WO2023113047A1 - フォトマスクブランク、フォトマスク及びフォトマスクの製造方法 - Google Patents

フォトマスクブランク、フォトマスク及びフォトマスクの製造方法 Download PDF

Info

Publication number
WO2023113047A1
WO2023113047A1 PCT/JP2023/003372 JP2023003372W WO2023113047A1 WO 2023113047 A1 WO2023113047 A1 WO 2023113047A1 JP 2023003372 W JP2023003372 W JP 2023003372W WO 2023113047 A1 WO2023113047 A1 WO 2023113047A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
hard mask
pattern
photomask
phase shift
Prior art date
Application number
PCT/JP2023/003372
Other languages
English (en)
French (fr)
Inventor
一晃 松井
洋介 小嶋
Original Assignee
株式会社トッパンフォトマスク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トッパンフォトマスク filed Critical 株式会社トッパンフォトマスク
Priority to CN202380015121.0A priority Critical patent/CN118401890A/zh
Priority to EP23731498.4A priority patent/EP4451057A1/en
Priority to KR1020247016448A priority patent/KR20240122430A/ko
Publication of WO2023113047A1 publication Critical patent/WO2023113047A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching

Definitions

  • the present invention relates to a photomask blank, a photomask, and a method for manufacturing a photomask.
  • a halftone phase shift film made of a metal silicide material, a light shielding film made of a chromium material, and an etching mask film (a hard mask film) made of an inorganic material are formed on a translucent substrate.
  • the etching mask film is patterned by dry etching with a fluorine-based gas using a resist pattern formed on the surface of the mask blank as a mask, and then using the etching mask film as a mask.
  • the light-shielding film is patterned by dry etching with a mixed gas of chlorine and oxygen, and the phase shift film is patterned by dry etching with a fluorine-based gas using the pattern of the light-shielding film as a mask.
  • the resist pattern described above is often formed by forming a resist film on the surface of the mask blank and drawing the resist film with an electron beam lithography machine.
  • the electrons from the electron beam lithography machine are irradiated to unexpected locations, resulting in the position of the drawing pattern. Accuracy may be reduced.
  • Techniques for suppressing this charging phenomenon include, for example, correction techniques for electron beam lithography machines (see Patent Document 1) and techniques for coating a resist film with a conductive film (CDL: Charge Dissipation Layer). .
  • the present invention has been made to solve the above problems, and an object of the present invention is to improve the positional accuracy of electron beam irradiation by suppressing electrification of a resist film during electron beam writing. It is an object of the present invention to provide a photomask blank capable of precisely forming a fine resist pattern on a resist film.
  • the present invention provides a method for manufacturing a photomask that can form a fine pattern on a thin film for pattern formation with high accuracy by using this photomask blank, and a photomask manufactured by the method. do.
  • a photomask blank according to one aspect of the present invention is a photomask blank used for producing a photomask to which exposure light with a wavelength of 200 nm or less is applied, comprising a transparent substrate, a thin film, and a hard mask film.
  • the thin film is formed of a material containing chromium
  • the hard mask film includes a lower layer positioned on the thin film side, and an upper layer constituting the outermost layer of the hard mask film, the lower layer being , tungsten, tellurium, ruthenium, and their compounds
  • the upper layer contains tantalum or a tantalum compound
  • the compound contains at least one selected from oxygen, nitrogen, and carbon characterized by containing
  • the thickness of the upper layer constituting the photomask blank according to one aspect of the present invention may be 1 nm or more. Further, the thickness of the hard mask film forming the photomask blank according to one aspect of the present invention may be in the range of 4 nm or more and 14 nm or less. Further, the thin film forming the photomask blank according to one aspect of the present invention may be a light shielding film. Further, the photomask blank according to one aspect of the present invention may further include a phase shift film made of a silicon-containing material between the transparent substrate and the light shielding film.
  • a photomask according to one aspect of the present invention is a photomask to which exposure light having a wavelength of 200 nm or less is applied, comprising a transparent substrate, a patterned thin film formed on the transparent substrate, and the thin film and a hard mask film formed thereon, wherein the thin film is formed of a material containing chromium, and the hard mask film constitutes a lower layer located on the thin film side and an outermost layer of the hard mask film.
  • said lower layer contains at least one selected from tungsten, tellurium, ruthenium, and compounds thereof; said upper layer contains tantalum or a tantalum compound, said compound containing oxygen, nitrogen, and carbon.
  • the thickness of the upper layer constituting the photomask according to one aspect of the present invention may be 1 nm or more. Further, the thickness of the hard mask film forming the photomask according to one aspect of the present invention may be in the range of 4 nm or more and 14 nm or less. Further, the thin film forming the photomask according to one embodiment of the present invention may be a light shielding film. Further, the photomask according to one aspect of the present invention may further include a phase shift film made of a silicon-containing material between the transparent substrate and the light shielding film.
  • a method for manufacturing a photomask according to an aspect of the present invention is a method for manufacturing a photomask using the above-described photomask blank, the method comprising: forming a resist pattern on the hard mask film of the photomask blank; dry etching the hard mask film with a fluorine-based gas using the resist pattern as a mask to form a hard mask pattern; and dry etching the thin film with a mixed gas of chlorine and oxygen using the hard mask pattern as a mask to form a thin film. and forming a pattern.
  • a method of manufacturing a photomask according to another aspect of the present invention is a method of manufacturing a photomask using the photomask blank described above, wherein a resist pattern is formed on the hard mask film of the photomask blank.
  • the photomask blank according to one aspect of the present invention having the above configuration, it is possible to improve the positional accuracy of electron beam irradiation by suppressing electrification of the resist film during electron beam writing.
  • a fine resist pattern can be formed with high precision.
  • a fine pattern can be accurately formed on the thin film for pattern formation.
  • FIG. 1 shows a schematic configuration of an embodiment of a photomask blank (hereinafter also simply referred to as "mask blank").
  • a mask blank 100 shown in FIG. 1 has a structure in which a phase shift film 2, a light shielding film 3, and a hard mask film 4 are laminated in this order on one main surface of a translucent substrate (transparent substrate) 1. .
  • the mask blank 100 may have a structure in which a resist film is laminated on the hard mask film 4 as necessary. The details of the main components of the mask blank 100 will be described below.
  • the light-transmitting substrate 1 is made of a material having good transparency to exposure light used in the exposure process in lithography.
  • synthetic quartz glass, aluminosilicate glass, soda lime glass, low thermal expansion glass (SiO 2 —TiO 2 glass, etc.), and various other glass substrates can be used.
  • a substrate using synthetic quartz glass has high transparency to ArF excimer laser light (wavelength: about 193 nm), so it can be suitably used as the translucent substrate 1 of the mask blank 100 .
  • the exposure process in lithography referred to here is an exposure process in lithography using a phase shift mask produced using this mask blank 100, and hereinafter, the exposure light means the exposure light used in this exposure process. It is assumed that As the exposure light, any of ArF excimer laser light (wavelength: 193 nm), KrF excimer laser light (wavelength: 248 nm), and i-line light (wavelength: 365 nm) can be applied. From the viewpoint of miniaturization, it is desirable to apply ArF excimer laser light to the exposure light. For this reason, an embodiment in which an ArF excimer laser beam is applied to the exposure light will be described below.
  • phase shift film 2 has a predetermined transmittance with respect to the exposure light used in the exposure transfer process, and the exposure light transmitted through the phase shift film 2 passes through the atmosphere by the same distance as the thickness of the phase shift film 2. It has an optical characteristic such that the transmitted exposure light has a predetermined phase difference.
  • phase shift film 2 is preferably made of a material containing silicon (Si). More preferably, phase shift film 2 is made of a material containing nitrogen (N) in addition to silicon. Such a phase shift film 2 can be patterned by dry etching using a fluorine-based gas, and a material having sufficient etching selectivity with respect to the light shielding film 3 containing chromium, which will be described later, is used.
  • the phase shift film 2 may further contain one or more elements selected from metalloid elements, non-metal elements, and metal elements as long as patterning is possible by dry etching using a fluorine-based gas.
  • the metalloid element may be any metalloid element in addition to silicon.
  • the non-metallic element may be any non-metallic element, such as one or more elements selected from oxygen (O), carbon (C), fluorine (F) and hydrogen (H). and preferred.
  • Metal elements include molybdenum (Mo), tungsten (W), titanium (Ti), tantalum (Ta), zirconium (Zr), hafnium (Hf), niobium (Nb), vanadium (V), cobalt (Co), and chromium. (Cr), nickel (Ni), ruthenium (Ru), tin (Sn), boron (B), and germanium (Ge).
  • phase shift film 2 is made of, for example, MoSiON or MoSiN, and has a predetermined phase difference (for example, 150 [deg] to 210 [deg]) and a predetermined transmittance ( For example, the refractive index n, the extinction coefficient k, and the film thickness of the phase shift film 2 are selected so as to satisfy 1% to 30%), and the film material is selected so that the refractive index n and the extinction coefficient k The composition and film formation conditions are adjusted.
  • the mask blank 100 in this embodiment has a light shielding film 3 as a thin film for forming a transfer pattern.
  • the light-shielding film 3 is a film constituting a light-shielding film pattern including a light-shielding band pattern formed on the mask blank 100, and is a film having a light-shielding property against the exposure light used in the exposure process in lithography.
  • the light-shielding film 3 has a laminated structure with the phase shift film 2, and is required to have an optical density (OD) of, for example, an ArF excimer laser beam with a wavelength of 193 nm greater than 2.0, preferably 2.8 or more. It is more preferably 3.0 or more.
  • the surface reflectance of the exposure light on both main surfaces is kept low in order to prevent exposure transfer defects due to reflection of the exposure light.
  • the reflectance of the surface side of the light-shielding film 3 (the surface farthest from the translucent substrate 1), which is exposed to the reflected light of the exposure light from the reduction optical system of the exposure device, is, for example, 40% or less (preferably, 30% or less). This is to suppress stray light caused by multiple reflection between the surface of the light shielding film 3 and the lens of the reduction optical system.
  • the light shielding film 3 must function as an etching mask during dry etching with a fluorine-based gas for forming a transfer pattern (phase shift film pattern) on the phase shift film 2 .
  • the light-shielding film 3 needs to be made of a material having sufficient etching selectivity with respect to the phase shift film 2 in dry etching with a fluorine-based gas.
  • the light-shielding film 3 is required to be capable of precisely forming a fine pattern to be formed on the phase shift film 2 .
  • the thickness of the light shielding film 3 is preferably 70 nm or less, more preferably 65 nm or less, and particularly preferably 60 nm or less.
  • the thickness of the light shielding film 3 is required to be greater than 15 nm, preferably 20 nm or more, and more preferably 25 nm or more.
  • the light shielding film 3 is made of a material containing chromium.
  • the chromium-containing material may be chromium alone or may contain chromium and additional elements. As such additive elements, oxygen and/or nitrogen are preferable in that the dry etching rate can be increased.
  • the light shielding film 3 may contain other elements such as carbon, hydrogen, boron, indium, tin and molybdenum.
  • the light shielding film 3 can be formed by forming a film on the phase shift film 2 by a reactive sputtering method using a target containing chromium.
  • the sputtering method may be a method using a direct current (DC) power supply (DC sputtering) or a method using a radio frequency (RF) power supply (RF sputtering).
  • DC sputtering DC sputtering
  • RF sputtering radio frequency
  • it may be a magnetron sputtering method or a conventional method.
  • DC sputtering is preferred due to its simpler mechanism.
  • the film forming apparatus may be either an in-line type or a single wafer type.
  • the target material is not limited to chromium alone, as long as chromium is the main component. Chromium containing either oxygen or carbon, or a target in which a combination of oxygen and carbon is added to chromium may be used.
  • a hard mask film 4 is provided on the light shielding film 3 .
  • the hard mask film 4 is a film made of a material having etching resistance to an etching gas used when etching the light shielding film 3 . It is sufficient that the hard mask film 4 is thick enough to function as an etching mask until dry etching for forming a pattern on the light shielding film 3 is completed. not subject to the restrictions of Therefore, the thickness of the hard mask film 4 can be made much thinner than the thickness of the light shielding film 3 .
  • the thickness of the hard mask film 4 is preferably 14 nm or less, more preferably 10 nm or less. This is because if the hard mask film 4 is too thick, a thick resist film that serves as an etching mask is required in dry etching for forming a light-shielding film pattern on the hard mask film 4 .
  • the thickness of the hard mask film 4 is preferably 4 nm or more, more preferably 5 nm or more. If the thickness of the hard mask film 4 is too thin, the pattern of the hard mask film 4 disappears before the dry etching for forming the light shielding film pattern on the light shielding film 3 is completed, depending on the conditions of the dry etching with the oxygen-containing chlorine gas. This is because there is a risk of
  • the resist film of the organic material used as an etching mask in the dry etching with the fluorine-based gas for forming the pattern on the hard mask film 4 only functions as an etching mask until the dry etching of the hard mask film 4 is completed. is sufficient if the thickness of the film is Therefore, the thickness of the resist film can be significantly reduced by providing the hard mask film 4 as compared with the conventional structure in which the hard mask film 4 is not provided.
  • the hard mask film 4 includes a laminate structure of a lower layer 41 and an upper layer 42 .
  • the lower layer 41 is a layer located on the light shielding film 3 side of the hard mask film 4 composed of a plurality of layers.
  • the upper layer 42 is, for example, a layer forming the outermost layer of the hard mask film 4 .
  • the lower layer 41 is preferably made of a material containing at least one selected from tungsten, tellurium, ruthenium, and compounds thereof.
  • tungsten it is preferable to use WO X or the like.
  • TeO or the like is preferably used as the tellurium-containing material.
  • the material containing ruthenium it is preferable to use simple Ru or the like.
  • the above-mentioned “compound” refers to a compound containing at least one selected from oxygen, nitrogen, and carbon.
  • the lower layer 41 is preferably made of a material containing at least one selected from tungsten, tellurium, ruthenium, and their compounds in a total content of 96 atomic % or more. As a result, the content of other elements can be suppressed to less than 4 atomic %, and a good etching rate can be ensured.
  • the thickness of the lower layer 41 of the hard mask film 4 is preferably from 1 nm to 13 nm, more preferably from 4 nm to 12 nm, and more preferably from 5 nm, in order to ensure uniformity of the in-plane distribution of the thickness of the lower layer 41 . It is more preferable if it is 8 nm or more.
