TWI792027B - 鋰二次電池 - Google Patents

鋰二次電池 Download PDF

Info

Publication number
TWI792027B
TWI792027B TW109125846A TW109125846A TWI792027B TW I792027 B TWI792027 B TW I792027B TW 109125846 A TW109125846 A TW 109125846A TW 109125846 A TW109125846 A TW 109125846A TW I792027 B TWI792027 B TW I792027B
Authority
TW
Taiwan
Prior art keywords
active material
negative electrode
graphene
electrode active
positive electrode
Prior art date
Application number
TW109125846A
Other languages
English (en)
Other versions
TW202044649A (zh
Inventor
等等力弘篤
齋藤祐美子
川上貴洋
野元邦治
湯川幹央
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW202044649A publication Critical patent/TW202044649A/zh
Application granted granted Critical
Publication of TWI792027B publication Critical patent/TWI792027B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Steroid Compounds (AREA)

Abstract

一種石墨烯的生成方法,包括如下步驟:在第一導電層上形成含有氧化石墨烯的層;在浸漬有作為工作電極的第一導電層及作為對電極的第二導電層的電解液中,對第一導電層提供能夠使氧化石墨烯發生還原反應的電位。一種至少具有正極、負極、電解液及隔離體的能量貯存裝置的製造方法,其中作為正極和負極中的一者或兩者中的活性物質層使用上述製造方法生成石墨烯。

