材料,或含有鋁、鉿、氧之材料等。特別是,蝕刻停止膜較佳宜由含有鋁、鉿、氧之材料所形成。
為了能夠提高蝕刻停止膜相對於曝光光線之透光率,且提高相對於氟系氣體之乾蝕刻耐受性,鉿含量相對於鉿及鋁的總含量之原子%比率(以下亦有記載為Hf/[Hf+Al]比率的情況。)較佳為0.86以下,更佳為0.80以下,再更佳為0.75以下。
另一方面,由相對於藥液洗淨(特別是,氫氧化銨+過氧化氫+去離子水混合物(APM)或TMAH等鹼洗淨)之耐受性的觀點來看,則蝕刻停止膜的Hf/[Hf+Al]比率較佳為0.40以上。又,由使用被稱作SC-1洗淨之氨水、過氧化氫水及去離子水的混合液之藥液洗淨的觀點來看,則蝕刻停止膜的Hf/[Hf+Al]比率更佳為0.60以上。
蝕刻停止膜較佳宜使鋁及鉿以外的金屬含量為2原子%以下,更佳為1原子%以下,再更佳為利用X射線光電子光譜法來進行組成分析時的檢測下限值以下。這是因為若蝕刻停止膜含有鋁及鉿以外的金屬,便會成為相對於曝光光線之透光率降低的原因之緣故。又,蝕刻停止膜中,鋁、鉿及氧以外之元素的總含量較佳為5原子%以下,更佳為3原子%以下。
蝕刻停止膜可由鉿、鋁及氧構成的材料所形成。鉿、鋁及氧所構成的材料係指除了該等構成元素以外,僅包含有在以濺射法來成膜之際會無法避免地含有於蝕刻停止膜之元素(氦(He),氖(Ne)、氬(Ar)、氪(Kr)及氙(Xe)等惰性氣體、氫(H)、碳(C)等)的材料。藉由讓蝕刻停止膜中與鉿或鋁鍵結之其他元素的存在為極小,便可大幅提高蝕刻停止膜中之鉿與氧的鍵結以及鋁與氧的鍵結之比率。藉此,便可更加提高利用氟系氣體之乾蝕刻的蝕刻耐受性,更加提高相對於藥液洗淨之耐受性,且更加提高相對於曝光光線之透光率。較佳宜使蝕刻停止膜為非晶質構造。更具體而言,蝕刻停止膜較佳為包含有鉿與氧的鍵結以及鋁與氧的鍵結之狀態的非晶質構造。如此便可使蝕刻停止膜的表面粗糙度為良好,且提高相對於曝光光線之透光率。
蝕刻停止膜雖然相對於曝光光線之透光率愈高愈佳,但由於蝕刻停止膜亦同時被要求與透光性基板1之間要相對於氟系氣體而具有充分的蝕刻選擇性,故會難以使得相對於曝光光線之透光率為與透光性基板1相同的透光率(亦即,使得透光性基板1(合成石英玻璃)相對於曝光光線的透光率為100%時之蝕刻停止膜的透光率會變成未達100%。)。使得透光性基板1相對於曝光 光線的透光率為100%時之蝕刻停止膜的透光率較佳為85%以上,更佳為90%以上。
蝕刻停止膜的氧含量較佳為60原子%以上,更佳為61.5原子%以上,再更佳為62原子%以上。使得相對於曝光光線之透光率成為上述數值以上是因為被要求須使蝕刻停止膜中含有很多氧的緣故。另一方面,蝕刻停止膜的氧含量較佳為66原子%以下。
蝕刻停止膜的厚度較佳為2nm以上。若考慮由遮罩基底來製造轉印用遮罩為止所進行之利用氟系氣體的乾蝕刻所造成的影響、藥液洗淨所造成的影響,則蝕刻停止膜的厚度更佳為3nm以上。
蝕刻停止膜雖是應用相對於曝光光線之透光率較高的材料,但透光率會隨著厚度變厚而降低。又,蝕刻停止膜的折射率係較形成透光性基板1之材料要來得高,若蝕刻停止膜的厚度愈厚,則對在設計實際上形成於相移膜2的遮罩圖案(Bias補正或是賦予OPC或SRAF等之圖案)之際所造成的影響便會變大。若考慮這些觀點,則蝕刻停止膜期望為10nm以下,較佳為8nm以下,更佳為6nm以下。
蝕刻停止膜相對於曝光光線之折射率較佳為2.90以下,更佳為2.86以下。這是為了減小對在設計實際上形成於相移膜2的遮罩圖案之際所造成的影響之緣故。蝕刻停止膜由於係由含有鉿與鋁之材料所形成,故無法使其為與透光性基板1相同的折射率n。蝕刻停止膜的折射率較佳為2.10以上,更佳為2.20以上。另一方面,蝕刻停止膜相對於曝光光線之消光係數較佳為0.30以下,更佳為0.29以下。這是為了提高蝕刻停止膜相對於曝光光線的透光率之緣故。蝕刻停止膜的消光係數k較佳為0.06以上。
蝕刻停止膜較佳為在厚度方向上組成的均勻性很高(厚度方向上之各構成元素的含量差異會收斂在5原子%以內的變動幅度。)。另一方面,蝕刻停止膜亦可為組成會在厚度方向呈梯度之膜構造。此情況下,較佳宜使得為蝕刻停止膜之透光性基板1側的Hf/[Hf+Al]比率會低於相移膜2側的Hf/[Hf+Al]比率般之組成梯度。這是因為蝕刻停止膜會被優先期望在相移膜2側的藥液耐受性較高,另一方面,在透光性基板1側則是會被期望相對於曝光光線的透光率較高之緣故。
另一方面,蝕刻停止膜亦可由鋁、矽及氧構成的材料所形成。該蝕刻停止膜較佳宜使鋁以外的金屬含量為2原子%以下,更佳為1原子%以下,再更佳為利用X射線光電子光譜法來進行組成分析時的檢測下限值以下。又,該蝕刻停止膜中,矽、鋁及氧以外之元素的總含量較佳為5原子%以下,更佳為3原子%以下。蝕刻停止膜較佳宜由矽、鋁及氧構成的材料所形成。由矽、鋁及氧構成的材料係指除了該等構成元素以外,僅包含有在以濺射法來成膜之際會無法避免地含有於蝕刻停止膜之元素(氦(He)、氖(Ne)、氬(Ar)、氪(Kr)及氙(Xe)等稀有氣體、氫(H)、碳(C)等)的材料。
該蝕刻停止膜的氧含量較佳為60原子%以上。蝕刻停止膜中,矽(Si)含量[原子%]相對於矽(Si)與鋁(Al)的總含量[原子%]之比率(以下稱作「Si/[Si+Al]比率」。)較佳為4/5以下。該蝕刻停止膜中之Si/[Si+Al]比率更佳為3/4以下,再更佳為2/3以下。該蝕刻停止膜中,矽(Si)及鋁(Al)的Si/[Si+Al]比率較佳為1/5以上。
[遮罩基底的製造步驟順序]
以上構成的遮罩基底100係依下述般之步驟順序所製造。首先,準備透光性基板1。將該透光性基板1的端面及主表面研磨成特定的表面粗糙度(例如一邊為1μm的四角形內側區域內,均方根粗糙度Rq為0.2nm以下),之後再施予特定的洗淨處理及乾燥處理。