  • the ratio of the thickness (Dd) of the lower layer 41 to the thickness (Dt) of the hard mask film 4 as a whole (hereinafter sometimes referred to as the Du/Dd ratio) is preferably 0.3 or more. , is more preferably 0.5 or more, and more preferably 0.7 or more.
  • the hard mask film 4 By forming the hard mask film 4 having such a structure, the hard mask film 4 as a whole can maintain high conductivity.
  • the upper layer 42 is preferably formed of a material containing tantalum (a simple substance of tantalum) or a tantalum compound.
  • Materials containing tantalum in this case include materials containing tantalum and one or more elements selected from oxygen, nitrogen and carbon. Examples include TaO, TaN, TaC, TaON, TaCO, TaCN and the like.
  • the upper layer 42 is preferably made of a material having an oxygen content of 30 atomic % or more, more preferably 40 atomic % or more, from the viewpoint of suppressing a change in the degree of oxidation that occurs after the upper layer 42 is formed. More preferably, it is 50 atomic % or more.
  • the upper layer 42 preferably has an oxygen content of 71.4% or less. If the upper layer 42 contains more oxygen than the stoichiometrically stable Ta 2 O 5 , the surface roughness of the film may become rough.
  • the upper layer 42 is preferably made of a material having a total content of tantalum or tantalum compounds of 90 atomic % or more. As a result, the content of other elements can be suppressed to less than 10 atomic percent, and good adhesion to the resist film, good CD (Critical Dimension) in-plane uniformity, and CD linearity can be ensured. .
  • the thickness of the upper layer 42 of the hard mask film 4 is preferably 1 nm or more, more preferably 2 nm or more, in order to ensure uniformity of the in-plane distribution of the thickness of the upper layer 42 .
  • the thickness of the upper layer 42 of the hard mask film 4 is preferably 10 nm or less, more preferably 8 nm or less.
  • the ratio of the thickness (Du) of the upper layer 42 to the thickness (Dt) of the hard mask film 4 as a whole (hereinafter sometimes referred to as the Du/Dt ratio) is preferably 0.7 or less. , is more preferably 0.5 or less, and more preferably 0.3 or less.
  • the hard mask film 4 may include an intermediate layer between the upper layer 42 and the lower layer 41 and made of a material that can be patterned by dry etching using a fluorine-based gas.
  • the hard mask film 4 may have a lowermost layer between the lower layer 41 and the light shielding film 3 and made of a material that can be patterned by dry etching using a fluorine-based gas.
  • at least one of the upper layer 42 and the lower layer 41 may have a structure in which the composition is graded in the thickness direction.
  • the hard mask film 4 as a whole is The electrical conductivity can be increased compared to the hard mask film 4 according to the prior art.
  • electron Resist film charging charge-up
  • the electrons from the electron beam lithography machine are irradiated to the assumed position, the positional accuracy of the drawing pattern is improved, and a phase shift mask having good pattern accuracy of the light shielding film pattern and the phase shift film pattern to be described later is manufactured. be able to.
  • the fluorine concentration is reduced compared to the case of using the conventional hard mask film 4 (for example, the single-layer hard mask film 4 made only of tantalum).
  • the etching rate by the system gas becomes higher (faster), and the effect of reducing the resist film thickness can be obtained.
  • the hard mask film 4 according to the present embodiment which can reduce the resist film thickness, can be expected to further improve the resolution.
  • the upper layer 42 by forming the upper layer 42 from a material containing tantalum or a tantalum compound, which has good adhesion to the resist film, peeling of the resist film is reduced, and further improvement in the resolution of the resist film is expected. can.
  • the lower layer 41 by forming the lower layer 41 from the above-described highly conductive material, it is possible to suppress the occurrence of electrification itself of the resist film during electron beam writing.
  • the amount of improvement in positional accuracy can be made greater than the correction technique of the electron beam lithography machine.
  • the upper layer 42 is made of a tantalum-containing material that has a high affinity with the resist film. can be suppressed, and versatility can be enhanced.
  • a resist film of an organic material is formed with a film thickness of 100 nm or less in contact with the surface of the hard mask film 4.
  • an SRAF Sub-Resolution Assist Feature
  • the thickness of the resist film can be suppressed by providing the hard mask film 4 as described above, so that the cross-sectional aspect ratio of the resist pattern formed of this resist film is 1:2.5. and lower.
  • the resist film is preferably a resist for electron beam drawing exposure, and more preferably a chemically amplified resist.
  • the mask blank 100 having the above configuration can be manufactured, for example, by the following procedure.
  • a translucent substrate 1 is prepared.
  • the translucent substrate 1 has end faces and main surfaces polished to a predetermined surface roughness (for example, a square root-mean-square roughness Rq of 0.2 nm or less in the inner region of a square having a side of 1 ⁇ m), and then polished to a predetermined surface roughness. was subjected to a washing treatment and a drying treatment.
  • a predetermined surface roughness for example, a square root-mean-square roughness Rq of 0.2 nm or less in the inner region of a square having a side of 1 ⁇ m
  • a phase shift film 2 is formed on the translucent substrate 1 by sputtering. After forming the phase shift film 2, an annealing process is performed at a predetermined heating temperature. Next, the light shielding film 3 is formed on the phase shift film 2 by sputtering. Then, the hard mask film 4 having the upper layer 42 and the lower layer 41 is formed on the light shielding film 3 by sputtering. In the deposition of each layer by the sputtering method, a sputtering target and a sputtering gas containing the materials constituting each layer in a predetermined composition ratio are used, and if necessary, a mixed gas of the noble gas and the reactive gas described above is used for sputtering. Film formation is performed using gas. Then, a resist film is formed on the surface of the hard mask film 4 by a coating method such as spin coating to complete the mask blank 100 .
  • a coating method such as spin coating to complete the mask blank 100 .
  • phase shift mask (photomask) according to the present embodiment
  • a method of manufacturing a phase shift mask (photomask) according to the present embodiment will be described by taking as an example a method of manufacturing a halftone phase shift mask using the mask blank 100 having the configuration shown in FIG.
  • a resist film is formed on the hard mask film 4 of the mask blank 100 by spin coating.
  • a first pattern (phase shift film pattern) to be formed on the phase shift film 2 is exposed and drawn on the resist film with an electron beam.
  • the resist film is subjected to predetermined treatments such as PEB treatment, development treatment, and post-baking treatment to form a resist pattern 5a on the hard mask film 4 of the mask blank 100 (see FIG. 2A).
  • the hard mask film 4 is dry-etched with a fluorine-based gas to form a hard mask pattern 4a including an upper layer pattern 42a and a lower layer pattern 41a (see FIG. 2(b)).
  • the resist pattern 5a is removed.
  • dry etching of the light shielding film 3 may be performed while the resist pattern 5a is left without being removed. In this case, the resist pattern 5a disappears when the light shielding film 3 is dry etched.
  • a light shielding film pattern 3a which is a thin film pattern, on the light shielding film 3, which is a thin film for pattern formation (FIG. 2C).
  • dry etching is performed using a fluorine-based gas to form the phase shift film pattern 2a on the phase shift film 2 while removing the hard mask pattern 4a (FIG. 2D). reference).
  • a resist film is formed on the light shielding film pattern 3a by spin coating.
  • a light-shielding film pattern to be formed on the light-shielding film 3 is exposed and drawn on the resist film with an electron beam. Thereafter, predetermined processing such as development processing is performed to form a resist film having a resist pattern 6b (see FIG. 2(e)).
  • etching is performed using a mixed gas of a chlorine-based gas and an oxygen gas to form a light shielding film pattern 3b on the light shielding film 3 (see FIG. 2(f)). Further, the resist pattern 6b is removed, and a predetermined process such as cleaning is performed to obtain a phase shift mask 200 (see FIG. 2(g)).
  • the chlorine-based gas used for dry etching in the manufacturing process is not particularly limited as long as it contains Cl.
  • chlorine-based gases include Cl 2 , SiCl 2 , CHCl 3 , CH 2 Cl 2 , CCl 4 and BCl 3 .
  • the fluorine-based gas used in the dry etching during the manufacturing process is not particularly limited as long as it contains F.
  • fluorine-based gases include CHF 3 , CF 4 , C 2 F 6 , C 4 F 8 , SF 6 and the like.
  • a fluorine-based gas that does not contain C has a relatively low etching rate for a glass substrate, so damage to the glass substrate can be further reduced.
  • the phase shift mask 200 manufactured by the above steps has a structure in which the phase shift film pattern 2a and the light shielding film pattern 3b are laminated on the light transmissive substrate 1 in order from the light transmissive substrate 1 side.
  • the hard mask film 4 laminated on the light shielding film pattern 3a is removed, but as shown in FIG. 3b) The hard mask film 4 laminated thereon may remain as it is.
  • the hard mask film 4 (hard mask pattern 4a) is formed only on the light shielding film pattern 3b (only on the peripheral light shielding frame portion), and only the phase shift film pattern 2a is formed. It is not formed in the so-called main pattern (transfer pattern).
  • the phase shift mask 200 is manufactured using the mask blank 100 described with reference to FIG.
  • the hard mask film 4 includes a laminated structure of a lower layer 41 and an upper layer 42, the lower layer 41 being composed of tungsten, tellurium, ruthenium, and compounds thereof (for example , oxides, nitrides, and carbides), and the upper layer 42 is made of a material containing tantalum or a tantalum compound (e.g., oxides, nitrides, and carbides). It has a characteristic configuration that As a result, the phase shift mask 200 can be manufactured while suppressing electrification of the resist film during electron beam writing.
  • phase shift mask 200 with good pattern accuracy can be manufactured.
  • a mask blank for producing the phase shift mask 200 as a transfer mask has been described, but the present invention is not limited to this. It can also be applied to mask blanks for producing phase shift masks.
  • a translucent substrate 1 made of synthetic quartz glass having a main surface dimension of approximately 152 mm ⁇ approximately 152 mm and a thickness of approximately 6.35 mm was prepared.
  • the light-transmitting substrate 1 is polished to a predetermined surface roughness (Rq of 0.2 nm or less) on the end faces and main surfaces, and then subjected to predetermined cleaning and drying processes.
  • phase shift film 2 made of silicon, molybdenum, oxygen and nitrogen was deposited on the translucent substrate 1 to a thickness of 75 nm using a DC sputtering apparatus using two targets. Molybdenum and silicon were used as targets, and argon, oxygen, and nitrogen were used as sputtering gases.
  • the phase shift film 2 thus formed had an exposure light transmittance of 6% and a phase difference of 177 degrees.
  • Example 1 the transmittance and the phase difference were measured using a phase shift amount measuring device (MPM193 manufactured by Lasertec Co., Ltd.: measurement wavelength 193 nm).
  • the transmittance and phase difference in each of the following Examples and Comparative Examples were also measured in the same manner.
  • the “transmittance of exposure light” means the transmittance of exposure light in the non-opening portion of the phase shift film 2 with respect to the opening portion.
  • the “phase difference” means the phase difference of the non-opening portion with respect to the opening portion of the phase shift film 2 .
  • a heat treatment was applied to the translucent substrate 1 on which the light shielding film 3 was formed. Specifically, using a hot plate, heat treatment was performed in the atmosphere at a heating temperature of 280° C. for a heating time of 5 minutes. After the heat treatment, the translucent substrate 1 on which the phase shift film 2 and the light shielding film 3 are laminated is analyzed using a spectrophotometer (Agilent Technologies, Cary 4000). When the optical density (OD) at the wavelength of the excimer laser light (about 193 nm) was measured, it was confirmed to be 3.0.
  • a lower layer 41 of the hard mask film 4 made of tungsten and oxygen was formed to a thickness of 3 nm on the light shielding film 3 using a DC sputtering apparatus.
  • Tungsten oxide (WOx) was used as the target, and argon and oxygen were used as the sputtering gas.
  • W:O 25:75 (atomic % ratio).
  • the upper layer 42 of the hard mask film 4 made of tantalum and oxygen was formed with a thickness of 2 nm on the lower layer 41 of the hard mask film 4 using a DC sputtering apparatus. Tantalum oxide (TaO) was used as the target, and argon and oxygen were used as the sputtering gas.
  • TaO Tantalum oxide
  • argon and oxygen were used as the sputtering gas.
  • a hard mask film 4 having a lower layer 41 and an upper layer 42 was formed on the light shielding film 3 to a thickness of 5 nm.
  • a predetermined cleaning treatment was performed to manufacture the mask blank 100 of Example 1.
  • the electric resistivity ( ⁇ m) of the hard mask film 4 having the lower layer 41 and the upper layer 42 was measured with respect to the mask blank 100, and it was 5.29 ⁇ 10 ⁇ 8 . rice field.
  • the electrical resistivity ( ⁇ m) of the hard mask film 4 is 1.00 ⁇ 10 ⁇ 7 or less, its conductivity is extremely high and is almost unaffected by the charging of the hard mask film 4 during electron beam writing. It can be said that there is no hard mask film 4 (mask blank 100). Further, if the electrical resistivity ( ⁇ m) of the hard mask film 4 is 1.00 ⁇ 10 ⁇ 5 or less, its conductivity is high, and the influence of charging of the hard mask film 4 during electron beam writing is It can be said that it is an extremely small hard mask film 4 (mask blank 100). Furthermore, if the electrical resistivity ( ⁇ m) of the hard mask film 4 is 1.00 ⁇ 10 ⁇ 3 or less, the electrical conductivity is sufficient, and the hard mask film 4 is charged during electron beam writing.
  • the hard mask film 4 (mask blank 100) is less affected by .
  • the electrical resistivity ( ⁇ m) of the hard mask film 4 exceeds 1.00 ⁇ 10 ⁇ 3 , the conductivity is insufficient, and the hard mask film 4 is charged during electron beam writing. It can be said that the hard mask film 4 (mask blank 100) is easily affected by .
  • the electrical resistivity ( ⁇ m) of the hard mask film 4 is 5.29 ⁇ 10 ⁇ 8 . It was confirmed that there was almost no influence of electrification.
  • the electric resistivity ( ⁇ m) of the hard mask film 4 is evaluated as “ ⁇ ” if it is 1.00 ⁇ 10 ⁇ 7 or less, and if it is 1.00 ⁇ 10 ⁇ 5 or less. If it was 1.00 ⁇ 10 ⁇ 3 or less, it was evaluated as “ ⁇ ”, and if it exceeded 1.00 ⁇ 10 ⁇ 3 , it was evaluated as “ ⁇ ”. In this example, “ ⁇ ”, " ⁇ ", and “ ⁇ ” were regarded as acceptable.
  • the electrical resistivity ( ⁇ m) was measured at 10 points on the surface of the hard mask film 4 using a commercially available electrical resistivity measuring device, and the average value was taken as the “electrical resistance rate ( ⁇ m)”.
  • a halftone phase shift mask 200 of Example 1 was manufactured by the following procedure. First, a resist film made of a chemically amplified resist for electron beam drawing was formed to a thickness of 129 nm in contact with the surface of the hard mask film 4 by spin coating. Next, a first pattern, which is a phase shift film pattern to be formed on the phase shift film 2, is drawn on the resist film with an electron beam, and predetermined development and cleaning treatments are performed to form the first pattern. A resist pattern 5a was formed (see FIG. 2(a)). This first pattern includes a line-and-space pattern with a line width of 200 nm and a micro-sized pattern (with a line width of 30 nm).
  • a negative type chemically amplified electron beam resist is spin-coated on the hard mask film 4 to a film thickness of 129 nm, a pattern is drawn with an electron beam at a dose of 35 ⁇ C/cm 2 , heat-treated at 110° C. for 10 minutes, and paddled. Development was performed for 90 seconds to form a resist pattern 5a.
  • dry etching is performed using a mixed gas of CF 4 gas and oxygen gas (O 2 ) to form an upper layer pattern 42a and a lower layer pattern 41a on the hard mask film 4 including the upper layer 42 and the lower layer 41. was formed (see FIG. 2(b)).
