TWI702714B - 用於立體記憶體的具有多重劃分的階梯結構 - Google Patents

用於立體記憶體的具有多重劃分的階梯結構 Download PDF

Info

Publication number
TWI702714B
TWI702714B TW108111241A TW108111241A TWI702714B TW I702714 B TWI702714 B TW I702714B TW 108111241 A TW108111241 A TW 108111241A TW 108111241 A TW108111241 A TW 108111241A TW I702714 B TWI702714 B TW I702714B
Authority
TW
Taiwan
Prior art keywords
layer
film stack
stepped
steps
layers
Prior art date
Application number
TW108111241A
Other languages
English (en)
Other versions
TW202032762A (zh
Inventor
張中
華文宇
黃波
夏志良
Original Assignee
大陸商長江存儲科技有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商長江存儲科技有限責任公司 filed Critical 大陸商長江存儲科技有限責任公司
Application granted granted Critical
Publication of TWI702714B publication Critical patent/TWI702714B/zh
Publication of TW202032762A publication Critical patent/TW202032762A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/50Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the boundary region between the core region and the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout

Abstract

公開了立體記憶元件的階梯結構及其製作方法的實施例。半導體結構包括第一膜堆疊層和第二膜堆疊層,其中,第一膜堆疊層設置在第二膜堆疊層之上並且具有M1數量的層。所述第二膜堆疊層具有M2數量的層。M1和M2為整數。所述半導體結構還包括第一階梯結構和第二階梯結構,其中,所述第一階梯結構形成在所述第一膜堆疊層中,並且所述第二階梯結構形成在所述第二膜堆疊層中。所述第一階梯結構和第二階梯結構彼此緊鄰並具有偏移。