接下來,在該透光性基板1上藉由濺射法來成膜出相移膜2。成膜出相移膜2後,以特定的加熱溫度來適當地進行退火處理。接著,藉由濺射法來於相移膜2上成膜出上述遮光膜3。然後,藉由濺射法來於遮光膜3上成膜出上述硬遮罩膜4。利用濺射法之成膜中,係使用以特定的組成比而含有構成上述各膜的材料之濺射靶材及濺射氣體,並進一步地依需要而使用上述惰性氣體與反應性氣體的混合氣體來作為濺射氣體以進行成膜。之後,若該遮罩基底100具有阻膜的情況,則依需要來對硬遮罩膜4的表面施予HMDS(Hexamethyldisilazane)處理。然後,藉由旋轉塗佈法等塗佈法來於經HMDS處理後之硬遮罩膜4的表面上形成阻膜,便完成遮罩基底100。
此外,於遮罩基底100構成上述蝕刻停止膜的情況,較佳宜在成膜出相移膜2前,先將鉿及氧的混合靶材與鋁及氧的混合靶材之2個靶材中的至少 任一者配置在成膜室內,再藉由反應性濺射來於透光性基板1上形成蝕刻停止膜。
<相移遮罩的製造方法>
圖2係顯示由上述實施型態之遮罩基底100所製造之本發明實施型態相關的相移遮罩200與其製造工序。如圖2(g)所示,相移遮罩200的特徵係於遮罩基底100的相移膜2形成有為轉印圖案之相移圖案2a,且於遮光膜3形成有具備有包含遮光帶的圖案之遮光圖案3b。於遮罩基底100設置有硬遮罩膜4之構成的情況,則在該相移遮罩200的製作中途便會將硬遮罩膜4加以去除。
本發明之實施型態相關之相移遮罩200的製造方法係使用前述遮罩基底100,其特徵為具有以下工序:藉由乾蝕刻來於遮光膜3形成轉印圖案之工序、藉由以具有轉印圖案的遮光膜3作為遮罩之乾蝕刻來於相移膜2形成轉印圖案之工序、以及藉由以具有遮光圖案的阻膜(阻劑圖案6b)作為遮罩之乾蝕刻來於遮光膜3形成遮光圖案3b之工序。以下,便依照圖2所示之製造工序來加以說明本發明之相移遮罩200的製造方法。此外,此處係針對使用於遮光膜3上層積有硬遮罩膜4的遮罩基底100之相移遮罩200的製造方法來加以說明。又,係針對將含鉻材料應用在遮光膜3,且將含矽材料應用在硬遮罩膜4之情況來做敘述。
首先,藉由旋轉塗佈法來相接於遮罩基底100中的硬遮罩膜4而形成阻膜。接下來,以電子線來將欲形成於相移膜2之轉印圖案(相移圖案,即第1圖案)曝光描繪在阻膜,進一步地進行顯影處理等特定處理,來形成具有相移圖案之第1阻劑圖案5a(參照圖2(a))。接著,以第1阻劑圖案5a作為遮罩,並使用氟系氣體來進行乾蝕刻,而於硬遮罩膜4形成第1圖案(硬遮罩圖案4a)(參照圖2(b))。
接下來,去除阻劑圖案5a後,以硬遮罩圖案4a作為遮罩,並使用氯系氣體與氧氣的混合氣體來進行乾蝕刻,而於遮光膜3形成第1圖案(遮光圖案3a)(參照圖2(c))。接著,以遮光圖案3a為遮罩,並使用氟系氣體來進行乾蝕刻,而於相移膜2形成第1圖案(相移圖案2a),且去除硬遮罩圖案4a(參照圖2(d))。
接下來,藉由旋轉塗佈法來於遮罩基底100上形成阻膜。接下來,以電子線來將欲形成於遮光膜3之圖案(遮光圖案,即第2圖案)曝光描繪在阻膜,進一步地進行顯影處理等特定處理,而形成具有遮光圖案之第2阻劑圖案6b(參照圖2(e))。接著,以第2阻劑圖案6b作為遮罩,並使用氯系氣體與氧氣的混合氣體來進行乾蝕刻,而於遮光膜3形成第2圖案(遮光圖案3b)(參照圖2(f))。進一步地,去除第2阻劑圖案6b並經過洗淨等特定處理,便獲得了相移遮罩200(參照圖2(g))。
作為前述乾蝕刻中所使用之氯系氣體只要是含有Cl則未特別限制。例如,舉例有Cl2、SiCl2、CHCl3、CH2Cl2、CCl4、BCl3等。又,作為前述乾蝕刻中所使用之氟系氣體只要是含有F則未特別限制。例如,舉例有CHF3、CF4、C2F6、C4F8、SF6等。特別是,不含C之氟系氣體由於相對於玻璃基板之蝕刻率較低,故可使對玻璃基板造成的損傷更小。
藉由圖2所示之製造方法所製造之相移遮罩200係於透光性基板1上具備有具轉印圖案的相移膜2(相移圖案2a)之相移遮罩。
藉由如此般地製造相移遮罩200,便可獲得具備有能夠提高相對於ArF準分子雷射的曝光光線之相移效果,且能夠抑制膜厚的相移膜2之相移遮罩200。
此外,亦可使用具備蝕刻停止膜之遮罩基底,並藉由圖2所示之製造方法來製造相移遮罩。此情況下,蝕刻停止膜並未從相移遮罩被去除而是會殘留。
進一步地,本發明之半導體元件製造方法的特徵係具有使用前述相移遮罩200來將轉印圖案曝光轉印在半導體基板上的阻膜之工序。
由於本發明之相移遮罩200或遮罩基底100係具有上述效果,故將相移遮罩200安裝在以ArF準分子雷射作為曝光光線之曝光裝置的遮罩台,來將轉印圖案曝光轉印在半導體元件上的阻膜之際,便可將微細的轉印圖案轉印在半導體元件上的阻膜。於是,以該阻膜的圖案作為遮罩來乾蝕刻其下層膜以形成電路圖案的情況,便可形成無配線短路或斷線之高精度的電路圖案。
<實施例>
以下,針對用以更具體地說明本發明實施型態之實施例1~6及比較例1~3來加以敘述。
<實施例1>
[遮罩基底的製造]
參照圖1,準備主表面的尺寸為約152mm×約152mm,厚度為約6.35mm之合成石英玻璃所構成的透光性基板1。該透光性基板1的端面及主表面係被研磨成特定的表面粗糙度(以Rq來說為0.2nm以下),之後,施予特定的洗淨處理及乾燥處理。使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量透光性基板1的各光學特性後,在波長193nm的光線中之折射率為1.556,消光係數為0.000。
接下來,將透光性基板1設置在單片式濺射裝置內,並藉由使用Si靶材且以氪(Kr)氣、氧(O2)氣及氮(N2)氣作為濺射氣體之反應性濺射,而以136.4nm的厚度來形成矽、氧及氮所構成的相移膜2,便能於透光性基板1上獲得所需相位差。
