TWI782391B - 用於三維儲存設備中的中心階梯結構的底部選擇閘極觸點 - Google Patents

用於三維儲存設備中的中心階梯結構的底部選擇閘極觸點 Download PDF

Info

Publication number
TWI782391B
TWI782391B TW110100904A TW110100904A TWI782391B TW I782391 B TWI782391 B TW I782391B TW 110100904 A TW110100904 A TW 110100904A TW 110100904 A TW110100904 A TW 110100904A TW I782391 B TWI782391 B TW I782391B
Authority
TW
Taiwan
Prior art keywords
dielectric
select gate
ladder
bottom select
layer
Prior art date
Application number
TW110100904A
Other languages
English (en)
Other versions
TW202220179A (zh
Inventor
曉江 郭
湯強
Original Assignee
大陸商長江存儲科技有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商長江存儲科技有限責任公司 filed Critical 大陸商長江存儲科技有限責任公司
Publication of TW202220179A publication Critical patent/TW202220179A/zh
Application granted granted Critical
Publication of TWI782391B publication Critical patent/TWI782391B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND

Abstract

公開了一種三維儲存設備及形成其的製造方法。三維儲存設備可以包括交替的導體/介電質層疊層,設置在基底上;第一階梯結構和第二階梯結構,形成在交替的導體/介電質層疊層中;階梯電橋,在第一方向上延伸並且電連接第一階梯結構和第二階梯結構;及第一底部選擇閘極段,由階梯電橋覆蓋或部分覆蓋。第一底部選擇閘極段可以包括在不同於第一方向的第二方向上延伸的延伸部分。

