JP2018072543A - フォトマスクブランク、フォトマスク及びフォトマスクの製造方法 - Google Patents

フォトマスクブランク、フォトマスク及びフォトマスクの製造方法 Download PDF

Info

Publication number
JP2018072543A
JP2018072543A JP2016211547A JP2016211547A JP2018072543A JP 2018072543 A JP2018072543 A JP 2018072543A JP 2016211547 A JP2016211547 A JP 2016211547A JP 2016211547 A JP2016211547 A JP 2016211547A JP 2018072543 A JP2018072543 A JP 2018072543A
Authority
JP
Japan
Prior art keywords
film
etching
photomask
pattern
phase shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016211547A
Other languages
English (en)
Inventor
好史 坂本
Yoshifumi Sakamoto
好史 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2016211547A priority Critical patent/JP2018072543A/ja
Publication of JP2018072543A publication Critical patent/JP2018072543A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】ライン系のアシストパターンとスペース系のアシストパターンの解像限界を改善するフォトマスクブランク、フォトマスク及びフォトマスクの製造方法を提供する。【解決手段】フォトマスクブランク200,250は、波長193nmの露光光が適応されるフォトマスクを作製するために用いられる。フォトマスクブランク200,250は、透光性基板103と、透光性基板103の上に形成される、位相シフト効果をもたらす位相シフト膜102と、位相シフト膜102の上に接して形成されるエッチングマスク膜101とを備える。エッチングマスク膜101は、第1エッチング膜101bと第2エッチング膜101cとを交互に積層させた多層膜を有する。第1エッチング膜101bは炭素含有量5原子%未満のクロムを含む膜であり、第2エッチング膜101cは炭素含有量10原子%以上のクロムを含む膜である。【選択図】図1