Description

鋰二次電池
本發明關於一種石墨烯、含有該石墨烯的電極及具有該電極的能量貯存裝置的製造方法。另外,本發明關於一種利用該製造方法製造的石墨烯、電極及能量貯存裝置。另外,在本說明書中能量貯存裝置是指所有具有蓄電功能的元件及裝置,例如,鋰原電池、鋰二次電池及鋰離子電容器等。
近年來,由於石墨烯具有高導電性等優越的電特性以及高柔軟性、機械強度等優越的物理特性,將其應用於各種各樣的製品的研究開發不斷進行。
將石墨烯應用於鋰二次電池及鋰離子電容器等能量貯存裝置是其應用之一,例如,為了提高鋰二次電池用電極材料的導電性,可以在電極材料上覆蓋石墨烯。
另外,作為石墨烯的製造方法,可以舉出使氧化石墨或氧化石墨烯在存在鹼基的狀態下還原的方法。在該石墨烯的製造方法中,作為形成氧化石墨的方法,可以舉出: 以硫酸、硝酸及氯酸鉀為氧化劑的方法;以硫酸及過錳酸鉀為氧化劑的方法;以及以氯酸鉀及發煙硝酸為氧化劑的方法等(參照專利文獻1)。
作為使用以硫酸及過錳酸鉀為氧化劑形成氧化石墨的方法有Modified Hummers法。這裏,參照圖14對使用Modified Hummers法製造石墨烯的方法進行說明。
在溶劑中,使用過錳酸鉀等氧化劑使石墨氧化,形成含有氧化石墨的混合液1。然後,為了去除殘留在混合液1中的氧化劑,對混合液1加入過氧化氫及水形成混合液2(步驟S101)。另外,這裏,藉由過氧化氫未反應的過錳酸鉀被還原而與硫酸發生反應形成硫酸錳。接著,從混合液2回收氧化石墨(步驟S102)。接著,為了進一步去除殘留或附著在回收的氧化石墨上的氧化劑,使用酸性溶液洗滌氧化石墨,然後,使用水洗滌氧化石墨(步驟S103)。另外,反復進行步驟S103的洗滌製程。接著,以多量的水稀釋氧化石墨並進行離心分離來使酸從氧化石墨分離,而回收氧化石墨(步驟S104)。接著,對包含回收的氧化石墨的混合液施加超音波,來使構成氧化石墨的被氧化的碳層剝離,以形成氧化石墨烯(步驟S105)。接著,藉由進行氧化石墨烯的還原處理,可以生成石墨烯(步驟S106)。
作為藉由還原氧化石墨烯來生成石墨烯的方法,可以使用加熱處理。
[專利文獻1]日本專利申請公開第2011-500488號公報
有時藉由還原氧化石墨烯生成的石墨烯的導電性根據石墨烯中的接合狀態而發生變動。
於是,本發明的一個方式的目的是提供一種導電性得到提高的由氧化石墨烯生成的石墨烯及該石墨烯的製造方法。
另外,能量貯存裝置中的電極由集流體及活性物質層構成。在習知的電極中,除了活性物質以外活性物質層還包含導電劑及黏合劑等。因此,作為電極,很難僅有效地增大活性物質的重量,因此很難增大每單位電極重量或電極體積中的充放電容量。並且,習知的電極存在如下問題,當包含於活性物質層的黏合劑與電解液接觸時發生膨脹而使電極變形易損。
於是,本發明的一個方式的目的是提供一種每單位電極重量或電極體積的充放電容量、可靠性及耐久性等得到提高的能量貯存裝置及該能量貯存裝置的製造方法。
氧化石墨及氧化石墨烯等的氧化物可以藉由加熱處理進行還原。但是,本發明使用電能藉由電化學還原氧化石墨烯來生成石墨烯。另外,在本說明書中,有時將藉由提供促進活性物質層的還原反應的電位的還原處理稱為電化學還原。
在本說明書中,石墨烯是指由具有使離子藉由的空隙 的具有雙鍵(也稱為sp2鍵)的1原子層的碳分子構成的薄片或者由2個至100個該薄片層疊而成的疊層體。另外,也可以將該疊層體稱為多層石墨烯。另外,較佳的是使該石墨烯的氫與碳以外的元素的比率為15原子%以下或碳以外的元素的比率為30原子%以下。另外,石墨烯也可以添加有鉀等鹼金屬。因此,石墨烯類似物也屬於該石墨烯。
另外,在本說明書中,氧化石墨烯是指由碳構成的六元環或多元環與氧原子接合的石墨烯,明確而言,是指由碳構成的六元環或多元環與環氧基、羧基等羰基或羥基等接合的石墨烯。另外,氧化石墨烯有時根據氧化石墨烯的製造方法形成氧化石墨烯鹽。該氧化石墨烯鹽是指:例如,藉由與由碳構成的六元環或多元環接合的環氧基、羧基等羰基或羥基與氨、胺、鹼金屬等發生反應而形成的鹽。因此,在本說明書中,“氧化石墨烯”包括“氧化石墨烯鹽”。另外,氧化石墨烯及氧化石墨烯鹽包括有1個薄片或者由2層至100層該1個薄片層疊而成的疊層體,並也可以將該疊層體稱為多層氧化石墨烯及多層氧化石墨烯鹽。
本發明的一個方式是一種石墨烯的生成方法,其中在第一導電層上形成含有氧化石墨烯的層,並在浸漬有作為工作電極的第一導電層及作為對電極的第二導電層的電解液中對第一導電層提供能使氧化石墨烯發生還原反應的電位來生成石墨烯。具體地,提供給第一導電層的電位是能 使氧化石墨烯發生還原反應的電位,為1.6V以上且2.4V以下(以鋰的氧化還原電位為基準),藉由使該氧化石墨烯還原來生成石墨烯。另外,下面有時將“以鋰的氧化還原電位為基準”記載為“vs.Li/Li+”。
另外,本發明的一個方式是一種石墨烯的生成方法,其中在第一導電層上形成含有氧化石墨烯的層,並在浸漬有作為工作電極的第一導電層及作為對電極的第二導電層的電解液中以至少包括能使氧化石墨烯發生還原反應的電位的方式掃描第一導電層的電位,藉由使氧化石墨烯還原來生成石墨烯。具體地,如上所述,以至少包括能使氧化石墨烯還原的電位,即1.4V以上且2.6V以下(vs.Li/Li+),較佳為1.6V以上且2.4V以下(vs.Li/Li+)的範圍的方式掃描第一導電層的電位。並且,可以以包括該範圍的方式週期性地掃描第一導電層的電位。藉由進行週期性地掃描可以充分地使氧化石墨烯還原。
利用上述方法可以製造能量貯存裝置。本發明的一個方式是一種至少包括正極、負極、電解液及隔離體的能量貯存裝置的製造方法,其中正極和負極中的一者或兩者在集流體上形成至少包含活性物質及氧化石墨烯的活性物質層,並對集流體提供能使氧化石墨烯發生還原反應的電位來形成石墨烯。具體地,在正極和負極的一者或兩者中,將對該集流體提供的電位設定為1.4V以上且2.6V以下(vs.Li/Li+),較佳為1.6V以上且2.4V以下(vs.Li/Li+)來使該氧化石墨烯還原生成石墨烯。
另外,本發明的一個方式是一種電極以及使用該電極的能量貯存裝置的製造方法,其中在集流體上形成至少包含活性物質及氧化石墨烯的活性物質層,並以至少包括能使氧化石墨烯發生還原反應的電位的方式掃描集流體的電位,藉由使氧化石墨烯還原來生成石墨烯。具體地,如上所述,以至少包括能使氧化石墨烯還原的電位,即1.4V以上且2.6V以下(vs.Li/Li+),較佳為1.6V以上且2.4V以下(vs.Li/Li+)的範圍的方式掃描集流體的電位。此時,石墨烯形成於活性物質表面或活性物質層內。另外,也可以以包括該範圍的方式週期性地掃描該集流體的電位。藉由週期性地掃描該集流體的電位,例如,可以使活性物質層內的氧化石墨烯也被充分地還原。
另外,在根據上述石墨烯的製造方法製造的石墨烯中,利用X射線光電子能譜(X-ray photoelectron spectroscopy:XPS)測量的碳原子的組成為80%以上且90%以下,氧原子的組成為10%以上且20%以下。並且,在該石墨烯利用XPS測量的碳原子中,形成sp2鍵的碳原子為50%以上且80%以下,較佳的是該碳原子為60%以上且70%以下或70%以上且80%以下,即,較佳為60%以上且80%以下。
另外,本發明的一個方式還包括在正極和負極中的一者或兩者中包含石墨烯的能量貯存裝置。
與藉由加熱處理生成石墨烯的情況相比,藉由本發明的一個方式可以增加作為sp2鍵的雙鍵的碳-碳鍵的比例, 由此可以提供導電性得到提高的石墨烯以及該石墨烯的製造方法。並且,可以提供每單位電極重量的充放電容量、可靠性及耐久性得到提高的能量貯存裝置以及該能量貯存裝置的製造方法。
S111:步驟
S112:步驟
S121:步驟
S122:步驟
S123:步驟
S124:步驟
S125:步驟
S126:步驟
S127:步驟
113:容器
114:電解液
115:導電層
116:對電極
201:負極集流體
203:負極活性物質層
205:負極
211:負極活性物質
213:石墨烯
221:負極活性物質
221a:共通部
221b:凸部
223:石墨烯
307:正極集流體
309:正極活性物質層
311:正極
321:正極活性物質
323:石墨烯
400:鋰二次電池
401:正極集流體
403:正極活性物質層
405:正極
407:負極集流體
409:負極活性物質層
411:負極
413:隔離體
415:電解液
417:外部端子
419:外部端子
421:墊片
501_O:虛線
501_R:虛線
502:虛線
502_R:虛線
503_O:虛線
503_R:虛線
511_O:曲線
511_R:曲線
512_O:曲線
512_R:曲線
531_O:曲線
531_R:曲線
532_O:曲線
532_R:曲線
533_O:曲線
533_R:曲線
5000:顯示裝置
5001:外殼
5002:顯示部
5003:揚聲器部
5004:能量貯存裝置
5100:照明設備
5101:外殼
5102:光源
5103:能量貯存裝置
5104:天花板
5105:牆
5106:地板
5107:窗戶
5200:室內機
5201:外殼
5202:送風口
5203:能量貯存裝置
5204:室外機
5300:電冷藏冷凍箱
5301:外殼
5302:冷藏室門用扉
5303:冷凍室門
5304:能量貯存裝置
9630:外殼
9631:顯示部
9631a:顯示部
9631b:顯示部
9632a:觸摸屏的區域
9632b:觸摸屏的區域
9033:卡子
9034:顯示模式切換開關
9035:電源開關
9036:省電模式切換開關
9038:操作開關
9639:鍵盤顯示切換按鈕
9633:太陽能電池
9634:充放電控制電路
9635:電池
9636:DCDC轉換器
9637:操作鍵
9638:轉換器
在圖式中:
圖1A和1B是說明根據本發明的一個方式的石墨烯的製造方法及所使用的裝置的圖;
圖2是說明根據本發明的一個方式的氧化石墨烯的製造方法的圖;
圖3是說明根據本發明的一個方式的氧化石墨烯的製造方法的圖;
圖4A至4C是說明根據本發明的一個方式的正極的圖;
圖5A至5D是說明根據本發明的一個方式的負極的圖;
圖6是說明根據本發明的一個方式的能量貯存裝置的圖;
圖7是說明電器設備的圖;
圖8A至8C是說明電器設備的圖;
圖9是示出迴圈伏安法測量結果的圖;
圖10是示出迴圈伏安法測量結果的圖;
圖11是示出迴圈伏安法測量結果的圖;
圖12是示出利用XPS的表面元素組成的分析結果的圖;
圖13是示出利用XPS的原子的接合狀態的分析結果的圖;
圖14是說明習知的石墨烯的製造方法的圖;
圖15A和15B是示出迴圈伏安法測量的結果的圖;
圖16A和16B是示出迴圈伏安法測量的結果的圖。
下面參照圖式對本發明的實施方式及實施例的一個例子進行說明。但是,本發明不侷限於下面的說明,所屬技術領域的普通技術人員可以很容易地理解一個事實,就是本發明的方式和詳細內容在不脫離其宗旨及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應當被解釋為侷限於下面所示的實施方式及實施例的記載內容。另外,當說明中參照圖式時,有時在不同的圖式中共同使用相同的元件符號來表示相同的部分。另外,當表示相同的部分時有時使用同樣的陰影線,而不特別附加元件符號。
實施方式1
在本實施方式中,參照圖1A和1B對根據本發明的一個方式的石墨烯的製造方法進行說明。圖1A是說明石墨烯的製程的圖,圖1B是製造石墨烯的裝置的示意圖。
在根據本發明的一個方式的石墨烯的製造方法中,在生成石墨烯時,不是藉由熱處理還原氧化石墨烯,而是利用電能電化學還原氧化石墨烯。
〈步驟S111〉
作為圖1A所示的步驟S111,在導電層表面形成含有氧化石墨烯的層。例如,在導電層上塗敷含有氧化石墨烯的分散液。作為含有氧化石墨烯的分散液,可以使用市場上出售的商品或者將利用圖14中說明的方法等製造的氧化石墨烯分散到溶劑中而成的分散液。另外,也可以使用將利用下面所述的方法製造的氧化石墨烯(氧化石墨烯鹽)分散到溶劑中而成的分散液。
導電層由具有導電性的材料構成即可。例如,鋁(Al)、銅(Cu)、鎳(Ni)或鈦(Ti)等金屬材料、由該金屬材料中的多個材料構成的合金材料。作為該合金材料,例如可以舉出Al-Ni合金、Al-Cu合金等。導電層可以適當地採用箔狀、板狀、網狀等形狀,可以將形成在其他基板上的由上述金屬材料或上述合金材料形成的形成物剝離,將該剝離物作為導電層。
作為在導電層上塗敷含有氧化石墨烯的分散液的方法,可以舉出塗敷法、旋塗法、浸塗法、噴塗法等。另外,也可以組合多個上述方法。例如,藉由利用浸塗法在導電層上塗敷含有氧化石墨烯的分散液之後與旋塗法同樣地旋轉該導電層,可以提高塗敷的含有氧化石墨烯的分散 液的厚度均勻性。
在將含有氧化石墨烯的分散液塗敷在導電層上之後,去除該分散液中的溶劑。例如,可以藉由進行一定時間的真空乾燥來去除塗敷在導電層上的含有氧化石墨烯的分散液中的溶劑。另外,進行真空乾燥的時間根據塗敷的分散液的量而不同。另外,也可以在不會使氧化石墨烯發生還原的溫度下邊加熱導電層邊進行該真空乾燥。例如,當步驟S111後的氧化石墨烯的厚度為10μm左右時,較佳在室溫以上且100℃以下的溫度邊加熱導電層邊進行1小時左右的真空乾燥,然後在室溫下進行1小時左右的真空乾燥。
〈步驟S112〉
接著,藉由使設置在導電層上的氧化石墨烯還原來生成石墨烯。在該步驟中,像上面所述那樣使用電能電化學還原氧化石墨烯。概括地說,在該步驟中,藉由使用藉由步驟S111形成的設置有氧化石墨烯的導電層構成閉合電路,並對該導電層提供能使該氧化石墨烯發生還原反應的電位或能使該氧化石墨烯還原的電位,使該氧化石墨烯還原為石墨烯。另外,在本說明書中,也將能使氧化石墨烯發生還原反應的電位或能使該氧化石墨烯還原的電位稱為還原電位。
參照圖1B對氧化石墨烯的還原方法進行具體說明。在容器113中裝滿電解液114,然後插入設置有氧化石墨 烯的導電層115和對電極116使其浸漬在電解液中。在該步驟中,藉由將藉由步驟S111形成的設置有氧化石墨烯的導電層115用作工作電極,並且至少使用對電極116及電解液114組成電化學單元(開回路),藉由對上述導電層115(工作電極)提供氧化石墨烯的還原電位來使上述氧化石墨烯還原為石墨烯。作為電解液114,可以使用如碳酸乙烯酯、碳酸二乙酯等的非質子有機溶液。另外,作為提供的還原電位是指:以對電極116為基準時的還原電位;或者對電化學單元設置參比電極,以該參比電極為基準時的還原電位。例如,當使用鋰金屬作為對電極116及參比電極時,提供的還原電位為以鋰金屬的氧化還原電位為基準的還原電位(vs.Li/Li+)。藉由該步驟,在氧化石墨烯被還原時在電化學單元(閉合電路)中流過還原電流。因此,可以藉由依次確認上述還原電流來確認氧化石墨烯的還原,將還原電流低於固定值的狀態(對應於還原電流的峰值消失的狀態)視為氧化石墨烯被還原的狀態(還原反應結束狀態)。
另外,在該步驟中,作為該導電層115的電位,既可以將其固定為氧化石墨烯的還原電位,也可以掃描包括氧化石墨烯的還原電位,並且該掃描還可以如迴圈伏安法那樣週期性地進行反復。注意,雖然對該導電層115的電位的掃描速度沒有限定,但是較佳為0.005mV/s以上且1mV/s以下。另外,當掃描該導電層115的電位時,既可以從高電位側向低電位側掃描,也可以從低電位側向高電 位側掃描。
雖然根據氧化石墨烯的結構(官能團的有無、氧化石墨烯鹽的形成等)及電位控制方法(掃描速度等)的不同,氧化石墨烯的還原電位的值略有不同,但是大致為2.0V(vs.Li/Li+)左右。具體地,可以將上述導電層115的電位控制在1.4V以上且2.6V以下(vs.Li/Li+),較佳為1.6V以上且2.4V以下(vs.Li/Li+)的範圍內。另外,關於氧化石墨烯的還原電位,在後面的實施例中進行詳細記載。
藉由上述步驟可以在導電層115上生成石墨烯。
另外,在利用根據本發明的一個方式的石墨烯的製造方法生成的石墨烯中,利用XPS測量的碳原子的組成為80%以上且90%以下,氧原子的組成為10%以上且20%以下,在該碳原子中,形成sp2鍵的碳原子為50%以上且80%以下,較佳的是該碳原子為60%以上且70%以下或70%以上且80%以下,即,較佳為60%以上且80%以下。
另外,作為還原氧化石墨烯的方法,除了有使用電能的電化學還原方法之外,還有藉由加熱處理使氧化石墨烯中的氧原子以二氧化碳的形式脫離的還原方法(也稱為熱還原)。根據本發明的一個方式的石墨烯與藉由熱還原生成的石墨烯至少具有以下不同:根據本發明的一個方式的石墨烯藉由使用電能的電化學還原氧化石墨烯,作為sp2鍵的雙鍵的碳-碳鍵的比例比藉由熱還原生成的石墨烯高。因此,與藉由熱還原生成的石墨烯相比,根據本發明 的一個方式的石墨烯具有較多的不局部存在於某特定位置而較廣地促進碳之間的接合的π電子,因此可以說與藉由熱還原生成的石墨烯相比導電性增大。
在作為能夠用於步驟S111的氧化石墨烯的製造方法的一個例子的使用圖14說明的方法中,其步驟S103的氧化石墨烯的洗滌製程需要大量的水。並且,雖然可以藉由反復進行步驟S103去除氧化石墨中的酸,但是,酸的含量越少越難分離為沉澱物的氧化石墨與上清液中的酸,而使氧化石墨的收率減少。最終會導致石墨烯的收率下降。
這裏,說明步驟S111中的與使用圖14說明的方法不同的氧化石墨烯的製造方法。
圖2是說明氧化石墨烯(或氧化石墨烯鹽)的製程的圖。
〈石墨的氧化處理〉
如步驟S121所示,藉由使用氧化劑使石墨氧化,形成氧化石墨。
作為氧化劑使用:硫酸、硝酸及氯酸鉀;硫酸及過錳酸鉀;或氯酸鉀及發煙硝酸。這裏,混合石墨、硫酸及過錳酸鉀,使石墨氧化,並對其添加水,形成含有氧化石墨的混合液1。