使用相移量測定裝置(Lasertec公司製MPM193)來測量相移膜2相對於波長193nm的光線之透光率與相位差後,透光率為92.0%,相位差為179.9度(deg)。又,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量相移膜2的各光學特性後,在波長193nm的光線中之折射率n為1.709,消光係數k為0.005。以相同的成膜條件來於其他透光性基板上形成相移膜。進一步地,針對該相移膜,利用X射線光電子光譜法來進行分析(XPS分析)。其結果,相移膜的組成為Si:N:O=34.5:7.0:58.5(原子%比)。然後,N/O比率為0.120,O/Si比率為1.696,N/Si比率為0.203。另一方面,針對此相移膜2,使用利用X射線反射率法(XRR)之測定裝置(GXR-300 RIGAKU公司製)來計算膜密度後,可確認到為十分緻密的膜。
接下來,將透光性基板1設置在單片式濺射裝置內,並使用鉻(Cr)靶材,且在氬(Ar)、二氧化碳(CO2)及氦(He)的混合氣體氛圍下藉由反應性濺射,而相接於相移膜2的表面並以59nm的膜厚來形成鉻、氧及碳所構成的遮光膜3(CrOC膜Cr:71原子%、O:15原子%、C:14原子%)。
接下來,針對形成有上述遮光膜(CrOC膜)3之透光性基板1,施予加熱處理。在加熱處理後,針對層積有相移膜2及遮光膜3之透光性基板1,使用光譜儀(Agilent Technologies公司製Cary4000)來測量相移膜2與遮光膜3的層積構造在ArF準分子雷射之光線的波長(約193nm)中之光學濃度後,可確認到為3.0以上。
接下來,將層積有相移膜2及遮光膜3之透光性基板1設置在單片式濺射裝置內,並使用二氧化矽(SiO2)靶材,且以氬(Ar)氣作為濺射氣體,而藉由反應性濺射並以12nm的厚度來於遮光膜3上形成矽及氧所構成的硬遮罩膜4。進一步地施予特定的洗淨處理,來製造實施例1之遮罩基底100。
[相移遮罩的製造]
接下來,使用此實施例1之遮罩基底100,並以下述步驟順序來製造實施例1之半調式相移遮罩200。首先,對硬遮罩膜4的表面施予HMDS處理。接著,藉由旋轉塗佈法而相接於硬遮罩膜4的表面,以膜厚80nm來形成電子線描繪用化學增幅型阻劑所構成的阻膜。接下來,針對此阻膜,以電子線來描繪出欲形成於相移膜2之相移圖案(即第1圖案),並進行特定的顯影處理及洗淨處理,來形成具有第1圖案之阻劑圖案5a(參照圖2(a))。
接下來,以阻劑圖案5a作為遮罩,並使用CF4氣體來進行乾蝕刻,而於硬遮罩膜4形成第1圖案(硬遮罩圖案4a)(參照圖2(b))。
接下來,去除阻劑圖案5a。接著,以硬遮罩圖案4a作為遮罩,並使用氯氣(Cl2)與氧氣(O2)的混合氣體來進行乾蝕刻,而於遮光膜3形成第1圖案(遮光圖案3a)(參照圖2(c))。
接下來,以遮光圖案3a作為遮罩,並使用氟系氣體(CF4+He)來進行乾蝕刻,而於相移膜2形成第1圖案(相移圖案2a),且同時去除硬遮罩圖案4a(參照圖2(d))。
接下來,於遮光圖案3a上,藉由旋轉塗佈法而以膜厚150nm來形成電子線描繪用化學增幅型阻劑所構成的阻膜。接下來,針對阻膜來曝光描繪出欲形成於遮光膜之圖案(包含有遮光帶圖案之圖案,即第2圖案),並進一步地進行顯影處理等特定處理,來形成具有遮光圖案之阻劑圖案6b(參照圖2(e))。接著,以阻劑圖案6b作為遮罩,並使用氯氣(Cl2)與氧氣(O2)的混合氣體來進 行乾蝕刻,而於遮光膜3形成第2圖案(遮光圖案3b)(參照圖2(f))。進一步地,去除阻劑圖案6b,並經過洗淨等特定處理,而獲得相移遮罩200(參照圖2(g))。
[圖案轉印性能的評估]
針對經由以上的步驟順序所製作之相移遮罩200,使用AIMS193(Carl Zeiss公司製)來進行當以波長193nm的曝光光線來曝光轉印在半導體元件上的阻膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,並無配線短路或斷線,已充分滿足設計式樣。由此結果可謂言,即便是將此實施例1之相移遮罩200安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻膜,最終地仍能夠以高精度來形成被形成於半導體元件上之電路圖案。
<實施例2>
[遮罩基底的製造]
實施例2之遮罩基底100除了相移膜2以外,係以和實施例1相同的步驟順序所製造。此實施例2之相移膜2相較於實施例1之相移膜2,係改變成膜條件。具體而言,係將透光性基板1設置在單片式濺射裝置內,並使用Si靶材,而改變氧氣與氮氣的氣體流量,並以氪氣、氧氣及氮氣作為濺射氣體來進行反應性濺射。藉此,便可以128.7nm的厚度來形成矽、氧及氮所構成的相移膜2,而能於透光性基板1上獲得所需相位差。
使用相移量測定裝置(Lasertec公司製MPM193)來測量相移膜2相對於波長193nm的光線之透光率與相位差後,透光率為89.5%,相位差為179.7度(deg)。又,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量相移膜2的各光學特性後,在波長193nm的光線中之折射率n為1.750,消光係數k為0.009。以相同的成膜條件來於其他透光性基板上形成相移膜。進一步地,針對該相移膜,利用X射線光電子光譜法來進行分析(XPS分析)。其結果,相移膜的組成為Si:N:O=34.6:8.8:56.6(原子%比)。然後,N/O比率為0.155,O/Si比率為1.636,N/Si比率為0.254。另一方面,針對此相移膜2,使用利用X射線反射率法(XRR)之測定裝置(GXR-300 RIGAKU公司製)來計算膜密度後,可確認到為十分緻密的膜。