Description

用於立體記憶體的具有多重劃分的階梯結構
本發明總體上涉及半導體技術領域,並且更具體而言涉及用於形成立體(3D)記憶體的方法。
透過改進製程技術、電路設計、程式設計演算法和製作製程,使平面儲存單元縮小到更小的尺寸。但是,隨著儲存單元的特徵尺寸接近下限,平面製程和製作技術變得更加有挑戰性,而且成本更加高昂。因而,平面儲存單元的儲存密度接近上限。立體(3D)記憶體架構能夠解決平面儲存單元中的密度限制。
在本發明中描述了用於立體記憶元件的接觸結構,以及用於形成該接觸結構的方法的實施例。
在一些實施例中,公開了立體記憶元件的階梯結構及其製作方法。 半導體結構包括第一膜堆疊層和第二膜堆疊層,其中,第一膜堆疊層設置在第二膜堆疊層之上,並且具有M1數量的層。第二膜堆疊層具有M2數量的層。M1 和M2為整數。半導體結構還包括第一階梯結構和第二階梯結構,其中,所述第一階梯結構形成在所述第一膜堆疊層中,並且所述第二階梯結構形成在所述第二膜堆疊層中。所述第一和第二階梯結構彼此緊鄰並有偏移。
在一些實施例中,所述第一階梯結構還包括在第一方向上的M3數量的台階,並且第一階梯結構的在所述第一方向上的各個台階包括在第二方向上的M4數量的台階。M3和M4為整數,並且第一方向和第二方向相互垂直並且處於與第一膜堆疊層的頂表面平行的平面中。
在一些實施例中,第一階梯結構的在第二方向上的各個台階包括第一膜堆疊層的一層,並且第一階梯結構的在第一方向上的各個台階包括第一膜堆疊層的M4+1數量的層。
在一些實施例中,M1至少是M3和M4的乘積。
在一些實施例中,所述第二階梯結構還包括在第一方向上的M5數量的台階,並且第二階梯結構的在所述第一方向上的各個台階包括在第二方向上的M6數量的台階。M5和M6為整數,並且第一方向和第二方向相互垂直並且處於與第一膜堆疊層的頂表面平行的平面中。
在一些實施例中,第二階梯結構的在第二方向上的各個台階包括第二膜堆疊層的一層,並且第二階梯結構的在第一方向上的各個台階包括第二膜堆疊層的M6+1數量的層。
在一些實施例中,M2至少是M5和M6的乘積。
在一些實施例中,所述第一和第二膜堆疊層中的各個層包括第一介電層和第二介電層,並且所述第一和第二介電層在所述基底上交替排列。
在一些實施例中,所述第一和第二膜堆疊層中的各個層包括介電層和導電層,並且所述介電層和導電層在所述基底上交替排列。
在一些實施例中,所述第一和第二階梯結構之間的偏移在垂直於所述第一或第二膜堆疊層的頂表面的垂直方向上是所述第一或第二膜堆疊層的至少一層。
在一些實施例中,所述第一和第二階梯結構之間的偏移在平行於所述第一或第二膜堆疊層的頂表面的橫向方向上處於0到1μm之間。
本發明的另一方面提供了一種用於形成立體(3D)記憶元件的方法。 在一些實施例中,提供一種用於形成立體記憶體結構的方法,包括在基底上形成具有多個層的膜堆疊層。所述方法還包括在第一方向上形成具有L1數量的台階的第一階梯結構,其中,第一階梯結構的在第一方向上的各個台階包括在第二方向上的L2數量的台階,L1和L2為整數,並且第一方向和第二方向相互垂直並且處於與基底的頂表面平行的平面上。所述方法還包括在第一方向上形成具有L3數量的台階的第二階梯結構,其中,第二階梯結構的在第一方向上的各個台階具有在第二方向上的L4數量的台階,L3和L4為整數,並且所述第二階梯結構位元於緊鄰所述第一階梯結構處並具有偏移。
在一些實施例中,所述第一階梯結構的形成包括在所述膜堆疊層上設置具有劃分塊的第一遮罩堆疊層,以及在所述劃分塊的每一側上形成第三階梯結構。所述第一階梯結構的形成還包括設置覆蓋所述劃分塊的至少一部分的第二遮罩堆疊層,以及使用所述第二遮罩堆疊層形成所述第一階梯結構。
在一些實施例中,在劃分塊的每一側上形成第三階梯結構包括蝕刻所述膜堆疊層的一層,並在第二方向上修整所述第一遮罩堆疊層。所述第三階梯結構的形成還包括重複L2次所述蝕刻和修整,以在第二方向上形成L2數量的台階。
在一些實施例中,使用第二遮罩堆疊層形成第一階梯結構包括蝕刻所述膜堆疊層的L2+1數量的層,以及在第一方向上修整所述第二遮罩堆疊層。 所述第一階梯結構的形成還包括重複L1次所述蝕刻和修整,以在第一方向上形成L1數量的台階。
在一些實施例中,第二階梯結構的形成包括設置具有第二劃分塊的第三遮罩堆疊層,其中,所述第三遮罩堆疊層覆蓋所述第一階梯結構。第二階梯結構的形成還包括在第二劃分塊的每一側上形成第四階梯結構,設置覆蓋所述第一階梯結構以及第二劃分塊的一部分的第四遮罩堆疊層,以及使用第四遮罩堆疊層形成第二階梯結構。
在一些實施例中,在第二劃分塊的每一側上形成第四階梯結構包括蝕刻所述膜堆疊層的一層,在第二方向上修整所述第三遮罩堆疊層,以及重複L4次所述蝕刻和修整,以在第二方向上形成L4數量的台階。
在一些實施例中,使用第四遮罩堆疊層形成第二階梯結構包括蝕刻所述膜堆疊層的L4+1數量的層,在第一方向上對所述第四遮罩堆疊層進行修整,以及重複L1次所述蝕刻和修整,以在第一方向上形成L1數量的台階。
在一些實施例中,所述第一或第二膜堆疊層中的各個層包括第一介電層和第二介電層,並且所述第一和第二介電層在所述基底上交替排列。
在一些實施例中,所述第一或第二膜堆疊層中的各個層包括介電層和導電層,並且所述介電層和導電層在所述基底上交替排列。
在一些實施例中,第一階梯結構包括不低於L1和L2的乘積的數量的層,並且第二階梯結構包括不低於L3和L4的乘積的數量的層。
在一些實施例中,所述第一和第二階梯結構之間的偏移在所述第一方向上處於0到1μm之間。
在一些實施例中,所述第一和第二階梯結構之間的偏移在垂直於所述基底的頂表面的垂直方向上是所述膜堆疊層的至少一層。
本領域技術人員根據本發明的說明書、申請專利範圍和附圖能夠理 解本發明的其它方面。
100:立體(3D)記憶元件
101:記憶體平面
103:記憶體塊
105:週邊區
107:貫穿陣列接觸區
108:區域
109:區域
210:階梯區
211:溝道結構區
212:記憶體串
214:接觸結構
216-1:縫隙結構
216-2:縫隙結構
218:記憶體指
220:頂部選擇閘極切口
222:虛設記憶體串
224:頂部選擇閘極(TSG)階梯區
226:頂部選擇閘極接觸
228:貫穿陣列接觸
230:頂部選擇閘極階梯區
300:立體(3D)記憶體陣列結構
330:基底
330f:正表面
331:絕緣膜
332:下選擇閘極(LSG)
333-1:控制閘極
333-2:控制閘極
333-3:控制閘極
334:頂部選擇閘極(TSG)
335:膜堆疊層
336:溝道孔
337:記憶體膜
338:溝道層
339:核心填充膜
340-1:儲存單元
340-2:儲存單元
340-3:儲存單元
340:位元線(BL)
343:金屬互連線
344:摻雜源極線區
400:結構
445:膜堆疊層
450:介電層(第一介電層)
452:犧牲層(第二介電層)
454:交替介電層對
500:立體(3D)記憶元件
560:第一遮罩堆疊層
560e:邊緣
560f:最終邊緣
562:第一劃分塊
600:結構
666:第一階梯結構
668:階梯層(第一階梯台階)
668-0:第一階梯台階
668-1:第一階梯台階
668-2:第一階梯台階
668-3:第一階梯台階
700:結構
770:第二遮罩堆疊層
770e:邊緣
770f:最終邊緣
800:結構
872:第二階梯結構
874-0:第二階梯台階
874-1:第二階梯台階
874-2:第二階梯台階
874-3:第二階梯台階
874-4:第二階梯台階
874-5:第二階梯台階
874-6:第二階梯台階
874-7:第二階梯台階
900:結構
975:第三遮罩堆疊層
976:第二劃分塊
1000:結構
1077:第三階梯結構
1078-0:第三階梯台階
1078-1:第三階梯台階
1078-2:第三階梯台階
1100:結構
1179:第四遮罩堆疊層
1179e:邊緣
1200:結構
1280:第四階梯結構
1282:第四階梯結構
1282-0:第四階梯結構
1282-1:第四階梯結構
1282-3:第四階梯結構
1282-5:第四階梯結構
1282-7:第四階梯結構
1300:方法
1310:製程步驟
1320:製程步驟
1330:製程步驟
1340:製程步驟
1350:製程步驟
1360:製程步驟
1370:製程步驟
1380:製程步驟
被併入本文並形成說明書的一部分的附圖例示了本發明的實施例並與文字描述一起進一步用以解釋本發明的原理,並且使相關領域的技術人員能夠做出和使用本發明。
圖1示出了根據本發明的一些實施例的示例性立體(3D)記憶體管芯的示意性俯視圖。
圖2A-2B示出了根據本發明的一些實施例的3D記憶體管芯的一些區域的示意性俯視圖。
圖3示出了根據本發明的一些實施例的示例性3D記憶體陣列結構的一部分的透視圖。
圖4示出了根據本發明的一些實施例的處於某些製作階段的示例性3D記憶體結構的示意性截面圖。
圖5示出了根據本發明的一些實施例的具有第一遮罩堆疊層的示例性3D記憶體結構的俯視圖。
圖6A和圖6B示出了根據本發明的一些實施例的在形成第一階梯結構之後的示例性3D記憶體結構的俯視圖和示意性截面圖。
圖7示出了根據本發明的一些實施例的具有第二遮罩堆疊層的示例性3D記憶體結構的俯視圖。
圖8A和圖8B示出了根據本發明的一些實施例的在形成第二階梯結構之後的示例性3D記憶體結構的俯視圖和3D視圖。
圖9示出了根據本發明的一些實施例的具有第三遮罩堆疊層的示例性3D記憶體結構的俯視圖。
圖10示出了根據本發明的一些實施例的在形成第三階梯結構之後的示例性3D記憶體結構的俯視圖。
圖11示出了根據本發明的一些實施例的具有第四遮罩堆疊層的示例性3D記憶體結構的俯視圖。
圖12A和圖12B示出了根據本發明的一些實施例的在形成第四階梯結構之後的示例性3D記憶體結構的俯視圖和3D視圖。
圖13示出了根據本發明的一些實施例的用於形成3D記憶體結構的示例性方法的流程圖。
在結合附圖考慮時,透過下文闡述的具體實施方式,本發明的特徵和優點將變得更加顯而易見,在附圖中,始終以類似的附圖標記標識對應的要素。在附圖中,類似的附圖標記一般指示等同的、功能上類似的和/或結構上類似的要素。在對應附圖標記中透過最左側數位指示首次出現該要素的附圖。
將參考附圖描述本發明的實施例。
儘管對具體配置和排列進行了討論,但應當理解,這只是出於示例性目的而進行的。相關領域中的技術人員將認識到,可以使用其它配置和排列而不脫離本發明的精神和範圍。對相關領域的技術人員顯而易見的是,本發明還可以用於多種其它應用中。
要指出的是,在說明書中提到“一個實施例”、“實施例”、“示例性實施例”、“一些實施例”等指示所述的實施例可以包括特定特徵、結構或特性,但未必各個實施例都包括該特定特徵、結構或特性。此外,這種短語未必是指同一個實施例。另外,在結合實施例描述特定特徵、結構或特性時,結合其它實施例(無論是否明確描述)實現這種特徵、結構或特性應在相關領域技術人員的知識範圍內。
通常,可以至少部分從上下文中的使用來理解術語。例如,至少部分取決於上下文,本文中使用的術語“一個或多個”可以用於描述單數意義的任何特徵、結構或特性,或者可以用於描述複數意義的特徵、結構或特性的組合。類似地,至少部分取決於上下文,例如“一”或“所述”的術語同樣可以被理解為傳達單數使用或傳達複數使用。此外,可以將術語“基於”理解為未必旨在傳達排他性的一組因素,並且相反可以允許存在未必明確描述的附加因素,其同樣至少部分地取決於上下文。