Description

用於三維儲存設備中的中心階梯結構的底部選擇閘極觸點
本公開內容總體上涉及半導體技術領域,具體而言,涉及一種三維(3D)儲存器的形成方法。
隨著儲存設備縮小到較小的晶粒尺寸以降低製造成本且增加儲存密度,由於製程技術的局限性和可靠性問題,平面儲存單元的縮放面臨挑戰。三維(3D)儲存器架構可以解決平面儲存單元中的密度和性能限制。
在3D NAND儲存器中,儲存單元可垂直堆疊以增加每單位面積的儲存容量,其中可以從共享字元線尋址儲存單元。為了訪問垂直堆疊的儲存單元的字元線,可在儲存器陣列的一個或兩個邊緣處形成階梯結構。然而,為了進一步增加3D NAND儲存器的儲存容量,已大大增加儲存單元的數量和儲存器陣列的大小。結果,儲存器陣列中間的儲存單元與字元線末端處的電連接之間的距離增加,從而導致較大的寄生電阻和較慢的讀/寫速度。因此,需要改進3D NAND儲存器中的階梯結構以在不犧牲性能的情況下實現較高儲存密度。
本公開內容中描述了三維(3D)儲存設備及其形成方法的實施例。
本公開內容的一個方面提供了一種三維(3D)儲存設備,包括:設置在基底上的交替的導體/介電質層疊層;形成在交替的導體/介電質層疊層中的第一階梯結構和第二階梯結構;在第一方向上延伸並且電連接第一階梯結構和第二階梯結構的階梯電橋;以及由階梯電橋覆蓋或部分覆蓋的第一底部選擇閘極段,其中,第一底部選擇閘極段包括在不同於第一方向的第二方向上延伸的延伸部分。
在一些實施例中,交替的導體/介電質層疊層包括在垂直方向上交替排列的多個導電層和介電質層;階梯電橋被配置為分別將第一階梯結構中的導電層與第二階梯結構中的導電層電連接。
在一些實施例中,階梯電橋包括多個導電層和介電質層對。
在一些實施例中,3D儲存設備還包括接觸第一底部選擇閘極段的延伸部分的至少一個第一底部選擇閘極觸點。
在一些實施例中,3D儲存設備還包括底部選擇閘極切割結構,其將所述交替的導體/介電質層疊層的底部導電層分離成至少第一底部選擇閘極段和第二底部選擇閘極段;其中,底部選擇閘極切割結構包括一個或多個非線性區段。
在一些實施例中,底部選擇閘極切割結構將第二底部選擇閘極段分離成第二底部選擇閘極段的兩個子部分;以及第二底部選擇閘極段的兩個子部 分透過至少兩個第二底部選擇閘極觸點和位於交替的導體/介電質層疊層上方的圖案化導電層中的導電線彼此電連接。
在一些實施例中,底部選擇閘極切割結構的非線性區段包括沿著第一方向延伸的第一直線部分和沿著第二方向延伸的第二直線部分。
在一些實施例中,階梯電橋包括在第一方向上比底部長的頂部。
在一些實施例中,3D儲存設備還包括垂直穿透交替的導體/介電質層疊層的多個儲存器串,多個儲存器串各自包括:中心的芯部填充膜;圍繞芯部填充膜的溝道層;以及圍繞溝道層的儲存膜。
在一些實施例中,多個儲存器串分布在第一階梯結構和第二階梯結構的相對側上。
在一些實施例中,第一階梯結構和第二階梯結構位於3D儲存設備的儲存器陣列的中心。
本公開內容的另一方面提供了一種用於形成三維(3D)儲存設備的方法,包括:在基底上的至少一個底部介電質層對中形成至少一個底部選擇閘極切割結構,其中,至少一個底部選擇閘極切割結構包括一個或多個非線性區段;在至少一個底部介電質層對上形成交替的介電質疊層,其中,交替的介電質疊層包括在垂直方向上交替排列的多個介電質層和犧牲層;以及在交替的介電質疊層中形成第一介電質階梯結構、第二介電質階梯結構和介電質電橋,其 中,第一介電質階梯結構和第二介電質階梯結構透過在第一方向上延伸的介電質電橋連接。
在一些實施例中,方法還包括:用多個導電層替換交替的介電質疊層和至少一個底部介電質層對中的犧牲層以形成交替的導體/介電質層疊層。
在一些實施例中,方法還包括:在交替的導體/介電質層疊層的導電層上形成多個觸點結構;其中,交替的導體/介電質層疊層的底部導電層由至少一個底部選擇閘極切割結構劃分為第一底部選擇閘極段和第二底部選擇閘極段。
在一些實施例中,形成多個觸點結構包括形成與第一底部選擇閘極段的沿著不同於第一方向的第二方向延伸的延伸部分接觸的至少一個第一底部選擇閘極觸點。
在一些實施例中,形成多個觸點結構包括形成與第二底部選擇閘極段的至少兩個子部分接觸的至少兩個第二底部選擇閘極觸點。
在一些實施例中,方法還包括形成圖案化導電層,圖案化導電層包括透過至少兩個第二底部選擇閘極觸點電連接第二底部選擇閘極段的至少兩個子部分的至少一條連接線。
在一些實施例中,方法還包括:形成垂直穿透交替的介電質疊層的多個儲存器串,其中,多個儲存器串各自包括:中心的芯部填充膜;圍繞芯部 填充膜的溝道層;以及圍繞溝道層的儲存膜。
在一些實施例中,形成多個儲存器串包括在第一介電質階梯結構和第二介電質階梯結構的相對側上形成多個儲存器串。
在一些實施例中,形成第一階梯結構和第二階梯結構包括在交替的介電質疊層的中心位置形成第一階梯結構和第二階梯結構。
本領域技術人員根據本公開內容的說明書、申請專利範圍和附圖可以理解本公開內容的其他方面。
100:儲存器陣列結構
112,512,632,1512:儲存器串
114,326,476:觸點結構
116-1,116-2,314,414,514,814,816:狹縫結構
130,610,1010:基底
131:絕緣膜
132:底部選擇閘極(BSG)
133-1,133-2,133-3:控制閘極
134:頂部選擇閘極(TSG)
135:膜疊層
136:溝道孔
137,637,1537:儲存膜
138,638,1535:溝道層
139,639,1533:芯部填充膜
140-1,140-2,140-3,640:儲存單元
141:位元線
143:金屬互連線
144:源極線區域
200:3D儲存設備
201:儲存平面
203:儲存塊
205:外圍區域
210:階梯結構(SS)
220:觸點焊盤
230,240,250,300,400:區域
260,333:位元線觸點區域
270:字元線觸點區域
280,580,1048:底部選擇閘極(BSG)觸點區域
310,420,520,1042:溝道結構區域
312,412:溝道結構
322,422:虛設溝道結構
324,474:阻擋結構
342,442,542,544,546:儲存器指狀物
346:虛設儲存器指狀物
355,455,555,1222:頂部選擇閘極(TSG)切割結構
430:頂部選擇閘極(TSG)階梯區域
472:字元線觸點區域
500,600,700,800:3D儲存器結構
510,810,1778:階梯電橋
530,1046:中心階梯區域
533,1476,1676:階梯
538,1738:階梯觸點
562,564,566,1762,1764,1766:底部選擇閘極(BSG)觸點
582,584,586,784,786,881,882,883,1782,1784,1786:底部選擇閘極(BSG)段
595,795,895,1033:底部選擇閘極(BSG)切割結構
612:正面
620,1664:導體/介電質疊層
623,680,685,1625,1891:導電層
625,1021:介電質層
784L,784R,882L,882R,883L,883R:子部分
841,842,843,844,845,846:儲存器子指狀物
900:製造過程
1000,1100,1200,1300,1400,1500,1600,1700,1800:結構
1023:犧牲層
1029:底部介電質層對
1044:階梯電橋區域
1129:介電質層對
1164:介電質疊層
1378:硬遮罩
1470:第一介電質階梯結構
1472:第二介電質階梯結構
1478:介電質電橋
1629:導電和介電質層對
1670,1672:階梯結構
1682:絕緣結構
1893:介電材料
1899:連接線
BL:位元線的方向
S910,S920,S930,S940,S950,S960,S970,S980,S990:步驟
t1,t2,w:寬度
WL:字元線的方向
併入本文並形成說明書的一部分的附圖示出了本公開內容的實施例,並且與說明書一起進一步用於解釋本公開內容的原理並且使得相關領域技術人員能夠構成和使用本公開內容。
圖1示出了根據本公開內容的一些實施例的示例性三維(3D)儲存器晶粒的示意性透視圖。
圖2示出了根據本公開內容的一些實施例的3D儲存器晶粒的區域的示意性俯視圖。
圖3示出了根據本公開內容的一些實施例的示例性3D儲存器陣列結構的一部分的示意性俯視圖。
圖4示出了根據本公開內容的一些實施例的示例性3D儲存器結構的一部分的示意性俯視圖。
圖5示出了根據本公開內容的一些實施例的示例性3D儲存器結構的一部分的俯視圖。
圖6示出了根據本公開內容的一些實施例的圖5中的示例性3D儲存器結構的一部分的透視圖。
圖7示出了根據本公開內容的一些實施例的示例性3D儲存器結構的一部分的俯視圖。
圖8示出了根據本公開內容的一些實施例的示例性3D儲存器結構的一部分的俯視圖。
圖9示出了根據本公開內容的一些實施例的用於形成3D儲存器結構的示例性方法的流程圖。
圖10A和10B示出了根據本公開內容的一些實施例的在特定過程步驟的3D儲存器結構的截面圖。
圖10C示出了根據本公開內容的一些實施例的圖10A和10B中的3D儲存器結構的俯視圖。
圖11A和11B示出了根據本公開內容的一些實施例的在特定過程步驟的3D儲存器結構的截面圖。
圖12A示出了根據本公開內容的一些實施例的在特定過程步驟的3D儲存器結構的截面圖。
圖12B示出了根據本公開內容的一些實施例的圖12A中的3D儲存器結構的俯視圖。
圖13A示出了根據本公開內容的一些實施例的在特定過程步驟的3D儲存器結構的截面圖。
圖13B示出了根據本公開內容的一些實施例的圖13A中的3D儲存器結構的俯視圖。
圖14A和14B示出了根據本公開內容的一些實施例的在特定過程步驟的3D儲存器結構的截面圖。
圖14C示出了根據本公開內容的一些實施例的圖14A和14B中的3D儲存器結構的俯視圖。
圖15A示出了根據本公開內容的一些實施例的在特定過程步驟的3D儲存器結構的截面圖。
圖15B示出了根據本公開內容的一些實施例的圖15A中的3D儲存器結構的俯視圖。
圖16示出了根據本公開內容的一些實施例的在特定過程步驟的3D儲存器結構的截面圖。
圖17A示出了根據本公開內容的一些實施例的在特定過程步驟的3D儲存器結構的截面圖。
圖17B示出了根據本公開內容的一些實施例的圖17A中的3D儲存器結構的俯視圖。
圖18示出了根據本公開內容的一些實施例的在特定過程步驟的3D儲存器結構的截面圖。
根據以下結合附圖闡述的具體實施方式,本發明的特徵和優點將詳細描述中變得更加明顯,在附圖中,相同的附圖標記始終標識對應的元件。在附圖中,相似的附圖標記通常表示相同的、功能上類似的和/或結構上類似的元件。元件首次出現的附圖由相應附圖標記中最左邊的數字表示。
將參考附圖描述本公開內容的實施例。
儘管討論了具體的配置和布置,但應該理解,這僅僅是為了說明的目的而進行的。相關領域的技術人員將認識到,在不脫離本公開內容的精神和範圍的情況下,可以使用其他配置和布置。對於相關領域的技術人員顯而易見的是,本公開內容還可以用於各種其他應用中。
應注意到,在說明書中對“一個實施例”、“實施例”、“示例性實施例”、“一些實施例”等的引用指示所描述的實施例可以包括特定的特徵、結構或特性,但是每個實施例可能不一定包括該特定的特徵、結構或特性。而且,這樣的短語不一定指代相同的實施例。此外,當結合實施例描述特定特徵、結構或特性時,無論是否明確描述,結合其他實施例來實現這樣的特徵、結構或特性都在相關領域的技術人員的知識範圍內。
通常,可以至少部分地從上下文中的用法理解術語。例如,如本文所用的術語“一個或多個”至少部分取決於上下文,可以用於以單數意義描述任何特徵、結構或特性,或可以用於以複數意義描述特徵、結構或特徵的組合。類似地,至少部分取決於上下文,諸如“一”、“一個”或“該”的術語同樣可以被理解為表達單數用法或表達複數用法。另外,術語“基於”可以被理解為不一定旨在傳達排他性的因素集合,而是可以允許存在不一定明確描述的其他因素,這同樣至少部分地取決於上下文。
應當容易理解的是,本公開內容中的“在……上”、“在……之上”和“在……上方”的含義應以最寬泛的方式來解釋,使得“在……上”不僅意味著“直接在某物上”,而且還包括其間具有中間特徵或層的“在某物上”的 含義。此外,“在……之上”或“在……上方”不僅意味著“在某物之上”或“在某物上方”,而且還可以包括其間沒有中間特徵或層的“在某物之上”或“在某物上方”的含義(即,直接在某物上)。
此外,為了便於描述,可以在本文使用諸如“在……之下”、“在……下方”、“下”、“在……之上”、“上”等的空間相對術語來描述如圖所示的一個元件或特徵與另一個元件或特徵的關係。除了附圖中所示的取向之外,空間相對術語旨在涵蓋設備在使用或過程步驟中的不同取向。該裝置可以以其他方式定向(旋轉90度或在其他取向)並且同樣可以相應地解釋本文使用的空間相關描述詞。
如本文所使用的,術語“基底”是指在其上添加後續材料層的材料。基底包括“頂”面和“底”面。除非另有說明,否則基底的正面通常是形成半導體裝置的位置,因此半導體裝置形成在基底的頂側。底面與正面相對,並且因此基底的底側與基底的頂側相對。基底本身可以被圖案化。添加在基底頂部的材料可以被圖案化或可以保持未圖案化。此外,基底可以包括多種半導體材料,例如矽,鍺、砷化鎵、磷化銦等。可替換地,基底可以由非導電材料製成,例如玻璃、塑料或藍寶石晶圓。
如本文所使用的,術語“層”是指包括具有厚度的區域的材料部分。層具有頂側和底側,其中,層的底側相對靠近基底,而頂側相對遠離基底。層可以在整個下層或上層結構上延伸,或者可以具有小於下層或上層結構範圍的範圍。此外,層可以是厚度小於連續結構的厚度的均勻或不均勻連續結構的區域。例如,層可以位於連續結構的頂面和底面之間或在頂面和底面處的任何 組的水平面之間。層可以水平、垂直和/或沿著錐形表面延伸。基底可以是層,其中可以包括一層或多層,和/或可以在其上、上方和/或其下具有一層或多層。層可以包括多個層。例如,互連層可以包括一個或多個導電和觸點層(其中形成有觸點、互連線和/或垂直互連通路(VIA))以及一個或多個介電質層。
在本公開內容中,為了便於描述,“級”用於指代沿垂直方向具有基本相同高度的元件。例如,字元線和下面的閘極介電質層可以被稱為“一級”,字元線和下面的絕緣層可以一起被稱為“一級”,具有基本相同高度的字元線可以是被稱為“一級字元線”或類似的等。
如本文所使用的,術語“標稱/標稱地”是指在產品或過程的設計階段期間設定的部件或過程操作的特性或參數的期望值或目標值,以及高於和/或低於期望值的值的範圍。值的範圍可以是由於製造製程或公差的輕微變化而引起。如本文所使用的,術語“約”表示可以基於與主題半導體裝置相關聯的特定技術節點而變化的給定量的值。基於特定的技術節點,術語“約”可以表示給定量的值,該給定量例如在該值的10-30%內變化(例如,值的±10%、±20%或±30%)。
在本公開內容中,術語“水平的/水平地/橫向的/橫向地”表示標稱上平行於基底的側表面,術語“垂直的”或“垂直地”表示標稱上垂直於基底的側表面。