[相移遮罩的製造與評估]
接下來,使用此實施例2之遮罩基底100,並以和實施例1相同的步驟順序來製造實施例2之相移遮罩200。針對實施例2之相移遮罩200,與實施例1同樣地進行當使用AIMS193(Carl Zeiss公司製)並以波長193nm的曝光光線來曝光轉印在半導體元件上的阻膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,並無配線短路或斷線,已充分滿足設計式樣。由此結果可謂言,即便是將此實施例2之相移遮罩200安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻膜,最終地仍能夠以高精度來形成被形成於半導體元件上之電路圖案。
<實施例3>
[遮罩基底的製造]
實施例3之遮罩基底100除了相移膜2以外,係以和實施例1相同的步驟順序所製造。此實施例3之相移膜2相較於實施例1之相移膜2,係改變成膜條件。具體而言,係將透光性基板1設置在單片式濺射裝置內,並使用Si靶材,而改變氧氣與氮氣的氣體流量,並以氪氣、氧氣及氮氣作為濺射氣體來進行反應性濺射。藉此,便可以108.7nm的厚度來形成矽、氧及氮所構成的相移膜2,而能於透光性基板1上獲得所需相位差。
使用相移量測定裝置(Lasertec公司製MPM193)來測量相移膜2相對於波長193nm的光線之透光率與相位差後,透光率為80.9%,相位差為181.3度(deg)。又,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量相移膜2的各光學特性後,在波長193nm的光線中之折射率n為1.890,消光係數k為0.026。以相同的成膜條件來於其他透光性基板上形成相移膜。進一步地,針對該相移膜,利用X射線光電子光譜法來進行分析(XPS分析)。其結果,相移膜的組成為Si:N:O=35.9:14.8:49.3(原子%比)。然後,N/O比率為0.300,O/Si比率為1.373,N/Si比率為0.412。另一方面,針對此相移膜2,使用利用X射線反射率法(XRR)之測定裝置(GXR-300 RIGAKU公司製)來計算膜密度後,可確認到為十分緻密的膜。
[相移遮罩的製造與評估]
接下來,使用此實施例3之遮罩基底100,並以和實施例1相同的步驟順序來製造實施例3之相移遮罩200。針對實施例3之相移遮罩200,與實施例 1同樣地進行當使用AIMS193(Carl Zeiss公司製)並以波長193nm的曝光光線來曝光轉印在半導體元件上的阻膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,並無配線短路或斷線,已充分滿足設計式樣。由此結果可謂言,即便是將此實施例3之相移遮罩200安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻膜,最終地仍能夠以高精度來形成被形成於半導體元件上之電路圖案。
<實施例4>
[遮罩基底的製造]
實施例4之遮罩基底100除了相移膜2以外,係以和實施例1相同的步驟順序所製造。此實施例4之相移膜2相較於實施例1之相移膜2,係改變成膜條件。具體而言,係將透光性基板1設置在單片式濺射裝置內,並使用Si靶材,而改變氧氣與氮氣的氣體流量,並以氪氣、氧氣及氮氣作為濺射氣體來進行反應性濺射。藉此,便可以100.1nm的厚度來形成矽、氧及氮所構成的相移膜2,而能於透光性基板1上獲得所需相位差。
使用相移量測定裝置(Lasertec公司製MPM193)來測量相移膜2相對於波長193nm的光線之透光率與相位差後,透光率為75.4%,相位差為181.3度(deg)。又,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量相移膜2的各光學特性後,在波長193nm的光線中之折射率n為1.973,消光係數k為0.039。以相同的成膜條件來於其他透光性基板上形成相移膜。進一步地,針對該相移膜,利用X射線光電子光譜法來進行分析(XPS分析)。其結果,相移膜的組成為Si:N:O=36.9:18.4:44.7(原子%比)。然後,N/O比率為0.412,O/Si比率為1.211,N/Si比率為0.499。另一方面,針對此相移膜2,使用利用X射線反射率法(XRR)之測定裝置(GXR-300 RIGAKU公司製)來計算膜密度後,可確認到為十分緻密的膜。
[相移遮罩的製造與評估]
接下來,使用此實施例4之遮罩基底100,並以和實施例1相同的步驟順序來製造實施例4之相移遮罩200。針對實施例4之相移遮罩200,與實施例1同樣地進行當使用AIMS193(Carl Zeiss公司製)並以波長193nm的曝光光線來曝光轉印在半導體元件上的阻膜時之轉印像的模擬。驗證此模擬的曝光轉 印像後,並無配線短路或斷線,已充分滿足設計式樣。由此結果可謂言,即便是將此實施例4之相移遮罩200安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻膜,最終地仍能夠以高精度來形成被形成於半導體元件上之電路圖案。
<實施例5>
[遮罩基底的製造]
實施例5之遮罩基底100除了相移膜2以外,係以和實施例1相同的步驟順序所製造。此實施例5之相移膜2相較於實施例1之相移膜2,係改變成膜條件。具體而言,係將透光性基板1設置在單片式濺射裝置內,並使用Si靶材,而改變氧氣與氮氣的氣體流量,並以氪氣、氧氣及氮氣作為濺射氣體來進行反應性濺射。藉此,便可以98.2nm的厚度來形成矽、氧及氮所構成的相移膜2,而能於透光性基板1上獲得所需相位差。