Description

本発明は、半導体デバイス等の製造において使用されるフォトマスクブランク、フォトマスク及びフォトマスクの製造方法に関する。
レジスト材料に微細なパターン像を形成する技術として、フォトレジストを塗布したフォトマスクブランク上に原画パターンを描画し、露光後に熱処理を行ない、その後現像によってレジストパターンを作製する。次いでレジストパターンをマスクとしてエッチングマスク膜と位相シフト膜とをエッチングするようにしたフォトマスク製造装置及び製造方法が知られている。通常、エッチングマスク膜はクロム膜に酸素、窒素を加えた膜であり、位相シフト膜はモリブデンシリサイドに酸素、窒素を加えた膜である。
近年、LSIの高集積化に伴い、レジスト材料として微細なパターンを高精度で形成できるものが要求されている。
このようなレジスト材料としては、架橋型のネガレジストやポジレジスト、化学増幅レジストが知られている。
従来使用されている架橋型のネガレジストの場合、ポリマの分子量を高くすることにより高感度とすることが可能であるが、架橋密度が低下するため現像溶媒での膨潤などパターン変形を生じやすく、1μm以下のパターン形成が不可能になる。また、ポジレジストの場合、現像液のアルカリ濃度を高くすることにより高感度化が可能であるが、レジストの膜減りが顕著になるという問題がある。
これらの問題は化学増幅レジストにより解決された。化学増幅レジストは、ベース樹脂、酸発生剤、消光材などからなっており、露光により発生した酸が触媒として働くことにより多くの反応を起こすことができる。その結果、高感度化が可能であり、0.2μm以下の微細パターンの形成を可能にしている。
化学増幅レジストでは、現像工程における現像液の衝突によって微細なパターンが倒れ、欠陥となる。このパターン倒れの発生する寸法が解像限界である。回路上の最小線幅が45nmから20nmと細くなるにつれ、求められるアシストパターンの寸法も小さくなっていき、解像限界を改善することがフォトマスク開発に必要とされてきた。
一つの半導体集積回路を製造するためには、複数枚のフォトマスクを必要とする。最も複雑で微小な線幅が求められるゲート層では、通常ネガレジストが用いられ、アシストパターンはライン系になる。また、先端フォトマスクでは位相シフト型マスクが用いられることが一般的である。
このライン系アシストパターンの最小寸法は、ロジック系デバイスの20nm世代のフォトマスクでは60nm程度が求められていた。
特許第5797812号公報 特開2013−231998号公報
特許文献1に記載された従来方法では、微小なライン系のアシストパターンを作製するため、レジスト薄膜化により現像工程における現像液の衝突に起因するパターン倒れを減らしている。そのためにクロム膜(エッチングマスク膜)に炭素を添加しエッチング速度の向上したクロム膜を開発した。それにより初期レジストを薄膜化し、現像工程におけるパターン倒れを改善させた。
しかし、クロム膜のエッチング速度が向上したため、水平方向に対しても大きなサイドエッチングが発生し、クロム膜と位相シフト膜との接点の面積が小さくなる。それによりクロム膜エッチング中にクロム膜の一部が消失し、残ったクロム膜をマスクとして位相シフト膜をエッチングした際、所望の寸法を得ることができずパターンの形状不良をもたらすようになった。
現像方法に関して、従来型のスプレー現像からパドル現像が主流になるにつれて、現像工程におけるレジストパターン倒れは問題ではなくなっている。結果として、このパターンの形状不良によって解像限界がもたらされている。
クロム膜に炭素を添加しない場合、ドライエッチングによるクロム膜のエッチング速度は大幅に低下する。レジストをマスクとしてクロム膜をエッチングする場合に、エッチング速度が低下するとレジスト被膜領域のクロム膜がエッチングされるのに要する時間は増大する。レジストをマスクとしてクロム膜をエッチングする場合、同時にレジストもエッチングされ膜減りすることが知られている。このレジストの膜減りが一定以上大きくなると寸法面内均一性および寸法精度が悪化する。したがって、クロム膜に炭素を添加せずにエッチング速度を低下させた場合、寸法面内均一性および寸法精度が悪化する。
また、ロジック系デバイスの最小線幅14nm世代のフォトマスクにおいては、ライン系のアシストパターンの寸法は50nm以下が求められる。同時に逆トーンを持ったスペース系のアシストパターンに関しても70nm以下の寸法が求められるが、既存のフォトマスクブランクによる達成は困難である。これはドライエッチング中のエッチャントがスペース部のクロム膜下層まで届かずに抜け不良を引き起こすためである。スペース寸法が小さいほど、エッチャントはクロム膜下層に到達する可能性が低くなる。これを解決するために、エッチングマスク膜のエッチング時にドライエッチング装置のバイアスパワーを高めに設定することで、マスク垂直方向に強い異方性エッチングを行う方法が知られている。しかし、異方性エッチングはレジストに対するエッチング速度も向上させるため、上記のようにクロム膜中に炭素を添加せずにエッチング速度を低下させた場合、クロムが完全にエッチングされる前にレジストは所望の残膜以上に減少し、寸法面内均一性および寸法精度を悪化させる。したがって、エッチングマスク膜のエッチング速度が遅い場合、異方性エッチングを行うことができず、スペース系のアシストパターン解像性は悪化する。
これらの要因により解像性と寸法面内均一性、寸法精度はトレードオフの関係性にあり、所望の特性を達成できないという問題がある。
また、特許文献1に記載された従来方法ではクロム膜に炭素を添加しているが、炭素を含むクロム膜は洗浄による膜減りが大きくなることが知られている。したがって、クロム膜エッチング後にレジスト剥膜を行い、次いで位相シフト膜のエッチングを行う非連続エッチングを選択する場合、レジスト剥膜工程においてクロム膜の寸法が小さくなる。レジスト剥膜では溶剤によりレジストを取り去った後、溶剤を除去するために純水でリンスを行う。その際、クロム膜に大きなサイドエッチングがある場合、クロム膜と位相シフト膜との接点の面積は小さくなる。これはリンス液の衝突に対する耐性が低いことを意味し、クロム膜のパターン消失が引き起こされる可能性が高くなる。特に炭素を含むクロム膜が厚膜であるほど、クロムパターン下層のサイドエッチングは大きくなり、クロム膜と位相シフト膜との接点面積は小さく、リンス液によるパターンへの衝撃でパターン消失の可能性が高くなる。次いで位相シフト膜のエッチングを行う際、クロム膜のパターン消失がある場合、所望の微小パターンを作製できないという問題が引き起こされる。
特許文献2に記載された従来方法では、エッチングマスク膜であるクロム膜に炭素を添加し、同時に断面形状を位相シフト膜に対して垂直に保つためにエッチングマスク膜を三層構造にしており、上層に関して炭素を含む酸窒化クロム、中間層に関して窒化クロム、または酸窒化クロム、下層に関して炭素を含む酸窒化クロムとしている。上層の炭素を含む酸窒化クロムは膜厚14nm、中間層の窒化クロム、または酸窒化クロムは膜厚4nm以上25nm以下、下層の炭素を含む酸窒化クロムは膜厚25nm以上39nm以下である。これにより初期レジスト膜厚を薄膜化し、ライン系パターンの解像性を向上させている。クロム膜のドライエッチング工程では通常寸法を安定して作製するためオーバーエッチングを100%程度行い、膜の組成に係らずクロム膜下層によりサイドエッチングが発生することが知られている。したがって、特許文献2に記載の従来方法では、下層の酸窒化クロム層の膜厚は25nm以上39nm以下と厚くサイドエッチングが大きく発生し、クロム膜のパターン消失を引き起こし、結果として形状不良をもたらす。