如本文所使用的,術語“3D儲存器”是指在橫向取向的基底上具有垂直取向的儲存單元電晶體串(在本文中稱為“儲存器串”,諸如NAND串)的 三維(3D)半導體裝置,使得儲存器串相對於基底在垂直方向上延伸。
圖1示出了根據某個現有3D NAND儲存器的示例性三維(3D)儲存器陣列結構100的一部分的透視圖。儲存器陣列結構100包括基底130、基底130上方的絕緣膜131、絕緣膜131上方的一級底部選擇閘極(BSG)132,以及堆疊在BSG 132的頂部上以形成交替的導電層與介電質層的膜疊層135的多級控制閘極133-1、133-2和133-3(也稱為“字元線”)。為清晰起見,在圖1中未示出鄰近於控制閘極級的介電質層。
每一級的控制閘極由穿過膜疊層135的狹縫結構116-1和116-2隔開。儲存器陣列結構100還包括在控制閘極133-1、133-2和133-3的疊層上方的一級頂部選擇閘極(TSG)134。TSG 134、控制閘極133-1、133-2和133-3和BSG 132的疊層也稱為“閘電極”。儲存器陣列結構100在相鄰BSG 132之間的部分基底130中還包括儲存器串112和摻雜的源極線區域144。每個儲存器串112包括穿過絕緣膜131及交替的導電層和介電質層的膜疊層135延伸的溝道孔136。儲存器串112還包括在溝道孔136的側壁上的儲存膜137,在儲存膜137上方的溝道層138以及被溝道層138圍繞的芯部填充膜139。儲存單元(如140-1、140-2和140-3)可以形成在控制閘極133-1、133-2和133-3與儲存器串112的交叉處。在控制閘極133-1、133-2和133-3下方的溝道層138的一部分也稱為儲存單元(如140-1、140-2和140-3)的溝道。儲存器陣列結構100還包括在TSG 134上方與儲存器串112連接的多條位元線141。儲存器陣列結構100還包括穿過多個觸點結構114與閘電極連接的多條金屬互連線143。膜疊層135的邊緣構造成階梯形,以允許電連接到每一級閘電極。
為了在3D儲存器中追求更高的儲存容量,儲存單元的數量和儲存塊的尺寸已經大大增加。結果,從每個儲存塊中間的儲存單元到字元線端部處的觸點結構的距離也增加,導致更大的寄生電阻和更慢的讀/寫速度。為了解決這個問題,可以在每個儲存塊的中間區域中形成階梯結構(SS),其中,可以針對每組階梯結構形成一組觸點結構和金屬互連線。然而,為了形成位於儲存塊的中間區域中的字元線與位於外圍區域中的字元線驅動器電路之間的電連接,金屬互連線的布局是複雜的,並且可能引起布線擁塞並增加製造成本。
在圖1中,出於說明目的,示出了三級控制閘極133-1、133-2和133-3以及一級TSG 134和一級BSG 132。在該示例中,每個儲存器串112可以包括三個儲存單元140-1、140-2和140-3,這三個儲存單元分別對應於控制閘極133-1、133-2和133-3。控制閘極的數量和儲存單元的數量可以超過三個,以增加儲存容量。儲存器陣列結構100還可以包括其他結構,例如,TSG切口結構、公共源極觸點和虛設儲存器串等。為了簡單起見,圖1中未示出這些結構。
不同於圖1,在本公開內容所提供的3D NAND儲存器中,階梯結構還可配置在膜疊層135的非邊緣位置中,例如位於膜疊層135的中心區域中或位於儲存器陣列的中心區域中。所公開的中心階梯結構方案可以提供減少的布線擁塞和更好的面積效率。因此,可以減少金屬互連層的數量和製造成本。字元線電阻器-電容器(RC)時間也可以減少以實現更快的性能。此外,使用階梯電橋方案來實現具有優異面積效率的中心階梯結構。另外,底部選擇閘極(BSG)切割方案允許用於選定儲存塊中的未選定BSG的溝道提升,這可以減少讀取干擾和所消耗的功率。
由於階梯電橋需要覆蓋所有字元線級,因此它不能非常窄。階梯電橋的增加的寬度還可以減少額外的電阻,這有益於陣列定時。然而,BSG層位於字元線級的底部,並且取決於BSG切割結構的數量而可以被階梯電橋部分地或完全地覆蓋。在一些現有的製造方法中,BSG觸點使用背面金屬(例如,透過採用一個或多個金屬層)形成,並且需要穿矽觸點(TSC)處理。這涉及更高成本的更複雜的處理。因此,本公開內容引入BSG層的新穎圖案化以產生用於正面BSG觸點的足夠空間。這種新穎的方法需要更少的處理步驟和更少的金屬層。
圖2以平面圖示出了根據本公開內容的一些實施例的示例性三維(3D)儲存設備200的示意圖。3D儲存設備200可以是儲存器芯片(封裝)、儲存器晶粒或儲存器晶粒的任何部分,並且可以包括一個或多個儲存平面201,每個儲存平面可以包括多個儲存塊203。可以在每個儲存平面201上進行相同且併發的操作。大小可以是百萬位元組(MB)的儲存塊203是執行擦除操作的最小大小。
如圖2所示,示例性3D儲存設備200包括四個儲存平面201,並且每個儲存平面201包括六個儲存塊203。在本公開內容中,儲存塊203還被稱為“儲存器陣列”或“陣列”。儲存器陣列是儲存設備中的核心區域,其執行儲存功能。每個儲存塊203可以包括多個儲存單元(例如,圖1中的儲存單元140-1、140-2和140-3),其中,每個儲存單元可以透過諸如位元線和字元線的互連來尋址。位元線和字元線可以垂直布置(例如,分別按行和列布置,如圖1所示),形成金屬線的陣列。在圖2中,位元線的方向和字元線的方向被標記為“BL”和“WL”,下文分別簡稱為“BL方向”和“WL方向”。
如上所述,為了在3D儲存器中追求更高的儲存容量,儲存單元的數量和儲存塊203的尺寸已經大大增加。結果,從儲存塊203中間的儲存單元到字元線端部處的觸點結構的距離也增加,導致更大的寄生電阻和更慢的讀/寫速度。為了解決這個問題,可以在儲存塊203的中間區域中形成階梯結構(SS)210。如圖2所示,兩個階梯結構(SS)210可以位於儲存塊203的中間區域中且沿著BL方向延伸。
在一些實施例中,觸點結構可以包括在BL方向上夾在兩個相鄰儲存塊203之間並且沿著3D儲存設備的WL方向延伸的一個或多個位元線觸點區域260、在WL方向上夾在兩個相鄰儲存塊203之間並且沿著BL方向延伸的一個或多個字元線觸點區域270、以及在BL方向上夾在兩個相鄰階梯結構(SS)210之間的一個或多個底部選擇閘極(BSG)觸點區域280。
3D儲存設備200還包括外圍區域205,即圍繞儲存平面201的區域。外圍區域205包含許多數字、模擬和/或混合訊號電路以支持儲存器陣列的功能,例如,頁緩衝器、行和列解碼器以及讀出放大器。外圍電路使用有源和/或無源半導體裝置,例如電晶體、二極體、電容器、電阻器等,這對於本領域普通技術人員來說是顯而易見的。例如,在一些實施例中,3D儲存設備200可以包括在外圍區域205中成行排列的多個觸點焊盤220。互連觸點可以用於將3D儲存設備200電互連到提供驅動電力、接收控制訊號、傳送響應訊號等的任何合適設備和/或介面。
注意,圖2中所示的3D儲存設備200中的儲存平面201的布置和每個儲 存平面201中的儲存塊203的布置僅用作示例,其不限制本公開內容的範圍。
圖3示出了包括3D儲存設備的示例性位元線觸點區域260的圖2中所示的區域230的放大平面圖。圖4示出了包括3D儲存設備的示例性字元線觸點區域270的圖2中所示的區域240的放大平面圖。圖5、7和8示出了根據本公開內容的各種實施例的3D儲存設備的包括示例性BSG觸點區域280的圖2中所示的區域250的示例性配置的放大平面圖。圖6示出如圖5中所示的示例性三維(3D)儲存器陣列結構的一部分的透視圖。
參考圖3,示出了根據本公開內容的一些實施例的包括3D儲存設備的示例性位元線觸點區域的圖2中所示的區域230的放大平面圖。3D儲存設備的區域300(即,如圖2中所示的區域230)可以包括兩個溝道結構區域310(例如,在BL方向上的相鄰儲存塊203)和位元線觸點區域(例如,如圖2中所示的位元線觸點區域260)。
溝道結構區域310可以包括溝道結構312的陣列,每個溝道結構是包括多個堆疊的儲存單元的NAND串的一部分。溝道結構312延伸穿過多個導電層和介電質層對,所述導電層和介電質層對沿著垂直於平面圖的方向排列,該方向也被稱為垂直於3D儲存設備的基底表面的方向和/或“垂直方向”。
多個導體/介電質層對在本文中也稱為“交替的導體/介電質疊層”。交替的導體/介電質疊層中的導體/介電質層對的數量(例如,32、64、96或128)可以設置3D儲存設備中的儲存單元的數量。交替的導體/介電質疊層中的導電層和介電質層在垂直方向上交替。即,除了在交替的導體/介電質疊層的 頂部或底部處的那些之外,每個導電層可以由兩側上的兩個介電質層鄰接,並且每個介電質層可以由兩側上的兩個導電層鄰接。導電層可以包括導電材料,所述導電材料包括但不限於鎢(W)、鈷(Co)、銅(Cu)、鋁(Al)、多晶矽(polysilicon)、摻雜矽、矽化物或其任何組合。介電質層可以包括介電材料,包括但不限於氧化矽、氮化矽、氮氧化矽或其任何組合。在一些實施例中,導電層包括金屬層,例如W,而介電質層包括氧化矽。
在一些實施例中,位元線觸點區域333可以在BL方向上夾在兩個相鄰溝道結構區域310之間,並且可以在WL方向上延伸。位元線觸點區域333可以由阻擋結構324結合3D儲存設備的位元線觸點區域333的邊緣來限定。多個觸點結構326可以形成在位元線觸點區域333中,位元線觸點區域被阻擋結構324和位元線觸點區域333的邊緣橫向包圍。在一些實施例中,位元線觸點區域333中的多個觸點結構326可以穿透交替的介電質疊層,用於開關布線並用於減小位元線電容。
交替的介電質疊層可以包括沿著垂直於3D儲存設備的基底表面的垂直方向排列的多個介電質層對。每個介電質層對包括第一介電質層和不同於第一介電質層的第二介電質層。在一些實施例中,第一介電質層和第二介電質層各自包括氮化矽和氧化矽。交替的介電質疊層中的第一介電質層可與上文所述的交替的導體/介電質疊層中的介電質層相同。在一些實施例中,交替的介電質疊層中的介電質層對的數量與交替的導體/介電質疊層中的導體/介電質層對在垂直方向上的數量相同。
如圖3中所示,每個溝道結構區域310可以包括各自在WL方向上延伸 的一個或多個狹縫結構314。至少一些狹縫結構314可以用作溝道結構區域310中的溝道結構312的陣列的公共源極觸點。狹縫結構314還可以將3D儲存設備分為多個儲存器指狀物342和/或虛設儲存器指狀物346。在一些實施例中,每個儲存器指狀物342可以共享下文將詳細描述的底部選擇閘極(BSG)。頂部選擇閘極(TSG)切割結構355可以設置在每個儲存器指狀物342的中間以將每個儲存器指狀物342的頂部選擇閘極(TSG)分為兩個部分。頂部選擇閘極切割結構355可以在上部交替的介電質疊層中延伸,並可以包括介電材料,所述介電材料包括但不限於氧化矽、氮化矽、氮氧化矽或其任何組合。
在一些實施例中,在溝道結構區域310的一部分中,例如在BL方向上與位元線觸點區域333相鄰的虛設儲存器指狀物346中,形成虛設溝道結構322。虛設溝道結構322可以為儲存器陣列結構提供機械支撐。虛設儲存器指狀物346不具有儲存功能,因此在虛設儲存器指狀物346中不形成位元線和相關互連線。
參考圖4,示出了根據本公開內容的一些實施例的包括3D儲存設備的示例性字元線觸點區域的圖2中所示的區域240的放大平面圖。3D儲存設備的區域400(即,如圖2中所示的區域240)可以包括溝道結構區域420、字元線觸點區域472(例如,如圖2中所示的字元線觸點區域270)和頂部選擇閘極(TSG)階梯區域430。
如圖4所示,溝道結構區域420可以包括溝道結構412的陣列,每個溝道結構包括多個堆疊的儲存單元。TSG階梯區域430可以設置在溝道結構區域420的側面上並且在平面圖中與字元線觸點區域472相鄰。即,字元線觸點區域472在WL方向上夾在兩個TSG階梯區域430之間。字元線觸點區域472可以由阻擋結 構474限定。用於開關布線並用於減小字元線電容的多個觸點結構可以形成在字元線觸點區域472中,字元線觸點區域472被阻擋結構474橫向包圍。
在一些實施例中,虛設溝道結構422形成在字元線觸點區域472外部,以提供對儲存器陣列結構的機械支撐。應當理解,虛設溝道結構422可以形成在字元線觸點區域472外部的任何區域中,例如,在TSG階梯區域430中,並且沿著與TSG階梯區域430相鄰的溝道結構區域420的邊緣。應注意,溝道結構412和虛設溝道結構422穿透交替的導體/介電質疊層,而觸點結構穿透交替的介電質疊層。
在一些實施例中,各自在WL方向上延伸的多個狹縫結構414可以將3D儲存設備分成多個儲存器指狀物442。至少一些狹縫結構414可以用作溝道結構區域420中的溝道結構412的陣列的公共源極觸點。狹縫結構414的側壁可以包括介電材料,所述介電材料包括但不限於氧化矽、氮化矽、氮氧化矽或其任何組合。狹縫結構414的填充材料可以包括導電材料,所述導電材料包括但不限於鎢(W)、鈷(Co)、銅(Cu)、鋁(Al)、多晶矽(polysilicon)、摻雜矽、矽化物或其任何組合。
頂部選擇閘極切割結構455可以設置在每個儲存器指狀物442的中間以將儲存器指狀物的頂部選擇閘極(TSG)分成兩個部分。頂部選擇閘極切割結構455可以包括介電材料,所述介電材料包括但不限於氧化矽、氮化矽、氮氧化矽或其任何組合。
在一些實施例中,字元線觸點區域472可以在WL方向上夾在兩個相 鄰的TSG階梯區域430之間,並且可以在BL方向上延伸。字元線觸點區域472可以由阻擋結構474結合3D儲存設備的字元線觸點區域472的邊緣來限定。多個觸點結構476可以形成在字元線觸點區域472中,字元線觸點區域被阻擋結構474和字元線觸點區域472的邊緣橫向包圍。在一些實施例中,字元線觸點區域472中的多個觸點結構476可以穿透交替的介電質疊層,用於開關布線並用於減小字元線電容。
應注意,BL方向上的阻擋結構474可以穿過狹縫結構414。這樣,儲存器指狀物442中的溝道結構區域420中的導電層可以被阻擋結構474電阻擋。因此,字元線觸點區域472兩側上的儲存器指狀物442中的兩個溝道結構區域420之間的溝道結構412的頂部選擇閘極(TSG)不透過交替的導體/介電質疊層中的頂部導電層互連。為了在字元線觸點區域472的兩側上的每個儲存器指狀物442中的兩個溝道結構區域420之間互連溝道結構412的頂部選擇閘極,TSG階梯區域430可以包括形成在階梯結構上(例如,在頂部二到四層內)的一條或多條導電線(圖4中未示出),用於與每個儲存器指狀物442中的由字元線觸點區域472隔開的兩個溝道結構區域420之間的溝道結構412的頂部選擇閘極(TSG)進行電互連。
例如,被字元線觸點區域472切斷的狹縫結構414可以延伸到TSG階梯區域430中。交替的導體/介電質疊層中的頂部兩個導電層可以具有單側階梯結構。具有觸點的一個或多個互連層可以形成在單側階梯結構上,以提供由字元線觸點區域472隔開的溝道結構區域420中和儲存器指狀物442中的溝道結構412的頂部選擇閘極之間的電互連。
參考圖5,示出了根據本公開內容的一些實施例的包括3D儲存設備的示例性BSG觸點區域的圖2中所示的區域250的放大平面圖。圖6示出了根據本公開內容的一些實施例的如圖5所示的3D儲存設備的區域的透視圖。