應當容易理解,本發明中的“在…上”、“在…上方”和“在…之上”的含義應當以最寬方式被解讀,以使得“在…上”不僅表示“直接在”某物“上”而且還包括在某物“上”且其間有居間特徵或層的含義。此外,“在…上方”或“在…之上”不僅表示“在”某物“上方”或“之上”,而且還可以包括其“在”某物“上方”或“之上”且其間沒有居間特徵或層(即,直接在某物上)的含義。
此外,例如“在…下”、“在…下方”、“下部”、“在…上方”、“上部”等空間相對術語在本文中為了描述方便可以用於描述一個元件或特徵與另一個或多個元件或特徵的如圖中所示的關係。空間相對術語旨在涵蓋除了在附圖中所描繪的取向之外的在設備使用或製程操作步驟中的不同取向。設備可以以另外的方式被定向(旋轉90度或在其它取向),並且本文中使用的空間相對描述詞可以類似地被相應解釋。
如本文中使用的,術語“基底”是指向其上增加後續材料層的材 料。基底包括頂表面和底表面。基底的頂表面通常是形成半導體元件的地方,並且因此半導體元件形成於基底的頂側,除非另行指明。底表面與頂表面相對,並且因此基底的底側與基底的頂側相對。基底自身可以被圖案化。增加在基底頂部的材料可以被圖案化或者可以保持不被圖案化。此外,基底可以包括寬範圍的半導體材料,例如矽、鍺、砷化鎵、磷化銦等。替代地,基底可以由例如玻璃、塑膠或藍寶石晶圓的非導電材料製成。
如本文中使用的,術語“層”是指包括具有厚度的區域的材料部分。層具有頂側和底側,其中,層的底側相對接近基底,並且頂側相對遠離基底。層可以在下方或上方結構的整體之上延伸,或者可以具有小於下方或上方結構範圍的範圍。此外,層可以是厚度小於連續結構的厚度的均質或非均質連續結構的區域。例如,層可以位元於在連續結構的頂表面和底表面之間或在頂表面和底表面處的任何組的水平面之間。層可以水平、垂直和/或沿傾斜表面延伸。基底可以是層,在其中可以包括一個或多個層,和/或可以在其上、其上方和/或其下方具有一個或多個層。層可以包括多個層。例如,互連層可以包括一個或多個導體和接觸層(其中形成接觸、互連線和/或垂直互連接入(VIA))和一個或多個介電層。
如本文使用的,術語“標稱/標稱地”是指在產品或製程的設計階段期間設置的用於部件或製程操作步驟之步驟的特性或參數的期望或目標值,以及高於和/或低於期望值的值的範圍。值的範圍可能是由於製造製程或容限中的輕微變化導致的。如本文使用的,術語“大約”指示可以基於與主題半導體元件相關聯的特定技術節點而變化的給定量的值。基於特定技術節點,術語“大約”可以指示給定量的值,其例如在值的10%-30%(例如,值的±10%、±20%或 ±30%)內變化。
在本發明中,術語“水平的/水平地/橫向的/橫向地”表示在標稱上平行於基底的橫向表面。在本發明中,術語“各個”可能未必僅僅表示“全部中的各個”,而是還可以表示“子集中的各個”。
如本文使用的,術語“3D記憶元件”是指一種半導體元件,其在橫向取向的基底上具有垂直取向的儲存單元電晶體串(在本文中被稱為“記憶體串”,例如NAND串),以使得所述記憶體串相對於基底在垂直方向上延伸。如本文使用的,術語“垂直/垂直地”表示標稱地垂直於基底的橫向表面。
在本發明中,為了便於描述,“台階”用於指代沿垂直方向基本上具有相同高度的元件。例如,字元線和下層閘極介電層可以被稱為“台階”,字元線和下層絕緣層可以一起被稱為“台階”,基本上具有相同高度的字元線可以被稱為“字元線的台階”,依此類推。
在一些實施例中,3D記憶元件的記憶體串包括垂直延伸穿過多個導電層和介電層對的半導體柱(例如,矽溝道)。多個導電層和介電層對在本文中又被稱為“交替導電和介電堆疊層”。導體層與半導體柱的相交能夠形成儲存單元。交替導電和介電堆疊層的導電層可以在後段工序連接至字元線,其中,字元線可以電性連接至一個或多個控制閘極。出於例示的目的,以可互換的方式使用字元線和控制閘極來描述本發明。半導體柱的頂部(例如,電晶體汲極區)可以連接至位元線(電性連接一個或多個半導體柱)。字元線和位元線通常是相互垂直排列分布的(例如,分別按行和按列),進而形成記憶體的“陣列”, 其又被稱為記憶體“塊”或者“陣列塊”。
記憶體“管芯”(又稱為裸晶、die)可以具有一個或多個記憶體“平面”,並且各個記憶體平面可以具有多個記憶體塊。陣列塊還可以被劃分成多個記憶體“頁”,其中,各個記憶體頁可以具有多個記憶體串。在快閃NAND記憶元件中,可以對每一個記憶體塊執行擦除操作步驟,並且可以對每一個記憶體頁執行讀取/寫入操作步驟。陣列塊是記憶元件中的執行儲存功能的核心區。為了實現更高的儲存密度,垂直3D儲存堆疊層的數量被極大提高,進而增加了製造的複雜性和成本。
記憶體管芯具有被稱為週邊的另一區域,其為核心提供支援功能。 週邊區包括很多數位信號電路、類比信號電路和/或混合信號電路,例如,行解碼器和列解碼器、驅動器、頁緩衝器、感測放大器、定時和控制、以及類似電路。週邊電路使用主動和/或被動半導體元件,例如,電晶體、二極體、電容器、電阻器等,這對於本領域普通技術人員而言將是顯而易見的。
為了便於描述,未討論記憶元件的其它部分。在本發明中,“記憶元件”是一個通稱詞彙,並且可以是記憶體晶片(封裝)、記憶體管芯或者記憶體管芯的任何部分。
儘管使用立體NAND元件作為示例,但是在各種應用和設計中,也可以將所公開的結構應用到類似或不同的半導體元件中,以(例如)改善金屬連接或佈線。所公開的結構的具體應用不應受到本發明的實施例的限制。
圖1示出了根據本發明的一些實施例的示例性立體(3D)記憶元件100的俯視圖。3D記憶元件可以是記憶體管芯,並且可以包括一個或多個記憶體平面101,記憶體平面101中的每一個可以包括多個記憶體塊103。相同且同時的操作步驟可以發生在各個記憶體平面101處。可以具有數百萬位元組(MB)的尺寸的記憶體塊103是執行擦除操作步驟的最小尺寸。如圖1所示,示例性3D記憶元件100包括四個記憶體平面101,並且各個記憶體平面101包括六個記憶體塊103。各個記憶體塊103可以包括多個儲存單元,其中,各個儲存單元可以透過例如位元線和字元線的互連被定址。位元線和字元線可以是垂直排列分布的,進而形成金屬線的陣列。在圖1中,字元線和位元線的方向被標示為“BL”和“WL”。在本發明中,記憶體塊103又被稱為“記憶體陣列”。
3D記憶元件100還包括週邊區105,即圍繞記憶體平面101的區域。週邊區105包含週邊電路來支援記憶體陣列的功能,例如,頁緩衝器、行解碼器和列解碼器以及感測放大器。
要指出的是,圖1所示的3D記憶元件100中的記憶體平面101的排列和各個記憶體平面101中的記憶體塊103的排列僅被用作示例,其不限制本發明的範圍。
在一些實施例中,3D記憶元件100的記憶體陣列和週邊電路被形成在不同的基底上,並且可以被透過晶片鍵合而接合到一起,以形成3D記憶元件100。在該示例中,貫穿陣列接觸結構可以在記憶體陣列和週邊電路之間提供垂直互連,由此降低金屬水平並且縮小管芯尺寸。在標題為“Hybrid Bonding Contact Structure of Three-Dimensional Memory Device”(申請號為No.16/046,852 並且提交於2018年7月26日)的共同待審美國專利申請中描述了具有混合接合的3D記憶體的詳細結構和方法,透過引用將該美國專利申請的全文併入本文。
參考圖2A,其示出了根據本發明的一些實施例的圖1中的區域108的放大俯視圖。3D記憶元件100的區域108可以包括階梯區210和溝道結構區211。 溝道結構區211可以包括記憶體串212的陣列,各個記憶體串包括多個堆疊的儲存單元。階梯區210可以包括階梯結構、和形成於階梯結構上的接觸結構214的陣列。在一些實施例中,跨越溝道結構區211和階梯區210在WL方向上延伸的多個縫隙結構216能夠將記憶體塊劃分成多個記憶體指218。至少一些縫隙結構216可以充當用於溝道結構區211中的記憶體串212的陣列的公共源極接觸。頂部選擇閘極切口220可以被設置在各個記憶體指218的中間,以將記憶體指218的頂部選擇閘極(TSG)劃分成兩個部分,並且由此能夠將記憶體指劃分成兩個可編寫設計(讀/寫)頁。儘管可以在記憶體塊層級執行對3D NAND記憶體的擦除操作步驟,但是也可以在記憶體頁層級執行讀取操作步驟和寫入操作步驟。頁的尺寸可以是數千位元組(KB)。在一些實施例中,區域108還包括虛設記憶體串222,以用於在製作期間進行製程變化控制和/或用於取得附加的機械支持。
參考圖2B,其示出了根據本發明的一些實施例的圖1中的區域109的放大俯視圖。3D記憶元件100的區域109可以包括溝道結構區211、貫穿陣列接觸區107以及頂部選擇閘極(TSG)階梯區224。
區域109中的溝道結構區211可以與區域108中的溝道結構區211類似。頂部選擇閘極階梯區224可以包括形成於階梯結構上的頂部選擇閘極接觸226的陣列。頂部選擇閘極階梯區224可以設置於溝道結構區211的側面上並在俯 視圖中與貫穿陣列接觸區107相鄰。可以在貫穿陣列接觸區107中形成多個貫穿陣列接觸228。
圖3示出了根據本發明的一些實施例的示例性立體(3D)記憶體陣列結構300的一部分的透視圖。記憶體陣列結構300包括基底330、基底330之上的絕緣膜331、絕緣膜331之上的下選擇閘極(LSG)332的台階、以及控制閘極333的多個台階(又被稱為“字元線(WL)”),控制閘極333的多個台階堆疊在LSG 332頂上,以形成交替導電和介電層的膜堆疊層335。在圖3中為了清楚表示圖式的目的,沒有示出與控制閘極的台階相鄰的介電層。
各個台階的控制閘極透過穿過膜堆疊層335的縫隙結構216-1和縫隙結構216-2分開。3D記憶體陣列結構300還包括控制閘極333的堆疊層之上的頂部選擇閘極(TSG)334的台階。TSG 334、控制閘極333和LSG 332的堆疊層又被稱為“閘電極”。記憶體陣列結構300還包括記憶體串212,以及位於基底330中且位於相鄰LSG 332之間的摻雜源極線區344。各個記憶體串212包括延伸穿過絕緣膜331以及由交替導電和介電層構成的膜堆疊層335的溝道孔336。記憶體串212還包括溝道孔336的側壁上的記憶體膜337、記憶體膜337之上的溝道層338、以及被溝道層338包圍的核心填充膜339。儲存單元340可以形成於控制閘極333和記憶體串212的相交處。記憶體陣列結構300還包括透過TSG 334連接至記憶體串212的多條位元線(BL)341。記憶體陣列結構300還包括透過多個接觸結構214連接至閘電極的多條金屬互連線343。膜堆疊層335的邊緣被配置為具有階梯形狀,以允許實現對閘電極的各個台階的電性連接。溝道結構區211和階梯區210對應於圖2A的俯視圖中的溝道結構區211和階梯區210,其中,圖3中的階梯區210之一可以被用作用於TSG連接的頂部選擇閘極階梯區230。
在圖3中,出於例示的目的,控制閘極333-1、控制閘極333-2和控制閘極333-3的三個台階與TSG 334的一個台階和LSG 332的一個台階被一起示出。在該示例中,各個記憶體串212可以包括分別對應於控制閘極333-1、控制閘極333-2和控制閘極333-3的三個儲存單元340-1、儲存單元340-2和儲存單元340-3。在一些實施例中,控制閘極的數量和儲存單元的數量可以超過三個,以提高儲存容量。記憶體陣列結構300還可以包括其它結構,例如,貫穿陣列接觸、TSG切口、公共源極接觸和虛設溝道結構。為了簡單起見,在圖3中未示出這些結構。
