TWI773401B - 版圖設計的方法和積體電路、運算晶片和計算設備 - Google Patents

版圖設計的方法和積體電路、運算晶片和計算設備 Download PDF

Info

Publication number
TWI773401B
TWI773401B TW110123038A TW110123038A TWI773401B TW I773401 B TWI773401 B TW I773401B TW 110123038 A TW110123038 A TW 110123038A TW 110123038 A TW110123038 A TW 110123038A TW I773401 B TWI773401 B TW I773401B
Authority
TW
Taiwan
Prior art keywords
layout
standard
optimized
primary
standard cell
Prior art date
Application number
TW110123038A
Other languages
English (en)
Other versions
TW202139051A (zh
Inventor
孔維新
于東
范志軍
田文博
Original Assignee
大陸商深圳比特微電子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳比特微電子科技有限公司 filed Critical 大陸商深圳比特微電子科技有限公司
Publication of TW202139051A publication Critical patent/TW202139051A/zh
Application granted granted Critical
Publication of TWI773401B publication Critical patent/TWI773401B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/394Routing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2117/00Details relating to the type or aim of the circuit design
    • G06F2117/12Sizing, e.g. of transistors or gates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本公開涉及一種版圖設計的方法和積體電路、運算晶片和計算設備。該版圖設計的方法包括利用初級標準單元庫基於電路圖網表生成初級版圖,所述電路圖網表包括第一標準單元和第二標準單元,所述初級標準單元庫包括第一標準單元的第一標準版圖和第二標準單元庫的第二標準版圖。該方法還包括基於第一標準版圖與第二標準版圖在初級版圖中的拼接關係,將第一標準版圖與第二標準版圖合併以對合併版圖進行優化。