使用相移量測定裝置(Lasertec公司製MPM193)來測量相移膜2相對於波長193nm的光線之透光率與相位差後,透光率為74.0%,相位差為181.7度(deg)。又,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量相移膜2的各光學特性後,在波長193nm的光線中之折射率n為1.994,消光係數k為0.043。以相同的成膜條件來於其他透光性基板上形成相移膜。進一步地,針對該相移膜,利用X射線光電子光譜法來進行分析(XPS分析)。其結果,相移膜的組成為Si:N:O=37.3:19.4:43.3(原子%比)。然後,N/O比率為0.448,O/Si比率為1.161,N/Si比率為0.520。另一方面,針對此相移膜2,使用利用X射線反射率法(XRR)之測定裝置(GXR-300 RIGAKU公司製)來計算膜密度後,可確認到為十分緻密的膜。
[相移遮罩的製造與評估]
接下來,使用此實施例5之遮罩基底100,並以和實施例1相同的步驟順序來製造實施例5之相移遮罩200。針對實施例5之相移遮罩200,與實施例1同樣地進行當使用AIMS193(Carl Zeiss公司製)並以波長193nm的曝光光線來曝光轉印在半導體元件上的阻膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,並無配線短路或斷線,已充分滿足設計式樣。由此結果可謂言,即便是將此實施例5之相移遮罩200安裝在曝光裝置的遮罩台來曝光轉印在半 導體元件上的阻膜,最終地仍能夠以高精度來形成被形成於半導體元件上之電路圖案。
<實施例6>
[遮罩基底的製造]
實施例6之遮罩基底100除了相移膜2的膜厚以外,係以和實施例3相同的步驟順序所製造。此實施例6之相移膜2係以和實施例3之相移膜2相同的成膜條件來進行反應性濺射。藉此,便可以125.0nm的厚度來形成矽、氧及氮所構成的相移膜2,而能於透光性基板1上獲得所需相位差。
使用相移量測定裝置(Lasertec公司製MPM193)來測量相移膜2相對於波長193nm的光線之透光率與相位差後,透光率為73.2%,相位差為205.1度(deg)。又,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量相移膜2的各光學特性後,在波長193nm的光線中之折射率n為1.890,消光係數k為0.026。相移膜的組成、N/O比率、O/Si比率及N/Si比率係與實施例3相同。另一方面,針對此相移膜2,使用利用X射線反射率法(XRR)之測定裝置(GXR-300 RIGAKU公司製)來計算膜密度後,可確認到為十分緻密的膜。
[相移遮罩的製造與評估]
接下來,使用此實施例6之遮罩基底100,並以和實施例1相同的步驟順序來製造實施例6之相移遮罩200。針對實施例6之相移遮罩200,與實施例1同樣地進行當使用AIMS193(Carl Zeiss公司製)並以波長193nm的曝光光線來曝光轉印在半導體元件上的阻膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,並無配線短路或斷線,已充分滿足設計式樣。由此結果可謂言,即便是將此實施例6之相移遮罩200安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻膜,最終地仍能夠以高精度來形成被形成於半導體元件上之電路圖案。
<比較例1>
[遮罩基底的製造]
比較例1之遮罩基底除了相移膜以外,係以和實施例1相同的步驟順序所製造。此比較例1之相移膜相較於實施例1之相移膜2,係改變成膜條件。具體而言,係將透光性基板設置在單片式濺射裝置內,並使用Si靶材,而改 變氧氣與氮氣的氣體流量,且以氪氣、氧氣及氮氣作為濺射氣體來進行反應性濺射。藉此,便可以143.1nm的厚度來形成矽、氧及氮所構成的相移膜,而能於透光性基板上獲得所需相位差。
使用相移量測定裝置(Lasertec公司製MPM193)來測量相移膜相對於波長193nm的光線之透光率與相位差後,透光率為93.8%,相位差為180.5度(deg)。又,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量相移膜的各光學特性後,在波長193nm的光線中之折射率n為1.676,消光係數k為0.003。以相同的成膜條件來於其他透光性基板上形成相移膜。進一步地,針對該相移膜,利用X射線光電子光譜法來進行分析(XPS分析)。其結果,相移膜的組成為Si:N:O=34.2:5.5:60.3(原子%比)。然後,N/O比率為0.091,O/Si比率為1.763,N/Si比率為0.161。另一方面,針對此相移膜,使用利用X射線反射率法(XRR)之測定裝置(GXR-300 RIGAKU公司製)來計算膜密度後,可確認到為十分緻密的膜。
[相移遮罩的製造與評估]
接下來,使用此比較例1之遮罩基底,並以和實施例1相同的步驟順序來製造比較例1之相移遮罩。針對比較例1之相移遮罩,與實施例1同樣地進行當使用AIMS193(Carl Zeiss公司製)並以波長193nm的曝光光線來曝光轉印在半導體元件上的阻膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,有發生配線短路或斷線,並未滿足設計式樣。其原因推測是因為相移膜之圖案的一部分發生傾倒或脫落。由此結果可謂言將此比較例1之相移遮罩安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻膜之情況,最終地會很難以高精度來形成被形成於半導體元件上之電路圖案。