隨著對NAND快閃記憶體中的更高儲存容量的需求,3D儲存單元340或者字元線333的垂直台階的數量也相應提高,進而帶來更高的製程複雜性和更高的製造成本。在增大記憶體陣列結構300的儲存單元340或字元線333的台階時,為記憶體串212蝕刻更深的溝道孔336將變得更加困難,並且在階梯結構上形成接觸結構214也變得更加困難。例如,為了在大量的垂直堆疊的字元線(閘電極)上形成接觸結構214,需要高深寬比蝕刻來形成接觸孔。在延長的高深寬比蝕刻期間,階梯結構的較低層級上的接觸孔的臨界尺寸(CD)可能比階梯結構的頂部層級上的接觸孔的CD大得多。除此之外,階梯結構的較低層級上的接觸孔的輪廓可能具有大的彎曲。接觸結構之間的大的CD偏差和彎曲輪廓不僅會因金屬裝載差異而引起記憶體性能變化,而且還可能因相鄰接觸結構之間的電性短路而造成產率損失。
為了緩解有關越來越多的垂直堆疊字元線的蝕刻和沉積困難,3D記憶元件的部分可以形成在兩個或更多晶片上,並且之後透過晶片鍵合或者倒裝 晶片鍵合被接合到一起。替代地,可以透過依次堆疊多個區段而形成3D記憶元件,其中,各個區段包含具有更低數量的台階的字元線的堆疊層。然而,形成高堆疊階梯結構以及形成對應的接觸結構仍然是有挑戰性的難題。
在本發明中,公開了用於3D記憶元件的具有多重劃分的階梯結構及其製作方法。
在本發明中,階梯結構是指一組表面,其包括至少兩個水平表面(例如,沿x-y平面)和至少兩個(例如,第一和第二)垂直表面(例如,沿z軸或z方向),以使各個水平表面鄰接至從該水平表面的第一邊緣向上延伸的第一垂直表面,並且鄰接至從該水平表面的第二邊緣向下延伸的第二垂直表面。水平表面中的每一個被稱為階梯結構的“台階”或“梯級”。在本發明中,水平方向可以指平行於基底(例如,提供用於形成位元於其上的結構的製作平臺的基底)的頂表面的方向(例如,x軸/x方向或者y軸/y方向),並且垂直方向可以指垂直於所述結構的頂表面的方向(例如,z軸)。
階梯結構可以透過使用形成於介電堆疊層之上的遮罩層重複地蝕刻各個疊層而由多個疊層形成,其中,各個疊層在本發明中又被稱為階梯結構的“階梯層”(或“SC層”)。階梯結構的台階曝露多個疊層中的疊層(例如,SC層)的頂表面的一部分。在本發明中,多個疊層中的疊層(例如,SC層)為一個層級。換言之,各個疊層在垂直方向上的高度為一個層級。
在階梯結構中,各個階梯台階終止於比下面的階梯台階短的長度,其中,各個階梯台階可以與下面或者上方的階梯台階具有相同或者不同的寬 度。在本發明中,出於舉例說明的目的,各個階梯台階可以與下面或者上方的階梯台階具有相同的尺寸。
圖4示出了根據一些實施例的立體記憶元件的示例性結構400的截面圖,其中,結構400包括基底330和膜堆疊層445。圖4的截面圖沿圖2A中的WL方向,即沿圖3中的x方向。
基底330能夠提供用於形成後續結構的平臺。在一些實施例中,基底330包括用於形成立體記憶元件的任何適當材料。基底330可以包括任何其它適當材料,例如,矽、矽鍺、碳化矽、絕緣體上矽(SOI)、絕緣體上鍺(GOI)、玻璃、氮化鎵、砷化鎵、III-V化合物和/或它們的任何組合。
基底330的正表面330f在文中又被稱為基底的“主表面”或“頂表面”。材料層可以設置在基底的正表面330f上。“最頂”層或“上”層是離基底的正表面330f最遠或者較遠的層。“最底”層或“下”層是離基底的正表面330f最近或者較近的層。
參考圖1和圖3,在一些實施例中,週邊元件可以形成在基底330的正表面330f上的週邊區105中。在一些實施例中,主動元件區域可以形成在基底330的正表面330f上的記憶體塊103中。在一些實施例中,基底330還可以包括正表面330f上的絕緣膜331。絕緣膜331可以由與介電膜堆疊層相同或不同的材料製成。
週邊元件可以包括任何適當的半導體元件,例如,金屬氧化物半導體場效應電晶體(MOSFET)、二極體、電晶體、電容器等。週邊元件可以用於 支援記憶體核心的儲存功能的數位信號電路、類比信號電路和/或混合信號電路的設計中,例如,所述記憶體核心可以是行解碼器和列解碼器、驅動器、頁緩衝器、感測放大器、定時和控制。
記憶體塊中的主動元件區域被例如淺溝槽隔離的隔離結構包圍。可以根據記憶體塊中的陣列元件的功能在主動元件區域中形成摻雜區,例如,p型摻雜阱和/或n型摻雜阱。
膜堆疊層445在平行於基底330的正表面330f的橫向方向上延伸。膜堆疊層445包括交替堆疊在彼此上的介電層450(又稱為“第一介電層”)和犧牲層452(又稱為“第二介電層”),其中,介電層450可以被配置作為膜堆疊層445的最底層和最頂層。在該配置中,各個犧牲層452可以夾在兩個介電層450之間,並且各個介電層450可以夾在兩個犧牲層452之間(除了最底層和最頂層之外)。
介電層450和下層犧牲層452又被稱為交替介電層對454。膜堆疊層445的形成可以包括將介電層450設置為均具有相同的厚度或者具有不同的厚度。例如,介電層450的示例性厚度可以處於10nm到500nm的範圍內。類似地,犧牲層452可以均具有相同厚度或者具有不同厚度。例如,犧牲層452的示例性厚度可以處於10nm到500nm的範圍內。
儘管在圖4中的膜堆疊層445中僅例示了總共21個層,但是應當理解,這只是為了達到舉例說明的目的,並且可以在膜堆疊層445中包括任何數量的層。
在一些實施例中,膜堆疊層445可以包括除了介電層450和犧牲層452之外的層,並且可以由不同材料製成並且具有不同厚度。
在一些實施例中,介電層450包括任何適當絕緣材料,例如,氧化矽、氮氧化矽、氮化矽、TEOS或者具有F-、C-、N-和/或H-併入的氧化矽。介電層450還可以包括高k介電材料,例如,氧化鉿、氧化鋯、氧化鋁、氧化鉭或者氧化鑭膜。
基底330上的介電層450的形成可以包括任何適當的沉積方法,例如化學氣相沉積(CVD)、物理氣相沉積(PVD)、電漿增強CVD(PECVD)、快速熱化學氣相沉積(RTCVD)、低壓化學氣相沉積(LPCVD)、濺射、金屬有機化學氣相沉積(MOCVD)、原子層沉積(ALD)、高密度電漿CVD(HDP-CVD)、熱氧化、氮化、任何其它適當沉積方法、和/或它們的組合。
在一些實施例中,犧牲層452包括不同於介電層450並且能夠被有選擇地去除的任何適當材料。例如,犧牲層452可以包括氧化矽、氮氧化矽、氮化矽、TEOS、多晶矽、多晶鍺、多晶鍺矽、以及它們的任何組合。在一些實施例中,犧牲層452還包括非晶半導體材料,例如,非晶矽或非晶鍺。犧牲層452可以是使用與介電層450相似的技術設置的,所述技術例如是CVD、PVD、ALD、熱氧化或氮化、或者它們的任何組合。
在一些實施例中,介電層450可以是氧化矽,並且犧牲層452可以是氮化矽。
在一些實施例中,犧牲層452可以被導電層替代,其中,導電層可以包括任何適當導電材料,例如,多晶矽、多晶鍺、多晶鍺矽或它們的任何組合。 在一些實施例中,導電層還可以包括非晶半導體材料,例如,非晶矽、非晶鍺或它們的任何組合。在一些實施例中,導電層的多晶或非晶材料可以併入有任何適當類型的摻雜劑,例如,硼、磷或砷,以提高材料的導電性。導電層的形成可以包括任何適當的沉積方法,例如,CVD、RTCVD、PECVD、LPCVD、MOCVD、HDP-CVD、PVD、ALD或它們的任何組合。在一些實施例中,多晶半導體材料可以被以非晶狀態沉積,並透過後續熱處理轉化為多晶。在一些實施例中,可以在沉積多晶或非晶半導體材料之時,透過同時流動化學氣體(例如,二硼烷(B2H6)或磷化氫(PH3))而透過原位摻雜在導電層中併入摻雜劑。 還可以使用用於3D結構的其它摻雜技術(例如,電漿摻雜)來提高導電層的導電性。在一些實施例中,在摻雜劑併入之後,可以執行高溫退火製程,以使導電層中的摻雜劑活化。在一些實施例中,介電層450可以是氧化矽,並且導電層可以是多晶矽。在本發明中,犧牲層452是作為示例示出的。然而,對於下文描述的結構和方法而言,本領域技術人員可以用導電層替代犧牲層452。
圖5示出了根據一些實施例的立體(3D)記憶元件500的俯視圖。3D記憶元件500包括設置在結構400上的第一遮罩堆疊層560,其中,第一遮罩堆疊層560覆蓋溝道結構區211以及階梯區210之與溝道結構區211相鄰的部分。第一遮罩堆疊層560包括在x方向上延伸到階梯區210中並且沿y方向排列的多個第一劃分塊562,其中,y方向在平行於基底表面330f的平面中與x方向垂直。在y方向上各個第一劃分塊562的兩側可以由第一遮罩堆疊層560的兩個邊緣560e界定。在圖5中,示出了兩個第一劃分塊562作為示例。在一些實施例中,3D記憶元件500 可以包括兩個以上的第一劃分塊562。在一些實施例中,可以形成不止一個與溝道結構區211相鄰的階梯區210。
在一些實施例中,第一遮罩堆疊層560可以包括光阻或基於碳的聚合物材料,並且可以是使用例如微影的圖案化製程形成的。在一些實施例中,第一遮罩堆疊層560還可以包括硬遮罩,例如氧化矽、氮化矽、TEOS、含矽抗反射塗層(SiARC)、非晶矽或者多晶矽。可以使用例如使用O2或CF4化學製劑的反應離子蝕刻(RIE)的蝕刻製程對硬遮罩進行圖案化。此外,第一遮罩堆疊層560可以包括光阻和硬遮罩的任何組合。
圖6A示出了根據一些實施例的立體記憶元件的示例性結構600的俯視圖。圖6B示出了根據一些實施例的結構600的沿AA’線(平行於y方向的方向)的示例性截面圖。結構600包括在各個第一劃分塊562的每一側形成於膜堆疊層445中的第一階梯結構666。第一階梯結構666包括具有沿y方向的寬度“a”和沿x方向的寬度“b”的多個第一階梯台階或者階梯層668(例如,第一階梯台階668-0、第一階梯台階668-1、第一階梯台階668-2、第一階梯台階668-3)。在一些實施例中,寬度“a”可以是與寬度“b”相同的尺寸。在一些實施例中,寬度“a”可以是不同於寬度“b”的尺寸。在圖6A和圖6B中,各個第一階梯結構666包括如圖所示的四個第一階梯台階668-0、第一階梯台階668-1、第一階梯台階668-2和第一階梯台階668-3。然而,第一階梯台階的數量不受限制,並且可以是任何整數N1
在一些實施例中,可以透過使用第一遮罩堆疊層560對膜堆疊層445施加重複的蝕刻-修整製程,而形成第一階梯結構666。蝕刻-修整製程包括蝕刻 製程和修整製程。在蝕刻製程期間,可以去除各個第一階梯台階668的具有曝露表面的部分。蝕刻深度由第一階梯台階668的厚度確定。在一些實施例中,第一階梯台階668的厚度可以是一個交替介電層對454的厚度。在該示例中,用於介電層450的蝕刻製程可以具有相對於犧牲層452的高選擇性,和/或反之亦然。相應地,下面的交替介電層對454可以充當蝕刻停止層。因此,可以在各個蝕刻-修整循環期間形成一個階梯台階。
在一些實施例中,可以使用例如反應離子蝕刻(RIE)或其它乾式蝕刻製程的異向性蝕刻來蝕刻第一階梯台階668。在一些實施例中,介電層450是氧化矽。在該示例中,對氧化矽的蝕刻可以包括使用基於氟的氣體和/或任何其它適當氣體的RIE,例如,所述基於氟的氣體可以是氟化碳(CF4)、六氟乙烷(C2F6)、CHF3或C3F6。在一些實施例中,可以透過例如氫氟酸或者氫氟酸和乙二醇的混合物的濕化學製劑來去除氧化矽層。在一些實施例中,可以使用定時蝕刻方案。在一些實施例中,犧牲層452是氮化矽。在該示例中,對氮化矽的蝕刻可以包括使用O2、N2、CF4、NF3、Cl2、HBr、BCl3和/或其組合的RIE。用以去除單個疊層的方法和蝕刻劑不應受到本發明的實施例的限制。