  • the gas pressure of the etching gas was set at 5 mTorr, the ICP power was set at 400 W, and the bias power was set at 40 W.
  • the resist pattern 5a after forming the hard mask pattern 4a remained with a sufficient film thickness.
  • the etching rate ratio of the hard mask film 4 of Example 1 (the etching rate of the hard mask film 4 of Example 1/the hard mask film 4 of Comparative Example 1 Etching rate) was measured and found to be 2.1.
  • the etching rate ratio means that the larger the value, the higher the etching workability compared to the hard mask film 4 of Comparative Example 1 (that is, the hard mask film 4 generally and widely used) according to the prior art. do. If the hard mask film 4 has a high etching rate ratio, it is excellent in etching workability, and the resist film can be made thinner, that is, the resolution can be improved.
  • the etching rate ratio of the hard mask film 4 is 1.5 or more, it can be said that the hard mask film 4 (mask blank 100) has extremely high etching workability and can sufficiently thin the resist film. Further, if the etching rate ratio of the hard mask film 4 is 1.3 or more, it can be said that the hard mask film 4 (mask blank 100) has high etching processability and can make the resist film thin. Furthermore, if the etching rate ratio of the hard mask film 4 exceeds 1.0, the etching workability is sufficient, and it can be said that the hard mask film 4 (mask blank 100) is capable of thinning the resist film. On the other hand, if the etching rate ratio of the hard mask film 4 is 1.0 or less, the etching processability is insufficient, and the hard mask film 4 (mask blank 100) is difficult to thin the resist film. I can say.
  • the etching rate ratio of the hard mask film 4 is 2.1 in the mask blank 100 of Example 1, the etching workability of the hard mask film 4 is extremely high, and the resist film is sufficiently thin. It was confirmed that it is possible to convert In Table 1 below, if the etching rate ratio of the hard mask film 4 is 1.5 or more, it is evaluated as " ⁇ ", if it is 1.3 or more, it is evaluated as “ ⁇ ”, and if it exceeds 1.0 It was evaluated as “ ⁇ ”, and if it was 1.0 or less, it was evaluated as “ ⁇ ”. In this example, " ⁇ ", " ⁇ ", and “ ⁇ ” were regarded as acceptable.
  • the resist pattern 5a was peeled off and removed by washing with sulfuric acid.
  • dry etching is performed using a mixed gas of chlorine gas ( Cl.sub.2 ), oxygen gas ( O.sub.2 ) and helium (He) to form a light shielding film pattern 3a on the light shielding film 3.
  • the gas pressure of the etching gas was set at 5 mTorr, the ICP power was set at 400 W, and the bias power was set at 40 W. 100% over-etching was performed.
  • dry etching is performed using a mixed gas of CF 4 gas and oxygen gas (O 2 ) to form a phase shift film pattern 2a as a first pattern on the phase shift film 2.
  • a mixed gas of CF 4 gas and oxygen gas (O 2 ) to form a phase shift film pattern 2a as a first pattern on the phase shift film 2.
  • the hard mask pattern 4a was removed (see FIG. 2(d)).
  • the gas pressure of the etching gas was set at 5 mTorr, the ICP power was set at 400 W, and the bias power was set at 40 W.
  • the dry etching was stopped when the quartz substrate was dug by an average of 3 nm.
  • a resist film made of a chemically amplified resist for electron beam drawing was formed to a thickness of 150 nm on the light shielding film pattern 3a by spin coating.
  • a second pattern (a pattern including a light-shielding band pattern) to be formed on the light-shielding film is exposed and drawn on the resist film, and then predetermined processing such as development is performed to form a light-shielding film pattern.
  • a resist pattern 6b was formed (see FIG. 2(e)).
  • etching was performed using a mixed gas of chlorine gas (Cl 2 ), oxygen gas (O 2 ) and helium (He) to form a light shielding film pattern 3b on the light shielding film 3.
  • the gas pressure of the etching gas was set at 10 mTorr, the ICP power was set at 500 W, and the bias power was set at 10 W.
  • Over etching was performed by 200%.
  • the underlying phase shift film 2 (phase shift film pattern 2a) and the translucent substrate 1 were not damaged.
  • the resist pattern 6b was removed by washing with a sulfuric acid solution.
  • a phase shift mask 200 was obtained through a predetermined treatment such as cleaning (see FIG. 2(g)).
  • phase shift mask 200 of Example 1 manufactured through the above procedure, all the patterns including the micro-sized pattern of the resist pattern 5a are formed on the phase shift film 2 with high precision. It was confirmed by measurement (observation) using a CD-SEM. Furthermore, using AIMS193 (manufactured by Carl Zeiss), the phase shift mask 200 of Example 1 was subjected to a simulation of a transfer image when the resist film on the semiconductor device was exposed and transferred with exposure light having a wavelength of 193 nm. The simulated exposure transfer image was verified and found to be well within the design specifications.
  • Example 2 [Manufacturing of mask blank]
  • a mask blank of Example 2 was manufactured in the same procedure as in Example 1 except for the hard mask film 4 . Therefore, only the manufacturing process of the hard mask film 4 in Example 2 will be described here.
  • a lower layer 41 of a hard mask film 4 made of tellurium and oxygen was formed to a thickness of 3 nm on the light shielding film 3 manufactured by the same procedure as in Example 1 using a DC sputtering apparatus.
  • Tellurium oxide (TeO) was used as the target, and argon and oxygen were used as the sputtering gas.
  • TeO tellurium oxide
  • argon and oxygen were used as the sputtering gas.
  • the upper layer 42 of the hard mask film 4 made of tantalum and nitrogen was formed to a thickness of 2 nm on the lower layer 41 of the hard mask film 4 using a DC sputtering apparatus.
  • a tantalum nitride (TaN) was used as a target, and argon and oxygen were used as a sputtering gas.
  • TaN tantalum nitride
  • argon and oxygen were used as a sputtering gas.
  • a hard mask film 4 having a lower layer 41 and an upper layer 42 was formed on the light shielding film 3 to a thickness of 5 nm.
  • the mask blank 100 of Example 2 was manufactured by performing a predetermined cleaning treatment.
  • the electric resistivity ( ⁇ m) of the hard mask film 4 having the lower layer 41 and the upper layer 42 was measured with respect to the mask blank 100, and it was 1.00 ⁇ 10 ⁇ 4 . rice field. From the above measurement results, in the case of the mask blank 100 of Example 2, the electrical resistivity ( ⁇ m) of the hard mask film 4 is 1.00 ⁇ 10 ⁇ 4 . It was confirmed that the influence of the electrification of was extremely small.
  • the phase shift film 2 of Example 2 had a transmittance of 6% for exposure light and a phase difference of 177 degrees. Further, the optical density (OD) of the translucent substrate 1 on which the phase shift film 2 and the light shielding film 3 are laminated in Example 2 was 3.0.
  • phase shift mask 200 of Example 2 was manufactured in the same procedure as in Example 1.
  • FIG. The thickness of the resist film made of the chemically amplified resist for electron beam drawing was set to 135 nm.
  • the resist pattern 5a after forming the hard mask pattern 4a remained with a sufficient film thickness. Further, it was confirmed by measurement (observation) using a CD-SEM that all patterns, including the micro-sized pattern that the resist pattern 5a had, were formed on the hard mask film 4 with high precision. .
  • phase shift mask 200 of Example 2 all the patterns including the micro-sized pattern that the resist pattern 5a had were formed on the phase shift film 2 with high precision. - Confirmed by measurement (observation) using SEM. Furthermore, using AIMS193 (manufactured by Carl Zeiss) for the phase shift mask 200 of Example 2, a transfer image was simulated when the resist film on the semiconductor device was exposed and transferred with exposure light having a wavelength of 193 nm. The simulated exposure transfer image was verified and found to be well within the design specifications.
  • the etching rate ratio of the hard mask film 4 of Example 2 (the etching rate of the hard mask film 4 of Example 2/the etching rate of the hard mask film 4 of Comparative Example 1 Etching rate) was measured and found to be 1.7. From the above measurement results, in the case of the mask blank 100 of Example 2, the etching rate ratio of the hard mask film 4 is 1.7. It was confirmed that it is possible to convert
  • Example 3 [Manufacturing of mask blank] A mask blank of Example 3 was manufactured in the same procedure as in Example 1 except for the hard mask film 4 . Therefore, only the manufacturing process of the hard mask film 4 in Example 3 will be described here.
  • a lower layer 41 of the hard mask film 4 made of ruthenium was formed with a thickness of 3 nm using a DC sputtering apparatus. Ruthenium (Ru) was used as the target, and argon, oxygen, and nitrogen were used as the sputtering gas.
  • Ru Ruthenium
  • a DC sputtering apparatus was used to deposit an upper layer 42 of the hard mask film 4 made of tantalum to a thickness of 2 nm. Tantalum (Ta) was used as the target, and argon and oxygen were used as the sputtering gas.
  • Ta Tantalum
  • argon and oxygen were used as the sputtering gas.
  • a hard mask film 4 having a lower layer 41 and an upper layer 42 was formed on the light shielding film 3 to a thickness of 5 nm.
  • a predetermined cleaning treatment was performed, and a mask blank 100 of Example 3 was manufactured.
  • the electrical resistivity ( ⁇ m) of the hard mask film 4 having the lower layer 41 and the upper layer 42 was measured with respect to the mask blank 100, and it was 7.10 ⁇ 10 ⁇ 8 . rice field. From the above measurement results, in the case of the mask blank 100 of Example 3, the electrical resistivity ( ⁇ m) of the hard mask film 4 is 7.10 ⁇ 10 ⁇ 8 . It was confirmed that there was almost no influence of electrification.
  • the phase shift film 2 of Example 3 had a transmittance of 6% for exposure light and a phase difference of 177 degrees. Further, the optical density (OD) of the translucent substrate 1 on which the phase shift film 2 and the light shielding film 3 are laminated in Example 3 was 3.0.
  • phase shift mask 200 of Example 3 was manufactured in the same procedure as in Example 1.
  • FIG. The thickness of the resist film made of the chemically amplified resist for electron beam drawing was set to 146 nm.
  • the resist pattern 5a after forming the hard mask pattern 4a remained with a sufficient film thickness. Further, it was confirmed by measurement (observation) using a CD-SEM that all patterns, including the micro-sized pattern that the resist pattern 5a had, were formed on the hard mask film 4 with high accuracy. .
  • phase shift mask 200 of Example 3 all the patterns including the micro-sized pattern that the resist pattern 5a had were formed on the phase shift film 2 with high accuracy. - Confirmed by measurement (observation) using SEM. Furthermore, a simulation of a transferred image when the phase shift mask 200 of Example 3 is exposed and transferred to a resist film on a semiconductor device with exposure light having a wavelength of 193 nm was performed using AIMS193 (manufactured by Carl Zeiss). The simulated exposure transfer image was verified and found to be well within the design specifications.
  • the etching rate ratio of the hard mask film 4 of Example 3 (the etching rate of the hard mask film 4 of Example 3/the etching rate of the hard mask film 4 of Comparative Example 1 Etching rate) was measured and found to be 1.3. From the above measurement results, in the case of the mask blank 100 of Example 3, the etching rate ratio of the hard mask film 4 is 1.3. was confirmed to be possible.
  • a mask blank of Comparative Example 1 was manufactured in the same procedure as in Example 1 except for the hard mask film 4 . Therefore, only the manufacturing process of the hard mask film 4 in Comparative Example 1 will be described here.
  • the hard mask film 4 provided in the mask blank of Comparative Example 1 is a single-layer hard mask film 4 made of tantalum oxide (TaO).
  • a predetermined cleaning treatment was performed, and a mask blank 100 of Comparative Example 1 was manufactured.
  • the electrical resistivity ( ⁇ m) of the hard mask film 4 was measured with respect to the mask blank 100 and found to be 1.50 ⁇ 10 ⁇ 7 . From the above measurement results, in the case of the mask blank 100 of Comparative Example 1, the electrical resistivity ( ⁇ m) of the hard mask film 4 is 1.50 ⁇ 10 ⁇ 7 . It was confirmed that the influence of the electrification of was extremely small.
  • phase shift film 2 of Comparative Example 1 had a transmittance of exposure light of 6% and a phase difference of 177 degrees. Further, the optical density (OD) of the translucent substrate 1 on which the phase shift film 2 and the light shielding film 3 were laminated in Comparative Example 1 was 3.0.
  • phase shift mask of Comparative Example 1 was manufactured in the same procedure as in Example 1.
  • the thickness of the resist film made of the chemically amplified resist for electron beam drawing was set to 160 nm.
  • the resist pattern 5a after forming the hard mask pattern 4a remained with a sufficient film thickness.
  • the micro-sized pattern of the resist pattern 5a could not be formed in the hard mask pattern 4a.
  • phase shift film pattern 2a of the manufactured phase shift mask 200 of Comparative Example 1 the micro-sized pattern could not be formed in the phase shift film pattern 2a.
  • the phase shift mask of Comparative Example 1 was exposed and transferred to the resist film on the semiconductor device with exposure light having a wavelength of 193 nm using AIMS193 (manufactured by Carl Zeiss) in the same manner as in Example 1. was simulated. When the exposure transfer image of this simulation was verified, a transfer failure was confirmed. This is presumed to be the cause of the poor transfer because the micro-sized pattern was not formed.
  • a mask blank of Comparative Example 2 was manufactured in the same procedure as in Example 1 except for the hard mask film 4 . Therefore, only the manufacturing process of the hard mask film 4 in Comparative Example 2 will be described here.
  • the upper layer 42 of the hard mask film 4 made of tantalum and oxygen was formed with a thickness of 2 nm on the lower layer 41 of the hard mask film 4 using a DC sputtering apparatus. Tantalum oxide (TaO) was used as the target, and argon and oxygen were used as the sputtering gas.
  • TaO Tantalum oxide
  • argon and oxygen were used as the sputtering gas.
  • a hard mask film 4 having a lower layer 41 and an upper layer 42 was formed on the light shielding film 3 to a thickness of 5 nm.
  • a predetermined cleaning treatment was performed, and a mask blank 100 of Comparative Example 2 was manufactured.
  • the electrical resistivity ( ⁇ m) of the hard mask film 4 was measured with respect to the mask blank 100 and found to be 3.97 ⁇ 10 3 . From the above measurement results, in the case of the mask blank 100 of Comparative Example 2, the electrical resistivity ( ⁇ m) of the hard mask film 4 is 3.97 ⁇ 10 3 . was confirmed to be susceptible to
  • the phase shift film 2 of Comparative Example 2 had a transmittance of 6% for exposure light and a phase difference of 177 degrees.
  • the optical density (OD) of the translucent substrate 1 on which the phase shift film 2 and the light shielding film 3 were laminated was 3.0.
  • phase shift mask Next, using the mask blank of Comparative Example 2, a phase shift mask of Comparative Example 2 was manufactured in the same procedure as in Example 1.
  • the thickness of the resist film made of the chemically amplified resist for electron beam drawing was set to 126 nm.
  • the resist pattern 5a after forming the hard mask pattern 4a remained with a sufficient film thickness.
  • the micro-sized pattern of the resist pattern 5a could not be formed in the hard mask pattern 4a.
  • phase shift film pattern 2a of the manufactured phase shift mask 200 of Comparative Example 2 the micro-sized pattern could not be formed in the phase shift film pattern 2a.
  • the phase shift mask of Comparative Example 2 was exposed and transferred to the resist film on the semiconductor device with exposure light having a wavelength of 193 nm using AIMS193 (manufactured by Carl Zeiss) in the same manner as in Example 1. was simulated. When the exposure transfer image of this simulation was verified, a transfer failure was confirmed. This is presumed to be the cause of the poor transfer because the micro-sized pattern was not formed.
  • the etching rate ratio of the hard mask film 4 of Comparative Example 2 (the etching rate of the hard mask film 4 of Comparative Example 2/the etching rate of the hard mask film 4 of Comparative Example 1 Etching rate) was measured and found to be 2.3. From the above measurement results, since the etching rate ratio of the hard mask film 4 is 2.3 in the mask blank 100 of Comparative Example 2, the etching workability of the hard mask film 4 is high, and the resist film can be made thinner. was confirmed to be possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