然後,為了去除殘留的氧化劑,也可以對混合液1添加過氧化氫及水。利用過氧化氫可以使未反應的過錳酸鉀還原而與硫酸發生反應形成硫酸錳。由於硫酸錳可溶於 水,因此能夠與不溶於水的氧化石墨分離。
〈氧化石墨的回收〉
接著,如步驟S122所示那樣,從混合液1回收氧化石墨。藉由對混合液1進行過濾、離心分離等中的一種以上的處理,從混合液1回收包含氧化石墨的沉澱物1。注意,有時沉澱物1包含未反應的石墨。
〈氧化石墨的洗滌〉
接著,如步驟S123所示那樣,使用酸性溶液去除包含氧化石墨的沉澱物1中的金屬離子及硫酸離子。在此,可以藉由使氧化石墨中的來自氧化劑的金屬離子溶解於酸性溶液,去除氧化石墨中的金屬離子及硫酸離子。
如此,藉由使用酸性溶液進行氧化石墨的洗滌,可以提高氧化石墨烯及氧化石墨烯鹽的收量。因此,圖2所示的氧化石墨烯的製造方法可以提高氧化石墨烯的生產率以及石墨烯的生產率。
作為酸性溶液的典型例子有鹽酸、稀硫酸或硝酸等。注意,當使用揮發性高的酸,典型為鹽酸進行該處理時,可以在後面的乾燥步驟中容易地去除殘留的酸性溶液,所以是較佳的。
作為去除沉澱物1中的金屬離子及硫酸離子的方法,可以舉出:在混合沉澱物1及酸性溶液之後,進行過濾、離心分離、透析等中的任一種以上的處理;將沉澱物1放 在濾紙上,使用酸性溶液沖洗沉澱物1;等等。在此,將沉澱物1放在濾紙上,使用酸性溶液沖洗掉沉澱物1中的金屬離子及硫酸離子,回收包含氧化石墨的沉澱物2。注意,有時沉澱物2包含未反應的石墨。
〈氧化石墨烯的生成〉
接著,如步驟S124所示那樣,混合沉澱物2和水形成分散有沉澱物2的混合液2。接著,剝離包含於混合液2中的氧化石墨形成氧化石墨烯。作為剝離氧化石墨形成氧化石墨烯的方法,可以舉出施加超聲波,用機械攪拌等方法。另外,將分散有氧化石墨烯的混合液稱為混合液3。
注意,在藉由該步驟形成的氧化石墨烯中由碳構成的六元環向平面方向擴展,並且在其一部分中形成有七元環、八元環、九元環及十元環等多元環。另外,該多元環是指由碳構成的六元環的一部分的碳鍵被切斷而以碳數增大的方式切斷的碳鍵彼此接合的環狀的碳骨架。以構成該多元環的碳圍繞的區域成為隙孔。另外,構成六元環或多元環的碳的一部分接合有環氧基、羧基等羰基或者羥基等。注意,也可以分散有多層氧化石墨烯代替氧化石墨烯。
〈氧化石墨烯的回收〉
接著,如步驟S125所示那樣,藉由對混合液3進行 過濾、離心分離等中的一種以上,來使混合液3分離為包含氧化石墨烯的混合液與包含石墨的沉澱物3,回收包含氧化石墨烯的混合液。另外,將包含氧化石墨烯的混合液稱為混合液4。尤其是由於具有羰基的氧化石墨烯在具有極性的混合液中發生氫電離,因此氧化石墨烯離子化而氧化石墨烯更易於分散。
可以將藉由上述步驟製造的混合液4用於圖1A所示的步驟S111所使用的分散液。
由於混合液4中可能混有大量雜質,因此為了提高根據本發明的一個方式的石墨烯的製造方法得到的石墨烯的純度,較佳為對藉由步驟S125製造的混合液4中的氧化石墨烯進行純化。因此,較佳為在步驟S125之後進行步驟S126及步驟S127。下面對步驟S126及步驟S127進行說明。
〈氧化石墨烯鹽的生成〉
如步驟S126所示那樣,在對混合液4混合鹼性溶液生成氧化石墨烯鹽之後,添加有機溶劑,形成作為沉澱物4沉澱有氧化石墨烯鹽的混合液5。
作為鹼性溶液的典型例子,較佳為使用包含能夠與氧化石墨烯發生中和反應的鹼而不會因還原而使與氧化石墨烯的碳接合的氧被去除的混合液,典型的如氫氧化鈉水溶液、氫氧化鉀水溶液、氨水溶液、甲胺溶液、乙醇胺溶液、二甲胺溶液或三甲胺溶液等。
有機溶劑用來沉澱氧化石墨烯鹽。因此,作為有機溶劑,典型的有丙酮、甲醇及乙醇等。
〈氧化石墨烯鹽的回收〉
接著,如步驟S127所示那樣,藉由對混合液5進行過濾、離心分離等中的一種以上,使混合液5分離為溶劑和包含氧化石墨烯鹽的沉澱物4,而回收包含氧化石墨烯鹽的沉澱物4。
接著,乾燥沉澱物4獲得氧化石墨烯鹽。
藉由將利用上述步驟製造的氧化石墨烯鹽分散到溶劑中得到的溶液用作圖1A所示的步驟S111的分散液,可以提高根據本發明的一個方式的石墨烯的製造方法得到的石墨烯的純度。
另外,在圖2的步驟S123之後的步驟中,可以不生成氧化石墨烯而生成氧化石墨鹽(步驟S134),並在回收氧化石墨鹽(步驟S135)之後生成氧化石墨烯鹽(參照圖3)。
在步驟S134中,在混合藉由步驟S123得到的沉澱物2和水之後混合鹼性溶液而生成氧化石墨鹽,然後添加有機溶劑生成沉澱有氧化石墨鹽的混合液。該鹼性溶液及有機溶劑可以分別使用步驟S126所使用的鹼性溶液及有機溶劑。
在步驟S135中,對藉由步驟S134得到的沉澱有氧化石墨鹽的混合液進行過濾、離心分離等中的一種以上,使 有機溶劑和包含氧化石墨鹽的沉澱物分離,回收包含氧化石墨鹽的沉澱物。
圖3所示的氧化石墨烯鹽的製造方法的其他的步驟與圖2所示的各步驟相同。
如上,與利用加熱處理生成石墨烯的方法相比,利用本實施方式可以增加作為sp2鍵的雙鍵的碳-碳鍵的比例,由此可以製造導電性得到提高的石墨烯。
另外,本實施方式可以與其他實施方式及實施例所記載的結構適當地組合而實施。
實施方式2
在本實施方式中說明根據本發明的一個方式的能量貯存裝置。明確而言,對具有使用實施方式1中說明的石墨烯的製造方法製造的電極的能量貯存裝置進行說明。另外,在本實施方式中對假設根據本發明的一個方式的能量貯存裝置為鋰二次電池的情況時進行說明。
首先,對正極311進行說明。
圖4A是正極311的剖面圖。在正極311中,在正極集流體307上形成有正極活性物質層309。另外,正極活性物質層309至少包含正極活性物質321及石墨烯323(未圖示),除此之外還可以包含黏合劑及導電劑等。
另外,活性物質是指在能量貯存裝置中與成為載子的離子(下面記作載體離子)的導入及脫離有關的物質。由此,區分活性物質與活性物質層。
作為正極集流體307,可以使用鉑、鋁、銅、鈦、不鏽鋼等導電性高的材料。另外,正極集流體307可以適當地採用箔狀、板狀、網狀等的形狀。
作為包含於正極活性物質層309中的正極活性物質321的材料,可以使用如LiFeO2、LiCoO2、LiNiO2、LiMn2O4等鋰化合物、V2O5、Cr2O5、MnO2等。
或者,作為正極活性物質321,可以使用橄欖石結構的含有鋰的磷酸鹽(通式LiMPO4(M是Fe(II)、Mn(II)、Co(II)、Ni(II)中的一種以上)。作為通式LiMPO4的典型例子,可以舉出LiFePO4、LiNiPO4、LiCoPO4、LiMnPO4、LiFeaNibPO4、LiFeaCobPO4、LiFeaMnbPO4、LiNiaCobPO4、LiNiaMnbPO4(a+b為1以下,並且0<a<1、0<b<1)、LiFecNidCoePO4、LiFecNidMnePO4、LiNicCodMnePO4(c+d+e為1以下,並且0<c<1、0<d<1、0<e<1)、LiFefNigCohMniPO4(f+g+h+i為1以下,並且0<f<1、0<g<1、0<h<1、0<i<1)等鋰化合物。
或者,作為正極活性物質321,可以使用通式Li2MSiO4(M為Fe(II)、Mn(II)、Co(II)、Ni(II)中的一種以上)等含有鋰的矽酸鹽。作為通式Li2MSiO4的典型例子,可以舉出Li2FeSiO4、Li2NiSiO4、Li2CoSiO4、Li2MnSiO4、Li2FekNilSiO4、Li2FekColSiO4、Li2FekMnlSiO4、Li2NikColSiO4、Li2NikMnlSiO4(k+l為1以下,並且0<k<1、0<l<1)、Li2FemNinCoqSiO4、Li2FemNinMnqSiO4、Li2NimConMnqSiO4(m+n+q為1以 下,並且0<m<1、0<n<1、0<q<1)、Li2FerNisCotMnuSiO4(r+s+t+u為1以下,並且0<r<1、0<s<1、0<t<1、0<u<1)等鋰化合物。
另外,當作為載體離子使用鋰離子以外的鹼金屬離子、鹼土金屬離子、鈹離子或鎂離子時,正極活性物質321可以包含以與載體離子同種的鹼金屬(例如,鈉、鉀等)、鹼土金屬(例如,鈣、鍶、鋇等)、鈹或鎂置換鋰化合物中的鋰的化合物。
如正極活性物質層309的一部分的平面圖的圖4B所示,正極活性物質層309由能夠吸留及釋放載體離子的粒子狀的正極活性物質321以及覆蓋多個正極活性物質321且正極活性物質321在其內部的石墨烯323構成。另外,俯視正極活性物質層309時,多個正極活性物質321的表面由不同的石墨烯323覆蓋。另外,在正極活性物質層309的一部分中可以露出有正極活性物質321。
正極活性物質321的粒徑較佳為20nm以上且100nm以下。另外,由於電子(及載體離子)在正極活性物質層309內移動,因此較佳為正極活性物質321的粒徑越小越好,以便增大正極活性物質321的表面積並縮短電子(及載體離子)的移動距離。
另外,雖然即使正極活性物質321的表面不被碳膜覆蓋也能夠獲得充分的特性,但是當一起使用覆蓋有碳膜的正極活性物質和石墨烯時,藉由跳躍導電正極活性物質321間流過電流,因此較佳為正極活性物質覆蓋有碳膜。
圖4C是圖4B的正極活性物質層309的一部分的剖面圖。圖4C示出正極活性物質321以及在俯視正極活性物質層309時覆蓋正極活性物質321的石墨烯323。在剖面圖中,觀察到線狀的石墨烯323。同一石墨烯或多個石墨烯與多個正極活性物質321重疊,或者多個正極活性物質321由同一石墨烯或多個石墨烯圍繞。另外,石墨烯323呈現袋狀,有時其內部內包有多個正極活性物質321。另外,石墨烯323具有局部開放部,有時該區域中露出有正極活性物質321。
至於正極活性物質層309的厚度,選擇20μm以上且100μm以下的所希望的厚度。另外,較佳為以不發生裂紋和剝離的方式,適當地調節正極活性物質層309的厚度。
另外,正極活性物質層309也可以包括體積為石墨烯的體積的0.1倍以上10倍以下的乙炔黑粒子或以一維擴散的碳粒子(碳奈米纖維等)等已知的導電劑以及聚偏氟乙烯(PVDF)等已知的黏合劑。
作為正極活性物質,例如有根據載體離子的吸留體積發生膨脹的材料。藉由使用該材料的正極活性物質,正極活性物質層因充放電變脆弱導致正極活性物質層的一部分損壞而使能量貯存裝置的可靠性(例如循環特性等)降低。但是,由於根據本發明的一個方式的能量貯存裝置的正極的正極活性物質321的周圍覆蓋有石墨烯323,因此即使因充放電正極活性物質321的體積發生膨脹,也可以藉由石墨烯323防止正極活性物質321粉末化及正極活性 物質層309的損壞。也就是說,根據本發明的一個方式的能量貯存裝置的正極中含有的石墨烯323具有如下功能:即使伴隨充放電正極活性物質321的體積發生膨脹收縮,也能夠保持正極活性物質321之間的黏結。因此,藉由使用正極311可以提高能量貯存裝置的耐久性。
也就是說,在形成正極活性物質層309時不需要使用黏合劑,因此可以增加固定重量的正極活性物質層中的正極活性物質量。因此,可以增大每單位電極重量的充放電容量。
另外,由於石墨烯323具有導電性並且接觸於多個正極活性物質321,因此也能夠用作導電劑。即,在形成正極活性物質層309時不需要使用導電劑,因此可以增加固定重量的正極活性物質層中的正極活性物質量。因此,可以增大每單位電極重量的充放電容量。
另外,石墨烯323是根據本發明的一個方式的石墨烯。即,石墨烯323是如實施方式1所說明的那樣使用電能電化學還原的石墨烯,並且與藉由熱處理還原的石墨烯相比導電性得到了提高。由於正極活性物質層309中形成有高效且充分的傳導通路(載體離子的傳導通路),因此正極活性物質層309及正極311具有良好的導電性。因此,具有正極311的能量貯存裝置可以與理論容量相當的高效地利用正極活性物質321的容量,由此可以充分提高放電容量。
接著,對正極311的製造方法進行說明。
形成包含粒子狀的正極活性物質321及氧化石墨烯的漿料。具體地,使用粒子狀的正極活性物質321和含有氧化石墨烯的分散液進行混煉形成漿料。另外,含有氧化石墨烯的分散液可以使用實施方式1中說明的方法製造。
接著,在正極集流體307上塗敷上述漿料後,進行一定時間的乾燥去除塗敷於正極集流體307上的漿料中的溶劑。詳細說明可以適當地參照實施方式1。另外,此時,可以根據需要進行加壓成形。
然後,與實施方式1所示的石墨烯的製造方法同樣地,使用電能電化學還原氧化石墨烯生成石墨烯323。藉由上述製程,可以在正極集流體307上形成正極活性物質層309,由此可以製造正極311。
另外,在製造正極311時,由於氧化石墨烯含有氧而在極性溶劑中帶負電。其結果,氧化石墨烯互相分散。因此,漿料中的正極活性物質321不易聚集,因此可以抑制在正極311的製程中正極活性物質321的粒徑增大。因此,可以抑制內部電阻的增大而使正極活性物質321內的電子(及載體離子)容易移動,可以提高正極活性物質層309的導電性及正極311的導電性。
另外,在製造正極311時,可以在組成使用負極、電解液及隔離體的能量貯存裝置之後,進行還原氧化石墨烯生成石墨烯323的製程。即,可以在組成能量貯存裝置之後,對正極集流體307提供能使氧化石墨烯發生還原反應的電位。
接著,對負極及其製造方法進行說明。
圖5A是負極205的剖面圖。在負極205中,在負極集流體201上形成有負極活性物質層203。另外,負極活性物質層203至少包含負極活性物質211及石墨烯213,此外還可以包含黏合劑及導電劑。
負極集流體201可以使用銅、不鏽鋼、鐵、鎳等高導電性材料。另外,負極集流體201可以適當地採用箔狀、板狀、網狀等的形狀。
作為負極活性物質層203,使用能夠吸留及釋放載體離子的負極活性物質211。作為負極活性物質211的典型例子,可以舉出鋰、鋁、石墨、矽、錫以及鍺等。或者,也可以舉出含有選自鋰、鋁、石墨、矽、錫和鍺中的一種以上的化合物。另外,也可以不使用負極集流體201,而單獨使用負極活性物質層203作為負極。作為負極活性物質211,與石墨相比,鍺、矽、鋰、鋁的理論容量更大。當理論容量大時可以減少負極活性物質量,從而可以減低成本並實現能量貯存裝置的小型化。
圖5B示出負極活性物質層203的一部分的平面圖。負極活性物質層203由粒子狀的負極活性物質211以及覆蓋多個該負極活性物質211且負極活性物質211在其內部的石墨烯213構成。當俯視負極活性物質層203時,多個負極活性物質211的表面由不同的石墨烯213覆蓋。另外,也可以在一部分中露出有負極活性物質211。
圖5C是圖5B的負極活性物質層203的一部分的剖 面圖。圖5C示出負極活性物質211以及在俯視負極活性物質層203時覆蓋負極活性物質211的石墨烯213。在剖面圖中,觀察到線狀的石墨烯213。同一石墨烯或多個石墨烯與多個負極活性物質211重疊,或者多個負極活性物質211由同一石墨烯或多個石墨烯圍繞。另外,石墨烯213呈現袋狀,有時其內部內包有多個負極活性物質211。另外,石墨烯213具有局部開放部,有時在該區域中露出有負極活性物質211。
至於負極活性物質層203的厚度,選擇20μm以上且100μm以下的所希望的厚度。
另外,負極活性物質層203也可以包括體積為石墨烯的體積的0.1倍以上10倍以下的乙炔黑粒子或以一維擴散的碳粒子(碳奈米纖維等)等已知的導電劑以及聚偏氟乙烯(PVDF)等已知的黏合劑。
另外,也可以對負極活性物質層203預摻雜鋰。作為鋰的預摻雜方法,可以利用濺射法在負極活性物質層203的表面形成鋰層。或者,可以藉由在負極活性物質層203的表面設置鋰箔,對負極活性物質層203預摻雜鋰。尤其是在組成能量貯存裝置之後在正極311的正極活性物質層309中生成石墨烯323時,較佳為對負極活性物質層203預摻雜鋰。
另外,作為負極活性物質211的例子,可以舉出根據載體離子的吸留體積發生膨脹的材料。為此,負極活性物質層因充放電變脆弱導致負極活性物質層的一部分損壞而 使能量貯存裝置的可靠性(例如循環特性等)降低。但是,由於根據本發明的一個方式的能量貯存裝置的負極的負極活性物質211的周圍覆蓋有石墨烯213,因此即使負極活性物質211因充放電體積發生膨脹,也可以藉由石墨烯213防止負極活性物質211粉末化及負極活性物質層203的損壞。也就是說,根據本發明的一個方式的能量貯存裝置的負極中含有的石墨烯213具有如下功能:即使伴隨充放電負極活性物質211的體積發生膨脹收縮,也能夠保持負極活性物質211之間的黏結。因此,藉由使用負極205可以提高能量貯存裝置的耐久性。
也就是說,在形成負極活性物質層203時不需要使用黏合劑,因此可以增加固定重量(一定體積)的負極活性物質層中的負極活性物質量。例如由此可以增大每單位電極重量(電極體積)的充放電容量。
另外,由於石墨烯213具有導電性並且接觸於多個負極活性物質211,因此也能夠用作導電劑。即,在形成負極活性物質層203時不需要使用導電劑,因此可以增加固定重量(一定體積)的負極活性物質層中的負極活性物質量。因此,可以增大每單位電極重量(電極體積)的充放電容量。
另外,石墨烯213是根據本發明的一個方式的石墨烯。即,石墨烯213是如實施方式1所說明的那樣使用電能電化學還原的石墨烯,並且與藉由熱處理還原的石墨烯相比導電性得到了提高。由於負極活性物質層203中形成 有高效且充分的傳導通路(載體離子的傳導通路),因此負極活性物質層203及負極205具有良好的導電性。因此,具有負極205的能量貯存裝置可以與理論容量相當的高效地利用負極活性物質211的容量,由此可以充分提高充電容量。
另外,由於石墨烯213還具有能夠進行載體離子的吸留及釋放的負極活性物質的功能,因此可以提高負極205的充電容量。
接著,對圖5B及5C所示的負極活性物質層203的製造方法進行說明。