修整製程包括對第一遮罩堆疊層560施加適當蝕刻製程(例如,各向同向性乾式蝕刻或者濕式蝕刻),以使得在平行於基底330的正表面330f的x-y平面中將第一遮罩堆疊層560沿橫向向後拉。根據圖6A中的俯視圖,可以從透過(例如)來自微影的光阻所限定的初始圖案向內並遞增地蝕刻第一遮罩堆疊層560。 在該示例中,可以朝向最終邊緣560f對初始圖案的邊緣560e進行遞增修整。蝕刻修整製程的橫向後拉尺寸確定第一階梯結構666的各個台階在y方向上的橫向尺寸“a”以及第一階梯結構666的各個台階在x方向上的橫向尺寸“b”。在一些 實施例中,第一階梯台階668中的每一個在y方向上可以具有不同或相同的橫向尺寸。在一些實施例中,第一階梯台階668中的每一個在x方向上可以具有不同或相同的橫向尺寸。在一些實施例中,對第一遮罩堆疊層560的修整在x-y平面中的所有方向上可以是各向同性的,使得y方向上的寬度“a”可以與x方向上的寬度“b”相同。在一些實施例中,寬度“a”和“b”可以在10nm和100nm之間。 在對第一遮罩堆疊層560進行修整之後,曝露第一階梯結構666的最頂部層級的一部分,並且第一階梯結構666的最頂部層級的其餘部分仍然被第一遮罩堆疊層560覆蓋。下一個循環的蝕刻-修整製程繼續進行蝕刻製程。
在一些實施例中,修整製程可以包括乾式蝕刻,例如,使用O2、Ar、N2等的RIE。
在一些實施例中,第一階梯結構666的最頂部層級可以被介電層450覆蓋。在一些實施例中,第一階梯結構666的最頂部層級可以進一步被其它介電材料覆蓋。可以向形成第一階梯結構666的各個蝕刻-修整循環的蝕刻製程添加去除介電層450和/或其它介電材料的製程步驟。
透過重複蝕刻-修整製程,能夠在各個第一劃分塊562的每一側針對各個第一階梯結構666從頂部到底部,並且從外側(例如,邊緣560e)到內側(例如,邊緣560f)形成第一階梯台階668-1、第一階梯台階668-2和第一階梯台階668-3。在蝕刻-修整製程期間,第一遮罩堆疊層560中的一些可以被消耗掉,並且第一遮罩堆疊層560的厚度可能減小。在一些實施例中,可以使用兩個或更多第一遮罩堆疊層560形成第一階梯結構666。
在一些實施例中,可以曝露各個第一階梯台階668的犧牲層452的部分,如圖6A和圖6B所示。在該示例中,還可能在處於第一劃分塊562之外的階梯區210的區域668-0中曝露出犧牲層452,其中,區域668-0可以是用於第一階梯結構666的蝕刻停止部。
在形成結構600之後,可以去除第一遮罩堆疊層560(如圖6B所示)。 可以透過使用例如利用O2或CF4電漿的乾式蝕刻或者利用抗蝕劑/聚合物剝離劑(例如,基於溶劑的化學製劑)的濕式蝕刻的技術來去除第一遮罩堆疊層560。
圖7示出了根據一些實施例的3D記憶元件的示例性結構700的俯視圖。示例性結構700包括設置在溝道結構區211以及階梯區210的部分之上的第二遮罩堆疊層770。具有邊緣770e的第二遮罩堆疊層770覆蓋第一劃分塊562的一部分,並且沿y方向延伸。第二遮罩堆疊層770可以由與第一遮罩堆疊層560相似的材料製成,並且可以是使用相似技術形成的。
圖8A示出了根據一些實施例的3D記憶元件的示例性結構800的俯視圖。圖8B示出了結構800的立體視圖。結構800包括在第一劃分塊562中的每一個上形成的第二階梯結構872。第二階梯結構872包括被定向在x方向上的多個第二階梯台階874(例如,第二階梯台階874-0、第二階梯台階874-1、第二階梯台階874-2、第二階梯台階874-3、第二階梯台階874-4、第二階梯台階874-5、第二階梯台階874-6和第二階梯台階874-7),其中,各個第二階梯台階874對應於兩個對稱分布的第一階梯結構666。第一階梯結構666包括處於第一劃分塊562的兩側上的被定向在y方向上的多個第一階梯台階668,例如,第一階梯台階668-0、第一階梯台階668-1、第一階梯台階668-2和第一階梯台階668-3。圖8A和圖8B示出了 被定向在x方向上的第二階梯台階874中的八個。然而,第二階梯台階的數量不受限制,並且可以是任何整數N2。在一些實施例中,第二階梯結構872可以設置在第一劃分塊562中的每一個上,並且可以在y方向上重複。
在一些實施例中,第二階梯台階874可以是透過使用第二遮罩堆疊層770對結構700(圖7中)施加與用於形成第一階梯台階668的重複的蝕刻-修整製程類似的重複的蝕刻-修整製程而形成的。在該示例中,可以透過在x方向上從透過(例如)微影限定的初始圖案的邊緣770e向最終邊緣770f對第二遮罩堆疊層770進行修整來形成第二階梯台階874。
在蝕刻-修整製程期間,一些第二遮罩堆疊層770中可以被消耗掉,並且第二遮罩堆疊層770的厚度可能減小。根據一些實施例,為了實現第二階梯結構872的高垂直堆疊層,可以使用兩個或更多第二遮罩堆疊層770。在該示例中,可以透過使用多個遮罩進行的蝕刻-修整製程來形成更多數量的第二階梯台階N2
在一些實施例中,修整-蝕刻製程中包含的修整製程確定第二階梯台階874的寬度“c”。因此,第一階梯台階668在x-y平面中的尺寸可以具有處於x方向上的“c”和處於y方向上的“a”。在一些實施例中,第二階梯台階874中的每一個可以具有相同的寬度“c”。在一些實施例中,第二階梯台階中的每一個可以具有不同寬度。在一些實施例中,第二階梯結構872中的第二階梯台階874的寬度“c”在x方向上可以處於10nm和100nm之間。在形成第二階梯結構872之後可以去除第二遮罩堆疊層770,進而從頂部曝露膜堆疊層445(如圖8B所示)。
在一些實施例中,在結構800中,第二階梯台階874中的每一個可以對應於沿y方向的兩個對稱分布的第一階梯結構666。兩個對稱分布的第一階梯台階中的每一對(例如,圖8B中的第一階梯台階668-1)對應於膜堆疊層445的同一交替介電層對454(例如,圖6B中的第一階梯台階668-1),並且因此可以連接至儲存單元340的同一控制閘極或字元線333(圖3中)。在一些實施例中,各個第一階梯結構666包括四個第一階梯台階668(例如,圖8A和圖8B中的結構800)。在該示例中,第二階梯台階874中的每一個對應於每一側上的四個第一階梯台階668。在一些實施例中,各個第一階梯台階668包括一個交替介電層對454。在該示例中,用於形成各個第一階梯台階668的每種蝕刻製程包括蝕刻一個交替介電層對454。用於形成各個第二階梯台階874的每種蝕刻製程包括蝕刻五個交替介電層對454。第二階梯台階874的厚度可以是五個交替介電層對454的總厚度或者五個第一階梯台階668的總厚度。如圖8A和圖8B所示,第二階梯台階874可以被定向在x方向上,而第一階梯台階668可以被定向在y方向上。在第二階梯結構872中,x方向上的各個第二階梯台階874對應於每一側上的y方向上的四個第一階梯台階668。
在一些實施例中,第一階梯結構666在y方向上可以包括N1數量的第一階梯台階668。第二階梯台階874中的每一個對應於每一側上的y方向上的兩個對稱分布第一階梯結構666。一對對稱分布的第一階梯台階668可以對應於同一交替介電層對454,並且可以連接至圖3中的儲存單元340的同一控制閘極或字元線333。在該示例中,第二階梯台階874中的每一個可以對應於每一側上的y方向上的N1數量的第一階梯台階668。在一些實施例中,第一階梯台階668中的每一個包括一個交替介電層對454。在該示例中,用於形成各個第一階梯台階668的每種蝕刻製程包括蝕刻一個交替介電層對454。
在一些實施例中,用於形成第二階梯台階874的每種蝕刻製程包括蝕刻N1+1數量的交替介電層對454。第二階梯台階874的厚度可以是N1+1數量的交替介電層對454的總厚度,或者是N1+1數量的第一階梯台階668的總厚度。在第二階梯結構872中,第二階梯台階874可以被定向在x方向上,而每一側上的第一階梯台階668可以被定向在y方向上。在該示例中,x方向上的各個第二階梯台階874對應於y方向上的每一側上的N1數量的第一階梯台階668。在一些實施例中,第二階梯台階874的數量可以是N2。在該示例中,各個第一劃分塊562的第一階梯台階的總數在每一側上可以是N1和N2的乘積,即(N1 x N2)。第二階梯結構872的每一側上的第一階梯台階668中的每一個對應於一個交替介電層對454,並且在後續製程中可以連接至儲存單元340(圖3中)的相應字元線333和控制閘極。 因此,可以透過第二階梯結構872來連接總數(N1 x N2)的交替介電層對。透過形成具有N1數量的第一階梯台階的第一階梯結構666,能夠使沿字元線(WL)方向(x方向)的第二階梯台階874的數量減小N1倍。因此,能夠縮短第二階梯結構872在x方向上的總橫向尺寸。
圖9示出了根據一些實施例的示例性結構900的俯視圖。結構900包括設置在結構800(圖8中)上的第三遮罩堆疊層975。第三遮罩堆疊層975可以是使用與第一遮罩堆疊層560類似的材料和類似的技術形成的。第三遮罩堆疊層975覆蓋第二階梯結構872和溝道結構區211。第三遮罩堆疊層975還覆蓋階梯區210的與第二階梯結構872相鄰的部分。第三遮罩堆疊層975包括緊鄰第一劃分塊562的多個第二劃分塊976。第二劃分塊976在x方向上延伸到階梯區210中,並且沿y方向重複。在圖9中示出了兩個第二劃分塊976作為示例,然而第二劃分塊976的數量不限於此。
在一些實施例中,各個第二劃分塊976可以被形成為沿x方向與對應的第一劃分塊562成直線。在一些實施例中,結構900包括第二劃分塊976和第一劃分塊562之間的偏移“g”,其中,可以根據後續製程中的目標結構對偏移“g”進行調整。在一些實施例中,第二劃分塊976可以包括與第一劃分塊562的y方向上的寬度不同的y方向上的寬度“v”。
圖10示出了根據一些實施例的示例性結構1000的俯視圖。結構1000包括處於各個第二劃分塊976的每一側上的第三階梯結構1077。第三階梯結構1077包括被定向在y方向上的多個第三階梯台階1078,例如,圖10所示的第三階梯台階1078-0、第三階梯台階1078-1和第三階梯台階1078-2。第二劃分塊976和第三階梯結構1077可以是使用與第一劃分塊562和第一階梯結構666類似的技術形成的,例如,使用第三遮罩堆疊層975和重複的蝕刻-修整製程。在一些實施例中,各個第三階梯台階1078可以具有x方向上的寬度“h”和y方向上的寬度“d”。在一些實施例中,第三階梯台階1078中的每一個在x或y方向上可以具有不同寬度。第三階梯台階1078的寬度“h”可以與第一階梯台階666的寬度“b”相同或不同。第三階梯台階1078的寬度“d”可以與第一階梯台階666的寬度“a”相同或不同。在一些實施例中,在y方向上寬度“h”和“d”可以處於10nm和100nm之間。
在一些實施例中,第三階梯結構1077的最頂部層級(例如,圖10中的第三階梯結構1078-1)可以沿x方向相對於第一階梯結構666的最頂部層級(例如,圖10中的第一階梯台階668-3)具有偏移“s”。在一些實施例中,偏移“s”可以是寬度“b”與第一階梯台階的數量N1的乘積,即(N1xb)。在該示例中,第 三階梯結構1077與第一階梯結構666重疊,並且偏移“g”和偏移“s”之和可以被描述為第三階梯結構1077在x方向上的總寬度,即,g+s=N3 x h。在一些實施例中,偏移“s”可以為零。在該示例中,第三階梯結構1077被形成為與第一階梯結構666相鄰,而不存在沿x方向的重疊或間隙。在一些實施例中,第三階梯結構1077在x方向上可以與第一階梯結構666具有間隙。在該示例中,從第三階梯結構1077的最頂部層級到第一階梯結構666的最底部層級的距離(例如,間隙)可以用偏移“s”的量值表示。在該情形中,偏移“g”和“s”之間的差是第三階梯結構1077在x方向上的總寬度,即,g-s=N3 x h。偏移“s”作為間隙的該示例未在圖10中示出,並且可以基於上文的描述來重現。