如圖5所示,3D儲存器結構500(即,如圖2所示的區域250)可以包括溝道結構區域520、階梯電橋510、中心階梯區域530和至少一個底部選擇閘極(BSG)觸點區域580。
在一些實施例中,3D儲存器結構500的至少兩個中心階梯區域530可以被布置在儲存塊203的中間,如圖2、5和6所示。多個階梯533可以沿WL方向排列,每個階梯533沿BL方向延伸。溝道結構區域520可以沿BL方向布置在中心階梯區域530的兩側。階梯電橋510可以沿WL方向布置在中心階梯區域530的一側。至少一個BSG觸點區域580可以在WL方向上夾在至少兩個中心階梯區域530之間。
參考圖6,3D儲存器結構600包括基底610和交替的導體/介電質疊層620,該疊層包括設置在基底610上的多個交替的導電層和介電質層。在一些實施例中,基底610可提供用於形成後續結構的平臺。在一些實施例中,在垂直方向(例如,與基底610的正面612正交的z方向)上形成後續結構。在圖6中,x和y方向沿著平行於基底610的正面612的平面,並且平行於相應的WL和BL方向。
在一些實施例中,基底610可以是具有任何合適的半導體材料的任何合適的半導體基底,所述半導體材料例如單晶、多晶或單晶半導體。例如,基底610可以包括矽、矽鍺(SiGe)、鍺(Ge)、矽覆絕緣體(SOI)、鍺覆絕緣體(GOI)、 砷化鎵(GaAs)、氮化鎵、碳化矽、III-V族化合物或其任何組合。在一些實施例中,基底610可以包括形成在處理晶圓上的半導體材料層,例如玻璃、塑料或另一半導體基底。
在本文中,基底610的正面612也稱為基底610的“主表面”或“頂面”。材料層可以設置在基底610的正面612上。“最頂”或“上”層是最遠離或更遠離基底610的正面612的層。“最底”或“下”層是最靠近或更靠近基底610的正面612的層。
在一些實施例中,交替的導體/介電質疊層620包括彼此垂直交替堆疊的多個導電層623和介電質層625。交替的導體/介電質疊層620可以在平行於基底610的正面612的橫向方向上延伸,而導電層623和介電質層625可以在垂直方向上交替。即,除了在交替的導體/介電質疊層620的底部處的一個之外,每個導電層623可以夾在兩個介電質層625之間,而每個介電質層625可以夾在兩個導電層623之間。導電層623可以各自具有相同厚度或具有不同厚度。類似地,介電質層625可以各自具有相同厚度或具有不同厚度。在一些實施例中,導電層623可以包括導體材料,例如W、Co、Cu、Al、Ti、Ta、TiN、TaN、Ni、摻雜矽、矽化物(例如NiSix、WSix、CoSix、TiSix)或其任何組合。介電質層625可以包括介電材料,例如氧化矽、氮化矽、氮氧化矽或其任何組合。在一些實施例中,介電質層625還可以包括高k介電材料,例如氧化鉿、氧化鋯、氧化鋁、氧化鉭、氧化鑭和/或其任何組合。
在一些實施例中,介電質層625可以具有相同的厚度或具有不同的厚度。介電質層625的示例厚度可以在10nm至500nm的範圍內,優選地為約25nm。 類似地,導電層623可以具有相同的厚度或具有不同的厚度。導電層623的示例厚度可以在從10nm到500nm的範圍內,優選地為約35nm。在一些實施例中,底部導電層680可以具有較大厚度,並可以用作一個或多個底部選擇閘極(BSG)。在一些實施例中,頂部幾個導電層可用作頂部選擇閘極(TSG)。應瞭解,圖6中的導電層623和介電質層625的數量僅用於說明性目的,交替的導體/介電質疊層620中可以包括任何合適數量的層。在一些實施例中,交替的導體/介電質疊層620可以包括除導電層623和介電質層625之外的層,並且可以由不同材料製成和/或具有不同厚度。
在一些實施例中,3D儲存器結構500(圖5中)或600(圖6中)還可以包括垂直堆疊為儲存器串632(也稱為溝道結構,例如圖3和4中的溝道結構312、412)的多個儲存單元640,類似於圖1中的儲存單元(如140-1、140-2和140-3)和儲存器串112。如圖6所示,儲存器串632延伸穿過交替的導體/介電質疊層620,其中,每個儲存器串632可以包括芯部填充膜639、溝道層638和儲存膜637。儲存器串632的中心可以是芯部填充膜639。溝道層638圍繞芯部填充膜639,並且儲存膜637圍繞溝道層638。在一些實施例中,溝道層638包括矽,例如非晶矽、多晶矽或單晶矽。在一些實施例中,儲存膜637是包括穿隧層、儲存層(也稱為“電荷陷阱/儲存層”)和穿隧阻擋層的複合層。每個儲存器串632可以具有圓柱形狀(例如,柱形)。在一些實施例中,溝道層638、穿隧層、儲存層和穿隧阻擋層可以沿著從柱的中心朝向外表面的方向依次排列。穿隧層可以包括氧化矽、氮化矽或其任何組合。穿隧阻擋層可以包括氧化矽、氮化矽、高介電常數(高k)介電質或其任何組合。儲存層可以包括氮化矽、氮氧化矽、矽或其任何組合。在一些實施例中,儲存膜637包括ONO介電質(例如,包括氧化矽的穿隧層、包括氮化矽的儲存層和包括氧化矽的穿隧阻擋層)。
在一些實施例中,導電層623可以充當儲存單元的控制閘極或字元線。如上文所描述,底部導電層680可以包括一個或多個底部選擇閘極(BSG),而頂部一個或多個導電層685可以包括一個或多個頂部選擇閘極(TSG)。如此,每個儲存器串632可以包括在儲存器串632的下端(即,源極端子)處的底部選擇閘極(例如,源極選擇閘極)和在儲存器串632的上端(即,汲極端子)處的頂部選擇閘極(例如,汲極選擇閘極)。如本文所使用,部件(例如,儲存器串632)的“上端”是在垂直方向上更遠離基底610的端部,而部件(例如,儲存器串632)的“下端”是在垂直方向上更靠近基底610的端部。
在一些實施例中,3D儲存器結構500(圖5中)或600(圖6中)可以包括如圖5中所示的中心階梯區域530中的多個階梯533,其中,每個導電層623在水平x方向上以不同長度終止,如圖6中所示。在一些實施例中,中心階梯區域530可以設置在儲存器陣列內的任何位置。在一些實施例中,兩個或更多個中心階梯區域530可以設置在儲存塊203的內部部分中。在一個示例中,兩個或更多個階梯結構210(圖2中)可以放置在儲存塊203的中心。在一些實施例中,溝道結構區域520中的儲存器串(例如,溝道結構)512(圖5中)、632(圖6中)可以沿著BL方向分布在兩個或更多個中心階梯區域530的相對側上。
在一些實施例中,兩個或更多個中心階梯區域530可以包括在WL方向上彼此面對的兩組或更多組階梯533。在一些實施例中,多個階梯觸點538可分別形成在每個階梯533中的導電層623上。應注意,可以以任意適當的方式設計多個階梯觸點538的布置,以實現多條字元線的電連接。在如圖6中所示的一個示例中,階梯觸點538可以與左側中心階梯區域530中的奇數字元線電接觸, 並可以與右側中心階梯區域530中的偶數字元線電接觸。結果,不同字元線上的階梯觸點538之間的最小間隔可以增加(例如,加倍)。因此,可以增加階梯觸點538的製程窗口,並且可以提高製造產量。注意,每個中心階梯區域530可以包括任何合適數量的階梯533和階梯觸點538。如圖5和圖6所示的階梯533和階梯觸點538的布置和數量僅用於說明性目的,而不限制本公開內容的範圍。
在一些實施例中,3D儲存器結構500(圖5中)或600(圖6中)還包括階梯電橋510,其沿著平行於字元線的WL方向延伸(例如,導電層623)。在WL方向上,階梯電橋510在頂部較長而在底部較短,其中,頂部和底部相對於距基底610的距離是垂直的(在z方向上)。階梯電橋510在BL方向上具有小於儲存器指狀物546的寬度的寬度w。階梯電橋510可以連接兩個或更多個中心階梯區域530之間的對應字元線(例如,導電層623)。例如,由同一導電層623形成的不同中心階梯區域530中的字元線可以透過階梯電橋510中的對應導電層電連接。因此,對於每個中心階梯區域530,僅需要具有一組互連金屬線的一組字元線驅動器來尋址每條字元線,其中,每條字元線可以電連接到在任何一個中心階梯區域530中的至少一個階梯觸點(或“字元線觸點結構”)538。
在一些實施例中,階梯電橋510可以形成在交替的導體/介電質疊層620中,並且可以包括多個導電層623和介電質層625。在該示例中,階梯電橋510可以垂直地設置在階梯533上,其中,階梯電橋510的底部可以與底部選擇閘極段586接觸。在一些實施例中,階梯電橋510僅連接中心階梯區域530之間的字元線(導電層623)。在一些實施例中,階梯電橋510還可以連接中心階梯區域530之間的導電層685(頂部選擇閘極)。
在不同於圖6所示的示例的一些其他實施例中,階梯電橋510可以包括不同於導電層623的導電材料。在不同於圖6所示的示例的一些其他實施例中,階梯電橋510可以包括不同於導電層623的厚度。在一些實施例中,階梯電橋510可以具有比儲存器指狀物546的寬度小的寬度w。
階梯電橋510可以設置在相鄰的中心階梯區域530之間的任何合適的位置。圖5和6示出了階梯電橋510設置在儲存器指狀物546上或儲存塊203的邊緣附近的配置。在圖中未示出的一些其他實施例中,階梯電橋510可以設置在另一個儲存器指狀物中,例如,在儲存器指狀物544或542中。
在一些實施例中,3D儲存器結構500(圖5中)或600(圖6中)進一步包括多個底部選擇閘極(BSG)切割結構595(圖5中),其可以將底部導電層680分離成彼此電隔離的多個底部選擇閘極段(例如,圖5、6中的582、584、586,也稱為後選擇閘極)。BSG切割結構595可以包括用於電絕緣目的任何適當的介電材料,包括但不限於氧化矽、氮化矽、氮氧化矽或其任何組合。
透過引入BSG切割結構595,3D儲存設備的儲存塊(例如,圖2中的儲存塊203和圖5中的3D儲存器結構500)可以由於BSG段與相鄰介電質層之間的減小的寄生電容和耦合效應而具有改進的底部選擇電晶體(BST)。此外,劃分的BSG段允許擦除特定子塊而不是整個儲存塊。因此,可以顯著地減少擦除時間和數據傳輸時間,並且還可以提高數據儲存效率。
為了減小電阻,在一些實施例中,不能將階梯電橋510的寬度w設計得太小。然而,接近儲存塊(例如,儲存器指狀物546)的寬度的階梯電橋510 的較寬寬度w可能導致一個或多個BSG段(例如,儲存器指狀物546中的BSG段586)的大部分區域被階梯電橋510覆蓋,從而導致用於在一個或多個BSG段上形成BSG觸點的小製程窗口。為了解決這個問題,本公開內容提供了新的設計方案來修改BSG段的形狀,以允許用於形成BSG觸點的足夠的製程窗口,如下面詳細描述的。
參考圖5和6,BSG切割結構595可以將底部導電層680(圖6中)分為多個底部選擇閘極(例如,BSG段582、584、586)。在如圖5所示的一些實施例中,BSG切割結構595可以與狹縫結構514的位置一致地定位。在圖中未示出的一些其他實施例中,BSG切割結構595可以位於與狹縫結構514不同的位置。在一些實施例中,BSG切割結構595可以沿著WL方向在溝道結構區域520和中心階梯區域530中延伸,並且可以在至少一個底部選擇閘極(BSG)觸點區域580中包括一個或多個非線性區段。注意,BSG切割結構595的一個或多個非線性區段可以包括如圖5所示的沿著不同方向(例如,WL方向和BL方向)延伸的一個或多個直線部分,或者一個或多個彎曲部分(未示出),或者任何其它適當的非線性部分。
透過引入BSG切割結構595的一個或多個非線性區段,BSG段582、584、586中的每一個可以在BSG觸點區域280中具有足夠的觸點區域,以用於構造一個或多個BSG觸點。例如,被階梯電橋510部分覆蓋的BSG段586可以包括BL方向上沒有被階梯電橋510覆蓋的延伸區域,從而提供用於構造一個或多個BSG觸點566的足夠的觸點區域。因此,階梯電橋510的寬度w可以增加到接近儲存器指狀物546的寬度以確保兩個中心階梯區域530上的字元線之間的減小的電阻和更好的電連接。
類似於圖3和圖4,在一些實施例中,3D儲存器結構500還可以包括一個或多個頂部選擇閘極(TSG)切割結構555,如圖5中所示。TSG切割結構555可以設置在每個儲存器指狀物的中間以將儲存器指狀物的頂部選擇閘極(TSG)分為兩個部分。頂部選擇閘極切割結構555可以包括用於電絕緣目的任何合適的介電材料,包括但不限於氧化矽、氮化矽、氮氧化矽或其任何組合。
在一些實施例中,3D儲存器結構500(圖5中)或600(圖6中)還包括多個觸點結構,包括在中心階梯區域530中的階梯觸點538(例如,字元線觸點、TSG觸點)和在一個或多個BSG觸點區域580中的BSG觸點566、564、562。頂部選擇閘極、字元線和底部選擇閘極可以與多個觸點結構(階梯觸點538、BSG觸點562、564、566)電連接。透過觸點結構(階梯觸點538、BSG觸點562、564、566),在後段制程形成的金屬互連線可以電連接到每個導電層623、680、685。因此,透過使用中心階梯結構,3D NAND儲存器中的每個儲存單元可以由對應的字元線控制以執行讀取、寫入或擦除操作。在一些實施例中,觸點結構可以包括任何合適的導電材料,例如W、Ti、TiN、Cu、TaN、Al、Co、Ni或其任何組合。
注意,圖6中的3D儲存器結構600可以包括覆蓋一個或多個中心階梯區域530和一個或多個BSG觸點區域580的絕緣結構(為了簡單起見在圖6中省略)。絕緣結構可以包括任何合適的介電材料,例如氧化矽、氮化矽、氮氧化矽、SiOCN或其任何組合。中心階梯區域530中的階梯觸點538(例如,字元線觸點、TSG觸點),以及BSG觸點566、564、562可以穿透絕緣結構以分別接觸對應的導電層。
僅為了說明的目的,圖5示出了兩個BSG切割結構595和三個BSG段582、584、586。應注意,BSG切割結構和BSG段可以具有任何合適的數量和任何合適的形狀,這在本公開內容中不受限制。此外,僅為了說明目的和簡單,圖5示出了連接到BSG段586的四個BSG觸點566、連接到BSG段584的四個BSG觸點564、以及連接到BSG段582的六個BSG觸點562,而圖6示出了連接到BSG段586的一個BSG觸點566、連接到BSG段584的一個BSG觸點564、以及連接到BSG段582的一個BSG觸點562。應注意,BSG觸點可以具有任何合適的數量並且可以被布置在任何合適的位置處,這在本公開內容中不受限制。
圖7和8示出了根據本公開內容的一些其他實施例的包括3D儲存設備的示例性BSG觸點區域280的圖2中所示的示例性區域250的放大平面圖。
與圖5所示的3D儲存器結構500相比,圖7所示的3D儲存器結構700可以具有不同設計的BSG切割結構795。具體而言,BSG切割結構795可以將BSG段沿著WL方向分為分離的子部分。例如,儲存器指狀物544中的BSG段784被BSG切割結構795分離為兩個子部分784L和784R,而BSG段786的延伸部分夾在BSG段784的兩個子部分784L和784R之間。在這種設計中,在3D儲存器結構500上方形成的圖案化導電層(圖7中未示出)中的導線可以用於電連接到BSG段784的兩個子部分784L和784R。