<比較例2>
[遮罩基底的製造]
比較例2之遮罩基底除了相移膜,以及遮光膜的膜厚以外,係以和實施例1相同的步驟順序所製造。此比較例2之相移膜相較於實施例1之相移膜2,係改變成膜條件。具體而言,係將透光性基板設置在單片式濺射裝置內,並使用Si靶材,而改變氧氣與氮氣的氣體流量,且以氪氣、氧氣及氮氣作為濺 射氣體來進行反應性濺射。藉此,便可以92.2nm的厚度來形成矽、氧及氮所構成的相移膜,而能於透光性基板上獲得所需相位差。
使用相移量測定裝置(Lasertec公司製MPM193)來測量相移膜相對於波長193nm的光線之透光率與相位差後,透光率為68.5%,相位差為184.9度(deg)。又,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量相移膜的各光學特性後,在波長193nm的光線中之折射率n為2.077,消光係數k為0.058。以相同的成膜條件來於其他透光性基板上形成相移膜。進一步地,針對該相移膜,利用X射線光電子光譜法來進行分析(XPS分析)。其結果,相移膜的組成為Si:N:O=37.5:22.5:40.0(原子%比)。然後,N/O比率為0.563,O/Si比率為1.067,N/Si比率為0.600。另一方面,針對此相移膜,使用利用X射線反射率法(XRR)之測定裝置(GXR-300 RIGAKU公司製)來計算膜密度後,可確認到為十分緻密的膜。
[相移遮罩的製造與評估]
接下來,使用此比較例2之遮罩基底,並以和實施例1相同的步驟順序來製造比較例2之相移遮罩。針對比較例2之相移遮罩,與實施例1同樣地進行當使用AIMS193(Carl Zeiss公司製)並以波長193nm的曝光光線來曝光轉印在半導體元件上的阻膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,並未滿足設計式樣。其原因推測是因為無法充分提高相移膜的透光率,而導致圖案解析性大幅地降低。由此結果可謂言將此比較例2之相移遮罩安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻膜之情況,最終地會很難以高精度來形成被形成於半導體元件上之電路圖案。
<比較例3>
[遮罩基底的製造]
比較例3之遮罩基底除了相移膜以外,係以和實施例1相同的步驟順序所製造。此比較例3之相移膜相較於實施例1之相移膜2,係改變成膜條件。具體而言,係將透光性基板設置在單片式濺射裝置內,並使用Si靶材,不使用氮氣而是以氧氣及氪氣作為濺射氣體來進行反應性濺射。藉此,便可以172.7nm的厚度來形成矽及氧所構成的相移膜,而能於透光性基板上獲得所需相位差。
使用相移量測定裝置(Lasertec公司製MPM193)來測量相移膜相對於波長193nm的光線之透光率與相位差後,透光率為100.0%,相位差為180.4度(deg)。又,使用光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量相移膜的各光學特性後,在波長193nm的光線中之折射率n為1.560,消光係數k為0.000。以相同的成膜條件來於其他透光性基板上形成相移膜。相移膜的組成為Si:O=33.4:66.6(原子%比)。然後,N/O比率為0.000,O/Si比率為1.990,N/Si比率為0.000。另一方面,針對該相移膜2,使用利用X射線反射率法(XRR)之測定裝置(GXR-300 RIGAKU公司製)來計算膜密度後,可確認到為十分緻密的膜。
[相移遮罩的製造與評估]
接下來,使用該比較例3之遮罩基底,並以和實施例1相同的步驟順序來製造比較例3之相移遮罩。針對比較例3之相移遮罩,與實施例1同樣地進行當使用AIMS193(Carl Zeiss公司製)並以波長193nm的曝光光線來曝光轉印在半導體元件上的阻膜時之轉印像的模擬。驗證此模擬的曝光轉印像後,有發生配線短路或斷線,並未滿足設計式樣。其原因推測是因為相移膜的一部分圖案發生傾倒或脫落。由此結果可謂言將此比較例3之相移遮罩安裝在曝光裝置的遮罩台來曝光轉印在半導體元件上的阻膜之情況,最終地會很難以高精度來形成被形成於半導體元件上之電路圖案。
1:透光性基板
2:相移膜
3:遮光膜
4:硬遮罩膜
100:遮罩基底

Claims (13)

  1. 一種遮罩基底,係於透光性基板的主表面上具備相移膜之遮罩基底;
    該相移膜係含有矽、氧及氮;
    該相移膜之氮含量[原子%]相對於矽含量[原子%]的比率為0.20以上0.52以下;
    該相移膜之氧含量[原子%]相對於矽含量[原子%]的比率為1.16以上1.70以下;
    該相移膜相對於ArF準分子雷射之曝光光線的波長之折射率n為1.7以上2.0以下;
    該相移膜相對於該曝光光線的波長之消光係數k為0.05以下。
  2. 如申請專利範圍第1項之遮罩基底,其中該相移膜之氮含量[原子%]相對於氧含量[原子%]的比率為0.12以上0.45以下。
  3. 如申請專利範圍第1或2項之遮罩基底,其中該相移膜的矽含量為30原子%以上。
  4. 如申請專利範圍第1或2項之遮罩基底,其中該相移膜係具有會使該曝光光線以70%以上的透光率穿透之功能,以及,使穿透該相移膜之該曝光光線會相對於在空氣中通過與該相移膜的厚度相同距離之曝光光線之間產生150度以上210度以下的相位差之功能。
  5. 如申請專利範圍第1或2項之遮罩基底,其中該相移膜的厚度為140nm以下。
  6. 如申請專利範圍第1或2項之遮罩基底,其係於該相移膜上具備遮光膜。