在一些實施例中,第三階梯台階中的每一個可以具有一個交替介電層對454。在圖10中,第三階梯結構1077中的每一個包括三個第三階梯台階1078。然而,第三階梯結構1077中的每一個中的第三階梯台階1078的數量不受限制,並且可以是任何整數N3。在形成第三階梯結構1077之後,可以使用與去除第一遮罩堆疊層560的技術類似的技術去除第三遮罩堆疊層975。
圖11示出了根據一些實施例的3D記憶元件的示例性結構1100的俯視圖。示例性結構1100包括設置在溝道結構區211、第二階梯結構872和階梯區210的部分之上的第四遮罩堆疊層1179。具有邊緣1179e的第四遮罩堆疊層1179覆蓋第二劃分塊976的部分,並且沿y方向延伸。第四遮罩堆疊層1179可以由與第一遮罩堆疊層560類似的材料製成,並且可以是使用類似技術形成。
圖12A示出了根據一些實施例的示例性結構1200的俯視圖。圖12B示出了根據一些實施例的結構1200的立體視圖。結構1200還包括在第二劃分塊976 中的每一個上形成的多個第四階梯結構1280。在一些實施例中,第四階梯結構1280包括被定向在x方向上的多個第四階梯台階(例如,第四階梯結構1282-0、第四階梯結構1282-1、第四階梯結構1282-3、第四階梯結構1282-5、和第四階梯結構1282-7)。在一些實施例中,第四階梯台階1282中的每一個包括沿y方向對稱分布在每一側上的兩個第三階梯結構1077。在圖12A和圖12B中,作為例示示出了八個第四階梯台階1282。然而,第四階梯台階的數量不受限制,並且可以是任何整數N4
在一些實施例中,第四階梯結構1280和第四階梯台階1282可以是透過使用與第二階梯結構872和第二階梯台階874類似的技術形成的,例如,利用第四遮罩堆疊層1179和重複的蝕刻-修整製程。在一些實施例中,第三階梯結構1077中的每一個可以在y方向上具有三個階梯台階,而第三階梯台階1078中的每一個可以具有一個交替介電層對454。在該示例中,第四階梯台階1282中的每一個可以對應於三個交替介電層對454,並且垂直高度可以是三個層級。
在一些實施例中,第四階梯台階中的每一個包括寬度“w”,其中,寬度“w”在x方向上處於10nm到100nm之間。因此,第三階梯台階1078在x-y平面中的尺寸可以具有x方向上的“w”和y方向上的“d”。在一些實施例中,第四階梯台階中的每一個可以具有不同寬度。在一些實施例中,第四階梯結構1280的寬度“w”可以與第二階梯結構872的寬度“c”相同或不同。對於高垂直膜堆疊層而言,可以將寬度“w”或“d”形成為比寬度“c”或“a”寬,進而能夠以較大的製程視窗製作第三或第四階梯台階上的接觸結構214(例如,如圖3中所示)。例如,用於接觸結構214的深接觸孔在第三或第三階梯台階1078/1282上可以形成為具有較大直徑,或者可以具有更高的對輪廓彎曲的容限。
在一些實施例中,第四階梯結構1280可以被設置為相對於第二階梯結構872具有偏移“t”。偏移“t”是兩個相鄰階梯台階之間的尺寸,其中一個來自第四階梯結構1280,另一個來自第二階梯結構872。偏移“t”在x方向上可以處於0到1μm之間。在垂直方向或z方向(即,垂直於基底的頂表面)上,偏移“t”可以是至少一個層級或者交替介電層對454中的一層。
在一些實施例中,第四階梯結構1280在x方向上可以包括N4數量的第四階梯台階1282。第四階梯台階1282中的每一個可以對應於每一側上的y方向上的N3數量的第三階梯台階1078。在該示例中,針對第二劃分塊976中的每一個的第四階梯結構1280的階梯台階的總數可以是N4和N3的乘積,例如,(N4 x N3)。連同第二階梯結構872一起,階梯台階的總數可以是N4 x N3+N2 x N1。因此,透過應用第一和第二劃分塊562/976並且透過形成第一和第三階梯結構666/1077,可以極大地減小被定向在x方向上的階梯台階(例如,第二和第四階梯台階874/1282)的數量,並且還能夠極大地減小階梯結構(例如,第二和第四階梯結構872/1280)在x方向上的總橫向尺寸。此外,透過將階梯結構的上層級和下層級分開,並且施加單獨的蝕刻-修整製程,能夠形成具有不同尺寸的階梯台階,以解決具有高垂直字元線堆疊層的3D記憶體的處理挑戰。
在一些實施例中,接下來可以在階梯區210中形成與第二劃分塊976相鄰的更多劃分塊和階梯結構,以形成用於儲存單元的堆疊字元線或控制閘極的更多階梯台階。可以使用與上文描述的類似的結構和方法。
可以在形成具有多重劃分的階梯結構之後繼續3D記憶體的製作,例 如,形成溝道孔、縫隙結構、替代閘極和接觸結構。用於這些後續結構的相關製程和技術對於本領域技術人員是已知的,因此未包含在本發明中。
圖13示出了根據一些實施例的用於形成用於立體(3D)記憶體的具有多重劃分的階梯結構的示例性方法1300。方法1300的製程步驟可以用於形成圖4-5、圖6A-6B、圖7、圖8A-8B、圖9-11、圖12A-12B和圖13中所示的記憶元件結構。應當理解,方法1300中所示的製程步驟並不具有排他性,並且也可以在所例示的製程步驟中的任何製程步驟之前、之後或之間執行其它製程步驟。在一些實施例中,示例性方法1300的一些製程步驟可以被省略或者可以包括此處為了簡單起見未描述的其它製程步驟。在一些實施例中,方法1300的製程步驟可以是按照不同循序執行的,和/或可以發生變化。
在製程步驟1310,在基底上設置膜堆疊層。膜堆疊層可以是圖4中的具有交替介電層(第一介電層)和犧牲層(第二介電層)的膜堆疊層445。介電層和犧牲層與圖4中的介電層450和犧牲層452類似,並且可以是使用類似技術設置的。介電層和下面的犧牲層被稱為交替介電層對。
在製程步驟1320,在溝道結構區以及階梯區的部分中的膜堆疊層上設置第一遮罩堆疊層。第一遮罩堆疊層可以是圖5所示的第一遮罩堆疊層560,並且可以由類似材料製成。第一遮罩堆疊層包括處於階梯區中的多個第一劃分塊。劃分塊中的每一個在平行於3D記憶體的字元線或控制閘極的x方向上延伸,並且可以在平行於基底的二維平面(x-y平面)中沿y方向(垂直於x方向)重複。
在製程步驟1330,在各個第一劃分塊的每一側上形成第一階梯結 構。第一階梯結構與圖6A和圖6B中的第一階梯結構666類似,並且可以使用類似的重複的蝕刻-修整製程形成。在一些實施例中,各個第一階梯結構包括被定向在y方向上的N1數量的第一階梯台階。在一些實施例中,各個第一階梯台階包括一個交替介電層對。
在製程步驟1340,在第一劃分塊上設置第二遮罩堆疊層。第二遮罩堆疊層可以是圖7所示的第二遮罩堆疊層770。第二遮罩堆疊層可以在y方向上延伸,並且能夠覆蓋第一劃分塊的至少部分。
在製程步驟1350,在各個第一劃分塊中形成多個第二階梯結構,其中,第二階梯結構包括被定向在x方向上的N2數量的第二階梯台階。在一些實施例中,第二階梯台階的每一個包括沿y方向的每一側上的N1數量的第一階梯台階。第二階梯結構可以是圖8A和圖8B中的第二階梯結構872,並且可以使用類似的重複的蝕刻-修整製程形成。
在製程步驟1360,使用第三遮罩堆疊層在第二劃分塊的每一側上形成多個第三階梯結構,如圖9和圖10所示。第三階梯結構可以是使用與第三階梯結構1077類似的技術(例如,重複的蝕刻-修整製程)形成的。第三階梯結構的每一個在y方向上包括N3數量的第三階梯台階。第二劃分塊在階梯區中位於緊鄰第一劃分塊處並具有x方向上的偏移“s”,其中,偏移“s”可以在從0到1μm的範圍內。
在製程步驟1380,使用第四遮罩堆疊層1179在第二劃分塊的每一個中形成多個與第四階梯結構1280類似的第四階梯結構,如圖11、圖12A和圖12B 所示。第四階梯結構可以是使用與上文描述的類似的技術(例如,重複的蝕刻-修整製程)形成的。第四階梯結構可以包括x方向上的N4數量的第四階梯台階,其中,第四階梯台階中的每一個對應於y方向上的N3數量的第四階梯台階。
透過完成製程步驟1380,各個劃分塊中的階梯台階的總數可以是N1 x N2+N3 x N4,其對應於N1 x N2+N3 x N4數量的交替介電層對。可以使用類似方法在階梯區中形成更多的劃分塊和階梯結構。透過沿橫向和垂直方向實施劃分塊,可以極大地減小x方向(平行於字元線)上的階梯台階的數量。與此同時,還能極大地減小x方向上的全部階梯結構的橫向尺寸。除了縮小尺寸之外,多重劃分實現了可以根據製程要求設計的具有不同尺寸的階梯結構。因此,具有多重劃分的階梯結構能夠提供更大的製程視窗,並且有可能提高製造產率。
根據本發明的各種實施例提供了與其它3D記憶元件相比具有更小的管芯尺寸、更高的元件密度和提高的性能的3D記憶元件。
相應地,在本發明中描述了立體記憶元件及其製造方法的各種實施例。
在一些實施例中,公開了立體記憶元件的階梯結構及其製作方法。 半導體結構包括第一和第二膜堆疊層,其中,第一膜堆疊層設置在第二膜堆疊層之上並且具有M1數量的層。所述第二膜堆疊層具有M2數量的層。M1和M2為整數。所述半導體結構還包括第一和第二階梯結構,其中,所述第一階梯結構形成在所述第一膜堆疊層中,並且所述第二階梯結構形成在所述第二膜堆疊層中。所述第一和第二階梯結構緊鄰彼此並具有偏移。
在一些實施例中,一種用於形成立體記憶體結構的方法包括在基底上形成具有多個層的膜堆疊層。所述方法還包括形成在第一方向上具有L1數量的台階的第一階梯結構,其中,第一階梯結構的在第一方向上的各個台階包括在第二方向上的L2數量的台階。L1和L2為整數,並且第一方向和第二方向相互垂直並且處於與基底的頂表面平行的平面上。所述方法還包括形成在第一方向上具有L3數量的台階的第二階梯結構,其中,第二階梯結構的在第一方向上的各個台階具有在第二方向上的L4數量的台階。L3和L4為整數,並且所述第二階梯結構位元於緊鄰所述第一階梯結構處並具有偏移。
對特定實施例的上述說明因此將完全揭示本發明的一般性質,使得他人能夠透過運用本領域技術範圍內的知識容易地對這種特定實施例進行修改和/或調整以用於各種應用,而不需要過度實驗,並且不脫離本發明的一般概念。 因此,基於本文呈現的教導和指導,這種調整和修改旨在處於所公開的實施例的等同物的含義和範圍內。應當理解,本文中的措辭或術語是用於說明的目的,而不是為了進行限制,進而本說明書的術語或措辭將由技術人員按照所述教導和指導進行解釋。
上文已經借助於功能構建塊描述了本發明的實施例,功能構建塊例示了指定功能及其關係的實施方式。在本文中出於方便描述的目的任意地限定了這些功能構建塊的邊界。可以限定替代的邊界,只要適當執行指定的功能及其關係即可。
發明內容和摘要部分可以闡述發明人所設想的本發明的一個或多個 示例性實施例,但未必是所有示例性實施例,並且因此,並非旨在透過任何方式限制本發明和所附申請專利範圍。
本發明的廣度和範圍不應受任何上述示例性實施例的限制,並且應當僅根據以下申請專利範圍書及其等同物來進行限定。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
562:第一劃分塊
668-0:第一階梯台階
668-1:第一階梯台階
668-2:第一階梯台階
668-3:第一階梯台階
872:第二階梯結構
874-0:第二階梯台階
874-1:第二階梯台階
874-4:第二階梯台階
874-7:第二階梯台階
976:第二劃分塊
1078-0:第三階梯台階
1078-1:第三階梯台階
1078-2:第三階梯台階
1200:結構
1280:第四階梯結構
1282-0:第四階梯結構
1282-1:第四階梯結構
1282-3:第四階梯結構
1282-5:第四階梯結構
1282-7:第四階梯結構