參考圖8,3D儲存器結構800可以包括六個儲存器子指狀物841-846。相鄰狹縫結構814或816之間的每個儲存器指狀物可以包括由TSG切割結構(圖8中未示出)界定的兩個子指狀物。階梯電橋810的寬度可以大於儲存器子指狀物 841的寬度。在這樣的示例中,BSG切割結構895可以沿著WL方向將多個BSG段分為分離的子部分。例如,儲存器子指狀物842中的BSG段882被BSG切割結構895分離為子部分882L和882R,並且儲存器子指狀物843中的BSG段883也被BSG切割結構895分離為子部分883L和883R。BSG段881的延伸部分夾在BSG段882的兩個子部分882L和882R之間,BSG段882的兩個子部分882L和882R夾在BSG段883的兩個子部分883L和883R之間。應注意,狹縫結構814包括開口,該開口允許BSG段881和882的延伸部分延伸到儲存器子指狀物843中。在這樣的設計中,在3D儲存器結構500上方形成的圖案化導電層(圖8中未示出)中的導線可以用於分別在BSG段882的兩個子部分882L和882R之間以及在BSG段883的兩個子部分883L和883R之間電連接。
圖9示出了根據本公開內容的一些實施例的用於形成所公開的3D儲存器結構的示例性製造過程900。應當理解,製造過程900中所示的過程步驟不是詳盡無遺的,並且在任何所示過程步驟之前、之後或之間也可以執行其它過程步驟。在一些實施例中,可以省略示例性製造過程900的一些過程步驟或可以包括為簡單起見此處未描述的其他過程步驟。在一些實施例中,可以以不同順序和/或變化來執行製造過程900的過程步驟。
圖10A-10C、11A-11B、12A-12B、13A-13B、14A-14C、15A-15B、16、17A-17B和18是根據本公開內容的一些實施例的3D儲存設備在各個過程步驟的截面圖或俯視圖。
如圖9所示,製造過程900開始於過程步驟S910,其中,可以在基底1010上的底部介電質層對1029中形成一個或多個底部選擇閘極(BSG)切割結 構1033。圖10A和10B分別示出了根據本公開內容的一些實施例的示例性結構1000沿x方向和y方向的截面圖。圖10C示出了結構1000的俯視圖。
圖10A和10B中的橫截面沿著BB'和AA'線。x方向和y方向沿著WL方向和BL方向,如圖1-8所示。結構1000包括設置在基底1010上的底部介電質層對1029。底部介電質層對1029包括介電質層1021(也稱為第一介電質層)和不同於介電質層1021的犧牲層1023(也稱為第二介電質層)。
介電質層1021可以類似於上文參考圖6所論述的介電質層。在一些實施例中,介電質層1021包括任何合適的絕緣材料,例如,氧化矽、氮氧化矽、氮化矽、TEOS或具有F-、C-、N-和/或H-結合的氧化矽。介電質層1021也可以包括高k介電材料,例如氧化鉿、氧化鋯、氧化鋁、氧化鉭或氧化鑭膜。在一些實施例中,介電質層1021可以是上述材料的任何組合。
在基底1010上形成介電質層1021可以包括任何合適的沉積方法,例如化學氣相沉積(CVD)、物理氣相沉積(PVD)、電漿輔助CVD(PECVD)、快速熱化學氣相沉積(RTCVD)、低壓化學氣相沉積(LPCVD)、濺射、金屬有機化學氣相沉積(MOCVD)、原子層沉積(ALD)、高密度電漿CVD(HDP-CVD)、熱氧化、氮化、任何其它合適的沉積方法和/或其組合。
在一些實施例中,犧牲層1023包括不同於介電質層1021的任何合適的材料,並且可以相對於介電質層1021選擇性地去除。例如,犧牲層1023可以包括氧化矽、氮氧化矽、氮化矽、TEOS、多晶矽、多晶鍺、多晶鍺矽及其任何組合。在一些實施例中,犧牲層1023還包括非晶半導體材料,例如非晶矽或非 晶鍺。犧牲層1023可以使用與介電質層1021類似的技術來設置,例如CVD、PVD、ALD、熱氧化或氮化,或其任何組合。
在一些實施例中,介電質層1021可以是氧化矽,犧牲層1023可以是氮化矽。介電質層1021和犧牲層1023的厚度範圍可以在10nm至500nm的範圍內。
在一些實施例中,一個或多個BSG切割結構1033可以形成在底部介電質層對1029中,垂直地延伸到基底1010中。BSG切割結構1033可以具有範圍從50nm到500nm的寬度t1。形成BSG切割結構1033包括但不限於在底部介電質層對1029中形成延伸到基底1010中的一個或多個溝槽,以及用絕緣材料填充一個或多個溝槽,所述絕緣材料例如為氧化矽、氮化矽、氮氧化矽、SiOCN或其任何組合。在一些實施例中,形成BSG切割結構1033還包括使用化學機械拋光(CMP)形成共面表面。
在一些實施例中,外圍裝置(未示出)可以形成在基底1010的正面上的外圍區域205(圖2中)中。在一些實施例中,有源裝置區域(未示出)也可以形成在基底1010的正面上的儲存塊203(圖2中)中。在一些實施例中,基底1010還可以包括在正面上的絕緣膜(圖10A和10B中未示出)。絕緣膜可以由與底部介電質層對1029相同或不同的材料製成。
外圍裝置可以包括任何合適的半導體裝置,例如,金屬氧化物半導體場效應電晶體(MOSFET)、二極體、電阻器、電容器等。外圍裝置可以用於支持儲存器核心的儲存功能的數字、模擬和/或混合訊號電路的設計中,例如行 列解碼器、驅動器、頁緩衝器、讀出放大器、定時和控制。
儲存塊中的有源裝置區域被隔離結構(例如淺溝槽隔離)所包圍。根據儲存塊中陣列裝置的功能,可在有源裝置區域中形成摻雜區域,例如p型摻雜阱和/或n型摻雜阱。
如圖10C所示,在一些實施例中,3D儲存設備的結構1000可以包括一個或多個溝道結構區域1042、一個或多個中心階梯區域1046、至少一個階梯電橋區域1044和至少一個BSG觸點區域1048。在一些實施例中,溝道結構區域1042可沿x方向布置在中心階梯區域1046的相對側上。階梯電橋區域1044可以在y方向上布置在中心階梯區域1046的一側上。BSG觸點區域1048可以沿著x方向夾在中心階梯區域1046之間。溝道結構區域1042可以用於在隨後的過程中形成儲存器串。中心階梯區域1046可以用於在隨後的過程中形成階梯結構。階梯電橋區域1044可以用於在隨後的過程中形成階梯電橋結構。BSG觸點區域1048可以用於在隨後的過程中形成BSG觸點。
BSG切割結構1033可以將底部介電質層對1029中的犧牲層1023分離成多個犧牲層段,這些犧牲層段對應於將在隨後的過程中形成的多個BSG段(例如,如圖5所示的BSG段582、584、586)。在如圖10所示的一些實施例中,BSG切割結構1033可以在溝道結構區域1042和中心階梯區域1046中沿著x方向延伸,並且可以在至少一個底部選擇閘極(BSG)觸點區域1048中包括一個或多個非線性區段。應注意,BSG切割結構1033的一個或多個非線性區段可以包括如圖10C所示的沿著不同方向(例如,x方向和y方向)延伸的一個或多個直線部分,或者一個或多個彎曲部分(未示出),或者任何其他合適的非線性部分。
應注意,每個儲存塊(例如,圖2中的儲存塊203)可以包括任何合適數量的BSG切割結構1033。BSG切割結構1033的設計可以包括任何合適的圖案和/或形狀,以將底部介電質層對1029中的犧牲層1023分成多個犧牲層段。在一個示例中,圖10C示出了兩個BSG切割結構1033,且兩個BSG切割結構1033的圖案與如圖5和6中所示的兩個BSG切割結構595的圖案相同。在一些其它示例中,BSG切割結構1033的數量和圖案也可分別參考如圖7和8中所示的BSG切割結構795和895。圖中所示的BSG切割結構的數量和圖案僅用於說明性目的,而不限制本公開內容的範圍。
返回參考圖9,方法可以進行到步驟S920,其中,可以在基底1010上設置多個介電質層對1129,以形成交替的介電質疊層1164。圖11A和11B分別示出了根據本公開內容的一些實施例的示例性結構1100沿x和y方向的截面圖。交替的介電質疊層1164在平行於基底1010的正面的橫向方向上延伸。介電質層1021和犧牲層1023可以在交替的介電質疊層1164中彼此垂直交替堆疊。即,每個犧牲層1023可以夾在兩個介電質層1021之間,且每個介電質層1021可以夾在兩個犧牲層1023之間(除了最底層和最頂層之外)。
交替的介電質疊層1164的形成可以包括將介電質層1021設置為各自具有相同的厚度或具有不同的厚度。介電質層1021的示例厚度可以在10nm至500nm的範圍內,優選地為約25nm。類似地,犧牲層1023可以各自具有相同的厚度或具有不同的厚度。犧牲層1023的示例厚度可以在10nm至500nm的範圍內,優選地為約35nm。應當理解,圖11中的介電質層對1129的數量僅用於說明性目的,交替的介電質疊層1164中可以包括任何合適數量的層。
在一些實施例中,交替的介電質疊層1164可以包括除了介電質層1021和犧牲層1023之外的層,並且可由不同材料製成和/或具有不同厚度。
返回參考圖9,製造過程900可以進行到步驟S930,其中,可以在交替的介電質疊層1164的上部部分中形成一個或多個頂部選擇閘極(TSG)切割結構1222。圖12A示出了根據本公開內容的一些實施例的示例性結構1200沿y方向的截面圖。圖12B示出了結構1200的俯視圖,其中,圖12A中的橫截面沿著圖12B中的線AA'。在一些實施例中,一個或多個TSG切割結構1222可以垂直延伸穿過一個或多個介電質層對1129。TSG切割結構1222可以在x方向上橫向延伸,其寬度t2在50nm至500nm的範圍內。形成TSG切割結構1222包括但不限於在交替的介電質疊層1164的上部部分中的一個或多個介電質層對1129中形成一個或多個溝槽,以及用絕緣材料填充一個或多個溝槽,所述絕緣材料諸如氧化矽、氮化矽、氮氧化矽、SiOCN或其任何組合。在一些實施例中,形成TSG切割結構1222還包括使用化學機械拋光(CMP)形成共面表面。
返回參考圖9,製造過程900可以進行到步驟S940,其中,可以在階梯電橋區域1044中的交替的介電質疊層1164上設置硬遮罩1378。圖13A示出了在過程步驟S940處的示例性結構1300的截面圖,其中,圖13B示出了結構1300的俯視圖。圖13A中的橫截面圖在沿著線CC'的y方向上。
在一些實施例中,硬遮罩1378可以包括介電材料,例如氧化矽、氮氧化矽、氮化矽、TEOS、含矽抗反射塗層(SiARC)、非晶矽、多晶矽、高k介電材料或其任何組合。硬遮罩1378可以用於在隨後的步驟中形成階梯電橋。硬 遮罩1378可以限定階梯電橋的寬度和長度。硬遮罩1378可以包括足夠大的厚度,以在後續蝕刻製程期間保護下面的交替的介電質疊層1164。可以透過使用CVD、ALD、PVD、熱氧化或氮化、蒸發、濺射、旋塗或任何合適的薄膜沉積製程來將硬遮罩1378設置在交替的介電質疊層1164上。然後可以使用光刻製程和諸如反應離子蝕刻(RIE)的蝕刻製程來圖案化硬遮罩。
返回參考圖9,製造過程900可以進行到步驟S950,其中,可以分別在兩個中心階梯區域1046中形成第一介電質階梯結構1470和第二介電質階梯結構1472,其中,第一和第二介電質階梯結構可以透過介電質電橋1478連接。圖14A和14B分別示出了根據本公開內容的一些實施例的示例性結構1400沿x和y方向的截面圖。圖14C示出了結構1400的俯視圖,其中,圖14A和14B中的截面沿著線BB'和線CC'。在一些實施例中,階梯結構210可以設置在交替的介電質疊層1164的中間。
在第一介電質階梯結構1470和第二介電質階梯結構1472中,階梯1476(也稱為“階梯梯級”或“階梯層”)指的是在平行於基底1010的正面的表面中具有相同橫向尺寸的層堆疊。每個階梯1476終止於比下面的階梯更短的長度。在一些實施例中,每個階梯1476包括一個介電質層對1129。在一些實施例中,每個階梯1476可以包括兩個或更多個介電質層對1129。
第一介電質階梯結構1470和第二介電質階梯結構1472可以透過使用圖案化遮罩(未示出)在交替的介電質疊層1164上應用重複的蝕刻修整製程來形成。在一些實施例中,圖案化遮罩可以包括光致抗蝕劑或碳基聚合物材料。在一些實施例中,圖案化遮罩還可以包括硬遮罩,例如氧化矽、氮化矽、TEOS、 含矽抗反射塗層(SiARC)、非晶矽、多晶矽或其任何組合。
蝕刻修整製程包括蝕刻製程和修整製程。在蝕刻製程期間,可以去除具有暴露表面的每個階梯1476的一部分。或者被上層階梯梯級覆蓋或者被圖案化遮罩覆蓋的每個階梯1476的剩餘部分不被蝕刻。蝕刻深度是階梯1476的厚度。在一些實施例中,階梯1476的厚度是一個介電質層對1129的厚度。用於介電質層1021的蝕刻製程可以具有高於犧牲層1023的選擇性,和/或反之亦然。因此,下面的介電質層對1129可以用作蝕刻停止層。透過切換每層的蝕刻製程,可以在一個蝕刻循環期間蝕刻階梯1476。結果,在每個蝕刻修整循環期間形成一個階梯1476。
在一些實施例中,可以使用非等向性蝕刻(例如反應離子蝕刻(RIE))或其它乾式蝕刻製程來蝕刻階梯1476。在一些實施例中,介電質層1021是氧化矽。在該示例中,氧化矽的蝕刻可以包括使用氟基氣體的RIE,例如,碳-氟(CF4)、六氟乙烷(C2F6)、CHF3或C3F6和/或任何其它合適的氣體。在一些實施例中,氧化矽層可以透過濕化學物質去除,例如氫氟酸或氫氟酸和乙二醇的混合物。在一些實施例中,可以使用定時蝕刻方法。在一些實施例中,犧牲層1023是氮化矽。在該示例中,氮化矽的蝕刻可以包括使用O2、N2、CF4、NF3、Cl2、HBr、BCl3和/或其組合的RIE。用於去除單層堆疊的方法和蝕刻劑不應受本公開內容的實施例限制。
修整製程包括在圖案化遮罩上應用合適的蝕刻製程(例如,等向性乾式蝕刻或濕式蝕刻),使得可以將圖案化遮罩橫向拉回。橫向拉回尺寸確定第一介電質階梯結構1470和第二介電質階梯結構1472的每個階梯的橫向尺寸。在 圖案化遮罩修整之後,暴露了最頂部階梯1476的一部分,而最頂部階梯1476的另一部分保持被圖案化遮罩覆蓋。蝕刻修整製程的下一循環從蝕刻製程重新開始。
在一些實施例中,圖案化遮罩修整製程可以包括乾式蝕刻,例如使用O2、Ar、N2等的RIE。
在一些實施例中,最頂部階梯1476可以由介電質層1021覆蓋。在一些實施例中,最頂部階梯1476還可以由其它介電材料覆蓋。可以將去除介電質層1021和/或其它介電材料的過程步驟添加到每個蝕刻修整循環的蝕刻製程,以形成第一介電質階梯結構1470和第二介電質階梯結構1472。
在一些實施例中,介電質電橋1478可以與第一介電質階梯結構1470和第二介電質階梯結構1472同時形成,其中,介電質電橋1478可以由硬遮罩1378限定。在蝕刻修整製程期間,交替的介電質疊層1164在硬遮罩1378下方的部分可以受保護且不被蝕刻。結果,第一介電質階梯結構1470和第二介電質階梯結構1472中的介電質層1021和犧牲層1023可以透過用於每個階梯1476的介電質電橋1478連接。
在一些實施例中,在蝕刻修整製程之後,底部介電質層對1029中的犧牲層1023可以在BSG觸點區域1048中暴露。在一些實施例中,在過程步驟S950之後,可以去除用於蝕刻修整製程的硬遮罩1378和圖案化遮罩。