形成包含粒子狀的負極活性物質211及氧化石墨烯的漿料。具體地,使用粒子狀的負極活性物質211和含有氧化石墨烯的分散液進行混煉形成漿料。另外,含有氧化石墨烯的分散液可以使用實施方式1中說明的方法製造。
接著,在負極集流體201上塗敷上述漿料後,進行一定時間的真空乾燥去除塗敷於負極集流體201上的漿料中的溶劑。詳細說明可以參照實施方式1。另外,此時,可以根據需要進行加壓成形。
然後,與實施方式1所示的石墨烯的製造方法同樣地,使用電能電化學還原氧化石墨烯生成石墨烯213。藉由上述製程,可以在負極集流體201上形成負極活性物質層203,由此可以製造負極205。
另外,在製造包括正極311及負極205的能量貯存裝置時,當作為正極311及負極205都以實施方式1所說明 的方法製造石墨烯時,較佳為在組成能量貯存裝置之前預先生成正極311或負極205中的石墨烯。這是由於如下緣故:當能量貯存裝置由設置在正極311及負極205中的氧化石墨烯組成時,電位不能有效地提供到正極311及負極205,而使氧化石墨烯不能充分還原或者充分還原氧化石墨烯需要時間。
另外,在製造負極205時,由於氧化石墨烯含有氧而在極性溶劑中帶負電。其結果,氧化石墨烯互相分散。因此,漿料中的負極活性物質211不易聚集,因此可以抑制負極205的製程中負極活性物質211的粒徑增大。因此,可以抑制內部電阻的增大而使負極活性物質211內的電子(及載體離子)容易移動,可以提高負極活性物質層203的導電性及負極205的導電性。
接著,對圖5D所示的負極的結構進行說明。
圖5D是示出在負極集流體201上形成負極活性物質層203的負極的剖面圖。負極活性物質層203包括:具有凹凸狀的表面的負極活性物質221;以及覆蓋負極活性物質221的表面的石墨烯223。
凹凸狀的負極活性物質221具有共同部221a以及從共同部221a突出的凸部221b。凸部221b適當地具有圓柱狀或角柱狀等柱狀、圓錐狀或角錐狀的針狀等的形狀。另外,凸部的頂部可以彎曲。另外,與負極活性物質211同樣,負極活性物質221使用能夠進行載體離子(典型的是鋰離子)的吸留及釋放的負極活性物質形成。另外,也 可以使用相同的材料構成共同部221a及凸部221b。或者,也可以使用不同的材料構成共同部221a及凸部221b。
另外,作為負極活性物質的一個例子的矽,因吸留用作載子的離子體積可以增到四倍左右。因此,由於充放電負極活性物質變脆弱,該負極活性物質層的一部分損壞,而使能量貯存裝置的可靠性(例如,循環特性等)降低。但是,當圖5D所示的負極使用矽作為負極活性物質221時,由於負極活性物質221的周圍覆蓋有石墨烯223,因此即使因充放電負極活性物質221的體積發生膨脹,也能夠防止負極活性物質221粉末化及負極活性物質層203的損壞。
另外,當負極活性物質層的表面與構成能量貯存裝置的電解液接觸時,電解液與負極活性物質發生反應,而在負極的表面上形成膜。該膜被稱為SEI(Solid Electrolyte Interface:固體電解液介面),其能夠緩和負極與電解液之間的反應而保持穩定。但是,當該膜的厚度較厚時,載體離子不容易被負極吸留,而出現電極與電解液之間的載體離子的傳導性降低、消耗電解液等問題。
藉由使用石墨烯213覆蓋負極活性物質層203的表面,可以抑制該膜的厚度的增加,從而可以抑制充放電容量的下降。
接著,對圖5D所示的負極活性物質層203的製造方法進行說明。
藉由利用印刷法、噴墨法、CVD法等將凹凸狀的負極活性物質221設置在負極集流體201上。或者,在利用塗敷法、濺射法、蒸鍍法等設置膜狀的負極活性物質之後,藉由進行選擇性地去除,來在負極集流體201上設置凹凸狀的負極活性物質221。或者,去除由鋰、鋁、石墨、矽形成的箔片或板片的表面的一部分來形成凹凸狀的負極集流體201以及負極活性物質221。另外,可以將使用由鋰、鋁、石墨、矽形成的網用作負極活性物質及負極集流體。
接著,對凹凸狀的負極活性物質221上塗敷含有氧化石墨烯的分散液。作為塗敷含有氧化石墨烯的分散液的方法,可以適當地使用實施方式1中說明的方法。
接著,如實施方式1所述地去除含有氧化石墨烯的分散液中的溶劑。然後,如實施方式1中說明地使用電能電化學還原氧化石墨烯生成石墨烯213。
如此,藉由使用含有氧化石墨烯的分散液生成石墨烯,可以在凹凸狀的負極活性物質221的表面上覆蓋厚度均勻的石墨烯213。
另外,在製造包括正極311及圖5D所示的負極的能量貯存裝置時,當作為正極311及該負極都以實施方式1所說明的方法製造石墨烯時,較佳為在組成能量貯存裝置之前預先生成正極311或該負極中的石墨烯。這是由於以下緣故:由於氧化石墨烯不能充分還原或者充分還原氧化石墨烯需要時間,因此即使在對正極311及該負極都設置 氧化石墨烯的情況下組成能量貯存裝置,也不能效率良好地對正極311及該負極提供電位。
另外,利用作為原料氣體使用矽烷、氯化矽烷、氟化矽烷等的LPCVD法可以在負極集流體201上設置使用矽形成的凹凸狀的負極活性物質221(以下稱為矽晶鬚)。
矽晶鬚也可以具有非晶結構。當將具有非晶結構的矽晶鬚用作負極活性物質層203時,因為能夠耐受因載體離子的吸留及釋放而發生的體積變化(例如,緩和由於體積膨脹引起的應力),所以能夠防止因反復充放電導致矽晶鬚的粉末化及負極活性物質層203的損壞,因此能夠製造循環特性得到進一步提高的能量貯存裝置。
此外,矽晶鬚也可以具有晶體結構。在此情況下,具有優越的導電性及優越的載體離子遷移率的晶性的結晶結構廣泛接觸於集流體。因此,能夠進一步提高負極整體的導電性,並且能夠進行更高速的充放電,而能夠製造進一步提高充放電容量的能量貯存裝置。
此外,矽晶鬚也可以包括具有晶性的區域的芯及設置為覆蓋該芯的非晶區域的外殼。
非晶性的外殼具有如下特徵,即能夠耐受因載體離子的吸留及釋放而發生的體積變化(例如,緩和由於體積膨脹引起的應力)。另外,晶性的芯具有優越的導電性及優越的載體離子遷移率,並且每單位質量的載體離子的吸留速度及釋放速度很快。因此,藉由將具有芯及外殼的矽晶鬚用作負極活性物質層,能夠進行高速的充放電,並且能 夠製造提高充放電容量及循環特性的能量貯存裝置。
接著,說明根據本發明的一個方式的能量貯存裝置的組成方法。圖6是鋰二次電池400的剖面圖,下面對其剖面結構進行說明。
鋰二次電池400包括:由負極集流體407及負極活性物質層409構成的負極411;由正極集流體401及正極活性物質層403構成的正極405;以及夾在負極411與正極405之間的隔離體413。另外,隔離體413含有電解液415。此外,負極集流體407與外部端子419連接,並且正極集流體401與外部端子417連接。外部端子419的端部埋入墊片421中。即,外部端子417和外部端子419被墊片421絕緣。
作為負極集流體407及負極活性物質層409,可以適當地使用上述負極集流體201及負極活性物質層203。
作為正極集流體401及正極活性物質層403,可以分別適當地使用上述正極集流體307及正極活性物質層309。
隔離體413使用絕緣多孔體。作為隔離體413的典型例子,例如可以由如下物質形成:紙、不織布、玻璃纖維、陶瓷或者使用如尼龍(聚醯胺)、維尼綸(Vinylon)(聚乙烯醇類纖維)、聚酯、丙烯酸樹脂、聚烯煙、聚氨酯的合成纖維等。但是,需要選擇不會溶解於電解液415的材料。
另外,當作為正極405使用正極活性物質層上具有間 隔物的正極時,也可以不設置隔離體413。
作為電解液415的溶質使用能夠輸送載體離子並且含有載子離子的材料。作為該溶質的典型例子,可以舉出LiClO4、LiAsF6、LiBF4、LiPF6、Li(C2F5SO2)2N等鋰鹽。
另外,當載體離子是鋰離子以外的鹼金屬離子、鹼土金屬離子、鈹離子或者鎂離子時,作為電解液415的溶質也可以使用以鹼金屬(例如,鈉、鉀等)、鹼土金屬(例如,鈣、鍶、鋇等)、鈹或鎂代替上述鋰鹽中的鋰的化合物。
此外,作為電解液415的溶劑,使用能夠輸送載體離子的材料。作為電解液415的溶劑,較佳為使用非質子有機溶劑。作為非質子有機溶劑的典型例子,可以使用碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、γ-丁內酯、乙腈、乙二醇二甲醚、四氫呋喃等中的一種或多種。此外,當作為電解液415的溶劑使用凝膠化的高分子材料時,如防漏液性等的安全性得到提高。並且,能夠實現鋰二次電池400的薄型化及輕量化。作為凝膠化的高分子材料的典型例子,可以舉出矽膠、丙烯酸膠、丙烯腈膠、聚氧化乙烯、聚氧化丙烯、氟類聚合物等。另外,藉由作為電解液415的溶劑使用一種或多種具有難燃性及難揮發性的離子液體(室溫熔融鹽),即使由於能量貯存裝置的內部短路、過充電等而使內部溫度上升,也可以防止能量貯存裝置的破裂或起火等。
此外,作為電解液415,可以使用Li3PO4等的固體電 解質。作為其他的固體電解質可以使用對Li3PO4混合了氮的LixPOyNz(x、y、z為正實數)、Li2S-SiS2、Li2S-P2S5、Li2S-B2S3等,以及對上述例舉的固體電解質摻雜了LiI等的物質。另外,當作為電解液415使用固體電解質時,不需要隔離體413。
作為外部端子417、419,可以適當地使用不鏽鋼板、鋁板等金屬構件。
在本實施方式中,雖然作為鋰二次電池400示出紐扣型鋰二次電池,但是,可以採用密封型鋰二次電池、圓筒型鋰二次電池、方型鋰二次電池等各種形狀的鋰二次電池。此外,也可以採用層疊有多個正極、多個負極、多個隔離體的結構以及捲繞有正極、負極、隔離體的結構。
鋰二次電池記憶效應小、能量密度高且容量大,並且輸出電壓高。由此,能夠實現小型化及輕量化。此外,因反復進行充放電而導致的劣化少,所以能夠長期間地使用該鋰二次電池,由此可以縮減成本。
適當地利用實施方式1及本實施方式所示的正極及負極的製造方法製造正極405及負極411。
接著,將正極405、隔離體413及負極411浸漬在電解液415中。接著,可以在外部端子417上依次層疊正極405、隔離體413、墊片421、負極411及外部端子419,並且使用“硬幣嵌合器(coin cell crimper)”使外部端子417與外部端子419嵌合,來製造硬幣型鋰二次電池。
另外,也可以將間隔物及墊圈插在外部端子417與正 極405之間或在外部端子419與負極411之間來進一步提高外部端子417與正極405之間的連接性及外部端子419與負極411之間的連接性。
本實施方式可以與其他實施方式適當地組合而實施。
實施方式3
根據本發明的一個方式的能量貯存裝置可以用作利用電力驅動的各種各樣的電器設備的電源。
作為使用根據本發明的一個方式的能量貯存裝置的電器設備的具體例子,可以舉出:顯示裝置;照明設備;臺式或筆記本型個人電腦;再現儲存在DVD(Digital Versatile Disc:數位影音光碟)等儲存介質中的靜態影像或動態影像的影像再現裝置;行動電話;可攜式遊戲機;可攜式資訊終端;電子書閱讀器;攝像機;數位相機;微波爐等高頻加熱裝置;電飯煲;洗衣機;空調器等空調設備;電冷藏箱;電冷凍箱;電冷藏冷凍箱;DNA保存用冷凍器;以及透析裝置等。另外,利用來自能量貯存裝置的電力藉由電動機推進的移動體等也包括在電器設備的範疇內。作為上述移動體,例如可以舉出:電動汽車;兼具內燃機和電動機的混合動力汽車(hybrid vehicle);以及包括電動輔助自行車的電動自行車等。
另外,在上述電器設備中,作為用來供應大部分的耗電量的能量貯存裝置(也稱為主電源),可以使用根據本發明的一個方式的能量貯存裝置。或者,在上述電器設備 中,作為當來自上述主電源或商業電源的電力供應停止時能夠對電器設備進行電力供應的能量貯存裝置(也稱為不間斷電源),可以使用根據本發明的一個方式的能量貯存裝置。或者,在上述電器設備中,作為與來自上述主電源或商業電源的對電器設備的電力供應同時將電力供應到電器設備的能量貯存裝置(也稱為輔助電源),可以使用根據本發明的一個方式的能量貯存裝置。
圖7示出上述電器設備的具體結構。在圖7中,顯示裝置5000是使用能量貯存裝置5004的電器設備的一個例子。明確地說,顯示裝置5000相當於電視廣播接收用顯示裝置,具有外殼5001、顯示部5002、揚聲器部5003和能量貯存裝置5004等。能量貯存裝置5004設置在外殼5001的內部。能量貯存裝置5004使用根據本發明的一個方式的能量貯存裝置。顯示裝置5000既可以接受來自商業電源的電力供應,又可以使用蓄積在能量貯存裝置5004中的電力。因此,即使當由於停電等不能接受來自商業電源的電力供應時,藉由將能量貯存裝置5004用作不間斷電源,也可以使用顯示裝置5000。
作為顯示部5002,可以使用半導體顯示裝置諸如液晶顯示裝置、在每個像素中具備有機EL元件等發光元件的發光裝置、電泳顯示裝置、DMD(Digital Micromirror Device:數位微鏡裝置)、PDP(Plasma Display Panel:電漿顯示幕)及FED(Field Emission Display:場致發射顯示器)等。
另外,除了電視廣播接收用的顯示裝置之外,顯示裝置還包括所有顯示資訊用顯示裝置,例如個人電腦用或廣告顯示用等。
在圖7中,安鑲型照明設備5100是使用能量貯存裝置5103的電器設備的一個例子。明確地說,照明設備5100具有外殼5101、光源5102和能量貯存裝置5103等。能量貯存裝置5103使用根據本發明的一個方式的能量貯存裝置。雖然在圖7中例示能量貯存裝置5103設置在鑲有外殼5101及光源5102的天花板5104的內部的情況,但是能量貯存裝置5103也可以設置在外殼5101的內部。照明設備5100既可以接受來自商業電源的電力供應,又可以使用蓄積在能量貯存裝置5103中的電力。因此,即使當由於停電等不能接受來自商業電源的電力供應時,藉由將能量貯存裝置5103用作不間斷電源,也可以使用照明設備5100。
另外,雖然在圖7中例示設置在天花板5104的安鑲型照明設備5100,但是根據本發明的一個方式的能量貯存裝置既可以用於設置在天花板5104以外的例如牆5105、地板5106或窗戶5107等的安鑲型照明設備,又可以用於臺式照明設備等。
另外,作為光源5102,可以使用利用電力人工性地得到光的人工光源。明確地說,作為上述人工光源的一個例子,可以舉出白熾燈泡、螢光燈等放電燈以及LED或有機EL元件等發光元件。
在圖7中,具有室內機5200及室外機5204的空調器是使用能量貯存裝置5203的電器設備的一個例子。明確地說,室內機5200具有外殼5201、送風口5202和能量貯存裝置5203等。能量貯存裝置5203使用根據本發明的一個方式的能量貯存裝置。雖然在圖7中例示能量貯存裝置5203設置在室內機5200中的情況,但是能量貯存裝置5203也可以設置在室外機5204中。或者,也可以在室內機5200和室外機5204的兩者中設置有能量貯存裝置5203。空調器既可以接受來自商業電源的電力供應,又可以使用蓄積在能量貯存裝置5203中的電力。尤其是,當在室內機5200和室外機5204的兩者中設置有能量貯存裝置5203時,即使當由於停電等不能接受來自商業電源的電力供應時,藉由將能量貯存裝置5203用作不間斷電源,也可以使用空調器。
另外,雖然在圖7中例示由室內機和室外機構成的分體式空調器,但是也可以將根據本發明的一個方式的能量貯存裝置用於在一個外殼中具有室內機的功能和室外機的功能的一體式空調器。
在圖7中,電冷藏冷凍箱5300是使用根據本發明的一個方式的能量貯存裝置5304的電器設備的一個例子。明確地說,電冷藏冷凍箱5300具有外殼5301、冷藏室門5302、冷凍室門5303和能量貯存裝置5304等。能量貯存裝置5304使用根據本發明的一個方式的能量貯存裝置。在圖7中,能量貯存裝置5304設置在外殼5301的內部。 電冷藏冷凍箱5300既可以接受來自商業電源的電力供應,又可以使用蓄積在能量貯存裝置5304中的電力。因此,即使當由於停電等不能接受來自商業電源的電力供應時,藉由將能量貯存裝置5304用作不間斷電源,也可以利用電冷藏冷凍箱5300。
另外,在上述電器設備中,微波爐等高頻加熱裝置和電飯煲等電器設備在短時間內需要高電力。因此,藉由將根據本發明的一個方式的能量貯存裝置用作用來輔助商業電源不能充分供應的電力的輔助電源,可以防止當使用電器設備時商業電源的總開關跳閘。
另外,在不使用電器設備的時間段,尤其是在商業電源的供應源能夠供應的總電量中的實際使用的電量的比率(稱為電力使用率)低的時間段中,將電力蓄積在能量貯存裝置中,由此可以抑制在上述時間段以外的時間段中電力使用率增高。例如,作為電冷藏冷凍箱5300,在氣溫低且不進行冷藏室門5302或冷凍室門5303的開關的夜間,將電力蓄積在能量貯存裝置5304中。並且,在氣溫高且進行冷藏室門5302或冷凍室門5303的開關的白天,將能量貯存裝置5304用作輔助電源,由此可以抑制白天的電力使用率。
接著,使用圖8A、8B及8C對使用根據本發明的一個方式的能量貯存裝置的可攜式資訊終端進行說明。
圖8A及圖8B是兩個能夠折疊的平板終端。圖8A是打開時的狀態,平板終端包括外殼9630、顯示部9631a、 顯示部9631b、顯示模式切換開關9034、電源開關9035、省電模式切換開關9036、卡子9033、操作開關9038。
可以將顯示部9631a的一部分形成為觸摸屏的區域9632a,由此可以藉由觸摸顯示的操作鍵9637進行資料輸入。另外,在顯示部9631a中,作為一個例子,舉出一半區域為僅具有顯示功能的結構而另一半區域具有觸摸屏功能的結構,但是並不侷限於此。也可以採用顯示部9631a的整個區域都具有觸摸屏的功能的結構。例如,可以使顯示部9631a的整個面都為顯示鍵盤按鈕的觸摸屏,而將顯示部9631b用作顯示幕。