レジスト膜に精度よく微細なレジストパターンを形成することができるフォトマスクブランク、そのフォトマスクの製造方法及びその方法により製造されたフォトマスクを提供する。本実施形態に係るマスクブランク(100)は、波長200nm以下の露光光が適用される位相シフトマスク(200)を作製するために用いられるマスクブランクであって、透光性基板(1)と、位相シフト膜(2)と、遮光膜(3)と、ハードマスク膜(4)とをこの順に備え、遮光膜(3)は、Crを含有する材料で形成され、ハードマスク膜(4)は、遮光膜(3)側に位置する下層(41)と、ハードマスク膜(4)の最表層を構成する上層(42)とを含み、下層(41)は、タングステン(W)、テルル(Te)、ルテニウム(Ru)、及びそれらの化合物から選ばれる少なくとも1種類を含有し、上層(42)は、タンタル(Ta)またはTa化合物を含有し、化合物は、O、N、及びCから選ばれる少なくとも一種類を含有する。

Description

フォトマスクブランク、フォトマスク及びフォトマスクの製造方法
 本発明は、フォトマスクブランク、フォトマスク及びフォトマスクの製造方法に関する。
 ハーフトーン型の位相シフトマスクのマスクブランクとして、透光性基板上に金属シリサイド系材料からなるハーフトーン位相シフト膜、クロム系材料からなる遮光膜、無機系材料からなるエッチングマスク膜(ハードマスク膜)が積層された構造を有するマスクブランクが以前より知られている。このマスクブランクを用いて位相シフトマスクを製造する場合、先ず、マスクブランクの表面に形成したレジストパターンをマスクとしてフッ素系ガスによるドライエッチングでエッチングマスク膜をパターニングし、次にエッチングマスク膜をマスクとして塩素と酸素の混合ガスによるドライエッチングで遮光膜をパターニングし、さらに遮光膜のパターンをマスクとしてフッ素系ガスによるドライエッチングで位相シフト膜をパターニングする。
 ここで、上述したレジストパターンは、マスクブランクの表面にレジスト膜を形成し、そのレジスト膜を電子線描画機にて描画して形成される場合が多い。この場合、電子線描画機から照射された電子によるレジスト膜の帯電(所謂、レジスト膜のチャージアップ)の影響により、電子線描画機からの電子が想定外の箇所に照射されて描画パターンの位置精度が低下することがある。
 そして、この帯電現象を抑制するための技術としては、例えば、電子線描画機の補正技術(特許文献1を参照)やレジスト膜上に導電膜(CDL:Charge Dissipation Layer)をコートする技術がある。
特開2019-204857号公報
 従来技術の1つである電子線描画機の補正技術は、補正による帯電影響の抑制効果、あるいは位置精度の改善量が先端向けフォトマスク(次世代のフォトマスク)の製造において十分とはいえない。
 また、従来技術の1つであり、現在主流となっているCDLコートによるレジスト膜の帯電抑制に関しては、今後更なる導電性の確保が必要となった際に導電性を高めたCDLが必要となる。しかしながら、CDLに更に高い導電性を付与する場合にはその酸性度を高める必要があり、レジスト膜とのミキシングが懸念される。そのため、先端向けレジスト膜(次世代のレジスト膜)を用いる際に大きな課題となる。つまり、CDLを用いた帯電抑制技術では、レジスト膜とCDLとの相性(親和性、あるいは組み合わせ)を考慮する必要があるため、CDLを用いた技術は汎用性の高い帯電抑制技術とはいい難い。
 本発明は、上述の問題を解決するためになされたものであり、本発明の目的は、電子線描画時のおけるレジスト膜の帯電を抑制することで電子線照射の位置精度を向上することができる、即ちレジスト膜に精度よく微細なレジストパターンを形成することができる、フォトマスクブランクを提供することである。
 また、本発明は、このフォトマスクブランクを用いることにより、パターン形成用の薄膜に精度よく微細なパターンを形成することが可能なフォトマスクの製造方法及びその製造方法により製造されたフォトマスクを提供する。
 本発明の一態様に係るフォトマスクブランクは、波長200nm以下の露光光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクであって、透明基板と、薄膜と、ハードマスク膜とをこの順に備え、前記薄膜は、クロムを含有する材料で形成され、前記ハードマスク膜は、前記薄膜側に位置する下層と、前記ハードマスク膜の最表層を構成する上層とを含み、前記下層は、タングステン、テルル、ルテニウム、及びそれらの化合物から選ばれる少なくとも1種類を含有し、前記上層は、タンタルまたはタンタル化合物を含有し、前記化合物は、酸素、窒素、及び炭素から選ばれる少なくとも一種類を含有することを特徴とする。
 また、本発明の一態様に係るフォトマスクブランクを構成する前記上層の厚さは、1nm以上であってもよい。
 また、本発明の一態様に係るフォトマスクブランクを構成する前記ハードマスク膜の厚さは、4nm以上14nm以下の範囲内であってもよい。
 また、本発明の一態様に係るフォトマスクブランクを構成する前記薄膜は、遮光膜であってもよい。
 また、本発明の一態様に係るフォトマスクブランクは、前記透明基板と前記遮光膜との間に、ケイ素を含有する材料からなる位相シフト膜をさらに備えてもよい。
 本発明の一態様に係るフォトマスクは、波長200nm以下の露光光が適用されるフォトマスクであって、透明基板と、前記透明基板の上に形成され、パターン形成された薄膜と、前記薄膜の上に形成されたハードマスク膜と、を備え、前記薄膜は、クロムを含有する材料で形成され、前記ハードマスク膜は、前記薄膜側に位置する下層と、前記ハードマスク膜の最表層を構成する上層とを含み、前記下層は、タングステン、テルル、ルテニウム、及びそれらの化合物から選ばれる少なくとも1種類を含有し、前記上層は、タンタルまたはタンタル化合物を含有し、前記化合物は、酸素、窒素、及び炭素から選ばれる少なくとも一種類を含有することを特徴とする。
 また、本発明の一態様に係るフォトマスクを構成する前記上層の厚さは、1nm以上であってもよい。
 また、本発明の一態様に係るフォトマスクを構成する前記ハードマスク膜の厚さは、4nm以上14nm以下の範囲内であってもよい。
 また、本発明の一態様に係るフォトマスクを構成する前記薄膜は、遮光膜であってもよい。
 また、本発明の一態様に係るフォトマスクは、前記透明基板と前記遮光膜との間に、ケイ素を含有する材料からなる位相シフト膜をさらに備えてもよい。
 本発明の一態様に係るフォトマスクの製造方法は、上述したフォトマスクブランクを用いたフォトマスクの製造方法であって、前記フォトマスクブランクの前記ハードマスク膜上にレジストパターンを形成する工程と、前記レジストパターンをマスクとして前記ハードマスク膜をフッ素系ガスでドライエッチングし、ハードマスクパターンを形成する工程と、前記ハードマスクパターンをマスクとして前記薄膜を塩素と酸素の混合ガスでドライエッチングし、薄膜パターンを形成する工程と、を有することを特徴とする。
 また、本発明の別の態様に係るフォトマスクの製造方法は、上述したフォトマスクブランクを用いたフォトマスクの製造方法であって、前記フォトマスクブランクの前記ハードマスク膜上にレジストパターンを形成する工程と、前記レジストパターンをマスクとして前記ハードマスク膜をフッ素系ガスでドライエッチングし、ハードマスクパターンを形成する工程と、前記ハードマスクパターンをマスクとして前記遮光膜を塩素と酸素の混合ガスでドライエッチングし、遮光膜パターンを形成する工程と、前記遮光膜パターンをマスクとして前記位相シフト膜をフッ素系ガスでドライエッチングし、位相シフト膜パターンを形成しつつ、前記ハードマスクパターンを除去する工程と、を有することを特徴とする。
 以上の構成を有する本発明の一態様に係るフォトマスクブランクによれば、電子線描画時のおけるレジスト膜の帯電を抑制することで電子線照射の位置精度を向上することができる、即ちレジスト膜に精度よく微細なレジストパターンを形成することができる。
 また、以上の構成を有する本発明の一態様に係るフォトマスクの製造方法によれば、パターン形成用の薄膜に精度よく微細なパターンを形成することができる。
本発明の実施形態に係るフォトマスクブランクの構造を示す断面概略図である。 本発明の実施形態に係るフォトマスクの製造工程を示す断面概略図である。 本発明の実施形態の変形例に係るフォトマスクの構造を示す断面概略図である。
 以下、本発明の各実施形態について、図面に基づいて、詳細な構成を説明する。なお、各図において同様の構成要素には同一の符号を付して説明を行う。
〈フォトマスクブランク〉
 図1に、フォトマスクブランク(以下、単に「マスクブランク」ともいう)の実施形態の概略構成を示す。図1に示すマスクブランク100は、透光性基板(透明基板)1における一方の主表面上に、位相シフト膜2、遮光膜3、及び、ハードマスク膜4がこの順に積層された構成である。また、マスクブランク100は、ハードマスク膜4上に、必要に応じてレジスト膜を積層させた構成であってもよい。以下、マスクブランク100の主要構成部の詳細を説明する。
[透光性基板]
 透光性基板1は、リソグラフィーにおける露光工程で用いられる露光光に対して透過性が良好な材料からなる。このような材料としては、合成石英ガラス、アルミノシリケートガラス、ソーダライムガラス、低熱膨張ガラス(SiO-TiOガラス等)、その他各種のガラス基板を用いることができる。特に、合成石英ガラスを用いた基板は、ArFエキシマレーザー光(波長:約193nm)に対する透過性が高いので、マスクブランク100の透光性基板1として好適に用いることができる。
 なお、ここで言うリソグラフィーにおける露光工程とは、このマスクブランク100を用いて作製された位相シフトマスクを用いてのリソグラフィーにおける露光工程であり、以下において露光光とはこの露光工程で用いられる露光光であることとする。この露光光としては、ArFエキシマレーザー光(波長:193nm)、KrFエキシマレーザー光(波長:248nm)、i線光(波長:365nm)のいずれも適用可能であるが、露光工程における位相シフト膜パターンの微細化の観点からは、ArFエキシマレーザー光を露光光に適用することが望ましい。このため、以下においてはArFエキシマレーザー光を露光光に適用した場合についての実施形態を説明する。
[位相シフト膜]
 位相シフト膜2は、露光転写工程で用いられる露光光に対して所定の透過率を有し、かつ位相シフト膜2を透過した露光光と、位相シフト膜2の厚さと同じ距離だけ大気中を透過した露光光とが、所定の位相差となるような光学特性を有する。
 このような位相シフト膜2は、ケイ素(Si)を含有する材料で形成されていることが好ましい。また位相シフト膜2は、ケイ素の他に、窒素(N)を含有する材料で形成されていることがより好ましい。このような位相シフト膜2は、フッ素系ガスを用いたドライエッチングによってパターニングが可能であり、後述のクロムを含有する遮光膜3に対して、十分なエッチング選択性を有する材料を用いる。
 また位相シフト膜2は、フッ素系ガスを用いたドライエッチングによってパターニングが可能であれば、さらに、半金属元素、非金属元素、金属元素から選ばれる1以上の元素を含有していてもよい。
 このうち、半金属元素は、ケイ素に加え、いずれの半金属元素であってもよい。非金属元素は、窒素に加え、いずれの非金属元素であってもよく、例えば酸素(O)、炭素(C)、フッ素(F)及び水素(H)から選ばれる一以上の元素を含有させると好ましい。金属元素は、モリブデン(Mo)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ハフニウム(Hf)、ニオブ(Nb)、バナジウム(V)、コバルト(Co)、クロム(Cr)、ニッケル(Ni)、ルテニウム(Ru)、スズ(Sn)、ホウ素(B)、ゲルマニウム(Ge)が例示される。
 このような位相シフト膜2は、例えばMoSiONやMoSiNで構成され、露光光(例えばArFエキシマレーザー光)に対する所定の位相差(例えば、150[deg]~210[deg])と所定の透過率(例えば、1%~30%)を満たすように、位相シフト膜2の屈折率n、消衰係数k及び膜厚がそれぞれ選定され、その屈折率n及び消衰係数kとなるように膜材料の組成や膜の成膜条件が調整されている。
[遮光膜]
 本実施形態におけるマスクブランク100は、転写パターン形成用の薄膜として遮光膜3を備えている。遮光膜3は、このマスクブランク100に形成される遮光帯パターンを含む遮光膜パターンを構成する膜であり、リソグラフィーにおける露光工程で用いられる露光光に対して遮光性を有する膜である。遮光膜3は、位相シフト膜2との積層構造で、例えば波長193nmのArFエキシマレーザー光に対する光学濃度(OD)が2.0より大きいことが求められ、2.8以上であることが好ましく、3.0以上であることがより好ましい。また、リソグラフィーにおける露光工程において、露光光の反射による露光転写の不具合を防止するため、両側主表面においての露光光の表面反射率が低く抑えられている。特に、露光装置の縮小光学系からの露光光の反射光が当たる、遮光膜3における表面側(透光性基板1から最も遠い側の表面)の反射率は、例えば40%以下(好ましくは、30%以下)であることが望まれる。これは、遮光膜3の表面と縮小光学系のレンズの間での多重反射で生じる迷光を抑制するためである。
 また、遮光膜3は、位相シフト膜2に転写パターン(位相シフト膜パターン)を形成するためのフッ素系ガスによるドライエッチングのときにエッチングマスクとして機能する必要がある。このため、遮光膜3は、フッ素系ガスによるドライエッチングにおいて、位相シフト膜2に対して十分なエッチング選択性を有する材料を適用する必要がある。遮光膜3には、位相シフト膜2に形成すべき微細パターンを精度よく形成できることが求められる。遮光膜3の膜厚は70nm以下であることが好ましく、65nm以下であるとより好ましく、60nm以下であると特に好ましい。遮光膜3の膜厚が厚すぎると、形成すべき微細パターンを高精度に形成することができない。他方、遮光膜3は、上記のとおり要求される光学濃度を満たすことが求められる。このため、遮光膜3の膜厚は15nmより大きいことが求められ、20nm以上であることが好ましく、25nm以上であるとより好ましい。