Claims (17)

  1. 一種半導體結構,包括:一第一膜堆疊層和一第二膜堆疊層,其中,所述第一膜堆疊層設置在所述第二膜堆疊層之上,並且包括M1數量的層,所述第二膜堆疊層具有M2數量的層,並且M1和M2為整數;以及一第一階梯結構和第二階梯結構,其中所述第一階梯結構形成在所述第一膜堆疊層中,所述第二階梯結構形成在所述第二膜堆疊層中,其中所述第一階梯結構和所述第二階梯結構彼此緊鄰並具有偏移,其中:所述第一階梯結構還包括在一第一方向上的M3數量的台階;所述第一階梯結構的在所述第一方向上的各個台階對應於在一第二方向上的M4數量的台階;M3和M4為整數,M1至少是M3和M4的乘積;並且所述第一方向和所述第二方向相互垂直,並且處於與所述第一膜堆疊層的一頂表面平行的一平面中。
  2. 根據申請專利範圍第1項所述的半導體結構,其中:所述第一階梯結構的在所述第二方向上的各個台階包括所述第一膜堆疊層的一個層;並且所述第一階梯結構的在所述第一方向上的各個台階包括所述第一膜堆疊層的M4+1數量的層。
  3. 根據申請專利範圍第1項所述的半導體結構,其中:所述第二階梯結構還包括在所述第一方向上的M5數量的台階;所述第二階梯結構的在所述第一方向上的各個台階對應於在所述第二方向 上的M6數量的台階;其中M5和M6為整數;並且所述第一方向和所述第二方向相互垂直,並且處於與所述第一膜堆疊層的一頂表面平行的一平面中。
  4. 根據申請專利範圍第3項所述的半導體結構,其中:所述第二階梯結構的在所述第二方向上的各個台階包括所述第二膜堆疊層的一個層;並且所述第二階梯結構的在所述第一方向上的各個台階包括所述第二膜堆疊層的M6+1數量的層。
  5. 根據申請專利範圍第3項所述的半導體結構,其中:M2至少是M5和M6的乘積。
  6. 根據申請專利範圍第1項所述的半導體結構,其中:所述第一膜堆疊層和所述第二膜堆疊層中的各個層包括複數個第一介電層和複數個第二介電層;並且所述第一介電層和所述第二介電層交替排列在基底上。
  7. 根據申請專利範圍第1項所述的半導體結構,其中:所述第一膜堆疊層和所述第二膜堆疊層中的各個層包括複數個介電層和複數個導電層;並且所述介電層和所述導電層交替排列在基底上。
  8. 根據申請專利範圍第1項所述的半導體結構,其中,所述第一階梯結構和所述第二階梯結構之間的所述偏移,包含在平行於所述第一膜堆疊層或所述第二膜堆疊層的一頂表面的橫向方向上,偏移介於0到1μm之間。
  9. 一種形成半導體結構的方法,包括:在一基底上形成具有多個層的膜堆疊層;形成在一第一方向上具有L1數量的台階的一第一階梯結構,其中所述第一階梯結構的在所述第一方向上的各個台階對應於在一第二方向上的L2數量的台階,L1和L2為整數,且所述第一方向和所述第二方向相互垂直,並且處於與所述基底的一頂表面平行的一平面中其中所述第一階梯結構包括不低於L1和L2的乘積的數量的層,以及形成在所述第一方向上具有L3數量的台階的一第二階梯結構,其中所述第二階梯結構的在所述第一方向上的各個台階對應於在所述第二方向上的L4數量的台階,L3和L4為整數,且所述第二階梯結構位於緊鄰所述第一階梯結構處並具有偏移,其中所述第二階梯結構包括不低於L3和L4的乘積的數量的層。
  10. 根據申請專利範圍第9項所述的方法,其中,形成所述第一階梯結構包括:在所述膜堆疊層上設置具有一第一劃分塊的一第一遮罩堆疊層;在所述第一劃分塊的每一側上形成一第三階梯結構;設置覆蓋所述第一劃分塊的至少一部分的一第二遮罩堆疊層;以及使用所述第二遮罩堆疊層形成所述第一階梯結構。
  11. 根據申請專利範圍第10項所述的方法,其中,在所述第一劃分 塊的每一側上形成所述第三階梯結構包括:蝕刻所述膜堆疊層的一層;在所述第二方向上修整所述第一遮罩堆疊層;以及重複L2次所述蝕刻和所述修整,以在所述第二方向上形成L2數量的台階。
  12. 根據申請專利範圍第10項所述的方法,其中,使用所述第二遮罩堆疊層形成所述第一階梯結構包括:蝕刻所述膜堆疊層的L2+1數量的層;在所述第一方向上修整所述第二遮罩堆疊層;以及重複L1次所述蝕刻和所述修整,以在所述第一方向上形成L1數量的台階。
  13. 根據申請專利範圍第9項所述的方法,其中,形成所述第二階梯結構包括:設置具有一第二劃分塊的一第三遮罩堆疊層,其中,所述第三遮罩堆疊層覆蓋所述第一階梯結構;在所述第二劃分塊的每一側上形成多個第四階梯結構;設置覆蓋所述第一階梯結構以及所述第二劃分塊的一部分一的第四遮罩堆疊層;以及使用所述第四遮罩堆疊層形成所述第二階梯結構。
  14. 根據申請專利範圍第13項所述的方法,其中,在所述第二劃分塊的每一側上形成所述第四階梯結構包括:蝕刻所述膜堆疊層的一層;在所述第二方向上修整所述第三遮罩堆疊層;以及 重複L4次所述蝕刻和所述修整,以在所述第二方向上形成L4數量的台階。
  15. 根據申請專利範圍第13項所述的方法,其中,使用所述第四遮罩堆疊層形成所述第二階梯結構包括:蝕刻所述膜堆疊層的L4+1數量的層;在所述第一方向上修整所述第四遮罩堆疊層;以及重複L1次所述蝕刻和所述修整,以在所述第一方向上形成L1數量的台階。
  16. 根據申請專利範圍第9項所述的方法,其中:所述膜堆疊層中的各個層包括第一介電層和第二介電層;並且所述第一介電層和所述第二介電層交替排列在所述基底上。
  17. 根據申請專利範圍第9項所述的方法,其中:所述膜堆疊層中的各個層包括介電層和導電層;並且所述介電層和所述導電層交替排列在所述基底上。
TW108111241A 2019-02-21 2019-03-29 用於立體記憶體的具有多重劃分的階梯結構 TWI702714B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/075650 WO2020168502A1 (en) 2019-02-21 2019-02-21 Staircase structure with multiple divisions for three-dimensional memory
WOPCT/CN2019/075650 2019-02-21