本発明は、上記のような不具合を解決するためになされたもので、その目的は、ライン系のアシストパターンとスペース系のアシストパターンの解像限界を改善すると共に、寸法面内均一性および寸法精度を良好に保つことができ、且つ洗浄工程でのクロム膜のパターン消失を低減することができるフォトマスクブランク、フォトマスク及びフォトマスクの製造方法を提供することにある。
上記課題を解決するため、本発明の一態様に係るフォトマスクブランクは、波長193nmの露光光が適応されるフォトマスクを作製するために用いられるフォトマスクブランクであって、透光性基板と、該透光性基板の上に形成される、位相シフト効果をもたらす位相シフト膜と、該位相シフト膜の上に接して形成されるエッチングマスク膜とを備え、該エッチングマスク膜は、第1エッチング膜と第2エッチング膜とを交互に積層させた多層膜を有するとともに、前記第1エッチング膜は炭素含有量5原子%未満のクロムを含む膜であり、前記第2エッチング膜は炭素含有量10原子%以上のクロムを含む膜であることを要旨とする。
このフォトマスクブランクにおいて、前記第1エッチング膜は膜厚が0.5nm以上5nm以下の膜であり、前記第2エッチング膜は膜厚が1nm以上10nm以下の膜であることが好ましい。
また、このフォトマスクブランクにおいて、前記エッチングマスク膜は、最上層に反射防止膜を備えることが好ましい。
また、このフォトマスクブランクにおいて、前記反射防止膜は、膜厚が0.5nm以上20nm以下、かつ反射率が40%以下であることが好ましい。
また、このフォトマスクブランクにおいて、前記エッチングマスク膜は、総膜厚が31nm以上80nm以下であり、露光波長193nmに対する光学濃度は1.6以上2.7以下であることが好ましい。
また、このフォトマスクブランクにおいて、前記位相シフト膜は、透過率4%以上60%以下であるとよい。
本発明の別の態様に係るフォトマスクは、波長193nmの露光光が適応されるフォトマスクであって、透光性基板と、該透光性基板の上に形成される、位相シフト膜パターンからなる回路パターンとを備え、該回路パターンを含む有効エリアのマスク外周部に、前記位相シフト膜パターン及び該位相シフト膜パターンの上に積層されたエッチングマスク膜からなる外周部パターンを備え、前記エッチングマスク膜は、第1エッチング膜と第2エッチング膜とを交互に積層させた多層膜を有するとともに、前記第1エッチング膜は炭素含有量5原子%未満のクロムを含む膜であり、前記第2エッチング膜は炭素含有量10原子%以上のクロムを含む膜であることを要旨とする。
このフォトマスクにおいて、前記第1エッチング膜は膜厚が0.5nm以上5nm以下の膜であり、前記第2エッチング膜は膜厚が1nm以上10nm以下の膜であることが好ましい。
また、このフォトマスクにおいて、前記エッチングマスク膜は、最上層に反射防止膜を備えることが好ましい。
また、このフォトマスクにおいて、前記反射防止膜は膜厚が0.5nm以上20nm以下、かつ反射率が40%以下であることが好ましい。
また、このフォトマスクにおいて、前記エッチングマスク膜は、総膜厚が31nm以上80nm以下であり、露光波長193nmに対する光学濃度は1.6以上2.7以下であることが好ましい。
また、このフォトマスクにおいて、前記位相シフト膜パターンは透過率4%以上60%以下であることが好ましい。
また、本発明の別の態様に係るフォトマスクの製造方法は、前述のフォトマスクブランクを用いるフォトマスクの製造方法であって、前記エッチングマスク膜の上に形成されたレジストパターンをマスクとして、前記エッチングマスク膜に対して酸素を含む塩素系ガスを用いるドライエッチングを行うことにより、前記エッチングマスク膜にパターンを形成する工程と、前記エッチングマスク膜に形成されたパターンをマスクとして、前記位相シフト膜にフッ素系ガスを用いるドライエッチングを行うことによって、前記位相シフト膜にパターンを形成する工程と、前記位相シフト膜へのパターン形成後、外周部上にレジストパターンを形成し、前記外周部上に形成されたレジストパターンをマスクとして、酸素を含む塩素系ガスを用いるドライエッチングを行うことによって、前記エッチングマスク膜の一部を除去し、前記外周部上に形成されたレジストパターンを除去して外周部パターンを形成する工程とを有することを要旨とする。
本発明によれば、エッチングマスク膜に関して、炭素含有量5原子%未満のクロムを含む第1エッチング膜と炭素含有量10原子%以上のクロムを含む第2エッチンング膜とを交互に積層させた多層膜にすることで、一層あたりの炭素含有量10原子%以上のクロムを含む第2エッチング膜を薄膜化することが可能である。炭素を含むエッチングマスク膜の膜厚が厚い場合、大きなサイドエッチングが入りやすいが、本発明のエッチングマスク膜では大きなサイドエッチングが発生せず、エッチングマスク膜のドライエッチング断面を良好に保つことが可能である。したがって、寸法60nm以下のライン系のアシストパターンの場合、ドライエッチング膜の消失を低減することができ、結果として、ライン系のアシストパターンの解像性を改善することができる。また、エッチングマスク膜のエッチング速度を良好に保つため、面内寸法均一性、寸法精度を良好に保つことができる。
また、本発明のエッチングマスク膜ではエッチングマスク膜に炭素を含んでも、サイドエッチングが発生しないため、炭素含有量を従来型より増やすことが可能である。これによりエッチングレートを大きくすることが可能であり、エッチングマスク膜をエッチングするために要する時間を短くすることができる。このため、多くレジスト残膜を残すことが可能であり、より異方性の大きなエッチング条件を使用することが可能となる。したがって、エッチングマスク膜のドライエッチング中にエッチャントをスペース部の底部まで届け、抜け不良を改善することができる。結果として、スペース系のアシストパターンの解像性が改善した位相シフトマスクを得ることができる。
更に、エッチングマスク膜ではエッチングマスク膜に炭素を含んでも、サイドエッチングが発生しないため、クロム膜であるエッチングマスク膜と位相シフト膜との接点の面積は大きい。このため、洗浄工程におけるリンス液の耐性が良好であり、洗浄工程でのクロム膜のパターン消失を低減することができる。
本発明のフォトマスクブランクを示し、(a)は第1実施形態に係るフォトマスクブランクの構造を示す模式断面図、(b)は第2実施形態に係るフォトマスクブランクの構造を示す模式断面図である。 本発明の実施形態に係るフォトマスクの構造を示す模式断面図である。 一般的なドライエッチング装置のチャンバー内における、被エッチング膜のエッチング状況を説明するための模式断面図である。 本発明の実施形態に係るフォトマスクの製造方法における、エッチングマスク膜のエッチング状況を説明するための模式断面図である。 本発明の実施形態に係るフォトマスクの製造方法を示す模式断面図である。 本発明の実施形態に係るフォトマスクの製造方法を示す模式断面図である。