 遮光膜3は、クロムを含有する材料で形成される。クロムを含有する材料としては、クロム単体でもよく、クロムと添加元素とを含むものであってもよい。このような添加元素としては、酸素及び/又は窒素が、ドライエッチング速度を速くできる点で好ましい。なお、遮光膜3は、他に炭素、水素、ホウ素、インジウム、スズ、モリブデン等の元素を含んでもよい。
 遮光膜3は、クロムを含有するターゲットを用いた反応性スパッタリング法により、位相シフト膜2上に成膜することにより形成することができる。スパッタリング法としては、直流(DC)電源を用いたもの(DCスパッタリング)でも、高周波(RF)電源を用いたもの(RFスパッタリング)でもよい。またマグネトロンスパッタリング方式であっても、コンベンショナル方式であってもよい。DCスパッタリングの方が、機構が単純である点で好ましい。また、マグネトロンスパッタリング方式を用いた方が、成膜レートが速くなり、生産性が向上する点から好ましい。なお、成膜装置はインライン型でも枚葉型でも構わない。
 ターゲットの材料は、クロム単体だけでなくクロムが主成分であればよく、酸素、炭素のいずれかを含むクロム、又は酸素、炭素を組み合わせたものをクロムに添加したターゲットを用いてよい。
[ハードマスク膜]
 ハードマスク膜4は、遮光膜3上に設けられている。ハードマスク膜4は、遮光膜3をエッチングする際に用いられるエッチングガスに対してエッチング耐性を有する材料で形成された膜である。このハードマスク膜4は、遮光膜3にパターンを形成するためのドライエッチングが終わるまでの間、エッチングマスクとして機能することができるだけの膜の厚さがあれば十分であり、基本的に光学特性の制限を受けない。このため、ハードマスク膜4の厚さは遮光膜3の厚さに比べて大幅に薄くすることができる。
 ハードマスク膜4の厚さは、14nm以下であると好ましく、10nm以下であるとより好ましい。ハードマスク膜4の厚さが厚すぎると、ハードマスク膜4に遮光膜パターンを形成するドライエッチングにおいてエッチングマスクとなるレジスト膜の厚さが必要になってしまうためである。ハードマスク膜4の厚さは、4nm以上であると好ましく、5nm以上であるとより好ましい。ハードマスク膜4の厚さが薄すぎると、酸素含有塩素系ガスによるドライエッチングの条件によっては、遮光膜3に遮光膜パターンを形成するドライエッチングが終わる前に、ハードマスク膜4のパターンが消失する恐れがあるためである。
 そして、このハードマスク膜4にパターンを形成するフッ素系ガスによるドライエッチングにおいてエッチングマスクとして用いる有機系材料のレジスト膜は、ハードマスク膜4のドライエッチングが終わるまでの間、エッチングマスクとして機能するだけの膜の厚さがあれば十分である。このため、ハードマスク膜4を設けていない従来の構成よりも、ハードマスク膜4を設けたことによって大幅にレジスト膜の厚さを薄くすることができる。
 ハードマスク膜4は、下層41と上層42の積層構造を含む。ここで、下層41は、複数の層で構成されたハードマスク膜4のうち、遮光膜3側に位置する層である。また、上層42は、例えば、ハードマスク膜4の最表層を構成する層である。
 下層41は、タングステン、テルル、ルテニウム、及びそれらの化合物から選ばれる少なくとも1種類を含有する材料で形成されることが好ましい。タングステンを含有する材料としては、WOなどを適用することが好ましい。また、テルルを含有する材料としては、TeOなどを適用することが好ましい。また、ルテニウムを含有する材料としては、Ru単体などを適用することが好ましい。ここで、上述した「化合物」とは、酸素、窒素、及び炭素から選ばれる少なくとも一種類を含有する化合物をいう。
 下層41は、タングステン、テルル、ルテニウム、及びそれらの化合物から選ばれる少なくとも1種類を含有する材料の合計含有量が96原子%以上である材料で形成されていることが好ましい。これにより、他の元素の含有量を4原子%未満に抑えることができ、良好なエッチングレートを確保することができる。
 ハードマスク膜4の下層41の厚さは、下層41の厚さの面内分布の均一性を確保するために、1nm以上13nmであることが好ましく、4nm以上12nmであることがより好ましく、5nm以上8nmであればさらに好ましい。そして、ハードマスク膜4全体の厚さ(Dt)に対する下層41の厚さ(Dd)の比率(以下、これをDu/Dd比率という場合がある。)は、0.3以上であることが好ましく、0.5以上であるとより好ましく、0.7以上であることがさらに好ましい。このような構成のハードマスク膜4とすることで、ハードマスク膜4全体での高い導電性を維持することができる。
 なお、本実施形態で下層41の厚さの下限値を「1nm」としたのは、その値が成膜限界だからである。
 また、上層42は、タンタル(タンタル単体)またはタンタル化合物を含有する材料で形成されることが好ましい。この場合におけるタンタルを含有する材料としては、タンタルと、酸素、窒素及び炭素から選ばれる一以上の元素とを含有させた材料などが挙げられる。たとえば、TaO、TaN、TaC、TaON、TaCO、TaCNなどが挙げられる。また、上層42は、上層42を形成後に生じる酸化度の経時変化を抑制する観点などから、酸素の含有量が30原子%以上である材料であることが好ましく、40原子%以上であることがより好ましく、50原子%以上であるとさらに好ましい。一方、上層42は、酸素の含有量が71.4%以下であることが好ましい。上層42の酸素を化学量論的に安定なTaよりも多く含有させると、膜の表面粗さが粗くなる恐れがある。
 また、上層42は、タンタルまたはタンタル化合物の合計含有量が90原子%以上である材料で形成されていることが好ましい。これにより、他の元素の含有量を10原子%未満に抑えることができ、レジスト膜との良好な密着性、良好なCD(Critical Dimension)面内均一性、及びCDリニアリティを確保することができる。
 ハードマスク膜4の上層42の厚さは、上層42の厚さの面内分布の均一性を確保するために、1nm以上であることが好ましく、2nm以上であることがより好ましい。また、ハードマスク膜4の上層42の厚さは、10nm以下であることが好ましく、8nm以下であることがより好ましい。そして、ハードマスク膜4全体の厚さ(Dt)に対する上層42の厚さ(Du)の比率(以下、これをDu/Dt比率という場合がある。)は、0.7以下であることが好ましく、0.5以下であるとより好ましく、0.3以下であることがさらに好ましい。このような構成のハードマスク膜4とすることで、ハードマスク膜4全体でのフッ素系ガスに対するエッチングレートの低下を抑制することができる。
 なお、ハードマスク膜4は、上層42と下層41との間に、フッ素系ガスによるドライエッチングでパターニング可能な材料からなる中間層を備えていてもよい。また、ハードマスク膜4は、下層41と遮光膜3の間に、フッ素系ガスによるドライエッチングでパターニング可能な材料からなる最下層を備えていてもよい。さらに、上層42または下層41の少なくともいずれか一方が、厚さ方向で組成傾斜した構造を有していてもよい。
 以上のように、下層41を、タングステン、テルル、ルテニウム、及びそれらの化合物(酸化物、窒化物、炭化物)から選ばれる少なくとも1種類を含有する材料で形成することにより、ハードマスク膜4全体として導電性を、従来技術に係るハードマスク膜4と比べて高めることが可能となる。その結果、本実施形態に係るハードマスク膜4であれば、従来技術に係るハードマスク膜4を用いた場合(例えば、タンタルのみで構成された単層のハードマスク膜4)と比べて、電子線描画時のおけるレジスト膜の帯電(チャージアップ)が抑制される。その結果、電子線描画機からの電子が想定した箇所に照射されて描画パターンの位置精度が向上し、後述する遮光膜パターン及び位相シフト膜パターンの各パターン精度が良好な位相シフトマスクを製造することができる。
 さらに、下層41を上述した導電性材料で形成することで、従来技術に係るハードマスク膜4を用いた場合(例えば、タンタルのみで構成された単層のハードマスク膜4)と比べて、フッ素系ガスによるエッチングレートが高くなり(早くなり)、レジスト膜厚を減少させる効果を得ることができる。このように、レジスト膜厚を減少させることが可能な本実施形態に係るハードマスク膜4であれば、更なる解像性の向上が期待できる。
 また、上層42を、レジスト膜との密着性が良好なタンタルまたはタンタル化合物を含有する材料で形成することにより、レジスト膜の剥離等が低減されてレジスト膜の解像性の更なる向上が期待できる。
 以上のように、本実施形態では上述した導電性の高い材料で下層41を形成することで、電子線描画時のおけるレジスト膜の帯電そのものの発生を抑制することが可能となり、従来技術に係る電子線描画機の補正技術よりも位置精度の改善量を大きくすることができる。
 また、上述したCDLを用いた帯電抑制技術では、レジスト膜とCDLとの相性(親和性、あるいは組み合わせ)を考慮する必要があったが、本実施形態では上述した導電性の高い材料で下層41を形成し、レジスト膜と親和性が高いタンタル含有材料で上層42を形成しているため、下層41とレジスト膜との相性(親和性、あるいは組み合わせ)を考慮することなくレジスト膜の帯電発生を抑制することができ、汎用性を高めることができる。
[レジスト膜]
 マスクブランク100において、ハードマスク膜4の表面に接して、有機系材料のレジスト膜が100nm以下の膜厚で形成されていることが好ましい。DRAM hp32nm世代に対応する微細パターンの場合、遮光膜3に形成すべき遮光膜パターンに、線幅が40nmのSRAF(Sub-Resolution Assist Feature)が設けられることがある。しかし、この場合でも上述のようにハードマスク膜4を設けたことによってレジスト膜の膜厚を抑えることができ、これによってこのレジスト膜で構成されたレジストパターンの断面アスペクト比を1:2.5と低くすることができる。したがって、レジスト膜の現像時、リンス時等にレジストパターンが倒壊や脱離することを抑制することができる。なお、レジスト膜は、膜厚が80nm以下であることがより好ましい。レジスト膜は、電子線描画露光用のレジストであると好ましく、さらにそのレジストが化学増幅型であるとより好ましい。
[マスクブランクの製造手順]
 以上の構成のマスクブランク100は、例えば、次のような手順で製造することができる。先ず、透光性基板1を用意する。この透光性基板1は、端面及び主表面が所定の表面粗さ(例えば、一辺が1μmの四角形の内側領域内において自乗平均平方根粗さRqが0.2nm以下)に研磨され、その後、所定の洗浄処理及び乾燥処理を施されたものである。
 次に、この透光性基板1上に、スパッタリング法によって位相シフト膜2を成膜する。位相シフト膜2を成膜した後には、所定の加熱温度でのアニール処理を行う。次に、位相シフト膜2上に、スパッタリング法によって上記の遮光膜3を成膜する。そして、遮光膜3上にスパッタリング法によって、上記の上層42と下層41を有するハードマスク膜4を成膜する。スパッタリング法による各層の成膜においては、各層を構成する材料を所定の組成比で含有するスパッタリングターゲット及びスパッタリングガスを用い、さらに必要に応じて上述の貴ガスと反応性ガスとの混合ガスをスパッタリングガスとして用いた成膜を行う。そして、ハードマスク膜4の表面上に、スピンコート法等の塗布法によってレジスト膜を形成し、マスクブランク100を完成させる。
〈位相シフトマスクの製造方法〉
 次に、本実施形態における位相シフトマスク(フォトマスク)の製造方法を、図1に示す構成のマスクブランク100を用いた、ハーフトーン型位相シフトマスクの製造方法を例に説明する。
 先ず、マスクブランク100のハードマスク膜4上にレジスト膜をスピン塗布法によって形成する。次に、そのレジスト膜に対して、位相シフト膜2に形成すべき第1のパターン(位相シフト膜パターン)を電子線で露光描画する。その後、レジスト膜に対してPEB処理、現像処理、ポストベーク処理等の所定の処理を行い、マスクブランク100のハードマスク膜4上にレジストパターン5aを形成する(図2(a)参照)。
 次に、レジストパターン5aをマスクとして、ハードマスク膜4をフッ素系ガスでドライエッチングし、上層パターン42a及び下層パターン41aを含むハードマスクパターン4aを形成する(図2(b)参照)。この後、レジストパターン5aを除去する。なお、ここで、レジストパターン5aを除去せず残存させたまま、遮光膜3のドライエッチングを行ってもよい。この場合では、遮光膜3のドライエッチングの際にレジストパターン5aが消失する。
 次に、ハードマスクパターン4aをマスクとして、塩素と酸素の混合ガスでドライエッチングし、パターン形成用の薄膜である遮光膜3に、薄膜パターンである遮光膜パターン3aを形成する(図2(c)参照)。
 続いて、遮光膜パターン3aをマスクとして、フッ素系ガスを用いたドライエッチングを行い、位相シフト膜2に位相シフト膜パターン2aを形成しつつ、ハードマスクパターン4aを除去する(図2(d)参照)。
 次に、遮光膜パターン3a上にレジスト膜をスピン塗布法によって形成する。そのレジスト膜に対して、遮光膜3に形成すべき遮光膜パターンを電子線で露光描画する。その後、現像処理等の所定の処理を行い、レジストパターン6bを有するレジスト膜を形成する(図2(e)参照)。
 次に、レジストパターン6bをマスクとして、塩素系ガスと酸素ガスの混合ガスを用いたドライエッチングを行い、遮光膜3に遮光膜パターン3bを形成する(図2(f)参照)。さらに、レジストパターン6bを除去し、洗浄等の所定の処理を経て、位相シフトマスク200を得る(図2(g)参照)。
 なお、上記の製造工程中のドライエッチングで使用される塩素系ガスとしては、Clが含まれていれば特に制限はない。たとえば、塩素系ガスとして、Cl、SiCl、CHCl、CHCl、CCl、BCl等があげられる。また、上記の製造工程中のドライエッチングで使用されるフッ素系ガスとしては、Fが含まれていれば特に制限はない。たとえば、フッ素系ガスとして、CHF、CF、C、C、SF等があげられる。特に、Cを含まないフッ素系ガスは、ガラス基板に対するエッチングレートが比較的低いため、ガラス基板へのダメージをより小さくすることができる。