另外,與顯示部9631a同樣,也可使顯示部9631b的一部分為觸摸屏區域9632b。另外,藉由使用手指或觸控筆等接觸觸摸屏的顯示有鍵盤顯示切換按鈕9639的位置,可以在顯示部9631b上顯示鍵盤按鈕。
此外,也可以對觸摸屏的區域9632a和觸摸屏的區域9632b同時進行觸摸輸入。
另外,屏面模式切換開關9034能夠切換豎屏顯示和橫屏顯示等顯示的方向並可以進行黑白顯示或彩色顯示的切換等選擇。根據內置於平板終端中的光感測器所檢測的使用時的外光的光量,省電模式切換開關9036可以將顯示的亮度設定為最適合的亮度。平板終端除了光感測器以外還可以內置陀螺儀和加速度感測器等檢測傾斜度的感測器等的其他檢測裝置。
此外,圖8A示出顯示部9631b的顯示面積與顯示部9631a的顯示面積相同的例子,但是不侷限於此,一方的尺寸和另一方的尺寸也可以不同,並且它們的顯示品質也可以有差異。例如可以使用顯示部中的一方能夠進行比另一方更高精細度的顯示的顯示面板。
圖8B是合上的狀態,並且平板終端包括外殼9630、太陽能電池9633、充放電控制電路9634、電池9635以及DCDC轉換器9636。此外,在圖8B中,作為充放電控制電路9634的一個例子示出具有電池9635和DCDC轉換器9636的結構,電池9635使用根據本發明的一個方式的能量貯存裝置。
此外,平板終端可以折起來,因此不使用時可以合上外殼9630。因此,可以保護顯示部9631a和顯示部9631b,而可以提供一種具有良好的耐久性且從長期使用的觀點來看具有良好的可靠性的平板終端。
此外,圖8A和8B所示的平板終端還可以具有如下功能:顯示各種各樣的資訊(靜態影像、動態影像、文字影像等);將日曆、日期或時刻等顯示在顯示部上;對顯示在顯示部上的資訊進行操作或編輯的觸摸輸入;藉由各種各樣的軟體(程式)控制處理等。
藉由使用安裝在平板終端的表面的太陽能電池9633,可以將電力供應到觸摸屏、顯示部或影像信號處理部等。注意,因為太陽能電池9633可以對外殼9630的一面或兩面進行高效的電池9635的充電的結構,所以是較 佳的。另外,當作為電池9635使用根據本發明的一個方式的能量貯存裝置時,有可以實現小型化等的優點。
另外,參照圖8C所示的方塊圖對圖8B所示的充放電控制電路9634的結構和工作進行說明。圖8C示出太陽能電池9633、電池9635、DCDC轉換器9636、轉換器9638、開關SW1至開關SW3以及顯示部9631。電池9635、DCDC轉換器9636、轉換器9638、開關SW1至開關SW3對應於圖8B所示的充放電控制電路9634。
首先,說明在使用外光使太陽能電池9633發電時的工作的例子。使用DCDC轉換器9636對太陽能電池所產生的電力進行升壓或降壓以使它成為用來對電池9635進行充電的電壓。並且,當利用來自太陽能電池9633的電力使顯示部9631工作時使開關SW1導通,並且,使用轉換器9638將其升壓或降壓到顯示部9631所需要的電壓。另外,可以採用當不進行顯示部9631中的顯示時,使SW1截止且使SW2導通來對電池9635進行充電的結構。
注意,作為發電方式的一個例子示出了太陽能電池9633,但是不侷限於此,也可以使用壓電元件(piezoelectric element)或熱電轉換元件(帕爾貼元件(peltier element))等其他發電方式進行電池9635的充電。例如,也可以使用能夠以無線(不接觸)的方式收發電力來進行充電的無線電力傳輸模組或組合其他充電方式進行充電。
另外,當然只要具備上述實施方式所說明的能量貯存 裝置,就不侷限於圖8A至8C所示的電器設備。
本實施方式可以與其他實施方式適當地組合而實施。
實施例1
在本實施例中,利用本發明的一個方式製造鋰二次電池(稱為鋰二次電池1),並利用迴圈伏安法(Cyclic Voltammetry:CV)測量該鋰二次電池1。
首先,對鋰二次電池1的結構及製造方法進行說明。
鋰二次電池1是硬幣型鋰二次電池。作為鋰二次電池的工作電極使用在由鋁形成的集流體上具有含有LiFePO4及氧化石墨烯的活性物質層的電極。另外,作為對電極及參比電極,使用鋰金屬。另外,作為隔離體,使用聚丙烯薄片。另外,作為電解液使用將1M的LiPF6(碳酸乙烯酯溶劑)與碳酸二乙酯以1:1(體積比)混合的混合液。
這裏,對工作電極的製造方法進行說明。
〈LiFePO4的合成方法〉
以1:2:2的莫耳比稱量作為原料的碳酸鋰(Li2CO3)、草酸鐵(Fe2CO4.2H2O)及磷酸二氫銨(NH4H2PO4)。接著,使用旋轉數為300rpm的濕式球磨機(球直徑為3mm,作為溶劑使用丙酮)對該原料進行2小時的粉碎及混合之後進行乾燥。
接著,在350℃的氮氛圍下進行10小時的加熱,並 在對被粉碎及混合的原料進行完預焙燒之後,再次利用旋轉數為300rpm的濕式球磨機(球直徑為3mm,作為溶劑使用丙酮)進行2小時的粉碎及混合。然後,在600℃的氮氛圍下進行10小時的焙燒得到LiFePO4
〈氧化石墨烯的合成方法〉
將2g的石墨和92ml的濃硫酸混合生成混合液1。接著,在冰浴中對混合液A進行攪拌,同時添加12g的過錳酸鉀生成混合液B。接著,去除冰浴在室溫下攪拌2小時之後,在35℃的溫度下放置30分鐘,使石墨氧化而獲得具有氧化石墨的混合液C。
接著,在冰浴中對混合液C進行攪拌,同時添加184ml的水而獲得混合液D。接著,在大概為98℃的油浴中對混合液D進行攪拌15分鐘使其發生反應,然後在進行攪拌的同時對混合液D添加580ml的水及36ml的過氧化氫水(濃度為30wt%),使未反應的過錳酸鉀還原,而獲得具有可溶性的硫酸錳及氧化石墨的混合液E。
接著,在使用孔徑為0.45μm的濾膜(membrane filter)對混合液E進行吸引濾過而得到沉澱物A之後,將沉澱物A和3wt%的鹽酸混合,而獲得其中溶解有錳離子、鉀離子及硫酸離子的混合液F。接著,對混合液F進行吸引濾過獲得具有氧化石墨的沉澱物B。
在對沉澱物B混合500ml的水獲得混合液G之後,對混合液G施加頻率為40kHz的超聲波1小時,使構成 氧化石墨的碳層彼此剝離,來生成氧化石墨烯。
接著,以4000rpm進行離心分離大概30分鐘,回收包含氧化石墨烯的上清液。將該上清液稱為混合液H。
接著,對混合液H添加氨水並以大概成為pH11的方式調節,由此生成混合液I。然後,對混合液I添加2500ml的丙酮而獲得混合液J。此時,包含在混合液H中的氧化石墨烯與包含在氨水中的氨起反應,成為氧化石墨烯鹽(具體為氧化石墨烯的銨鹽)而沉澱於混合液J中。
過濾混合液J,並在室溫的真空中乾燥混合液J的沉澱物,回收氧化石墨烯鹽。
〈活性物質層的製造方法〉
在混合97wt%的LiFePO4和3wt%的氧化石墨烯鹽以及大約為LiFePO4和氧化石墨烯鹽的總重量的2倍的NMP(N-methylpyrrolidone;N-甲基吡咯烷酮)形成膏之後,將該膏塗敷於由鋁形成的集流體上,並以120℃進行15分鐘通風乾燥之後,以100℃加熱集流體進行1小時的真空乾燥,由此在集流體上形成具有活性物質層的工作電極。
接著,對鋰二次電池1的組成步驟進行說明。首先,在第一電池罐內配置浸漬於電解液中的工作電極,在工作電極上配置浸漬在電解液中的隔離體,在隔離體上配置墊片。接著,在隔離體及墊片上配置鋰金屬,並在鋰電極上設置間隔物及彈簧墊圈。接著,在彈簧墊圈上設置第二電 池罐之後,對其壓接第一電池罐,形成鋰二次電池1。
接著,對鋰二次電池1進行CV測量。將掃描速度設定為1mV/s。首先,作為第一步驟,將掃描電位設定為3V至4V,作為提供的電位,在掃描3V至4V的電位之後掃描4V至3V的電位,反復進行該製程四次。接著,作為第二步驟,將掃描電位設定為1.5V至3V,作為提供的電位,在掃描3V至1.5V的電位之後掃描1.5V至3V的電位,反復進行該製程四次。接著,作為第三步驟,將掃描電位設定為3V至4V,作為提供的電位,在掃描3V至4V的電位之後掃描4V至3V的電位,反復進行該製程四次。圖9示出此時的電流-電位曲線。
在圖9中,橫軸表示工作電極的電位(vs.Li/Li+),縱軸表示因氧化還原而產生的電流。另外,作為電流值,負值表示還原電流,正值表示氧化電流。
另外,具有由虛線501_R圍繞的峰值電流的電流為第一步驟的還原電流,具有由虛線501_O圍繞的峰值電流的電流為第一步驟的氧化電流。另外,具有由虛線502_R圍繞的峰值電流的電流為第二步驟的第一回電位掃描時的還原電流,而由虛線502表示的電流是第二步驟的第二回至第四回的電位掃描的還原電流以及第一回至第四回的電位掃描時的氧化電流。具有由虛線503_R圍繞的峰值電流的電流是第三步驟的還原電流,具有由虛線503_O圍繞的峰值電流的電流是第三步驟的氧化電流。
已知藉由在第一步驟與第三步驟之間進行1.5V至3V 的電位掃描,鋰二次電池1的電流值上升。即,藉由提供能夠促進活性物質層的還原反應的電位的還原處理,即,藉由電化學還原處理,活性物質層的電阻降低,在第三步驟中,電流值上升。並且,考慮到活性物質層中的LiFePO4的氧化還原電位大約為3.4V左右,因此可以認為2V附近的還原電流是氧化石墨烯被還原時產生的電流,並且氧化石墨烯的還原電位為2V左右。
接著,圖10示出圖9中的第二步驟的電流-電位曲線的放大圖。
在圖10中,曲線511_R表示第一回電位掃描時的還原電流,曲線511_O表示第一回電位掃描時的氧化電流。曲線512_R表示第二回至第四回電位掃描時的還原電流,曲線512_O表示第二回至第四回電位掃描時的氧化電流。
如圖10所示,第一回電位掃描時的還原電流在電位為2V附近呈現峰值。但是,第二回以後的電位掃描在2V附近沒有觀察到峰值。此外,第一回至第四回電位掃描中的氧化電流沒有太大的變化。
由上述結果可知:藉由進行還原電位2V附近的掃描,工作電極發生還原反應,但是第二回以後的電位掃描沒有發生還原反應。
這裏,為了確認2V附近發生的還原反應,只使用氧化石墨烯製造工作電極的活性物質層所具有的比較用電池單元,並對該比較用電池單元進行CV測量。
首先,對比較用電池單元的結構及製造方法進行說 明。
比較用電池單元是硬幣型電池。除了在由鋁形成的集流體上作為工作電極的活性物質層只使用氧化石墨烯之外,其他的結構與鋰二次電池1相同。
另外,氧化石墨烯利用與用於上述鋰二次電池1的工作電極的活性物質層的氧化石墨烯相同的製程生成。
另外,在混合50mg的氧化石墨烯與4.5g的水形成膏之後,將該膏塗敷於由鋁形成的集流體上,並在40℃的真空中進行乾燥,由此在集流體上形成具有活性物質層的工作電極。
另外,比較用電池單元的組成步驟與鋰二次電池1相同。
接著,對比較用電池單元進行CV測量。將掃描速度設定為0.1mV/s。將掃描電位設定為1.5V至3V,作為提供的電位在掃描3V至1.5V的電位之後掃描1.5V到3V的電位,反復進行上述製程三次。圖11示出此時的電位-電流曲線。
在圖11中,橫軸表示工作電極的電位(vs.Li/Li+),縱軸表示因氧化還原產生的電流。另外,曲線531_R表示第一回電位掃描時的還原電流,曲線531_O表示第一回電位掃描時的氧化電流。曲線532_R表示第二回電位掃描時的還原電流,曲線532_O表示第二回電位掃描時的氧化電流。曲線533_R表示第三回電位掃描時的還原電流,曲線533_O表示第三回電位掃描時的氧化電流。
如圖11所示,第一回電位掃描時的還原電流在電位為2V附近呈現峰值。由此可以認為氧化石墨烯的還原電位為2V左右。但是,第二回以後的電位掃描在2V附近沒有觀察到峰值。另外,與第一回電位掃描相比,第二回及第三回電位掃描時的氧化電流高,但是第二回及第三回電位掃描時的氧化電流沒有太大的變化。
接著,使用圖12及圖13示出利用X射線光電子能譜(XPS:X-ray Photoelectron Spectroscopy)對比較用電池單元的工作電極的電化學還原處理前後的碳、氧及其他的元素等表面元素組成以及原子的接合狀態進行分析的結果。
將鋰二次電池1的工作電極的製程中說明的含有氧化石墨烯的混合液H設置在由鋁形成的基板上,並在40℃的真空中加熱1小時,將該樣本稱為樣本1。另外,將該樣本1浸漬在鋰二次電池1中的電解液中一天之後,使用碳酸二乙酯進行洗滌,並在室溫的真空中乾燥3小時,將該樣本稱為樣本2。注意,樣本1及樣本2為電化學還原處理前的樣本。另外,製造比較用電池單元,在進行一次CV測量之後,分解比較用電池單元並使用碳酸二乙酯洗滌得到的工作電極,在室溫的真空中乾燥3小時,將該樣本稱為樣本3。
另一方面,作為比較例使用如下樣本:不利用電化學還原處理還原氧化石墨烯,而使用藉由使氧化石墨烯發生熱還原來形成石墨烯的方法的樣本以及使用石墨的樣本。
對鋰二次電池1的工作電極的製程中說明的含有氧化石墨烯的混合液H進行乾燥,並將得到的粉末狀的氧化石墨烯設置在銦箔上,將該樣本稱為比較例1。另外,在300℃的真空中對比較例1加熱10小時使氧化石墨烯還原,並將得到的石墨烯設置在銦箔上,將該樣本稱為比較例2。另外,將將石墨的粉末設置在銦箔上的樣本稱為比較例3。
圖12示出利用X射線光電子能譜對樣本1至樣本3及比較例1至比較例3的表面元素組成進行分析的結果。
藉由圖12對樣本1、樣本2及樣本3進行比較,可知在樣本3中氧的比率降低而碳的比率增加。利用電化學還原處理得到的樣本3中的氧為14.8原子%。另外,藉由比較比較例1及比較例2可知比較例2的氧比率減少。藉由熱還原得到的比較例2中的氧為13.4原子%。由該結果可知藉由對氧化石墨烯進行電化學還原處理,氧化石墨烯被還原。另外,可知藉由熱還原,氧化石墨烯被還原。
接著,圖13示出利用X射線光電子能譜對樣本1至樣本3及比較例1至比較例3的表面附近的原子接合狀態進行分析的結果。
圖13是分別對樣本1至樣本3及比較例1至比較例3中的為C=C的C的sp2鍵、如C-C、C-H等的C的sp3鍵、C-O鍵、C=O鍵、CO2鍵(O=C-O鍵)及CF2鍵的比率進行評價的圖表。
藉由比較樣本1、樣本2及樣本3可知:樣本3中的 為C=C的C的sp2鍵的比率增大,而如C-C、C-H等的C的sp3鍵、C-O鍵、C=O鍵及CO2鍵的比率減少。由該結果可知,藉由電化學還原處理,sp3鍵、C-O鍵、C=O鍵及CO2鍵發生反應形成sp2鍵。樣本3中的sp2鍵為67.2%。
另一方面,藉由比較比較例1及比較例2可知:與樣本3同樣地,比較例2中的sp2鍵增大,但是與樣本3相比sp2鍵的量較低。比較例2中的sp2鍵為44.1%。即,可知藉由進行電化學還原處理,sp2鍵的比率變為50%以上且70%以下。
由上可知,在圖11至圖13中,藉由2V附近的還原電位的掃描,氧化石墨烯被還原而生成sp2鍵較多的石墨烯。另外,可知:在圖10及圖12中,藉由2V附近的還原電位的掃描,活性物質層的電阻降低,由此能夠提高鋰二次電池的電流值。由圖11至圖13的分析結果可以推測,上述電阻的降低是由於藉由電化學還原處理由導電性低的氧化石墨烯生成導電性高的石墨烯的緣故。
實施例2
在本實施例中,對使用排除電極電阻成分的測量系統測量的氧化石墨烯的還原電位進行說明。
利用實施例1所示的方法製造的氧化石墨烯的電極由於層疊有氧化石墨烯,整個電極的電阻增大。
在本實施例中,使電極上稀疏地附著有氧化石墨烯, 並利用排除了由於氧化石墨烯的疊層而產生的電阻成分的測量系統,對氧化石墨烯的還原電位進行測量。
明確而言,將為工作電極的玻碳與為對電極的鉑浸漬於溶劑為水的以0.0027g/L的比率分散有氧化石墨烯的氧化石墨烯分散液中,並對工作電極及對電極施加10V的電壓30秒。然後,對附著有氧化石墨烯的玻碳進行真空乾燥。這裏,將附著有氧化石墨烯的玻碳作為氧化石墨烯電極A。另外,本實施例中使用的氧化石墨烯與實施例1中的氧化石墨烯同樣地製造。
如此,藉由邊控制條件邊在氧化石墨烯分散液中進行電泳,可以使氧化石墨烯稀疏地附著到作為工作電極的玻碳上。
接著,以氧化石墨烯電極A為工作電極,以鉑為對電極,以鋰為參比電極進行CV測量。另外,在該CV測量中,作為電解液使用在以1:1的比率混合EC與DEC的混合溶劑中溶解有1M的LiPF6的溶液。
另外,在該CV測量中,掃描速度採用條件1至條件3的三個條件。條件1,掃描速度為10mV/s。條件2,掃描速度為50mV/s。條件3,掃描速度為250mV/s。掃描的電位範圍與條件1至條件3完全相同,以與浸漬電位相比1.8V以上且3.0V以下的範圍從低電位側掃描電位,反復進行三次該電位掃描。
圖15A、15B及圖16A示出條件1至條件3中的CV測量結果。圖15A為條件1的結果,圖15B為條件2的 結果,圖16A為條件3的結果。圖16B為只使用玻碳作為工作電極的比較例的CV測量結果。除了進行兩回電位掃描之外,比較例的CV測量與條件2相同。另外,在圖15A和15B及圖16A和16B中,橫軸表示工作電極的電位(vs.Li/Li+),縱軸表示因氧化還原產生的電流。
由圖16B可知,工作電極上沒有附著氧化石墨烯的比較例在1.8V以上且3.0V的範圍內沒有發生氧化還原反應。
另一方面,作為如條件1至條件3所示的附著有氧化石墨烯的氧化石墨烯電極A,僅在第一回的電位掃描中,作為不可逆的還原反應,在2.3V及2.6V的位置確認到峰值,而在第二回及第三回的電位掃描中,與比較例同樣地沒有確認到該峰值(參照圖15A和15B及圖16A)。
另外,可知:在條件1至條件3中,根據電位的掃描速度,測量系統中流過的電流的大小不同,但是峰值的位置與電位的掃描速度無關,無論在哪種條件下都在2.3V左右和2.6V左右。
由上可知,在2.3V及2.6V確認到的峰值是氧化石墨烯的還原反應的峰值。
由上可以確認,藉由如本發明的一個方式那樣提供能使氧化石墨烯發生還原反應的電位,可以生成石墨烯。