以下、本発明の実施形態について、図面を参照して説明する。尚、各図面において、同一の構成要素については同一の符号を付け、重複する説明は省略することがある。また、以下の説明で用いる図面は特徴をわかりやすくするために、特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と必ずしも同じではない。
図1は、本発明のフォトマスクブランクを示し、(a)は第1実施形態に係るフォトマスクブランクの構造を示す模式断面図、(b)は第2実施形態に係るフォトマスクブランクの構造を示す模式断面図である。
図1(a)に示すフォトマスクブランク200は、透過型位相シフトマスクブランクであり、波長193nmの露光光が適応されるフォトマスクを作製するために用いられるフォトマスクブランクであって、透光性基板103と、透光性基板103の上に形成される、位相シフト効果をもたらす位相シフト膜102と、位相シフト膜102の上に接して形成されるエッチングマスク膜101とを備えている。
エッチングマスク膜101は、第1エッチング膜101bと第2エッチング膜101cとを交互に積層させた多層膜を有するとともに、第1エッチング膜101bの上の最上層に反射防止膜101aを備えている。ここで、第1エッチング膜101bは炭素含有量5原子%未満のクロムを含む膜であり、第2エッチング膜101cは炭素含有量10原子%以上のクロムを含む膜である。したがって、エッチングマスク膜101は、クロムからなる多層膜である。エッチングマスクの層構造に関して、第1エッチング膜101b及び第2エッチング膜101cの組成比を前述のように規定する理由は後述する。
エッチングマスク膜101は、総膜厚31nm以上80nm以下であることが好ましい。総膜厚が31nmよりも小さいと位相シフト膜102のエッチング中に消失するリスクが高くなるとともに、外周部パターン106(図2参照)の透過率を0.1%以下に抑えることが難しくなる。また、総膜厚が80nmより大きいと、エッチングマスク膜101上に形成されるレジスト膜104(図1(b)参照)の好適な膜厚(70nm〜150nm)に対して、ドライエッチングによる抜け不良が発生しやすく、形状、寸法面内均一性、寸法精度が良好なエッチングマスクパターンを形成することが難しくなる。
本発明の第1実施形態に係るフォトマスクブランク200では、前記のように、最上層に反射防止膜101aを備え、炭素含有量5原子%未満のクロムを含む第1エッチング膜101b、炭素含有量10原子%以上のクロムを含む第2エッチング膜101cが交互に積層したクロム膜とする。第1エッチング膜101bは膜厚が0.5nm以上5nm以下であることが好ましく、第2エッチング膜101cは膜厚が1nm以上10nm以下であることが好ましい。これはエッチングレートの小さい第1エッチング膜101bとエッチングレートの大きい第2エッチング膜101cとを交互に積層することで、第2エッチング膜101cの一層あたりの膜厚を小さくすることができるためである。これにより大きなエッチングレートを保ったまま、エッチングマスク膜101の断面形状を良好に保つことが可能であるためである。
また、反射防止膜101aは、膜厚が0.5nm以上20nm以下、かつ反射率が40%以下であることが好ましい。反射防止膜101aの膜厚が0.5nmよりも小さいと、膜厚が薄すぎるために安定して成膜を行うことができないという不都合がある。一方、反射防止膜101aの膜厚が20nmよりも大きいと、エッチングマスク膜101の総膜厚が大きくなり、エッチングマスク膜101がエッチングされるに要する時間が大きくなり初期レジストの厚膜化が必要となり寸法精度悪化が懸念され、同時に反射防止膜101aに大きなサイドエッチングが発生しやすくなり形状不良を引き起こしやすいという不都合がある。また、反射防止膜101aの反射率が40%よりも大きいと、露光時にウエハ上レジストの望まない場所にパターンを生成する可能性が高くなるという不都合がある。露光中にウエハ上のレジストに入射した光がレジストで吸収されずウエハ表面で反射し、反射防止膜101aに入射し、その光の一部が再び所望の場所以外のウエハ上のレジストに入射し、望まないパターンを生成することがあるが、反射防止膜101aの反射率が40%より小さければ影響はほぼ無くなる。
位相シフト膜102は、露光光に対する透過率が4%以上60%以下であると、露光条件に応じた位相シフト効果による転写パターンの解像性および焦点深度を得られるため好ましい。位相シフト膜102は、前記条件を満たすものであれば単層膜であっても多層膜であってもよい。
図1(b)に示すフォトマスクブランク250は、基本構成は図1(a)に示すフォトマスクブランク200と同様であるが、エッチングマスク膜101の上にさらにレジスト膜104を備えている点で相違している。
このレジスト膜104の膜厚は、70nm以上150nm以下であることが、微細パターン形成時にレジストパターン倒れを発生させないために好ましい。
図2は、本発明の実施形態に係るフォトマスクの構造を示す模式断面図である。
図2に示すフォトマスク300は、図1(a),(b)に示すフォトマスクブランク200,250を用いて作成される透過型位相シフトマスクである。図2に示すフォトマスク300は、波長193nmの露光光が適応されるフォトマスクであって、透光性基板103と、透光性基板103の上に形成される、位相シフト膜パターン102aからなる回路パターンとを備え、回路パターンを含む有効エリア105のマスク外周部に、位相シフト膜パターン102a及び位相シフト膜パターン102aの上に積層されたエッチングマスク膜101からなる外周部パターン106を備えている。このエッチングマスク膜101は、図1(a)に示すように、第1エッチング膜101bと第2エッチング膜101cとを交互に積層させた多層膜を有するとともに、第1エッチング膜101bの上の最上層に反射防止膜101aを備えている。第1エッチング膜101bは炭素含有量5原子%未満のクロムを含む膜であり、第2エッチング膜101cは炭素含有量10原子%以上のクロムを含む膜である。
なお、外周部パターン106の露光光に対する透過率は、0.1%以下であることが好ましい。この理由は、所望の露光光以外がウエハに照射されることを防ぐためである。通常ウエハ上レジストへマスクパターン転写するためステッパーと称する露光装置を用い、機械的なシャッターにて露光領域を設定しステップアンドリピートして縮小投影露光するが、外周部パターン106によって、各ステップ露光の境界部の重なり露光光を防いでいる。外周部パターン106の露光波長に対する透過率が0.1%より大きい場合、上記重なり露光光がパターンを生成しやすいためである。
また、エッチングマスク膜101は、図1(a),(b)で説明したエッチングマスク膜101と同様に、総膜厚31nm以上80nm以下であることが好ましい。
また、第1エッチング膜101bは,図1(a),(b)で説明した第1エッチング膜101bと同様に、膜厚が0.5nm以上5nm以下であることが好ましく、第2エッチング膜101cは、図1(a),(b)で説明した第2エッチング膜101cと同様に、膜厚が1nm以上10nm以下であることが好ましい。