Description

版圖設計的方法和積體電路、運算晶片和計算設備
本公開涉及系統級晶片設計領域,更具體地,涉及版圖設計的方法和積體電路、運算晶片和計算設備。
在系統級晶片設計領域中,半定制設計因其對時間和人力成本的節省而日益成為版圖設計的主流風格。標準單元法,作為半定制設計中的一項重要技術,是指將一些基礎邏輯功能按照高度相等、寬度可變等一些原則設計成可拼接的單元。一般而言,半導體製造廠家(Foundry)或第三方IP供應商可以針對特定工藝提供初級標準單元庫。
根據本公開的第一方面,提供了一種方法,其中,該方法包括:利用初級標準單元庫基於電路圖網表生成初級版圖,所述電路圖網表包括第一標準單元和第二標準單元,所述初級標準單元庫包括第一標準單元的第一標準版圖和第二標準單元庫的第二標準版圖;以及基於第一標準版圖與第二標準版圖在初級版圖中的拼接關係,將第一標準版圖與第二標準版圖合併以對合併版圖進行優化。
在一些實施例中,所述第二標準版圖是所述初級版圖中與所述第一標準版圖的拼接頻次高於參考值的標準版圖。
在一些實施例中,所述第一標準版圖和所述第二標準版圖中的至少一個標準版圖的版圖面積大於所述至少一個標準版圖的版圖面積的理論最小值,並且將所述第一標準版圖與所述第二標準版圖合併以對合併版圖進行優化包括:減小所述第一標準版圖和所述第二標準版圖的合併版圖的面積。
在一些實施例中,將所述第一標準版圖與所述第二標準版圖合併以對合併版圖進行優化包括:識別所述第一標準版圖和所述第二標準版圖中的所述至少一個標準版圖中的潛在可優化區域;基於所述第一標準版圖與所述第二標準版圖的拼接關係,確定所述第一標準版圖和所述第二標準版圖對所述潛在可優化區域是否存在限制;響應於確定所述第一標準版圖和所述第二標準版圖對所述潛在可優化區域沒有限制,確定所述潛在可優化區域是可優化區域;以及對包括所述可優化區域的所述至少一個標準版圖的佈局進行調整,以減小所述可優化區域的面積。
在一些實施例中,所述至少一個標準版圖是基於MOS電晶體實現的,將所述第一標準版圖與所述第二標準版圖合併以對合併版圖進行優化包括:將所述至少一個標準版圖中的多餘閘極多晶矽上的連接關係轉移到適當的其它閘極多晶矽上,並去除所述多餘閘極多晶矽。
在一些實施例中,將所述第一標準版圖與所述第二標準版圖合併以對合併版圖進行優化包括:減少後續佈線中互連的長度。
在一些實施例中,減少後續佈線中互連的長度進一步包括:將經由自動佈線得到的、與所述第一標準版圖或所述第二標準版圖內的互連處於不同金屬層的所述第一標準版圖和所述第二標準版圖之間的互連調整到與所述第一標準版圖或所述第二標準版圖內的互連相同的金屬層上。
在一些實施例中,該方法還包括:將經優化的合併版圖拆分成第一標準單元的第一優化版圖和第二標準單元的第二優化版圖;以及將第一優化版圖和第二優化版圖添加到初級標準單元庫,以形成經優化的標準單元庫。
在一些實施例中,第一優化版圖包括用於指示第一優化版圖在版圖設計中需要與第二優化版圖組合使用的信息,以及第二優化版圖包括用於指示第二優化版圖在版圖設計中需要與第一優化版圖組合使用的信息。
在一些實施例中,第一標準版圖、第二標準版圖和經優化的合併版圖滿足工藝設計規則。
根據本公開的第二方面,提供了一種積體電路,其中,所述積體電路包括:第一標準單元;和第二標準單元,其中第一標準單元的第一版圖和第二標準單元的第二版圖具有拼接關係,第一版圖是通過調整初級標準單元庫中第一標準單元的第一標準版圖的佈局得到的,第二版圖是初級標準單元庫中第二標準單元的第二標準版圖或者是通過調整初級標準單元庫中第二標準單元的第二標準版圖的佈局得到的,使得第一版圖和第二版圖的面積之和小於第一標準版圖和第二標準版圖的面積之和。
在一些實施例中,所述第一標準單元和所述第二標準單元是基於CMOS電晶體實現的,其中調整所述第一標準版圖的佈局或者調整所述第二標準版圖的佈局包括:將第一標準版圖或第二標準版圖中的多餘多晶矽上的連接關係轉移到適當的其它多晶矽上;以及去除所述多餘多晶矽。
在一些實施例中,所述第一標準單元和所述第二標準單元是兩輸入互斥或閘,所述積體電路是加法器電路。
根據本公開的第三方面,提供了一種運算晶片,包括至少一個如前所述的積體電路。