Claims (8)

  1. 一種鋰二次電池,包括:正極、電解液、負極,該正極包括正極活性物質,該正極活性物質包括鋰化合物,該負極包括粒子狀的負極活性物質、石墨烯,該粒子狀的負極活性物質包括包含矽的化合物,該石墨烯包含氧原子,該石墨烯具有袋狀的形狀,在該袋狀的內部,內包有該粒子狀的負極活性物質。
  2. 一種鋰二次電池,包括:正極、電解液、負極,該正極包括正極活性物質,該正極活性物質包括鋰化合物,該負極包括粒子狀的負極活性物質、片狀的導電劑,該粒子狀的負極活性物質包括包含矽的化合物,該片狀的導電劑包括包含氧原子的石墨烯,該片狀的導電劑具有袋狀的形狀,在該袋狀的內部,內包有該粒子狀的負極活性物質。
  3. 一種鋰二次電池,包括:正極、電解液、負極,該正極包括正極活性物質,該正極活性物質包括鋰化合物,該負極包括負極活性物質、石墨烯,該負極活性物質包括包含矽的化合物,該石墨烯包含氧原子,該石墨烯具 有袋狀的形狀,在該袋狀的內部,內包有該負極活性物質。
  4. 一種鋰二次電池,包括:正極、電解液、負極,該正極包括正極活性物質,該正極活性物質包括鋰化合物,該負極包括負極活性物質、片狀的導電劑,該負極活性物質包括包含矽的化合物,該片狀的導電劑包括包含氧原子的石墨烯,該片狀的導電劑具有袋狀的形狀,在該袋狀的內部,內包有該負極活性物質。
  5. 如請求項1至4中任一項之鋰二次電池,其中該包含矽之化合物包含非晶結構。
  6. 如請求項1至4中任一項之鋰二次電池,其中該負極包括黏合劑。
  7. 如請求項1至4中任一項之鋰二次電池,其中該正極包括片狀的導電劑。
  8. 一種鋰二次電池,包括:正極、電解液、負極,該正極包括粒子狀的正極活性物質、片狀的導電劑,該粒子狀的正極活性物質包括鋰化合物,該片狀的導電劑包括包含氧原子的石墨烯,該片狀的導電劑包括袋狀的形狀,在該袋狀的內部,內包有該粒子狀的正極活性物質。
TW109125846A 2011-09-30 2012-09-28 鋰二次電池 TWI792027B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011217897 2011-09-30
JP2011-217897 2011-09-30