  7. 一種相移遮罩,係於透光性基板的主表面上具備有具轉印圖案的相移膜之相移遮罩;
    該相移膜係含有矽、氧及氮;
    該相移膜之氮含量[原子%]相對於矽含量[原子%]的比率為0.20以上0.52以下;
    該相移膜之氧含量[原子%]相對於矽含量[原子%]的比率為1.16以上1.70以下;
    該相移膜相對於ArF準分子雷射之曝光光線的波長之折射率n為1.7以上2.0以下;
    該相移膜相對於該曝光光線的波長之消光係數k為0.05以下。
  8. 如申請專利範圍第7項之相移遮罩,其中該相移膜之氮含量[原子%]相對於氧含量[原子%]的比率為0.12以上0.45以下。
  9. 如申請專利範圍第7或8項之相移遮罩,其中該相移膜的矽含量為30原子%以上。
  10. 如申請專利範圍第7或8項之相移遮罩,其中該相移膜係具有會使該曝光光線以70%以上的透光率穿透之功能,以及,使穿透該相移膜之該曝光光線會相對於在空氣中通過與該相移膜的厚度相同距離之曝光光線之間產生150度以上210度以下的相位差之功能。
  11. 如申請專利範圍第7或8項之相移遮罩,其中該相移膜的厚度為140nm以下。
  12. 如申請專利範圍第7或8項之相移遮罩,其係於該相移膜上具備有包含遮光帶的圖案之遮光膜。
  13. 一種半導體元件之製造方法,係具有使用如申請專利範圍第12項之相移遮罩,來將轉印圖案曝光轉印在半導體基板上的阻膜之工序。
TW109131468A 2019-09-25 2020-09-14 遮罩基底、相移遮罩及半導體元件之製造方法 TW202125093A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019173996 2019-09-25
JP2019-173996 2019-09-25

Publications (1)

Publication Number Publication Date
TW202125093A true TW202125093A (zh) 2021-07-01

Family

ID=75166612

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109131468A TW202125093A (zh) 2019-09-25 2020-09-14 遮罩基底、相移遮罩及半導體元件之製造方法

Country Status (6)

Country Link
US (1) US20220342294A1 (zh)
JP (1) JPWO2021059890A1 (zh)
KR (1) KR20220066884A (zh)
CN (1) CN114521245A (zh)
TW (1) TW202125093A (zh)
WO (1) WO2021059890A1 (zh)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134386A (zh) * 1974-09-18 1976-03-24 Nippon Denki Sylvania Kk
JP3422054B2 (ja) 1993-11-01 2003-06-30 凸版印刷株式会社 光学マスクおよびその製造方法
JP3736132B2 (ja) * 1998-08-25 2006-01-18 株式会社村田製作所 位相シフトマスクの作製方法
JP2000162757A (ja) * 1998-11-27 2000-06-16 Nec Corp 位相シフトマスクの製造方法
JP3065063B1 (ja) * 1999-02-10 2000-07-12 株式会社半導体先端テクノロジーズ パタ―ン形成方法及び位相シフトマスク
JP2002156739A (ja) * 2000-11-21 2002-05-31 Toppan Printing Co Ltd 位相シフトマスクブランク及び位相シフトマスク
JP2002258458A (ja) * 2000-12-26 2002-09-11 Hoya Corp ハーフトーン型位相シフトマスク及びマスクブランク
US6569581B2 (en) * 2001-03-21 2003-05-27 International Business Machines Corporation Alternating phase shifting masks
DE10307518B4 (de) * 2002-02-22 2011-04-14 Hoya Corp. Halbtonphasenschiebermaskenrohling, Halbtonphasenschiebermaske und Verfahren zu deren Herstellung
JP4419464B2 (ja) * 2003-07-22 2010-02-24 凸版印刷株式会社 ハーフトーン型位相シフトマスクの製造方法
US20070121090A1 (en) * 2005-11-30 2007-05-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4881633B2 (ja) 2006-03-10 2012-02-22 凸版印刷株式会社 クロムレス位相シフトマスク用フォトマスクブランク、クロムレス位相シフトマスク、及びクロムレス位相シフトマスクの製造方法
JP2012073326A (ja) * 2010-09-28 2012-04-12 Toppan Printing Co Ltd フォトマスク、フォトマスクブランク及びフォトマスクの製造方法