返回參考圖9,製造過程900可以進行到步驟S960,其中,根據本公 開內容的一些實施例,可以在溝道結構區域1042中的交替的介電質疊層1164中形成多個儲存器串1512(也稱為“溝道結構”)。圖15A示出了在過程步驟S960處的示例性結構1500的截面圖。圖15B示出了結構1500的俯視圖。圖15A中的截面圖在沿著圖15B中所示的線BB'的x方向上。儲存器串1512類似於上面參考圖1和6討論的儲存器串112、632。
在一些實施例中,在形成多個儲存器串1512之前,可以將絕緣層1582設置在第一介電質階梯結構1470和第二介電質階梯結構1472上方。絕緣層1582可以包括任何合適的絕緣體,例如旋塗玻璃、氧化矽、諸如摻碳氧化物(CDO或SiOC或SiOC:H)或摻氟氧化物(SiOF)之類的低k介電材料等。可以透過CVD、PVD、濺射、旋塗等設置絕緣層1582。在一些實施例中,可以執行平坦化製程,例如RIE回蝕或化學機械拋光(CMP),以形成與基底1010的表面330f平行的共面表面。
為了形成多個儲存器串1512,可以首先在交替的介電質疊層1164中形成多個溝道孔,穿透整個交替的介電質疊層1164並延伸到基底1010中。
在形成溝道孔之後,可以將儲存膜1537設置在每個溝道孔的側壁上。在一些實施例中,儲存膜1537可以是包括穿隧層、儲存層(也稱為“電荷陷阱/儲存層”)和穿隧阻擋層的複合層。接著,可以在溝道孔內部設置溝道層1535和芯部填充膜1533。溝道層1535覆蓋溝道孔內部的儲存膜1537的側壁。溝道層1535可以是任何合適的半導體材料,例如矽。芯部填充膜1533可以是任何合適的絕緣體,例如氧化矽、氮化矽、氮氧化矽、旋塗玻璃、硼或磷摻雜的氧化矽、碳摻雜的氧化物(CDO或SiOC或SiOC:H)、摻氟氧化物(SiOF)或其任 何組合。
在一些實施例中,也可以在交替的介電質疊層1164中形成虛設儲存器串(例如,圖3和圖4中的虛設溝道結構322、422),與溝道結構區域1042中和/或中心階梯區域1046中的儲存器串1512相鄰。雖然儲存器串1512可以用於儲存器儲存,但是虛設儲存器串可以用於提供結構支持並且改善製造期間的製程均勻性。在一些實施例中,虛設儲存器串也可以包括芯部填充膜1533並可以使用與儲存器串1512類似的技術來形成。
返回參考圖9,製造過程900可以進行到步驟S970,其中,可以透過用導電層1625替換圖15A中的交替的介電質疊層1164中的犧牲層1023來形成交替的導電層和介電質層的交替的導體/介電質疊層1664。圖16示出了根據本公開內容的一些實施例的示例性結構1600的截面圖。交替的導體/介電質疊層1664與先前參考圖6討論的交替的導體/介電質疊層620相似。在用導電層1625替換犧牲層1023之後,可以在中心階梯區域1046中形成階梯結構1670和1672。
交替的導電層和介電質層的交替的導體/介電質疊層1664包括夾在介電質層1021之間的導電層1625。在結構1600中,每個階梯1676包括導電和介電質層對1629。在一些其它實施例中,每個階梯1676可以包括兩個或更多導電和介電質層對1629,每個導電和介電質層對具有一個導電層1625和一個介電質層1021。
為了形成階梯結構1670和1672,可以在介電質層1021上方選擇性地去除圖15A中的交替的介電質疊層1164中的犧牲層1023以形成多個水平隧道。犧 牲層1023的選擇性蝕刻可以包括濕式或乾式化學蝕刻。然後,可以在水平隧道中設置導電層1625。
導電層1625可以包括適合於閘電極的任何合適的導電材料,例如鎢(W)、鋁(Al)、銅(Cu)、鈷(Co)、鈦(Ti)、鉭(Ta)、氮化鈦(TiN)、氮化鉭(TaN)和/或其任何組合。可以透過CVD、PVD、ALD、濺射、蒸發等來設置導電材料。在一些實施例中,導電層1625也可以是多晶半導體,諸如多晶矽、多晶鍺、多晶鍺矽和/或其組合。在一些實施例中,多晶材料可以與任何合適類型的摻雜劑結合,例如硼、磷或砷。在一些實施例中,導電層1625也可以是非晶半導體。
在一些實施例中,閘極介電質層(未示出)可以在導電層1625之前設置在水平隧道中,以減小相鄰字元線(閘電極)之間的洩漏電流和/或減小閘極和溝道之間的洩漏電流。閘極介電質層可以包括氧化矽、氮化矽、氮氧化矽和/或其任何合適的組合。閘極介電質層也可以包括高k介電材料,例如氧化鉿、氧化鋯、氧化鋁、氧化鉭、氧化鑭和/或其任何組合。可以透過一種或多種合適的沉積製程(例如CVD、PVD和/或ALD)來設置閘極介電質層。
導電層1625在與儲存器串1512的交叉處用作閘電極。應注意,在BSG觸點區域1048中暴露的底部導電和介電質層對中的導電層1625可以包括由BSG切割結構1033分離的多個段,如圖15B所示。將在BSG觸點區域1048中暴露的底部導電和介電質層對中的導電層1625的多個段用作如上結合圖5和6所描述的BSG段582、584、586。
在一些實施例中,可以在中心階梯區域1046和BSG觸點區域1048中形成絕緣結構1682以覆蓋階梯結構1670、1672和多個BSG段(例如,底部導電和介電質層對中的導電層1625)。絕緣結構可以包括任何合適的介電材料,例如氧化矽、氮化矽、氮氧化矽、SiOCN或其任何組合。
應注意,圖16中的儲存器串和閘電極的數量是出於說明性目的而示出的,並且可以是任何合適數量以增加儲存容量。
返回參考圖9,製造過程900可以進行到步驟S980,其中,形成多個觸點結構以分別接觸對應的導電層。在一些實施例中,多個觸點結構可以包括在中心階梯區域1046中的多個階梯觸點(例如,字元線觸點、TSG觸點)和在BSG觸點區域1048中的多個BSG觸點。多個觸點結構可以穿透絕緣結構以分別接觸對應的導電層。
圖17A示出了在過程步驟S980處的示例性結構1700的截面圖。圖17B示出了結構1700的俯視圖。圖17A中的截面圖在沿著線BB'的x方向上。階梯觸點1738可以類似於先前參考圖5-6討論的階梯觸點538。BSG觸點1762、1764、1766可以類似於先前參考圖5-6討論的BSG觸點562、564、566。
形成觸點結構可以包括形成穿過絕緣結構1682的多個接觸孔,並在多個接觸孔中設置導電材料。在一些實施例中,光致抗蝕劑或聚合物材料可以用作遮罩層以蝕刻接觸孔。可以使用一個或多個遮罩和圖案化製程來形成接觸孔。在一些實施例中,絕緣結構1682可以包括蝕刻停止層(未示出),其保護下面的結構,直到在每個階梯1676和/或每個BSG段1782、1784、1786上形成所有 的接觸孔。接觸孔穿透絕緣層1882,從而暴露導電層1625。
可以透過在接觸孔中設置導電材料來形成包括階梯觸點1738和BSG觸點1762、1764、1766的觸點結構。在一些實施例中,觸點結構可以包括金屬或金屬化合物,例如鎢、鈷、鎳、銅、鋁、鈦、鉭、氮化鉭(TaN)和/或其任何組合。可以透過任何合適的沉積方法來形成金屬或金屬化合物,例如濺射、熱蒸發、電子束蒸發、ALD、PVD和/或其任何組合。在一些實施例中,觸點結構也可以包括金屬矽化物,包括WSix、CoSix、NiSix或AlSix等。在一些實施例中,可以使用平坦化製程(例如CMP製程)來使觸點結構與絕緣結構1682共面。
透過觸點結構,可以將多個導電層1625的導電路徑接線到表面,從而在後段制程製程中實現3D儲存設備的各種互連。
在一些實施例中,階梯觸點1738可以包括分別形成在字元線的閘電極上的TSG和字元線觸點的閘電極上的TSG觸點。在一些實施例中,可以分別在BSG段1782、1784、1786上形成一個或多個BSG觸點1762、1764、1766。
應注意,在用導電層1625替換犧牲層1023之後,可以將圖14B和15B中的介電質電橋1478轉換成圖17B中的階梯電橋1778。結果,階梯結構1670和1672的導電層1625可以透過階梯電橋1778連接。因此,可以從階梯結構1670或階梯結構1672電連接每條字元線。
如上所述(參考圖5-8),透過在BSG觸點區域1048中引入包括非線性區段的BSG切割結構1033,每個BSG段1782、1784、1786可以在BSG觸點區域280 中具有足夠的觸點區域,以用於分別構造一個或多個BSG觸點1762、1764、1766。具體地如圖17B所示,部分地被階梯電橋1778阻擋的BSG段1786可以包括在y方向上沒有被階梯電橋1778覆蓋的延伸區域,從而提供足夠的觸點區域,以用於構造一個或多個BSG觸點1766。因此,可以增加階梯電橋1778在y方向上的寬度以減小電阻,從而在兩個中心階梯區域1046上的字元線之間提供更好的電連接。
返回參考圖9,製造過程900可以進行到步驟S990,其中,可以在交替的導體/介電質層疊層1664和絕緣結構1682上方形成圖案化的導電層1891以形成多條連接線1899。圖18示出了根據本公開內容的一些實施例的示例性結構1800的截面圖。
在一些實施例中,在形成多個觸點結構之後,導電層1891可以形成在交替的導體/介電質層疊層1664和絕緣結構1682上方,並且與多個階梯觸點1738和BSG觸點1762、1764、1766電連接。然後,可以圖案化並蝕刻導電層1891以形成多條連接線1899,每條連接線分別與一個或多個對應的觸點結構連接。連接線1899可以用於將多條字元線、TSG和/或BSG電連接到外圍電路。在一些實施例中,一個或多條連接線1899還可以用於電連接BSG段的子部分,例如BSG段的子部分。例如,圖案化導電層1891中的連接線1899可以用於電連接到BSG段784的兩個子部分784L和784R,如圖7所示。作為另一示例,圖案化導電層1891中的連接線1899可以用於分別電連接在BSG段882的兩個子部分882L和882R之間以及BSG段883的兩個子部分883L和883R之間,如圖8所示,在一些實施例中,任何合適的介電材料1893可以用於填充圖案化導電層1891中的連接線1899之間的間隙。
總之,本公開內容描述了3D儲存設備及其製造方法的各種實施例。
本公開內容的一個方面提供了一種三維(3D)儲存設備,包括:交替的導體/介電質層疊層,設置在基底上;第一階梯結構和第二階梯結構,形成在交替的導體/介電質層疊層中;階梯電橋,在第一方向上延伸並且電連接第一階梯結構和第二階梯結構;及第一底部選擇閘極段,由階梯電橋覆蓋或部分覆蓋,其中,第一底部選擇閘極段包括在不同於第一方向的第二方向上延伸的延伸部分。
在一些實施例中,交替的導體/介電質層疊層包括在垂直方向上交替排列的多個導電層和介電質層;階梯電橋被配置為分別將第一階梯結構中的導電層與第二階梯結構中的導電層電連接。
在一些實施例中,階梯電橋包括多個導電層和介電質層對。
在一些實施例中,3D儲存設備還包括接觸第一底部選擇閘極段的延伸部分的至少一個第一底部選擇閘極觸點。
在一些實施例中,3D儲存設備還包括底部選擇閘極切割結構,其將所述交替的導體/介電質層疊層的底部導電層分離成至少第一底部選擇閘極段和第二底部選擇閘極段;其中,底部選擇閘極切割結構包括一個或多個非線性區段。
在一些實施例中,底部選擇閘極切割結構將第二底部選擇閘極段分離成第二底部選擇閘極段的兩個子部分;及第二底部選擇閘極段的兩個子部分透過至少兩個第二底部選擇閘極觸點和位於交替的導體/介電質層疊層上方的圖案化導電層中的導電線彼此電連接。
在一些實施例中,底部選擇閘極切割結構的非線性區段包括沿著第一方向延伸的第一直線部分和沿著第二方向延伸的第二直線部分。
在一些實施例中,階梯電橋包括在第一方向上比底部長的頂部。
在一些實施例中,3D儲存設備還包括垂直穿透交替的導體/介電質層疊層的多個儲存器串,多個儲存器串各自包括:中心的芯部填充膜;溝道層,圍繞芯部填充膜;及儲存膜,圍繞溝道層。
在一些實施例中,多個儲存器串分布在第一階梯結構和第二階梯結構的相對側上。
在一些實施例中,第一階梯結構和第二階梯結構位於3D儲存設備的儲存器陣列的中心。
本公開內容的另一方面提供了一種用於形成三維(3D)儲存設備的方法,包括:在基底上的至少一個底部介電質層對中形成至少一個底部選擇閘極切割結構,其中,至少一個底部選擇閘極切割結構包括一個或多個非線性區段;在至少一個底部介電質層對上形成交替的介電質疊層,其中,交替的介電 質疊層包括在垂直方向上交替排列的多個介電質層和犧牲層;及在交替的介電質疊層中形成第一介電質階梯結構、第二介電質階梯結構和介電質電橋,其中,第一介電質階梯結構和第二介電質階梯結構透過在第一方向上延伸的介電質電橋連接。
在一些實施例中,方法還包括:用多個導電層替換交替的介電質疊層和至少一個底部介電質層對中的犧牲層以形成交替的導體/介電質層疊層。
在一些實施例中,方法還包括:在交替的導體/介電質層疊層的導電層上形成多個觸點結構;其中,交替的導體/介電質層疊層的底部導電層由至少一個底部選擇閘極切割結構劃分為第一底部選擇閘極段和第二底部選擇閘極段。
在一些實施例中,形成多個觸點結構包括形成與第一底部選擇閘極段的沿著不同於第一方向的第二方向延伸的延伸部分接觸的至少一個第一底部選擇閘極觸點。
在一些實施例中,形成多個觸點結構包括形成與第二底部選擇閘極段的至少兩個子部分接觸的至少兩個第二底部選擇閘極觸點。
在一些實施例中,方法還包括形成圖案化導電層,圖案化導電層包括透過至少兩個第二底部選擇閘極觸點電連接第二底部選擇閘極段的至少兩個子部分的至少一條連接線。
在一些實施例中,方法還包括:形成垂直穿透交替的介電質疊層的多個儲存器串,其中,多個儲存器串各自包括:中心的芯部填充膜;溝道層,圍繞芯部填充膜;及儲存膜,圍繞溝道層。
在一些實施例中,形成多個儲存器串包括在第一介電質階梯結構和第二介電質階梯結構的相對側上形成多個儲存器串。
在一些實施例中,形成第一階梯結構和第二階梯結構包括在交替的介電質疊層的中心位置形成第一階梯結構和第二階梯結構。
以上對具體實施例的描述將揭示本公開內容的一般性質,以使得其他人可以透過應用本領域技術內的知識容易地修改和/或適應這些具體實施例的各種應用,無需過度實驗,且不脫離本公開內容的一般概念。因此,基於本文給出的教導和指導,這樣的適應和修改旨在處於所公開的實施例的等同變換的含義和範圍內。應該理解的是,本文中的措辭或術語是出於描述的目的而非限制的目的,使得本說明書的術語或措辭將由本領域技術人員根據本公開內容和指導來解釋。
上面已經借助於功能方塊描述了本公開內容的實施例,該功能方塊示出了特定功能及其關係的實施方式。為了描述的方便,本文任意定義了這些功能方塊的邊界。只要適當地執行了特定功能和關係,就可以定義可替換的邊界。
發明內容和摘要部分可以闡述由發明人設想的本公開內容的一個或 多個但不是全部的示例性實施例,並且因此不旨在以任何方式限制本公開內容和所附申請專利範圍。
本公開內容的廣度和範圍不應受任何上述示例性實施例的限制,而應僅根據所附申請專利範圍及其等同變換來限定。
100:儲存器陣列結構
112:儲存器串
114:觸點結構
116-1,116-2:狹縫結構
130:基底
131:絕緣膜
132:底部選擇閘極(BSG)
133-1,133-2,133-3:控制閘極
134:頂部選擇閘極(TSG)
135:膜疊層
136:溝道孔
137:儲存膜
138:溝道層
139:芯部填充膜
140-1,140-2,140-3:儲存單元
141:位元線
143:金屬互連線
144:源極線區域
BL:位元線的方向
WL:字元線的方向