Publications (2)

Publication Number Publication Date
TW202044649A TW202044649A (zh) 2020-12-01
TWI792027B true TWI792027B (zh) 2023-02-11

Family

ID=47995660

Family Applications (7)

Application Number Title Priority Date Filing Date
TW112101359A TW202343854A (zh) 2011-09-30 2012-09-28 鋰二次電池
TW108119814A TWI705602B (zh) 2011-09-30 2012-09-28 電極的製造方法
TW101135873A TWI608649B (zh) 2011-09-30 2012-09-28 石墨烯(graphene)和能量貯存裝置以及彼之製法
TW107105638A TWI669847B (zh) 2011-09-30 2012-09-28 電極的製造方法
TW105125447A TWI623131B (zh) 2011-09-30 2012-09-28 能量貯存裝置以及能量貯存裝置的電極
TW109125846A TWI792027B (zh) 2011-09-30 2012-09-28 鋰二次電池
TW108146493A TW202017232A (zh) 2011-09-30 2012-09-28 電極的製造方法

Family Applications Before (5)

Application Number Title Priority Date Filing Date
TW112101359A TW202343854A (zh) 2011-09-30 2012-09-28 鋰二次電池
TW108119814A TWI705602B (zh) 2011-09-30 2012-09-28 電極的製造方法
TW101135873A TWI608649B (zh) 2011-09-30 2012-09-28 石墨烯(graphene)和能量貯存裝置以及彼之製法
TW107105638A TWI669847B (zh) 2011-09-30 2012-09-28 電極的製造方法
TW105125447A TWI623131B (zh) 2011-09-30 2012-09-28 能量貯存裝置以及能量貯存裝置的電極

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108146493A TW202017232A (zh) 2011-09-30 2012-09-28 電極的製造方法

Country Status (6)

Country Link
US (6) US8883351B2 (zh)
JP (11) JP6157820B2 (zh)
KR (7) KR102120603B1 (zh)
CN (2) CN108101050B (zh)
TW (7) TW202343854A (zh)
WO (1) WO2013047630A1 (zh)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140170483A1 (en) * 2011-03-16 2014-06-19 The Regents Of The University Of California Method for the preparation of graphene/silicon multilayer structured anodes for lithium ion batteries
KR102307199B1 (ko) 2011-06-03 2021-10-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 정극, 리튬 이온 이차 전지, 이동체, 차량, 시스템, 및 전자 기기
US9218916B2 (en) 2011-06-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
KR102120603B1 (ko) * 2011-09-30 2020-06-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 그래핀 및 축전 장치, 및 이들의 제작 방법
CN103035922B (zh) 2011-10-07 2019-02-19 株式会社半导体能源研究所 蓄电装置
US9487880B2 (en) * 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
JP6016597B2 (ja) 2011-12-16 2016-10-26 株式会社半導体エネルギー研究所 リチウムイオン二次電池用正極の製造方法
JP5719859B2 (ja) 2012-02-29 2015-05-20 株式会社半導体エネルギー研究所 蓄電装置
JP6077347B2 (ja) * 2012-04-10 2017-02-08 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
US9225003B2 (en) 2012-06-15 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing storage battery electrode, storage battery electrode, storage battery, and electronic device
KR101404126B1 (ko) * 2012-08-30 2014-06-13 한국과학기술연구원 나노 입자 제조 방법, 나노 입자 및 이를 포함하는 유기 발광 소자, 태양 전지, 인쇄용 잉크, 바이오 이미지 장치 및 센서
JP6159228B2 (ja) 2012-11-07 2017-07-05 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
US10298038B2 (en) 2013-02-15 2019-05-21 Green-On-Green Energy, Inc. Polar solvent based device for storage and thermal capture of electrical energy
US9437897B2 (en) * 2013-02-15 2016-09-06 Green-On-Green Energy, Inc. Polar solvent based device for storage and thermal capture of electrical energy
US9673454B2 (en) 2013-02-18 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Sodium-ion secondary battery
US9490472B2 (en) 2013-03-28 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode for storage battery
GB2519783A (en) 2013-10-30 2015-05-06 Airbus Operations Ltd Capacitive liquid level sensor
JP2016013958A (ja) 2013-12-02 2016-01-28 株式会社半導体エネルギー研究所 素子、膜の作製方法
KR101666478B1 (ko) * 2013-12-26 2016-10-14 주식회사 엘지화학 그래핀의 제조 방법과, 그래핀의 분산 조성물
WO2015100664A1 (zh) * 2013-12-31 2015-07-09 深圳粤网节能技术服务有限公司 一种基于混酸体系的氧化石墨烯及石墨烯的制备方法
EP3081530B1 (en) * 2013-12-31 2021-02-17 Shenzhen Cantonnet Energy Services Co. , Ltd. Anthracite-based method for preparation of graphene and graphene oxide
US9520243B2 (en) * 2014-02-17 2016-12-13 Korea Institute Of Energy Research Method of manufacturing flexible thin-film typer super-capacitor device using a hot-melt adhesive film, and super-capacitor device manufactured by the method
US20150325856A1 (en) * 2014-04-15 2015-11-12 New Jersey Institute Of Technology Environmentally friendly inkjet-printable lithium battery cathode formulations, methods and devices
JP6745587B2 (ja) 2014-05-29 2020-08-26 株式会社半導体エネルギー研究所 電極の製造方法
JP6329828B2 (ja) * 2014-07-04 2018-05-23 国立大学法人広島大学 熱電変換材料及びその製造方法
JP6583404B2 (ja) * 2014-08-29 2019-10-02 日本電気株式会社 リチウムイオン電池用アノード材料、該アノード材料を含む負極及びリチウムイオン電池
US9728770B2 (en) 2014-10-24 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
DE102014016186A1 (de) * 2014-11-03 2016-05-04 Forschungszentrum Jülich GmbH Bipolarplatte für elektrochemische Zellen sowie Verfahren zur Herstellung derselben
TWI509230B (zh) * 2014-12-25 2015-11-21 Univ Nat Cheng Kung 石墨烯光電能量感測器及使用其之光電能量感測方法
US9905370B2 (en) * 2015-03-05 2018-02-27 Tuqiang Chen Energy storage electrodes and devices
JP6592268B2 (ja) * 2015-04-01 2019-10-16 株式会社日本触媒 導電性材料及びそれを用いた熱電変換素子、熱電変換装置
CN106208810B (zh) * 2015-04-29 2018-07-24 华中科技大学 一种用于蒸发发电的发电组件的制备方法
CN106208811B (zh) * 2015-04-29 2017-11-24 华中科技大学 一种基于碳材料蒸发发电的热电转换装置
WO2016178117A1 (en) 2015-05-06 2016-11-10 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
JP2016222526A (ja) 2015-05-29 2016-12-28 株式会社半導体エネルギー研究所 膜の作製方法および素子
US10784516B2 (en) * 2015-06-25 2020-09-22 Semiconductor Energy Laboratory Co., Ltd. Conductor, power storage device, electronic device, and method for forming conductor
CN105098897A (zh) * 2015-07-30 2015-11-25 京东方科技集团股份有限公司 一种可穿戴设备及终端
JP2017045726A (ja) 2015-08-27 2017-03-02 株式会社半導体エネルギー研究所 電極、及びその製造方法、蓄電池、並びに電子機器
US10411260B2 (en) 2016-04-12 2019-09-10 Green-On-Green Energy, Inc. Grid electrode for polar solvent-based hydro-pyroelectrodynamic electrical energy storage device
WO2018007908A1 (en) 2016-07-05 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
US10336619B2 (en) * 2016-07-27 2019-07-02 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Method for the synthesis of graphene oxide
US11242250B2 (en) 2016-09-28 2022-02-08 Ohio University Electrochemical method for the production of graphene composites and cell for conducting the same
CN106629676A (zh) * 2016-09-29 2017-05-10 武汉大学 一种基于碱性电解液的石墨烯制备方法
CN116387603A (zh) 2016-10-12 2023-07-04 株式会社半导体能源研究所 正极活性物质粒子以及正极活性物质粒子的制造方法
DE102016220685A1 (de) * 2016-10-21 2018-04-26 Robert Bosch Gmbh Elektrode mit elektrisch leitendem Netzwerk auf Aktivmaterialstrukturen
KR102469162B1 (ko) 2017-05-12 2022-11-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 입자
KR102656986B1 (ko) 2017-05-19 2024-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지
CN107069043B (zh) * 2017-05-26 2019-07-12 中南大学 锂离子电池及其制备方法
US20200176770A1 (en) 2017-06-26 2020-06-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
US10604422B2 (en) * 2017-11-14 2020-03-31 Vegapure Water System Inc. Water container with integrated plasma disinfection
US10941041B2 (en) 2018-07-06 2021-03-09 Savannah River Nuclear Solutions, Llc Method of manufacturing graphene using photoreduction
CN108584933A (zh) * 2018-07-15 2018-09-28 石梦成 一种通过离子液体剥离制备的氟化石墨烯
CN109004209B (zh) * 2018-08-02 2020-09-11 盐城市新能源化学储能与动力电源研究中心 镉石墨烯电池以及石墨烯电池
CN109755508A (zh) * 2018-12-18 2019-05-14 湘潭大学 一种硅/石墨烯多层复合膜负极材料的制备方法
CN111899987A (zh) * 2020-07-06 2020-11-06 深圳市展旺新材料科技有限公司 一种可穿戴石墨烯超级电容器的制备方法
CN114583261B (zh) * 2022-03-10 2023-11-10 山东天润新能源材料有限公司 一种含氧化石墨烯的钠离子二次电池电解液的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101849302A (zh) * 2007-11-05 2010-09-29 纳米技术仪器公司 用于锂离子电池的纳米石墨烯薄片基复合阳极组合物
US20110033746A1 (en) * 2009-08-10 2011-02-10 Jun Liu Self assembled multi-layer nanocomposite of graphene and metal oxide materials