更に、反射防止膜101aは、図1(a),(b)で説明した反射防止膜101aと同様に、膜厚が0.5nm以上20nm以下、かつ反射率が40%以下であることが好ましい。
また、位相シフト膜パターン102aは、露光光に対する透過率が4%以上60%以下であると、露光条件に応じた位相シフト効果による転写パターンの解像性および焦点深度を得られるため好ましい。位相シフト膜パターン102aは、前記条件を満たすものであれば単層膜であっても多層膜であってもよい。
次に、本発明の第1及び第2実施形態に係るフォトマスクブランク200,250では、エッチングマスク膜101のエッチング時にサイドエッチングが生じず、微細なマスクパターンが得られる理由について説明する。都合上、先に従来の位相シフトマスクブランクの状況について説明し、それに対して本発明のフォトマスクブランク200,250を構成する位相シフトマスクブランクについて説明する。
図3は、一般的なドライエッチング装置のチャンバー内における、被エッチング膜のエッチング中の状況を説明するための模式断面図である。ガスプラズマを利用するドライエッチング装置は数種方式があるが、ここではもっとも一般的に使用されるRIE(Reactive ion etching=反応性イオンエッチング)方式を示している。
プラズマ中では、導入ガスが電子と衝突し、中性粒子とともに種々の形に解離した反応性イオンや活性ラジカルが発生しておりエッチングを引き起こすが、RIE方式では特に、被エッチング膜が置かれた電極側に発生したイオンシースがつくる電界を利用する。すなわち、被エッチング膜の表面に吸着したラジカルを、イオンシースがつくる電界(被エッチング膜の表面に近づくほど低電位となる)によって加速された陽イオンが衝撃することでエッチングが進行する。
ここで、図3(a)に示すように、前記電界はレジストパターン404aによって歪むとともに(図では開口部以下の電気力線を省略している)、レジストパターン404aが帯電するために加速軌道が曲がる陽イオンが生まれ、中性粒子との衝突(図示せず)によって散乱した陽イオンとともに被エッチング膜401の側壁を衝撃する。被エッチング膜401がSiなどの場合は、被エッチング膜401の側壁には、導入ガスやエッチング生成物から生成した側壁保護膜401aが形成され、当該側壁のエッチングを防止するため、サイドエッチングは発生しない。
これに対し、クロムのドライエッチングの場合は、Cl2ガスのみでは進行しないため、Cl/O系ガスが使われ、蒸気圧の高いCrO2Cl2を生成してエッチングが進行する。しかしながらこの反応は、ラジカル主体のエッチングであり、しかも側壁保護膜を形成することができない。従って、図3(b)に示すように、ラジカル反応とイオン衝撃によってクロムの被エッチング膜501の側壁がエッチングされ、クロムパターンの断面形状は中央が細いボーイング形状や下部が細る逆テーパー状になりやすく、Siのエッチングのような垂直形状が得られない。特にクロム膜に炭素を添加した場合、エッチングレートが大幅に向上するものの、サイドエッチング量も大きくなる。
なお、図3(a),(b)において、符号402は位相シフト膜、403は透光性基板である。
図4は、本発明の実施形態に係るフォトマスクの製造方法における、エッチングマスク膜のエッチング状況を説明するための模式断面図である。本発明のエッチングマスク膜101では、最上層に反射防止膜101aを備え、炭素含有量5原子%未満のクロムを含む第1エッチング膜101b、炭素含有量10原子%以上のクロムを含む第2エッチング膜101cが交互に積層しており、第1エッチング膜101bの膜厚は0.5nm以上5nm以下、第2エッチング膜101cの膜厚は1nm以上10nm以下である。第2エッチング膜101cは炭素含有量が大きいためエッチングレートが大きいが、その上下層の第1エッチング膜101bは炭素含有量が小さくエッチングレートは小さい。通常、炭素を含有するクロム膜の膜厚が大きい場合、サイドエッチングが入りやすいが、第1エッチング膜101bとの多層構造をとる各第2エッチング膜101cの膜厚は従来型よりも薄く抑えることが可能となり、サイドエッチングが入りにくくなる。したがって、エッチングマスク膜101のエッチング終了後におけるエッチングマスクパターン101dにおいてサイドエッチングの発生を小さくすることができる。
図5A及び図5Bは、本発明の実施形態に係るフォトマスクの製造方法を示す模式断面図である。図5A及び図5Bにおいては、レジスト膜104を形成した図1(b)に示すフォトマスクブランク250の形態からのフローを示す。
図5A及び図5Bにおいて、フォトマスク500は、エッチングマスク膜101の上に形成されたレジストパターン104aをマスクとして、エッチングマスク膜101に対して酸素を含む塩素系ガスを用いるドライエッチングを行うことにより、エッチングマスク膜101にエッチングマスクパターン101dを形成する工程(<S−1>、<S−2>、<S−3>)と、エッチングマスク膜101に形成されたエッチングマスクパターン101dをマスクとして、位相シフト膜102にフッ素系ガスを用いるドライエッチングを行うことによって、位相シフト膜102に位相シフト膜パターン102aを形成する工程(<S−4>)と、エッチングマスクパターン101d上に残ったレジストパターン104aを除去する工程(<S−5>)と、レジスト膜104bを塗布する工程(<S−6>)と、レジスト膜104bに描画、現像を行い外周部上にレジストパターン104cを形成する工程(<S−7>)と、外周部上に形成されたレジストパターン104cをマスクとして、酸素を含む塩素系ガスを用いるドライエッチングを行うことによって、エッチングマスク膜101(エッチングマスクパターン101d)の一部を除去する工程と(<S−8>)、外周部上に形成されたレジストパターン104cを除去して外周部パターン(位相シフト膜パターン102a及び位相シフト膜パターン102aの上に積層されたエッチングマスク膜101(エッチングマスクパターン101d)からなる)を形成する工程(<S−9>)とにより製造される。レジストパターンの除去は、硫酸加水洗浄を用いることができる。描画にはレーザー描画機を用いることができる。
具体的なフォトマスク500の製造方法は、実施例において説明する。
実施例では、本発明のフォトマスクブランク、及びそれを用いたフォトマスクの製造方法の有効性を検証するため、ライン系およびスペース系パターンの解像限界を調べることとした。
本発明の第1の実施形態である図1(a)に示すフォトマスクブランク200を準備した。ここで、位相シフト膜102とエッチングマスク膜101は下記のものにした。
位相シフト膜102は膜厚65nm、透過率6%のMoSi単層膜である。
エッチングマスク膜101は膜厚47nmで、最上層に反射防止膜101aを積層し、その下層に第1エッチング膜101bと第2エッチング膜101cをそれぞれ6層積層させた膜である。
<反射防止膜101a>
クロム含有量:50原子%、酸素含有量:40原子%、窒素含有量:10原子%
膜厚:2nm