TWI541590B (zh) * 2013-12-26 2016-07-11 Hoya股份有限公司 光罩之製造方法、光罩及圖案轉印方法
JP2016009055A (ja) * 2014-06-24 2016-01-18 凸版印刷株式会社 表示装置基板作製用フォトマスク及びその製造方法、及び表示装置基板の製造方法
JP6612326B2 (ja) * 2015-03-19 2019-11-27 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
KR20180041042A (ko) * 2016-10-13 2018-04-23 주식회사 에스앤에스텍 위상반전 블랭크 마스크 및 포토마스크
JP2018072543A (ja) * 2016-10-28 2018-05-10 凸版印刷株式会社 フォトマスクブランク、フォトマスク及びフォトマスクの製造方法
US20180335692A1 (en) * 2017-05-18 2018-11-22 S&S Tech Co., Ltd. Phase-shift blankmask and phase-shift photomask
JP6547019B1 (ja) * 2018-02-22 2019-07-17 Hoya株式会社 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
SG11202007542WA (en) * 2018-02-27 2020-09-29 Hoya Corp Mask blank, phase shift mask, and method of manufacturing semiconductor device
WO2019176481A1 (ja) * 2018-03-14 2019-09-19 Hoya株式会社 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
US20220035235A1 (en) * 2018-09-25 2022-02-03 Hoya Corporation Mask blank, transfer mask, and semiconductor-device manufacturing method
JP6927177B2 (ja) * 2018-09-26 2021-08-25 信越化学工業株式会社 位相シフト型フォトマスクブランク及び位相シフト型フォトマスク
JP6821865B2 (ja) * 2018-09-27 2021-01-27 Hoya株式会社 マスクブランク、転写用マスクおよび半導体デバイスの製造方法

Also Published As

Publication number Publication date
KR20220066884A (ko) 2022-05-24
WO2021059890A1 (ja) 2021-04-01
US20220342294A1 (en) 2022-10-27
CN114521245A (zh) 2022-05-20
JPWO2021059890A1 (zh) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6297734B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
US20210149294A1 (en) Mask blank, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
TWI651583B (zh) 光罩基底、光罩基底之製造方法、相移光罩、相移光罩之製造方法、及半導體裝置之製造方法
JP6573806B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6545795B2 (ja) マスクブランク、転写用マスク、マスクブランクの製造方法、転写用マスクの製造方法および半導体デバイスの製造方法
JP6430155B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6759486B2 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
WO2019188397A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP6821865B2 (ja) マスクブランク、転写用マスクおよび半導体デバイスの製造方法
JP6828221B2 (ja) マスクブランク、転写用マスクおよび半導体デバイスの製造方法
WO2019230313A1 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
WO2019230312A1 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
WO2021044917A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
TW202125093A (zh) 遮罩基底、相移遮罩及半導體元件之製造方法
WO2023037731A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
CN117769682A (zh) 掩模坯料、相移掩模的制造方法及半导体器件的制造方法