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3068002D1 (en) 1979-04-05 1984-07-05 Atomic Energy Authority Uk Electrochemical cell and method of making ion conductors for said cell
DE3680249D1 (de) 1985-05-10 1991-08-22 Asahi Chemical Ind Sekundaerbatterie.
JP3550783B2 (ja) 1994-05-16 2004-08-04 東ソー株式会社 リチウム含有遷移金属複合酸化物及びその製造方法並びにその用途
US6514640B1 (en) 1996-04-23 2003-02-04 Board Of Regents, The University Of Texas System Cathode materials for secondary (rechargeable) lithium batteries
US5910382A (en) 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
TW363940B (en) 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
US5871866A (en) 1996-09-23 1999-02-16 Valence Technology, Inc. Lithium-containing phosphates, method of preparation, and use thereof
US5783333A (en) 1996-11-27 1998-07-21 Polystor Corporation Lithium nickel cobalt oxides for positive electrodes
US6085015A (en) 1997-03-25 2000-07-04 Hydro-Quebec Lithium insertion electrode materials based on orthosilicate derivatives
CA2270771A1 (fr) 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
JP3921931B2 (ja) 2000-09-29 2007-05-30 ソニー株式会社 正極活物質及び非水電解質電池
JP2003238131A (ja) * 2002-02-08 2003-08-27 Mitsubishi Gas Chem Co Inc 炭素からなる骨格を持つ薄膜状粒子のランダム凝集体
WO2005121022A1 (ja) 2004-06-11 2005-12-22 Tokyo University Of Agriculture And Technology, National University Corporation 酸化ルテニウム内包ナノカーボン複合構造体
US20080160409A1 (en) 2004-08-26 2008-07-03 Sumihito Ishida Composite Particle for Electrode, Method for Producing the Same and Secondary Battery
ES2620809T3 (es) 2004-09-03 2017-06-29 Uchicago Argonne, Llc Electrodos compuestos de óxido de manganeso par baterías de litio
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
US8278011B2 (en) 2004-12-09 2012-10-02 Nanosys, Inc. Nanostructured catalyst supports
US7179561B2 (en) 2004-12-09 2007-02-20 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
US7842432B2 (en) 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
KR100639889B1 (ko) 2004-12-30 2006-10-31 주식회사 소디프신소재 비탄소재료 함유 소구체 탄소분말 및 그 제조방법
JP3850427B2 (ja) 2005-03-22 2006-11-29 株式会社物産ナノテク研究所 炭素繊維結合体およびこれを用いた複合材料
US8003257B2 (en) 2005-07-04 2011-08-23 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
US20070009799A1 (en) 2005-07-07 2007-01-11 Eveready Battery Company, Inc. Electrochemical cell having a partially oxidized conductor
US7658901B2 (en) 2005-10-14 2010-02-09 The Trustees Of Princeton University Thermally exfoliated graphite oxide
WO2008048295A2 (en) 2005-11-18 2008-04-24 Northwestern University Stable dispersions of polymer-coated graphitic nanoplatelets
WO2007061945A2 (en) 2005-11-21 2007-05-31 Nanosys, Inc. Nanowire structures comprising carbon
KR101508788B1 (ko) 2006-06-02 2015-04-06 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 전지
JP2008218125A (ja) 2007-03-02 2008-09-18 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN101548418B (zh) 2007-03-05 2012-07-18 东洋油墨制造股份有限公司 电池用组合物
WO2009049375A1 (en) 2007-10-19 2009-04-23 University Of Wollongong Process for the preparation of graphene
KR100923304B1 (ko) 2007-10-29 2009-10-23 삼성전자주식회사 그라펜 시트 및 그의 제조방법
EP2228856A4 (en) 2007-12-25 2012-01-25 Kao Corp COMPOSITE MATERIAL FOR POSITIVE LITHIUM BATTERY ELECTRODE
JP5377946B2 (ja) 2007-12-25 2013-12-25 花王株式会社 リチウム電池正極用複合材料
US9156701B2 (en) * 2008-01-03 2015-10-13 National University Of Singapore Functionalised graphene oxide
EP2276698A1 (en) 2008-04-14 2011-01-26 Dow Global Technologies Inc. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
US20100035093A1 (en) * 2008-04-27 2010-02-11 Ruoff Rodney S Ultracapacitors and methods of making and using
US8936874B2 (en) 2008-06-04 2015-01-20 Nanotek Instruments, Inc. Conductive nanocomposite-based electrodes for lithium batteries
US8257867B2 (en) 2008-07-28 2012-09-04 Battelle Memorial Institute Nanocomposite of graphene and metal oxide materials
US8450014B2 (en) 2008-07-28 2013-05-28 Battelle Memorial Institute Lithium ion batteries with titania/graphene anodes
TW201012749A (en) 2008-08-19 2010-04-01 Univ Rice William M Methods for preparation of graphene nanoribbons from carbon nanotubes and compositions, thin films and devices derived therefrom
US8114375B2 (en) 2008-09-03 2012-02-14 Nanotek Instruments, Inc. Process for producing dispersible nano graphene platelets from oxidized graphite
US8580432B2 (en) 2008-12-04 2013-11-12 Nanotek Instruments, Inc. Nano graphene reinforced nanocomposite particles for lithium battery electrodes
US9093693B2 (en) 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
WO2010096665A1 (en) 2009-02-19 2010-08-26 William Marsh Rice University Dissolution of graphite, graphite oxide and graphene nanoribbons in superacid solutions and manipulation thereof
JP2010239122A (ja) * 2009-03-09 2010-10-21 Semiconductor Energy Lab Co Ltd 蓄電デバイス
EP2237346B1 (en) 2009-04-01 2017-08-09 The Swatch Group Research and Development Ltd. Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
EP2228855B1 (en) 2009-03-12 2014-02-26 Belenos Clean Power Holding AG Open porous electrically conductive nanocomposite material
JP5650418B2 (ja) * 2009-03-12 2015-01-07 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 犠牲ナノ粒子を含む電気伝導性ナノ複合材料およびそれから生成される開放多孔質ナノ複合材
US8317984B2 (en) 2009-04-16 2012-11-27 Northrop Grumman Systems Corporation Graphene oxide deoxygenation
US20140370380A9 (en) 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US20100291438A1 (en) 2009-05-15 2010-11-18 PDC Energy, LLC Electrode material, lithium-ion battery and method thereof
SG176174A1 (en) 2009-05-22 2011-12-29 Univ Rice William M Highly oxidized graphene oxide and methods for production thereof
EP3865454A3 (en) * 2009-05-26 2021-11-24 Belenos Clean Power Holding AG Stable dispersions of single and multiple graphene layers in solution
CN101562248B (zh) 2009-06-03 2011-05-11 龚思源 一种石墨烯复合的锂离子电池正极材料磷酸铁锂及其制备方法
US20120142111A1 (en) 2009-06-15 2012-06-07 Tour James M Nanomaterial-containing signaling compositions for assay of flowing liquid streams and geological formations and methods for use thereof
CA2765492C (en) 2009-06-15 2018-01-02 William Marsh Rice University Graphene nanoribbons prepared from carbon nanotubes via alkali metal exposure
JP5456392B2 (ja) 2009-07-09 2014-03-26 国立大学法人三重大学 リチウムイオン二次電池用の負極材料及びリチウムイオン二次電池
US8835046B2 (en) * 2009-08-10 2014-09-16 Battelle Memorial Institute Self assembled multi-layer nanocomposite of graphene and metal oxide materials
JP2011048992A (ja) 2009-08-26 2011-03-10 Sekisui Chem Co Ltd 炭素材料、電極材料及びリチウムイオン二次電池負極材料
WO2011041663A2 (en) * 2009-10-02 2011-04-07 Board Of Regents, The University Of Texas System Exfoliation of graphite oxide in propylene carbonate and thermal reduction of resulting graphene oxide platelets
WO2011057074A2 (en) 2009-11-06 2011-05-12 Northwestern University Electrode material comprising graphene-composite materials in a graphite network
JP5001995B2 (ja) * 2009-11-11 2012-08-15 トヨタ自動車株式会社 リチウム二次電池用正極およびその製造方法
JP5471351B2 (ja) 2009-11-20 2014-04-16 富士電機株式会社 グラフェン薄膜の製膜方法
US9431649B2 (en) 2009-11-23 2016-08-30 Uchicago Argonne, Llc Coated electroactive materials
US8993177B2 (en) 2009-12-04 2015-03-31 Envia Systems, Inc. Lithium ion battery with high voltage electrolytes and additives
CN101752561B (zh) 2009-12-11 2012-08-22 宁波艾能锂电材料科技股份有限公司 石墨烯改性磷酸铁锂正极活性材料及其制备方法以及锂离子二次电池
US8652687B2 (en) * 2009-12-24 2014-02-18 Nanotek Instruments, Inc. Conductive graphene polymer binder for electrochemical cell electrodes
US9640334B2 (en) * 2010-01-25 2017-05-02 Nanotek Instruments, Inc. Flexible asymmetric electrochemical cells using nano graphene platelet as an electrode material
US20110227000A1 (en) * 2010-03-19 2011-09-22 Ruoff Rodney S Electrophoretic deposition and reduction of graphene oxide to make graphene film coatings and electrode structures
EP2569249B1 (de) 2010-05-14 2017-07-12 Basf Se Verfahren zur einkapselung von metalloxiden mit graphen und die verwendung dieser materialien
US9437344B2 (en) * 2010-07-22 2016-09-06 Nanotek Instruments, Inc. Graphite or carbon particulates for the lithium ion battery anode
DE112011102750T5 (de) 2010-08-19 2013-07-04 Semiconductor Energy Laboratory Co., Ltd. Elektrisches Gerät
US8691441B2 (en) 2010-09-07 2014-04-08 Nanotek Instruments, Inc. Graphene-enhanced cathode materials for lithium batteries
JP6138687B2 (ja) * 2010-09-09 2017-05-31 カリフォルニア インスティチュート オブ テクノロジー 電気化学エネルギー貯蔵システム及びその方法
US9558860B2 (en) * 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
DE112011103395T5 (de) 2010-10-08 2013-08-14 Semiconductor Energy Laboratory Co., Ltd. Verfahren zum Herstellen eines Positivelektrodenaktivmaterials für eine Energiespeichervorrichtung und Energiespeichervorrichtung
US20120088151A1 (en) 2010-10-08 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Positive-electrode active material and power storage device
EP2445049B1 (en) 2010-10-22 2018-06-20 Belenos Clean Power Holding AG Electrode (anode and cathode) performance enhancement by composite formation with graphene oxide
CN102174702A (zh) * 2011-01-11 2011-09-07 湖南大学 一种金属纳米粒子-石墨烯复合物的制备方法
JP2012224526A (ja) * 2011-04-21 2012-11-15 Hiroshima Univ グラフェンの製造方法
KR102307199B1 (ko) 2011-06-03 2021-10-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 정극, 리튬 이온 이차 전지, 이동체, 차량, 시스템, 및 전자 기기
TWI542539B (zh) 2011-06-03 2016-07-21 半導體能源研究所股份有限公司 單層和多層石墨烯,彼之製法,含彼之物件,以及含彼之電器裝置
CN103748035B (zh) 2011-08-18 2016-02-10 株式会社半导体能源研究所 形成石墨烯及氧化石墨烯盐的方法、以及氧化石墨烯盐
US8663841B2 (en) 2011-09-16 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
KR102120603B1 (ko) 2011-09-30 2020-06-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 그래핀 및 축전 장치, 및 이들의 제작 방법
US20130084384A1 (en) 2011-10-04 2013-04-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of secondary particles and manufacturing method of electrode of power storage device
JP6077347B2 (ja) 2012-04-10 2017-02-08 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101849302A (zh) * 2007-11-05 2010-09-29 纳米技术仪器公司 用于锂离子电池的纳米石墨烯薄片基复合阳极组合物
US20110033746A1 (en) * 2009-08-10 2011-02-10 Jun Liu Self assembled multi-layer nanocomposite of graphene and metal oxide materials

Also Published As

Publication number Publication date
TWI669847B (zh) 2019-08-21
US11735731B2 (en) 2023-08-22
KR20230047202A (ko) 2023-04-06
TW202343854A (zh) 2023-11-01
JP2013082606A (ja) 2013-05-09
KR102304204B1 (ko) 2021-09-17
KR102514830B1 (ko) 2023-03-30
JP2013149624A (ja) 2013-08-01
CN108101050A (zh) 2018-06-01
US20230073850A1 (en) 2023-03-09
KR102376305B1 (ko) 2022-03-18
KR20190116537A (ko) 2019-10-14
TW201820685A (zh) 2018-06-01
JP6892489B2 (ja) 2021-06-23
JP2018107137A (ja) 2018-07-05
KR20220040501A (ko) 2022-03-30
JP2020013799A (ja) 2020-01-23
JP2021143123A (ja) 2021-09-24
KR20210118222A (ko) 2021-09-29
WO2013047630A1 (en) 2013-04-04
JP6291543B2 (ja) 2018-03-14
CN108101050B (zh) 2022-04-01
TW202017232A (zh) 2020-05-01
US20200052299A1 (en) 2020-02-13
US11990621B2 (en) 2024-05-21
KR102029506B1 (ko) 2019-10-07
JP2013163636A (ja) 2013-08-22
KR102120603B1 (ko) 2020-06-08
TWI705602B (zh) 2020-09-21
JP6157820B2 (ja) 2017-07-05
US20130266869A1 (en) 2013-10-10
TWI608649B (zh) 2017-12-11
TW201640720A (zh) 2016-11-16
JP5356622B2 (ja) 2013-12-04
TW201324930A (zh) 2013-06-16
JP2017017035A (ja) 2017-01-19
US20150064565A1 (en) 2015-03-05
KR20140072868A (ko) 2014-06-13
JP2020017542A (ja) 2020-01-30
TWI623131B (zh) 2018-05-01
CN103858259A (zh) 2014-06-11
CN103858259B (zh) 2018-03-06
US20200350585A1 (en) 2020-11-05
US8883351B2 (en) 2014-11-11
TW201937788A (zh) 2019-09-16
US10461332B2 (en) 2019-10-29
JP7198870B2 (ja) 2023-01-04
TW202044649A (zh) 2020-12-01
KR20200093709A (ko) 2020-08-05
JP2020177919A (ja) 2020-10-29
JP6797995B2 (ja) 2020-12-09
JP2020170722A (ja) 2020-10-15
JP2023026498A (ja) 2023-02-24
JP6937873B2 (ja) 2021-09-22
KR20190139332A (ko) 2019-12-17
US20230307639A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
JP7198870B2 (ja) リチウム二次電池