<炭素含有量5原子%未満のクロムを含む第1エッチング膜101b>
クロム含有量:65原子%、炭素含有量:2原子%、窒素含有量:33原子%
膜厚:2nm
<炭素含有量10原子%以上のクロムを含む第2エッチング膜101c>
クロム含有量:50原子%、炭素含有量:20原子%、窒素含有量:30原子%
膜厚:5.5nm
このフォトマスクブランク200上に、ネガ型化学増幅型電子線レジストSEBN2014(信越化学工業製)を膜厚150nmにスピンコートしてレジスト膜104を形成し、第2の実施形態である図1(b)に示すフォトマスクブランク250とした(図5A<S−1>)。
次に、ドーズ量35μC/cm2で、各々ライン及びスペースのアシストパターンに相当するように、パターンサイズ30nmから80nmまで2nmずつ孤立ラインパターンと孤立スペースパターンの短辺寸法を変化させ、長辺寸法を120nmとして、それぞれの線幅(短辺寸法)で5万本ずつ電子線描画した。その後、熱処理装置にて110℃で10分間熱処理(PEB=Post exposure bake)を行った。次に、パドル現像で90秒間現像を行い、レジストパターン104aを形成した(図5A<S−2>)。
次に、エッチングマスク膜101に対して酸素を含む塩素系ガスを用いて下記の条件でドライエッチングを行った(図5A<S−3>)。このとき、エッチングの抜け不良は発生しなかった。
<エッチングマスク膜101のドライエッチング条件1>
装置:ICP(Inductively Coupled Plasma=誘導結合プラズマ)方式
ガス:Cl2+O2+He、ガス圧力:6mTorr
ICP電力:400W
バイアスパワー:15W
<エッチングマスク膜101のドライエッチング条件2>
装置:ICP(Inductively Coupled Plasma=誘導結合プラズマ)方式
ガス:Cl2+O2+He、ガス圧力:6mTorr
ICP電力:400W
バイアスパワー:30W
次に、位相シフト膜102に対してフッ素系ガスを用いて下記の条件でドライエッチングを行った(図5A<S−4>)。
<位相シフト膜102のドライエッチング条件>
装置:ICP
ガス:SF6+O2、ガス圧力:5mTorr
ICP電力:325W
次に、レジストパターン104aを硫酸加水洗浄によって剥膜した(図5A<S−5>)。
次に、レジスト膜104bをコートし(図5A<S−6>)、レーザー描画装置によって描画を行った。その後、現像を行い、レジストパターン104cを形成した(図5B<S−7>)。
次に、エッチングマスクパターン101dに対して酸素を含む塩素系ガスを用いて下記の条件でドライエッチングを行った(図5B<S−8>)。
<エッチングマスクパターン101dのドライエッチング条件1>
装置:ICP(Inductively Coupled Plasma=誘導結合プラズマ)方式
ガス:Cl2+O2+He、ガス圧力:8mTorr
ICP電力:500W
バイアスパワー:10W
次に、レジストパターン104cを硫酸加水洗浄によって剥離し(図5B<S−9>)、本発明のフォトマスクブランクを用いたフォトマスク500を作製した(図5B<S−9>)。
<評価1>
上記エッチングマスク膜101をエッチングした際のレジストパターン104aで覆われていない部位がエッチングされるまでの時間を評価した結果を表1に示す。
エッチングマスク膜101がエッチングされるまでの時間は、ドライエッチング装置に備え付けのエッチング終点検出装置によって測定する。このエッチング終点検出装置は、クロム原子に基づくプラズマ発光を用いた。比較例として、炭素を含むクロム単層膜をエッチングマスク膜とする従来の位相シフトマスクブランクを用いた位相シフトマスクの結果も示す。従来のエッチングマスク膜の炭素含有量は13原子%である。評価1には、上記エッチングマスク膜のドライエッチング条件1を用いた。
Figure 2018072543
表1に示すように、本発明のフォトマスクブランク200,250を用いると、従来型よりもレジストで覆われていない部位がエッチングされるまでの時間は短くなった。これは本発明のエッチングマスク膜101の炭素含有量が、従来型よりも多いためである。
次いで、上記評価1で用いたエッチングマスク膜のドライエッチング条件1よりもバイアスパワーが大きいため異方性が大きく、クロム膜の抜け不良改善に望ましドライエッチング条件2を用いて解像限界の評価を行った。
<評価2>
外観検査装置を用いて、微細パターンの解像限界を評価した。設計上のパターンサイズを30nmから80nmまで2nmずつ短辺寸法を変化させた孤立ラインパターンと孤立スペースパターン(各々5万本)について、検査機がパターン消失かパターン形状不良を1本以上検出した場合は欠陥とし、検査機が欠陥を検出しない最小寸法を解像限界とした。表2に結果を示す。
Figure 2018072543
表2に示すように、本発明のフォトマスクブランク200,250を用いると、従来ブランクに比べ孤立ラインパターンの解像限界はより微細な線幅まで達し、解像性の改善が確認された。これは、本発明のフォトマスクブランク200,250では、ドライエッチング後の断面に水平方向へのサイドエッチングが発生しないエッチングマスク膜101を用いたためである。
また、表1に示すように、レジストパターン104aで覆われていない部位がエッチングされるまでの時間は従来ブランクより短くなり、より異方性の高いエッチングプロセスを適応可能である。これにより、エッチングマスク膜101の抜け不良が改善し、孤立スペースパターンの解像限界はより微細な線幅まで達し、解像性の改善が確認された。また、異方性の高いエッチングを用いても、従来ブランク同等のレジスト残膜を確保できるため、従来ブランク同等の寸法面内均一性および寸法精度を実現することが可能である。このように、ライン系のアシストパターンとスペース系のアシストパターンの解像限界を改善し、かつ従来ブランク同等の寸法面内均一性および寸法精度を持った位相シフトマスクブランクが得られた。
また、エッチングマスク膜101ではエッチングマスク膜101に炭素を含んでも、サイドエッチングが発生しないため、クロム膜であるエッチングマスク膜101と位相シフト膜102との接点の面積は大きい。このため、洗浄工程におけるリンス液の耐性が良好であり、洗浄工程でのクロム膜のパターン消失を低減することができる。
本発明のフォトマスクブランク及びそれを用いたフォトマスクの製造方法は、アシストパターンなどの微細なマスクパターンを有する位相シフトマスクを作製するための位相シフトマスクブランク、及び位相シフトマスクの製造方法として適用可能である。
101…エッチングマスク膜
101a…反射防止膜
101b…第1エッチング膜
101c…第2エッチング膜
101d…エッチングマスクパターン
102…位相シフト膜
102a…位相シフト膜パターン
103…透光性基板
104…レジスト膜
104a…レジストパターン
104b…レジスト膜
104c…レジストパターン
105…有効エリア
106…外周部パターン
200、250…フォトマスクブランク
300…フォトマスク
401…被エッチング膜
401a…側壁保護膜
402…位相シフト膜
403…透光性基板
404a…レジストパターン
500…フォトマスク
501…被エッチング膜