 以上の工程により製造された位相シフトマスク200は、透光性基板1上に、透光性基板1側から順に位相シフト膜パターン2a、及び遮光膜パターン3bが積層された構成を有する。
 なお、以上の工程により製造された位相シフトマスク200では、遮光膜パターン3a上に積層されたハードマスク膜4が除去されているが、図3に示すように、遮光膜パターン3a(遮光膜パターン3b)上に積層されたハードマスク膜4は、そのまま残存していてもよい。つまり、ハードマスク膜4(ハードマスクパターン4a)は、図3に示すように、遮光膜パターン3b上にのみ(外周遮光枠部分にのみ)形成されており、位相シフト膜パターン2aのみが形成されている、いわゆるメインパターン(転写パターン)内には形成されていない。
 以上、説明した位相シフトマスクの製造方法では、図1を用いて説明したマスクブランク100を用いて位相シフトマスク200を製造している。このような位相シフトマスクの製造において使用されるマスクブランク100において、ハードマスク膜4は、下層41と上層42の積層構造を含み、下層41は、タングステン、テルル、ルテニウム、及びそれらの化合物(例えば、酸化物、窒化物、炭化物)から選ばれる少なくとも1種類を含有する材料で形成され、上層42は、タンタルまたはタンタル化合物(例えば、酸化物、窒化物、炭化物)を含有する材料で形成されているという特徴的な構成を有している。これにより、電子線描画時のおけるレジスト膜の帯電を抑制して、位相シフトマスク200を製造することができる。以上の作用により、パターン精度が良好な位相シフトマスク200を作製することができる。
 なお、本実施形態においては、転写用マスクとして位相シフトマスク200を作製するためのマスクブランクについて説明したが、本発明はこれに限定されるものではなく、例えば、バイナリマスクや掘り込みレベンソン型の位相シフトマスクを作製するためのマスクブランクにも適用することができる。
[実施例]
 以下、実施例により、本発明の実施形態をさらに具体的に説明する。
〈実施例1〉
[マスクブランクの製造]
 図1を参照し、主表面の寸法が約152mm×約152mmで、厚さが約6.35mmの合成石英ガラスからなる透光性基板1を準備した。この透光性基板1は、端面及び主表面が所定の表面粗さ(Rqで0.2nm以下)に研磨され、その後、所定の洗浄処理及び乾燥処理が施されている。
 次に、透光性基板1の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素とからなる位相シフト膜2を75nmの厚さで成膜した。ターゲットはモリブデンとケイ素とを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この位相シフト膜の組成をESCAで分析したところ、Si:Mo:O:N=42:7:5:46(原子%比)であった。
 こうして形成した位相シフト膜2は、露光光の透過率が6%であり、位相差が177度であった。なお、実施例1及び後述する各実施例・各比較例では、透過率及び位相差を、位相シフト量測定装置(レーザーテック社製 MPM193:測定波長193nm)を用いて測定した。以降の各実施例及び各比較例における透過率及び位相差も同様にして測定した。
 また、本実施例において、「露光光の透過率」とは、位相シフト膜2の開口部に対する非開口部の露光光の透過率を意味する。また、「位相差」とは、位相シフト膜2の開口部に対する非開口部の位相差を意味する。
 次に、この位相シフト膜2の上にDCスパッタ装置を用いて、クロムと酸素と窒素とからなる遮光膜3を30nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この遮光膜3の組成をESCAで分析したところ、Cr:O:N=50:30:20(原子%比)であった。
 次に、この遮光膜3が形成された透光性基板1に対して、加熱処理を施した。具体的には、ホットプレートを用いて、大気中で加熱温度を280℃、加熱時間を5分として、加熱処理を行った。加熱処理後、位相シフト膜2及び遮光膜3が積層された透光性基板1に対し、分光光度計(アジレントテクノロジー社製 Cary4000)を用い、位相シフト膜2と遮光膜3の積層構造のArFエキシマレーザーの光の波長(約193nm)における光学濃度(OD)を測定したところ、3.0であることが確認できた。
 次に、この遮光膜3の上にDCスパッタ装置を用いて、タングステンと酸素とからなるハードマスク膜4の下層41を3nmの厚さで成膜した。ターゲットはタングステン酸化物(WOx)を用い、スパッタガスはアルゴンと酸素とを用いた。このハードマスク膜4の下層41の組成をESCAで分析したところ、W:O=25:75(原子%比)であった。
 次に、このハードマスク膜4の下層41の上にDCスパッタ装置を用いて、タンタルと酸素とからなるハードマスク膜4の上層42を2nmの厚さで成膜した。ターゲットはタンタル酸化物(TaO)を用い、スパッタガスはアルゴンと酸素とを用いた。このハードマスク膜4の上層42の組成をESCAで分析したところ、Ta:O=35:65(原子%比)であった。
 こうして、遮光膜3の上に下層41及び上層42を備えたハードマスク膜4を5nmの厚さで形成した。
 最後に、所定の洗浄処理を施し、実施例1のマスクブランク100を製造した。
(電気抵抗率の測定)
 次に、このマスクブランク100に対し、下層41及び上層42を備えたハードマスク膜4の導電性について、その電気抵抗率(Ω・m)を測定したところ、5.29×10-8であった。
 上記電気抵抗率は、その値が小さい程、ハードマスク膜4の導電性の高いことを意味する。そのため、この電気抵抗率の値が小さいハードマスク膜4であれば、電子線描画時のおけるレジスト膜の帯電が抑制されて電子線照射の位置精度を向上することができる、即ちレジスト膜に精度よく微細なレジストパターンを形成することができる。
 ハードマスク膜4の電気抵抗率(Ω・m)の値が1.00×10-7以下であれば、その導電性は極めて高く、電子線描画時にハードマスク膜4の帯電の影響をほぼ受けないハードマスク膜4(マスクブランク100)といえる。また、ハードマスク膜4の電気抵抗率(Ω・m)の値が1.00×10-5以下であれば、その導電性は高く、電子線描画時におけるハードマスク膜4の帯電の影響は極めて小さいハードマスク膜4(マスクブランク100)といえる。さらに、ハードマスク膜4の電気抵抗率(Ω・m)の値が1.00×10-3以下であれば、その導電性としては十分であり、電子線描画時におけるハードマスク膜4の帯電の影響は小さいハードマスク膜4(マスクブランク100)といえる。一方、ハードマスク膜4の電気抵抗率(Ω・m)の値が1.00×10-3超であれば、その導電性としては不十分であり、電子線描画時にハードマスク膜4の帯電の影響を受け易いハードマスク膜4(マスクブランク100)といえる。
 上記測定結果から、実施例1のマスクブランク100であれば、ハードマスク膜4の電気抵抗率(Ω・m)が5.29×10-8であるため、電子線描画時にハードマスク膜4の帯電の影響をほぼ受けないことが確認された。
 下記表1では、ハードマスク膜4の電気抵抗率(Ω・m)の値について、1.00×10-7以下であれば「◎」と評価し、1.00×10-5以下であれば「〇」と評価し、1.00×10-3以下であれば「△」と評価し、1.00×10-3超であれば「×」と評価した。本実施例では、「◎」、「〇」、「△」を合格とした。
 なお、本実施例では、市販されている電気抵抗率測定装置を用いて、ハードマスク膜4表面上の10箇所について電気抵抗率(Ω・m)をそれぞれ測定し、その平均値を「電気抵抗率(Ω・m)」とした。
[位相シフトマスクの製造]
 次に、上記の実施例1のマスクブランク100を用い、以下の手順で実施例1のハーフトーン型の位相シフトマスク200を製造した。
 最初に、スピン塗布法によって、ハードマスク膜4の表面に接して、電子線描画用化学増幅型レジストからなるレジスト膜を膜厚129nmで形成した。
 次に、このレジスト膜に対して、位相シフト膜2に形成すべき位相シフト膜パターンである第1のパターンを電子線描画し、所定の現像処理及び洗浄処理を行い、第1のパターンを有するレジストパターン5aを形成した(図2(a)参照)。この第1のパターンは、線幅200nmのライン・アンド・スペースパターンと微小サイズ(線幅30nm)のパターンを含むものとした。より詳しくは、ハードマスク膜4上にネガ型化学増幅型電子線レジストを膜厚129nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターン5aを形成した。
 次に、レジストパターン5aをマスクとし、CFガスと酸素ガス(O)の混合ガスを用いたドライエッチングを行い、上層42及び下層41を含むハードマスク膜4に上層パターン42a及び下層パターン41aを含むハードマスクパターン4aを形成した(図2(b)参照)。なお、エッチングガスのガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。
 ハードマスクパターン4aを形成した後のレジストパターン5aは、十分な膜厚で残存していた。また、レジストパターン5aが有していた上記微小サイズのパターンを含むすべてのパターンが、ハードマスク膜4に高精度に形成されていることをCD-SEM(Critical Dimension-Scanning Electron Microscope)を用いた測定(観察)で確認できた。
(エッチングレートの測定)
 ここで、実施例1のハードマスク膜4のエッチング加工性について、実施例1のハードマスク膜4のエッチングレート比(実施例1のハードマスク膜4のエッチングレート/比較例1のハードマスク膜4のエッチングレート)を測定したところ、2.1であった。
 上記エッチングレート比は、その値が大きい程、従来技術に係る比較例1のハードマスク膜4(つまり、一般に広く用いられているハードマスク膜4)に比べて、エッチング加工性が高いことを意味する。このエッチングレート比が高いハードマスク膜4であれば、そのエッチング加工性に優れ、レジスト膜を薄膜化することができる、即ち解像性を向上させることができる。
 ハードマスク膜4のエッチングレート比が1.5以上であれば、そのエッチング加工性は極めて高く、レジスト膜を十分に薄膜化することができるハードマスク膜4(マスクブランク100)といえる。また、ハードマスク膜4のエッチングレート比が1.3以上であれば、そのエッチング加工性は高く、レジスト膜を薄膜化することができるハードマスク膜4(マスクブランク100)といえる。さらに、ハードマスク膜4のエッチングレート比が1.0超であれば、そのエッチング加工性としては十分であり、レジスト膜を薄膜化することができるハードマスク膜4(マスクブランク100)といえる。一方、ハードマスク膜4のエッチングレート比が1.0以下であれば、そのエッチング加工性としては不十分であり、レジスト膜を薄膜化することが困難なハードマスク膜4(マスクブランク100)といえる。
 上記測定結果から、実施例1のマスクブランク100であれば、ハードマスク膜4のエッチングレート比が2.1であるため、ハードマスク膜4のエッチング加工性は極めて高く、レジスト膜を十分に薄膜化することができることが確認された。
 下記表1では、ハードマスク膜4のエッチングレート比について、1.5以上であれば「◎」と評価し、1.3以上であれば「〇」と評価し、1.0超であれば「△」と評価し、1.0以下であれば「×」と評価した。本実施例では、「◎」、「〇」、「△」を合格とした。
 なお、本実施例では、同じ工程で作成したマスクブランク100を10サンプル用意し、エッチング時間に対するエッチング深さを測定した。こうして得た10サンプルの各エッチングレートの平均値を「エッチングレート」とした。そして、比較例1のハードマスク膜4のエッチングレートに対する実施例1のハードマスク膜4のエッチングレートを算出することで、実施例1のハードマスク膜4のエッチングレート比を得た。
 次に、レジストパターン5aを硫酸加水洗浄によって剥膜洗浄し除去した。
 続いて、ハードマスクパターン4aをマスクとし、塩素ガス(Cl)と酸素ガス(O)とヘリウム(He)の混合ガスを用いたドライエッチングを行い、遮光膜3に遮光膜パターン3aを形成した(図2(c)参照)。なお、エッチングガスのガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。オーバーエッチングは100%行った。
 次に、遮光膜パターン3aをマスクとし、CFガスと酸素ガス(O)の混合ガスを用いたドライエッチングを行い、位相シフト膜2に第1のパターンである位相シフト膜パターン2aを形成し、かつ同時にハードマスクパターン4aを除去した(図2(d)参照)。なお、エッチングガスのガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。ドライエッチングは、石英基板を平均3nm掘り込んだ時点で停止した。
 次に、遮光膜パターン3a上に、スピン塗布法によって、電子線描画用化学増幅型レジストからなるレジスト膜を膜厚150nmで形成した。
 次に、レジスト膜に対して、遮光膜に形成すべきパターン(遮光帯パターンを含むパターン)である第2のパターンを露光描画し、さらに現像処理等の所定の処理を行い、遮光膜パターンを有するレジストパターン6bを形成した(図2(e)参照)。
 続いて、レジストパターン6bをマスクとして、塩素ガス(Cl)と酸素ガス(O)とヘリウム(He)の混合ガスを用いたドライエッチングを行い、遮光膜3に遮光膜パターン3bを形成した(図2(f)参照)。なお、エッチングガスのガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。この際、下層の位相シフト膜2(位相シフト膜パターン2a)及び透光性基板1にはダメージは発生しなかった。
 さらに、レジストパターン6bを硫酸加水洗浄によって剥膜洗浄し除去した。
 最後に、洗浄等の所定の処理を経て、位相シフトマスク200を得た(図2(g)参照)。
 以上の手順を得て作製された実施例1の位相シフトマスク200において、レジストパターン5aが有していた上記微小サイズのパターンを含むすべてのパターンが、位相シフト膜2に高精度に形成されていることをCD-SEMを用いた測定(観察)で確認できた。さらに、実施例1の位相シフトマスク200に対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける転写像のシミュレーションを行った。このシミュレーションの露光転写像を検証したところ、設計仕様を十分に満たしていた。