Publications (2)

Publication Number Publication Date
TWI702714B true TWI702714B (zh) 2020-08-21
TW202032762A TW202032762A (zh) 2020-09-01

Family

ID=67073978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108111241A TWI702714B (zh) 2019-02-21 2019-03-29 用於立體記憶體的具有多重劃分的階梯結構

Country Status (4)

Country Link
US (2) US11462558B2 (zh)
CN (1) CN109983577B (zh)
TW (1) TWI702714B (zh)
WO (1) WO2020168502A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770902B (zh) * 2019-08-23 2021-08-17 长江存储科技有限责任公司 竖直存储器件
CN110770903B (zh) 2019-08-23 2021-01-29 长江存储科技有限责任公司 竖直存储器件
CN113228275B (zh) 2019-12-24 2023-04-18 长江存储科技有限责任公司 三维nand存储器件及其形成方法
CN111162020B (zh) * 2020-01-02 2023-11-17 长江存储科技有限责任公司 检测阶梯结构偏移的方法及芯片
WO2021163876A1 (en) 2020-02-18 2021-08-26 Yangtze Memory Technologies Co., Ltd. Staircase structure for three-dimensional memory
JP7367055B2 (ja) 2020-02-20 2023-10-23 長江存儲科技有限責任公司 Xtackingアーキテクチャを有するDRAMメモリデバイス
WO2021189189A1 (en) * 2020-03-23 2021-09-30 Yangtze Memory Technologies Co., Ltd. Staircase structure in three-dimensional memory device and method for forming the same
EP3931869B1 (en) * 2020-04-24 2023-12-06 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices with drain-select-gate cut structures and methods for forming the same
WO2021226979A1 (en) * 2020-05-15 2021-11-18 Yangtze Memory Technologies Co., Ltd. Three-dimensional nand memory device and method of forming the same
CN111758161B (zh) 2020-05-29 2021-08-17 长江存储科技有限责任公司 垂直存储器件
JP2022043893A (ja) * 2020-09-04 2022-03-16 キオクシア株式会社 半導体記憶装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697498B2 (en) * 2010-11-29 2014-04-15 Samsung Electronics Co., Ltd. Methods of manufacturing three dimensional semiconductor memory devices using sub-plates
US9230987B2 (en) * 2014-02-20 2016-01-05 Sandisk Technologies Inc. Multilevel memory stack structure and methods of manufacturing the same
CN107039457A (zh) * 2016-01-08 2017-08-11 三星电子株式会社 三维半导体存储器件及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130009274A1 (en) * 2009-12-31 2013-01-10 Industry-University Cooperation Foundation Hanyang University Memory having three-dimensional structure and manufacturing method thereof
JP5269022B2 (ja) * 2010-09-22 2013-08-21 株式会社東芝 半導体記憶装置
US8530350B2 (en) * 2011-06-02 2013-09-10 Micron Technology, Inc. Apparatuses including stair-step structures and methods of forming the same
US9165823B2 (en) * 2013-01-08 2015-10-20 Macronix International Co., Ltd. 3D stacking semiconductor device and manufacturing method thereof
KR102183713B1 (ko) * 2014-02-13 2020-11-26 삼성전자주식회사 3차원 반도체 장치의 계단형 연결 구조 및 이를 형성하는 방법
US9728499B2 (en) * 2014-11-26 2017-08-08 Sandisk Technologies Llc Set of stepped surfaces formation for a multilevel interconnect structure
US10373970B2 (en) * 2016-03-02 2019-08-06 Micron Technology, Inc. Semiconductor device structures including staircase structures, and related methods and electronic systems
US10043751B2 (en) * 2016-03-30 2018-08-07 Intel Corporation Three dimensional storage cell array with highly dense and scalable word line design approach
CN106910746B (zh) 2017-03-08 2018-06-19 长江存储科技有限责任公司 一种3d nand存储器件及其制造方法、封装方法
TWI630709B (zh) * 2017-03-14 2018-07-21 旺宏電子股份有限公司 三維半導體元件及其製造方法
KR102344862B1 (ko) 2017-05-17 2021-12-29 삼성전자주식회사 수직형 반도체 소자
CN108364953B (zh) * 2018-03-13 2019-08-27 长江存储科技有限责任公司 三维存储器件及其制作过程的器件保护方法
CN109155318B (zh) * 2018-08-10 2019-09-03 长江存储科技有限责任公司 多分割3d nand存储器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697498B2 (en) * 2010-11-29 2014-04-15 Samsung Electronics Co., Ltd. Methods of manufacturing three dimensional semiconductor memory devices using sub-plates
US9230987B2 (en) * 2014-02-20 2016-01-05 Sandisk Technologies Inc. Multilevel memory stack structure and methods of manufacturing the same
CN107039457A (zh) * 2016-01-08 2017-08-11 三星电子株式会社 三维半导体存储器件及其制造方法

Also Published As

Publication number Publication date
WO2020168502A1 (en) 2020-08-27
US11462558B2 (en) 2022-10-04
US20220028888A1 (en) 2022-01-27
CN109983577B (zh) 2021-12-07
TW202032762A (zh) 2020-09-01
US20200273874A1 (en) 2020-08-27
CN109983577A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
TWI702714B (zh) 用於立體記憶體的具有多重劃分的階梯結構
US11910599B2 (en) Contact structures for three-dimensional memory device
US11974431B2 (en) Three-dimensional memory devices and fabricating methods thereof
US11107834B2 (en) Staircase and contact structures for three-dimensional memory
TWI782391B (zh) 用於三維儲存設備中的中心階梯結構的底部選擇閘極觸點
CN108389865B (zh) 具有倾斜栅电极的三维半导体存储器件
US11864388B2 (en) Vertical memory devices
US20210057429A1 (en) Vertical memory devices
US11222789B2 (en) Staircase structure for three-dimensional memory
TW202218056A (zh) 包括具有梅花形狀的通道結構的三維記憶體元件