Claims (13)

  1. 波長193nmの露光光が適応されるフォトマスクを作製するために用いられるフォトマスクブランクであって、
    透光性基板と、該透光性基板の上に形成される、位相シフト効果をもたらす位相シフト膜と、該位相シフト膜の上に接して形成されるエッチングマスク膜とを備え、
    該エッチングマスク膜は、第1エッチング膜と第2エッチング膜とを交互に積層させた多層膜を有するとともに、前記第1エッチング膜は炭素含有量5原子%未満のクロムを含む膜であり、前記第2エッチング膜は炭素含有量10原子%以上のクロムを含む膜であることを特徴とするフォトマスクブランク。
  2. 前記第1エッチング膜は膜厚が0.5nm以上5nm以下の膜であり、前記第2エッチング膜は膜厚が1nm以上10nm以下の膜であることを特徴とする請求項1に記載のフォトマスクブランク。
  3. 前記エッチングマスク膜は、最上層に反射防止膜を備えることを特徴とする請求項1または2に記載のフォトマスクブランク。
  4. 前記反射防止膜は、膜厚が0.5nm以上20nm以下、かつ反射率が40%以下であることを特徴とする請求項3に記載のフォトマスクブランク。
  5. 前記エッチングマスク膜は、総膜厚が31nm以上80nm以下であり、露光波長193nmに対する光学濃度は1.6以上2.7以下であることを特徴とする請求項1乃至4の何れか1項に記載のフォトマスクブランク。
  6. 前記位相シフト膜は、透過率4%以上60%以下であることを特徴とする請求項1乃至5の何れか1項に記載のフォトマスクブランク。
  7. 波長193nmの露光光が適応されるフォトマスクであって、
    透光性基板と、該透光性基板の上に形成される、位相シフト膜パターンからなる回路パターンとを備え、
    該回路パターンを含む有効エリアのマスク外周部に、前記位相シフト膜パターン及び該位相シフト膜パターンの上に積層されたエッチングマスク膜からなる外周部パターンを備え、
    前記エッチングマスク膜は、第1エッチング膜と第2エッチング膜とを交互に積層させた多層膜を有するとともに、前記第1エッチング膜は炭素含有量5原子%未満のクロムを含む膜であり、前記第2エッチング膜は炭素含有量10原子%以上のクロムを含む膜であることを特徴とするフォトマスク。
  8. 前記第1エッチング膜は膜厚が0.5nm以上5nm以下の膜であり、前記第2エッチング膜は膜厚が1nm以上10nm以下の膜であることを特徴とする請求項7に記載のフォトマスク。
  9. 前記エッチングマスク膜は、最上層に反射防止膜を備えることを特徴とする請求項7または8に記載のフォトマスク。
  10. 前記反射防止膜は膜厚が0.5nm以上20nm以下、かつ反射率が40%以下であることを特徴とする請求項9に記載のフォトマスク。
  11. 前記エッチングマスク膜は、総膜厚が31nm以上80nm以下であり、露光波長193nmに対する光学濃度は1.6以上2.7以下であることを特徴とする請求項7乃至10の何れか1項に記載のフォトマスク。
  12. 前記位相シフト膜パターンは透過率4%以上60%以下であることを特徴とする請求項7乃至11の何れか1項に記載のフォトマスク。
  13. 請求項1から請求項6のいずれかに記載のフォトマスクブランクを用いるフォトマスクの製造方法であって、
    前記エッチングマスク膜の上に形成されたレジストパターンをマスクとして、前記エッチングマスク膜に対して酸素を含む塩素系ガスを用いるドライエッチングを行うことにより、前記エッチングマスク膜にパターンを形成する工程と、
    前記エッチングマスク膜に形成されたパターンをマスクとして、前記位相シフト膜にフッ素系ガスを用いるドライエッチングを行うことによって、前記位相シフト膜にパターンを形成する工程と、
    前記位相シフト膜へのパターン形成後、外周部上にレジストパターンを形成し、前記外周部上に形成されたレジストパターンをマスクとして、酸素を含む塩素系ガスを用いるドライエッチングを行うことによって、前記エッチングマスク膜の一部を除去し、前記外周部上に形成されたレジストパターンを除去して外周部パターンを形成する工程とを有することを特徴とするフォトマスクの製造方法。
JP2016211547A 2016-10-28 2016-10-28 フォトマスクブランク、フォトマスク及びフォトマスクの製造方法 Pending JP2018072543A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016211547A JP2018072543A (ja) 2016-10-28 2016-10-28 フォトマスクブランク、フォトマスク及びフォトマスクの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016211547A JP2018072543A (ja) 2016-10-28 2016-10-28 フォトマスクブランク、フォトマスク及びフォトマスクの製造方法