Claims (20)

  1. 一種三維(3D)儲存設備,包括:設置在基底上的交替的導體/介電質層疊層;形成在所述交替的導體/介電質層疊層中的第一階梯結構和第二階梯結構;在第一方向上延伸並且電連接所述第一階梯結構和所述第二階梯結構的階梯電橋;以及由所述階梯電橋覆蓋或部分覆蓋的第一底部選擇閘極段,其中,所述第一底部選擇閘極段包括在不同於所述第一方向的第二方向上延伸的延伸部分。
  2. 如請求項1所述的3D儲存設備,其中:所述交替的導體/介電質層疊層包括在垂直方向上交替排列的多個導電層和介電質層;所述階梯電橋被配置為分別將所述第一階梯結構中的所述導電層與所述第二階梯結構中的所述導電層電連接。
  3. 如請求項1所述的3D儲存設備,其中,所述階梯電橋包括多個導電層和介電質層對。
  4. 如請求項1所述的3D儲存設備,還包括:接觸所述第一底部選擇閘極段的所述延伸部分的至少一個第一底部選擇閘極觸點。
  5. 如請求項1所述的3D儲存設備,還包括: 底部選擇閘極切割結構,所述底部選擇閘極切割結構將所述交替的導體/介電質層疊層的底部導電層分離成至少所述第一底部選擇閘極段和第二底部選擇閘極段;其中,所述底部選擇閘極切割結構包括一個或多個非線性區段。
  6. 如請求項5所述的3D儲存設備,其中:所述底部選擇閘極切割結構將所述第二底部選擇閘極段分離成所述第二底部選擇閘極段的兩個子部分;以及所述第二底部選擇閘極段的所述兩個子部分透過至少兩個第二底部選擇閘極觸點和位於所述交替的導體/介電質層疊層上方的圖案化導電層中的導電線彼此電連接。
  7. 如請求項5所述的3D儲存設備,其中:所述底部選擇閘極切割結構的所述非線性區段包括沿著所述第一方向延伸的第一直線部分和沿著所述第二方向延伸的第二直線部分。
  8. 如請求項1所述的3D儲存設備,其中,所述階梯電橋包括在所述第一方向上比底部長的頂部。
  9. 如請求項1所述的3D儲存設備,還包括:垂直穿透所述交替的導體/介電質層疊層的多個儲存器串,所述多個儲存器串各自包括:位於中心的芯部填充膜;圍繞所述芯部填充膜的溝道層;以及 圍繞所述溝道層的儲存膜。
  10. 如請求項9所述的3D儲存設備,其中,所述多個儲存器串分布在所述第一階梯結構和所述第二階梯結構的相對側上。
  11. 如請求項1所述的3D儲存設備,其中,所述第一階梯結構和所述第二階梯結構位於所述3D儲存設備的儲存器陣列的中心。
  12. 一種用於形成三維(3D)儲存設備的方法,包括:在基底上的至少一個底部介電質層對中形成至少一個底部選擇閘極切割結構,其中,所述至少一個底部選擇閘極切割結構包括一個或多個非線性區段;在所述至少一個底部介電質層對上形成交替的介電質疊層,其中,所述交替的介電質疊層包括在垂直方向上交替排列的多個介電質層和犧牲層;以及在所述交替的介電質疊層中形成第一介電質階梯結構、第二介電質階梯結構和介電質電橋,其中,所述第一介電質階梯結構和所述第二介電質階梯結構透過在第一方向上延伸的所述介電質電橋連接。
  13. 如請求項12所述的方法,還包括:用多個導電層替換所述交替的介電質疊層中的所述犧牲層和所述至少一個底部介電質層對以形成交替的導體/介電質層疊層。
  14. 如請求項13所述的方法,還包括: 在所述交替的導體/介電質層疊層的所述導電層上形成多個觸點結構;其中,所述交替的導體/介電質層疊層的底部導電層由所述至少一個底部選擇閘極切割結構劃分為第一底部選擇閘極段和第二底部選擇閘極段。
  15. 如請求項14所述的方法,其中,形成所述多個觸點結構包括:形成與所述第一底部選擇閘極段的沿著不同於所述第一方向的第二方向延伸的延伸部分接觸的至少一個第一底部選擇閘極觸點。
  16. 如請求項15所述的方法,其中,形成所述多個觸點結構包括:形成與所述第二底部選擇閘極段的至少兩個子部分接觸的至少兩個第二底部選擇閘極觸點。
  17. 如請求項16所述的方法,還包括:形成圖案化導電層,所述圖案化導電層包括透過所述至少兩個第二底部選擇閘極觸點電連接所述第二底部選擇閘極段的所述至少兩個子部分的至少一條連接線。
  18. 如請求項12所述的方法,還包括:形成垂直穿透所述交替的介電質疊層的多個儲存器串,其中,所述多個儲存器串各自包括:位於中心的芯部填充膜;圍繞所述芯部填充膜的溝道層;以及圍繞所述溝道層的儲存膜。
  19. 如請求項18所述的方法,其中,形成所述多個儲存器串包括在所述第一介電質階梯結構和所述第二介電質階梯結構的相對側上形成所述多個儲存器串。
  20. 如請求項19所述的方法,其中,形成第一階梯結構和所述第二階梯結構包括:在所述交替的介電質疊層的中心位置形成所述第一階梯結構和所述第二階梯結構。
TW110100904A 2020-11-04 2021-01-11 用於三維儲存設備中的中心階梯結構的底部選擇閘極觸點 TWI782391B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2020/126468 2020-11-04
PCT/CN2020/126468 WO2022094796A1 (en) 2020-11-04 2020-11-04 Bottom select gate contacts for center staircase structures in three-dimensional memory devices