〈実施例2〉
[マスクブランクの製造]
 実施例2のマスクブランクは、ハードマスク膜4以外については、実施例1と同様の手順で製造した。そこで、ここでは実施例2におけるハードマスク膜4の製造工程についてのみ説明する。
 実施例1と同様の手順で製造した遮光膜3の上にDCスパッタ装置を用いて、テルルと酸素とからなるハードマスク膜4の下層41を3nmの厚さで成膜した。ターゲットはテルル酸化物(TeO)を用い、スパッタガスはアルゴンと酸素とを用いた。このハードマスク膜4の下層41の組成をESCAで分析したところ、Te:O=35:65(原子%比)であった。
 次に、このハードマスク膜4の下層41の上にDCスパッタ装置を用いて、タンタルと窒素とからなるハードマスク膜4の上層42を2nmの厚さで成膜した。ターゲットはタンタル窒化物(TaN)を用い、スパッタガスはアルゴンと酸素とを用いた。このハードマスク膜4の上層42の組成をESCAで分析したところ、Ta:N=20:80(原子%比)であった。
 こうして、遮光膜3の上に下層41及び上層42を備えたハードマスク膜4を5nmの厚さで形成した。
 最後に、実施例1の場合と同様にして、所定の洗浄処理を施し、実施例2のマスクブランク100を製造した。
(電気抵抗率の測定)
 次に、このマスクブランク100に対し、下層41及び上層42を備えたハードマスク膜4の導電性について、その電気抵抗率(Ω・m)を測定したところ、1.00×10-4であった。
 上記測定結果から、実施例2のマスクブランク100であれば、ハードマスク膜4の電気抵抗率(Ω・m)が1.00×10-4であるため、電子線描画時におけるハードマスク膜4の帯電の影響は極めて小さいことが確認された。
 なお、実施例2の位相シフト膜2は、露光光の透過率が6%であり、位相差が177度であった。また、実施例2における、位相シフト膜2及び遮光膜3が積層された透光性基板1の光学濃度(OD)は、3.0であった。
[位相シフトマスクの製造]
 次に、この実施例2のマスクブランク100を用い、実施例1と同様の手順で、実施例2の位相シフトマスク200を製造した。なお、電子線描画用化学増幅型レジストからなるレジスト膜の膜厚は135nmとした。また、ハードマスクパターン4aを形成した後のレジストパターン5aは、十分な膜厚で残存していた。また、レジストパターン5aが有していた上記微小サイズのパターンを含むすべてのパターンが、ハードマスク膜4に高精度に形成されていることをCD-SEMを用いた測定(観察)で確認できた。
 また、作製された実施例2の位相シフトマスク200において、レジストパターン5aが有していた上記微小サイズのパターンを含むすべてのパターンが、位相シフト膜2に高精度に形成されていることをCD-SEMを用いた測定(観察)で確認できた。
 さらに、実施例2の位相シフトマスク200に対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける転写像のシミュレーションを行った。このシミュレーションの露光転写像を検証したところ、設計仕様を十分に満たしていた。
(エッチングレートの測定)
 また、実施例2のハードマスク膜4のエッチング加工性について、実施例2のハードマスク膜4のエッチングレート比(実施例2のハードマスク膜4のエッチングレート/比較例1のハードマスク膜4のエッチングレート)を測定したところ、1.7であった。
 上記測定結果から、実施例2のマスクブランク100であれば、ハードマスク膜4のエッチングレート比が1.7であるため、ハードマスク膜4のエッチング加工性は極めて高く、レジスト膜を十分に薄膜化することができることが確認された。
〈実施例3〉
[マスクブランクの製造]
 実施例3のマスクブランクは、ハードマスク膜4以外については、実施例1と同様の手順で製造した。そこで、ここでは実施例3におけるハードマスク膜4の製造工程についてのみ説明する。
 実施例1と同様の手順で製造した遮光膜3の上にDCスパッタ装置を用いて、ルテニウムからなるハードマスク膜4の下層41を3nmの厚さで成膜した。ターゲットはルテニウム(Ru)を用い、スパッタガスはアルゴンと酸素と窒素とを用いた。このハードマスク膜4の下層41の組成をESCAで分析したところ、Ru=100(原子%比)であった。
 次に、このハードマスク膜4の下層41の上にDCスパッタ装置を用いて、タンタルからなるハードマスク膜4の上層42を2nmの厚さで成膜した。ターゲットはタンタル(Ta)を用い、スパッタガスはアルゴンと酸素とを用いた。このハードマスク膜4の上層42の組成をESCAで分析したところ、Ta=100(原子%比)であった。
 こうして、遮光膜3の上に下層41及び上層42を備えたハードマスク膜4を5nmの厚さで形成した。
 最後に、実施例1の場合と同様にして、所定の洗浄処理を施し、実施例3のマスクブランク100を製造した。
(電気抵抗率の測定)
 次に、このマスクブランク100に対し、下層41及び上層42を備えたハードマスク膜4の導電性について、その電気抵抗率(Ω・m)を測定したところ、7.10×10-8であった。
 上記測定結果から、実施例3のマスクブランク100であれば、ハードマスク膜4の電気抵抗率(Ω・m)が7.10×10-8であるため、電子線描画時にハードマスク膜4の帯電の影響をほぼ受けないことが確認された。
 なお、実施例3の位相シフト膜2は、露光光の透過率が6%であり、位相差が177度であった。また、実施例3における、位相シフト膜2及び遮光膜3が積層された透光性基板1の光学濃度(OD)は、3.0であった。
[位相シフトマスクの製造]
 次に、この実施例3のマスクブランク100を用い、実施例1と同様の手順で、実施例3の位相シフトマスク200を製造した。なお、電子線描画用化学増幅型レジストからなるレジスト膜の膜厚は146nmとした。また、ハードマスクパターン4aを形成した後のレジストパターン5aは、十分な膜厚で残存していた。また、レジストパターン5aが有していた上記微小サイズのパターンを含むすべてのパターンが、ハードマスク膜4に高精度に形成されていることをCD-SEMを用いた測定(観察)で確認できた。
 また、作製された実施例3の位相シフトマスク200において、レジストパターン5aが有していた上記微小サイズのパターンを含むすべてのパターンが、位相シフト膜2に高精度に形成されていることをCD-SEMを用いた測定(観察)で確認できた。
 さらに、実施例3の位相シフトマスク200に対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける転写像のシミュレーションを行った。このシミュレーションの露光転写像を検証したところ、設計仕様を十分に満たしていた。
(エッチングレートの測定)
 また、実施例3のハードマスク膜4のエッチング加工性について、実施例3のハードマスク膜4のエッチングレート比(実施例3のハードマスク膜4のエッチングレート/比較例1のハードマスク膜4のエッチングレート)を測定したところ、1.3であった。
 上記測定結果から、実施例3のマスクブランク100であれば、ハードマスク膜4のエッチングレート比が1.3であるため、ハードマスク膜4のエッチング加工性は高く、レジスト膜を薄膜化することができることが確認された。
〈比較例1〉
[マスクブランクの製造]
 比較例1のマスクブランクは、ハードマスク膜4以外については、実施例1と同様の手順で製造した。そこで、ここでは比較例1におけるハードマスク膜4の製造工程についてのみ説明する。
 実施例1と同様の手順で製造した遮光膜3の上にDCスパッタ装置を用いて、タンタルと酸素とからなるハードマスク膜4を5nmの厚さで成膜した。ターゲットはタンタル酸化物(TaO)を用い、スパッタガスはアルゴンと酸素とを用いた。このハードマスク膜4の組成をESCAで分析したところ、Ta:O=35:65(原子%比)であった。
 つまり、比較例1のマスクブランクに備わるハードマスク膜4は、タンタル酸化物(TaO)で構成された単層のハードマスク膜4である。
 最後に、実施例1の場合と同様にして、所定の洗浄処理を施し、比較例1のマスクブランク100を製造した。
(電気抵抗率の測定)
 次に、このマスクブランク100に対し、ハードマスク膜4の導電性について、その電気抵抗率(Ω・m)を測定したところ、1.50×10-7であった。
 上記測定結果から、比較例1のマスクブランク100であれば、ハードマスク膜4の電気抵抗率(Ω・m)が1.50×10-7であるため、電子線描画時におけるハードマスク膜4の帯電の影響は極めて小さいことが確認された。
 なお、比較例1の位相シフト膜2は、露光光の透過率が6%であり、位相差が177度であった。また、比較例1における、位相シフト膜2及び遮光膜3が積層された透光性基板1の光学濃度(OD)は、3.0であった。
[位相シフトマスクの製造]
 次に、この比較例1のマスクブランクを用い、実施例1と同様の手順で、比較例1の位相シフトマスクを製造した。なお、電子線描画用化学増幅型レジストからなるレジスト膜の膜厚は160nmとした。また、ハードマスクパターン4aを形成した後のレジストパターン5aは、十分な膜厚で残存していた。一方、レジストパターン5aが有していた上記の微小サイズのパターンは、ハードマスクパターン4a内に形成することができていなかった。
 また、作製された比較例1の位相シフトマスク200の位相シフト膜パターン2aにおいて、上記の微小サイズのパターンは、位相シフト膜パターン2a内に形成することができていなかった。
 さらに、この比較例1の位相シフトマスクに対し、実施例1と同様にAIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける転写像のシミュレーションを行った。このシミュレーションの露光転写像を検証したところ、転写不良が確認された。これは、上記の微小サイズのパターンが形成できていなかったことが、転写不良の発生要因と推察される。
(エッチングレートの測定)
 比較例1のハードマスク膜4のエッチングレートを測定し、その値を各エッチングレート比の基準値とした。
〈比較例2〉
[マスクブランクの製造]
 比較例2のマスクブランクは、ハードマスク膜4以外については、実施例1と同様の手順で製造した。そこで、ここでは比較例2におけるハードマスク膜4の製造工程についてのみ説明する。
 実施例1と同様の手順で製造した遮光膜3の上にDCスパッタ装置を用いて、ケイ素からなるハードマスク膜4の下層41を3nmの厚さで成膜した。ターゲットはケイ素(Si)を用い、スパッタガスはアルゴンと酸素とを用いた。このハードマスク膜4の下層41の組成をESCAで分析したところ、Si=100(原子%比)であった。
 次に、このハードマスク膜4の下層41の上にDCスパッタ装置を用いて、タンタルと酸素とからなるハードマスク膜4の上層42を2nmの厚さで成膜した。ターゲットはタンタル酸化物(TaO)を用い、スパッタガスはアルゴンと酸素とを用いた。このハードマスク膜4の上層42の組成をESCAで分析したところ、Ta:O=35:65(原子%比)であった。
 こうして、遮光膜3の上に下層41及び上層42を備えたハードマスク膜4を5nmの厚さで形成した。
 最後に、実施例1の場合と同様にして、所定の洗浄処理を施し、比較例2のマスクブランク100を製造した。
(電気抵抗率の測定)
 次に、このマスクブランク100に対し、ハードマスク膜4の導電性について、その電気抵抗率(Ω・m)を測定したところ、3.97×10であった。
 上記測定結果から、比較例2のマスクブランク100であれば、ハードマスク膜4の電気抵抗率(Ω・m)が3.97×10であるため、電子線描画時にハードマスク膜4の帯電の影響を受け易いことが確認された。
 なお、比較例2の位相シフト膜2は、露光光の透過率が6%であり、位相差が177度であった。また、比較例2における、位相シフト膜2及び遮光膜3が積層された透光性基板1の光学濃度(OD)は、3.0であった。
[位相シフトマスクの製造]
 次に、この比較例2のマスクブランクを用い、実施例1と同様の手順で、比較例2の位相シフトマスクを製造した。なお、電子線描画用化学増幅型レジストからなるレジスト膜の膜厚は126nmとした。また、ハードマスクパターン4aを形成した後のレジストパターン5aは、十分な膜厚で残存していた。一方、レジストパターン5aが有していた上記の微小サイズのパターンは、ハードマスクパターン4a内に形成することができていなかった。
 また、作製された比較例2の位相シフトマスク200の位相シフト膜パターン2aにおいて、上記の微小サイズのパターンは、位相シフト膜パターン2a内に形成することができていなかった。
 さらに、この比較例2の位相シフトマスクに対し、実施例1と同様にAIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける転写像のシミュレーションを行った。このシミュレーションの露光転写像を検証したところ、転写不良が確認された。これは、上記の微小サイズのパターンが形成できていなかったことが、転写不良の発生要因と推察される。
(エッチングレートの測定)
 また、比較例2のハードマスク膜4のエッチング加工性について、比較例2のハードマスク膜4のエッチングレート比(比較例2のハードマスク膜4のエッチングレート/比較例1のハードマスク膜4のエッチングレート)を測定したところ、2.3であった。
 上記測定結果から、比較例2のマスクブランク100であれば、ハードマスク膜4のエッチングレート比が2.3であるため、ハードマスク膜4のエッチング加工性は高く、レジスト膜を薄膜化することができることが確認された。
 上述した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
1 透光性基板
2 位相シフト膜
2a 位相シフト膜パターン
3 遮光膜
3a,3b 遮光膜パターン
4 ハードマスク膜
41 下層
42 上層
4a ハードマスクパターン
41a 下層パターン
42a 上層パターン
5a レジストパターン
6b レジストパターン
100 マスクブランク
200 位相シフトマスク