Publications (1)

Publication Number Publication Date
JP2018072543A true JP2018072543A (ja) 2018-05-10

Family

ID=62115136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016211547A Pending JP2018072543A (ja) 2016-10-28 2016-10-28 フォトマスクブランク、フォトマスク及びフォトマスクの製造方法

Country Status (1)

Country Link
JP (1) JP2018072543A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059890A1 (ja) * 2019-09-25 2021-04-01 Hoya株式会社 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP2023065616A (ja) * 2019-12-05 2023-05-12 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びフォトマスク
WO2023113047A1 (ja) * 2021-12-15 2023-06-22 株式会社トッパンフォトマスク フォトマスクブランク、フォトマスク及びフォトマスクの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059890A1 (ja) * 2019-09-25 2021-04-01 Hoya株式会社 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP2023065616A (ja) * 2019-12-05 2023-05-12 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びフォトマスク
JP7411840B2 (ja) 2019-12-05 2024-01-11 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びフォトマスク
WO2023113047A1 (ja) * 2021-12-15 2023-06-22 株式会社トッパンフォトマスク フォトマスクブランク、フォトマスク及びフォトマスクの製造方法

Similar Documents

Publication Publication Date Title
TWI526775B (zh) 空白光罩及光罩之製造方法
EP0991983A1 (en) Photoresist developer and method of development
US11143949B2 (en) Photomask blank, method of manufacturing photomask, and photomask
JP2018072543A (ja) フォトマスクブランク、フォトマスク及びフォトマスクの製造方法
JP2008066587A (ja) パターン形成方法
US11971653B2 (en) Photomask blank, method for producing photomask, and photomask
TWI770155B (zh) 空白光罩、光罩及光罩之製造方法
JP2010156819A (ja) 半導体装置の製造方法
JP2018010081A (ja) 位相シフトマスクブランク及びそれを用いた位相シフトマスクの製造方法、位相シフトマスク
JP3342856B2 (ja) 微細パターンの形成方法および半導体装置の製造方法
JP7411840B2 (ja) フォトマスクブランク、フォトマスクの製造方法及びフォトマスク
JP2012178394A (ja) 半導体装置の製造方法および半導体装置ならびに露光装置
US20230333460A1 (en) Reflective photomask blank, method for manufacturing reflective photomask, and reflective photomask
JP2010153641A (ja) 基板処理方法
JP6089667B2 (ja) レジスト付きフォトマスクブランクスの製造方法、および、フォトマスクの製造方法
JP5317137B2 (ja) マスクブランク、及びマスク
KR20080015378A (ko) 반도체 집적 회로 장치의 제조 방법
McCallum et al. 193-nm lithography: new challenges, new worries