Publications (2)

Publication Number Publication Date
TW202220179A TW202220179A (zh) 2022-05-16
TWI782391B true TWI782391B (zh) 2022-11-01

Family

ID=74977383

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110100904A TWI782391B (zh) 2020-11-04 2021-01-11 用於三維儲存設備中的中心階梯結構的底部選擇閘極觸點

Country Status (4)

Country Link
US (1) US20220139950A1 (zh)
CN (1) CN112534576A (zh)
TW (1) TWI782391B (zh)
WO (1) WO2022094796A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220231050A1 (en) * 2021-01-15 2022-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device and method of forming the same
US11770934B2 (en) * 2021-01-15 2023-09-26 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and method of fabricating the same
US11856786B2 (en) * 2021-02-26 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit including three-dimensional memory device
US20220328512A1 (en) * 2021-04-09 2022-10-13 Sandisk Technologies Llc Three-dimensional memory device with off-center or reverse slope staircase regions and methods for forming the same
CN117352489A (zh) * 2022-06-21 2024-01-05 长鑫存储技术有限公司 半导体结构及其制造方法、存储芯片、电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201336022A (zh) * 2012-02-24 2013-09-01 Macronix Int Co Ltd 嵌鑲字元線
US20140252454A1 (en) * 2013-03-07 2014-09-11 Sandisk 3D Llc Vertical bit line tft decoder for high voltage operation
US20160284765A1 (en) * 2014-03-03 2016-09-29 Sandisk Technologies Llc Vertical Thin Film Transistors In Non-Volatile Storage Systems
US20180121345A1 (en) * 2016-10-31 2018-05-03 Semiconductor Manufacturing International (Beijing) Corporation Structures of bottom select transistor for embedding 3d-nand in beol and methods
TW201824516A (zh) * 2016-11-01 2018-07-01 美商美光科技公司 形成包含垂直相對之電容器對之陣列之方法及包含垂直相對之電容器對之陣列
TW201842650A (zh) * 2017-01-09 2018-12-01 美商美光科技公司 形成電容器之陣列之方法、形成個別包含電容器及電晶體之記憶胞之陣列之方法、電容器之陣列及個別包含電容器及電晶體之記憶胞之陣列
TW201916252A (zh) * 2017-09-28 2019-04-16 台灣積體電路製造股份有限公司 積體電路構造及其製造方法
TW201931576A (zh) * 2018-01-09 2019-08-01 旺宏電子股份有限公司 三維非揮發性記憶體及其製造方法
TW202029190A (zh) * 2018-12-18 2020-08-01 美商美光科技公司 記憶體陣列解碼及互連
CN111540743A (zh) * 2020-04-24 2020-08-14 长江存储科技有限责任公司 三维存储器件及形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787041B1 (ko) * 2010-11-17 2017-10-18 삼성전자주식회사 식각방지막이 구비된 반도체 소자 및 그 제조방법
US8530350B2 (en) * 2011-06-02 2013-09-10 Micron Technology, Inc. Apparatuses including stair-step structures and methods of forming the same
KR20140089793A (ko) * 2013-01-07 2014-07-16 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
KR102334914B1 (ko) * 2015-04-01 2021-12-07 삼성전자주식회사 3차원 반도체 소자
WO2018161836A1 (en) * 2017-03-08 2018-09-13 Yangtze Memory Technologies Co., Ltd. Through array contact structure of three-dimensional memory device
KR102432379B1 (ko) * 2017-10-16 2022-08-12 삼성전자주식회사 반도체 소자
KR102403732B1 (ko) * 2017-11-07 2022-05-30 삼성전자주식회사 3차원 비휘발성 메모리 소자
KR20210141563A (ko) * 2020-03-23 2021-11-23 양쯔 메모리 테크놀로지스 씨오., 엘티디. 3차원 메모리 디바이스의 계단실 구조 및 그 형성 방법
WO2021189189A1 (en) * 2020-03-23 2021-09-30 Yangtze Memory Technologies Co., Ltd. Staircase structure in three-dimensional memory device and method for forming the same
JP7317989B2 (ja) * 2020-06-05 2023-07-31 長江存儲科技有限責任公司 3次元メモリデバイス内の階段構造およびそれを形成するための方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201336022A (zh) * 2012-02-24 2013-09-01 Macronix Int Co Ltd 嵌鑲字元線
US20140252454A1 (en) * 2013-03-07 2014-09-11 Sandisk 3D Llc Vertical bit line tft decoder for high voltage operation
US20160284765A1 (en) * 2014-03-03 2016-09-29 Sandisk Technologies Llc Vertical Thin Film Transistors In Non-Volatile Storage Systems
US20180121345A1 (en) * 2016-10-31 2018-05-03 Semiconductor Manufacturing International (Beijing) Corporation Structures of bottom select transistor for embedding 3d-nand in beol and methods
TW201824516A (zh) * 2016-11-01 2018-07-01 美商美光科技公司 形成包含垂直相對之電容器對之陣列之方法及包含垂直相對之電容器對之陣列
TW201842650A (zh) * 2017-01-09 2018-12-01 美商美光科技公司 形成電容器之陣列之方法、形成個別包含電容器及電晶體之記憶胞之陣列之方法、電容器之陣列及個別包含電容器及電晶體之記憶胞之陣列
TW201916252A (zh) * 2017-09-28 2019-04-16 台灣積體電路製造股份有限公司 積體電路構造及其製造方法
TW201931576A (zh) * 2018-01-09 2019-08-01 旺宏電子股份有限公司 三維非揮發性記憶體及其製造方法
TW202029190A (zh) * 2018-12-18 2020-08-01 美商美光科技公司 記憶體陣列解碼及互連
CN111540743A (zh) * 2020-04-24 2020-08-14 长江存储科技有限责任公司 三维存储器件及形成方法

Also Published As

Publication number Publication date
WO2022094796A1 (en) 2022-05-12
CN112534576A (zh) 2021-03-19
US20220139950A1 (en) 2022-05-05
TW202220179A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
US11910599B2 (en) Contact structures for three-dimensional memory device
TWI706547B (zh) 立體記憶體及其製造方法
TWI782391B (zh) 用於三維儲存設備中的中心階梯結構的底部選擇閘極觸點
US11735240B2 (en) Staircase bridge structures for word line contacts in three-dimensional memory
US11107834B2 (en) Staircase and contact structures for three-dimensional memory
TWI702714B (zh) 用於立體記憶體的具有多重劃分的階梯結構
CN109346473B (zh) 3d存储器件及其制造方法
US11862565B2 (en) Contact structures for three-dimensional memory
CN109273453B (zh) 3d存储器件的制造方法及3d存储器件
KR20170036878A (ko) 3차원 반도체 메모리 장치
TWI815093B (zh) 三維記憶體裝置及其製造方法
TWI732611B (zh) 半導體元件及其製作方法