Claims (12)

  1.  波長200nm以下の露光光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクであって、
     透明基板と、薄膜と、ハードマスク膜とをこの順に備え、
     前記薄膜は、クロムを含有する材料で形成され、
     前記ハードマスク膜は、前記薄膜側に位置する下層と、前記ハードマスク膜の最表層を構成する上層とを含み、
     前記下層は、タングステン、テルル、ルテニウム、及びそれらの化合物から選ばれる少なくとも1種類を含有し、
     前記上層は、タンタルまたはタンタル化合物を含有し、
     前記化合物は、酸素、窒素、及び炭素から選ばれる少なくとも一種類を含有することを特徴とするフォトマスクブランク。
  2.  前記上層の厚さは、1nm以上であることを特徴とする請求項1に記載のフォトマスクブランク。
  3.  前記ハードマスク膜の厚さは、4nm以上14nm以下の範囲内であることを特徴とする請求項1または2に記載のフォトマスクブランク。
  4.  前記薄膜は、遮光膜であることを特徴とする請求項1から3のいずれか1項に記載のフォトマスクブランク。
  5.  前記透明基板と前記遮光膜との間に、ケイ素を含有する材料からなる位相シフト膜をさらに備えることを特徴とする請求項4に記載のフォトマスクブランク。
  6.  波長200nm以下の露光光が適用されるフォトマスクであって、
     透明基板と、前記透明基板の上に形成され、パターン形成された薄膜と、前記薄膜の上に形成されたハードマスク膜と、を備え、
     前記薄膜は、クロムを含有する材料で形成され、
     前記ハードマスク膜は、前記薄膜側に位置する下層と、前記ハードマスク膜の最表層を構成する上層とを含み、
     前記下層は、タングステン、テルル、ルテニウム、及びそれらの化合物から選ばれる少なくとも1種類を含有し、
     前記上層は、タンタルまたはタンタル化合物を含有し、
     前記化合物は、酸素、窒素、及び炭素から選ばれる少なくとも一種類を含有することを特徴とするフォトマスク。
  7.  前記上層の厚さは、1nm以上であることを特徴とする請求項6に記載のフォトマスク。
  8.  前記ハードマスク膜の厚さは、4nm以上14nm以下の範囲内であることを特徴とする請求項6または7に記載のフォトマスク。
  9.  前記薄膜は、遮光膜であることを特徴とする請求項6から8のいずれか1項に記載のフォトマスク。
  10.  前記透明基板と前記遮光膜との間に、ケイ素を含有する材料からなる位相シフト膜をさらに備えることを特徴とする請求項9に記載のフォトマスク。
  11.  請求項1から4のいずれか1項に記載のフォトマスクブランクを用いたフォトマスクの製造方法であって、
     前記フォトマスクブランクの前記ハードマスク膜上にレジストパターンを形成する工程と、
     前記レジストパターンをマスクとして前記ハードマスク膜をフッ素系ガスでドライエッチングし、ハードマスクパターンを形成する工程と、
     前記ハードマスクパターンをマスクとして前記薄膜を塩素と酸素の混合ガスでドライエッチングし、薄膜パターンを形成する工程と、を有することを特徴とするフォトマスクの製造方法。
  12.  請求項5に記載のフォトマスクブランクを用いたフォトマスクの製造方法であって、
     前記フォトマスクブランクの前記ハードマスク膜上にレジストパターンを形成する工程と、
     前記レジストパターンをマスクとして前記ハードマスク膜をフッ素系ガスでドライエッチングし、ハードマスクパターンを形成する工程と、
     前記ハードマスクパターンをマスクとして前記遮光膜を塩素と酸素の混合ガスでドライエッチングし、遮光膜パターンを形成する工程と、
     前記遮光膜パターンをマスクとして前記位相シフト膜をフッ素系ガスでドライエッチングし、位相シフト膜パターンを形成しつつ、前記ハードマスクパターンを除去する工程と、を有することを特徴とするフォトマスクの製造方法。
PCT/JP2023/003372 2021-12-15 2023-02-02 フォトマスクブランク、フォトマスク及びフォトマスクの製造方法 WO2023113047A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202380015121.0A CN118401890A (zh) 2021-12-15 2023-02-02 光掩模坯、光掩模以及光掩模的制造方法
EP23731498.4A EP4451057A1 (en) 2021-12-15 2023-02-02 Photomask blank, photomask, and method for manufacturing photomask
KR1020247016448A KR20240122430A (ko) 2021-12-15 2023-02-02 포토마스크 블랭크, 포토마스크 및 포토마스크의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-203513 2021-12-15
JP2021203513A JP2023088648A (ja) 2021-12-15 2021-12-15 フォトマスクブランク、フォトマスク及びフォトマスクの製造方法

Publications (1)

Publication Number Publication Date
WO2023113047A1 true WO2023113047A1 (ja) 2023-06-22

Family

ID=86774508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003372 WO2023113047A1 (ja) 2021-12-15 2023-02-02 フォトマスクブランク、フォトマスク及びフォトマスクの製造方法

Country Status (5)

Country Link
EP (1) EP4451057A1 (ja)
JP (1) JP2023088648A (ja)
KR (1) KR20240122430A (ja)
CN (1) CN118401890A (ja)
WO (1) WO2023113047A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223905A (ja) * 2016-06-17 2017-12-21 凸版印刷株式会社 反射型マスクブランクおよび反射型マスク
JP2018072543A (ja) * 2016-10-28 2018-05-10 凸版印刷株式会社 フォトマスクブランク、フォトマスク及びフォトマスクの製造方法
JP2019179106A (ja) * 2018-03-30 2019-10-17 凸版印刷株式会社 位相シフトマスクブランク、及び位相シフトマスクの製造方法
WO2021192734A1 (ja) * 2020-03-23 2021-09-30 Hoya株式会社 マスクブランク及び転写用マスクの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7026575B2 (ja) 2018-05-22 2022-02-28 株式会社ニューフレアテクノロジー 電子ビーム照射方法、電子ビーム照射装置、及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223905A (ja) * 2016-06-17 2017-12-21 凸版印刷株式会社 反射型マスクブランクおよび反射型マスク
JP2018072543A (ja) * 2016-10-28 2018-05-10 凸版印刷株式会社 フォトマスクブランク、フォトマスク及びフォトマスクの製造方法
JP2019179106A (ja) * 2018-03-30 2019-10-17 凸版印刷株式会社 位相シフトマスクブランク、及び位相シフトマスクの製造方法
WO2021192734A1 (ja) * 2020-03-23 2021-09-30 Hoya株式会社 マスクブランク及び転写用マスクの製造方法

Also Published As

Publication number Publication date
JP2023088648A (ja) 2023-06-27
KR20240122430A (ko) 2024-08-12
EP4451057A1 (en) 2024-10-23
CN118401890A (zh) 2024-07-26

Similar Documents

Publication Publication Date Title
US11630388B2 (en) Mask blank, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
JP6599281B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6297734B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP6053836B2 (ja) マスクブランク及び位相シフトマスクの製造方法
JP2016018192A (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
JP6430155B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6544964B2 (ja) マスクブランク、位相シフトマスクの製造方法、及び、半導体デバイスの製造方法
US20230069092A1 (en) Mask blank and method of manufacturing photomask
JP6321265B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
TW201635008A (zh) 光罩基底、相移光罩、相移光罩之製造方法及半導體裝置之製造方法
JP2016188958A (ja) マスクブランク、位相シフトマスクの製造方法、及び、半導体デバイスの製造方法
TWI758382B (zh) 相移光罩基底、相移光罩之製造方法、及顯示裝置之製造方法
JP6768987B2 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
WO2020066590A1 (ja) マスクブランク、転写用マスクおよび半導体デバイスの製造方法
WO2023113047A1 (ja) フォトマスクブランク、フォトマスク及びフォトマスクの製造方法
TW202433163A (zh) 空白光罩、光罩及光罩之製造方法
JP7221261B2 (ja) マスクブランク、位相シフトマスク、及び半導体デバイスの製造方法
TW202303261A (zh) 光罩基底、相位偏移光罩及半導體裝置之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23731498

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11202403447P

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 2023731498

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023731498

Country of ref document: EP

Effective date: 20240715