根據本公開的第四方面,提供了一種計算設備,該計算設備用於執行挖掘虛擬數位貨幣的算法,並且包括:至少一個如前所述的運算晶片、控制晶片、電源模組和散熱器,所述控制晶片與所述至少一個運算晶片耦接並用於控制所述至少一個運算晶片的操作,所述電源模組用於向所述至少一個運算晶片和/或所述控制晶片提供電力,以及所述散熱器用於給所述至少一個運算晶片、所述控制晶片和/或所述電源模組散熱。
根據參照圖式的以下描述,本公開的其它特性特徵和優點將變得清晰。
現在將參照圖式來詳細描述本公開的各種示例性實施例。應當注意,除非另外具體說明,否則在這些實施例中闡述的部件和步驟的相對佈置、數字表達式和數值不限制本公開的範圍。
以下對至少一個示例性實施例的描述實際上僅僅是說明性的,決不作為對本公開及其應用或使用的任何限制。也就是說,本文中的結構和方法是以示例性的方式示出,來說明本公開中的結構和方法的不同實施例,而並非意圖限制。本領域的技術人員將會理解,它們僅僅說明可以用來實施本公開的示例性方式,而不是窮盡的方式。此外,圖式不必按比例繪製,一些特徵可能被放大以示出具體組件的細節。
對於相關領域普通技術人員已知的技術、方法和設備可能不作詳細討論,但在適當情況下,所述技術、方法和設備應當被視為授權說明書的一部分。
如前所述,現有的基於標準單元的系統級晶片(System on Chip,SOC)版圖設計中,一般採用第三方提供的初級標準單元庫。然而,這種初級標準單元庫中的標準單元往往為了考慮眾多不同客戶的需求而設計。而對於一個具體的設計項目來說,採用這樣的標準單元的版圖設計在面積/功耗/速度等方面並非最優。具體來說,利用這種初級標準單元庫進行設計時,往往會基於眾多用戶的不同需求,全面考慮相應的標準單元與各種其它單元/模組/器件拼接的情形。最終結果是,採用這種初級標準單元庫設計的版圖可能可以保證在一些極端或特殊情況下依然能夠滿足工藝設計規則,但在面積/功耗/速度等性能方面通常具有一定的冗餘量。
因此,在基於初級標準單元庫進行具體晶片的版圖設計時,需要進行優化以尋求在面積/功耗/速度等方面的改進。
鑒於此,本公開提出了一種基於初級標準單元庫的改進的版圖設計方法。通過在具體項目中考察初級標準庫中的標準單元的標準版圖之間的拼接關係,將兩個及以上標準單元的標準版圖合併起來進行優化,從而相比於簡單基於標準版圖的設計能夠在面積/功耗/速度等方面有所改善。進一步地,還可以將優化後的合併版圖拆分為用於相應標準單元的優化版圖,補充到初級標準單元庫中以形成優化的標準單元庫。在後續版圖設計中,可以基於確定的標準單元之間的拼接關係而直接使用優化的標準單元庫中與該標準單元相應的優化版圖,從而提高版圖設計的效率和質量。以下將詳細描述根據本公開的具體實施例。
圖1示例性地示出了根據本公開的實施例的版圖設計的方法100的流程圖。方法100可以由計算機設備來實施。
如圖1所示,在步驟S102中,可以由計算機設備利用初級標準單元庫基於電路圖網表生成初級版圖,其中電路圖網表包括第一標準單元和第二標準單元,初級標準單元庫包括第一標準單元的第一標準版圖和第二標準單元的第二標準版圖。
電路圖網表是基於電路原理圖生成的專用積體電路(Application Specific Integrated Circuit, ASIC)的邏輯描述。電路圖網表可以描述積體電路晶片中模組間的互連、模組內的邏輯單元以及邏輯單元的連接頭。邏輯單元是完成一個完整邏輯功能的電路單元,可以包括標準單元或非標準單元。在一些實施例中,電路圖網表可以僅包括標準單元及其連接頭和由標準單元形成的模組間的互連信息,而不涉及非標準單元。在另一些實施例中,若電路圖網表涉及非標準單元,則在步驟S102中,可以僅針對其中的標準單元生成初級版圖。
標準單元是預先設計好並且具有一定電路邏輯功能的邏輯塊。標準單元可以具有相應的電路圖和版圖。作為非限制性的示例,標準單元可以包括反相器、及閘、反及閘、反或閘、寄存器、觸發器等。
初級標準單元庫是由Foundry或第三方IP供應商提供的用於描述標準單元的相關聯設計信息合集。在本公開的範圍內,初級標準單元庫至少可以包括用於標準單元的版圖庫。第一標準版圖和第二標準版圖是初級標準單元庫的版圖庫中分別用於第一標準單元和第二標準單元的版圖。進一步地,初級標準單元庫還可以包括單元符號庫、佈局佈線庫、綜合庫、仿真庫和時序庫等的一個或多個。
在步驟S102中,可以由計算機設備利用初級標準單元庫形成從電路圖網表中的標準單元到其版圖的映射。具體來說,在一些實施例中,形成這種映射可以包括:在初級標準單元庫中查找電路圖網表中的各個標準單元所對應的標準版圖,以及基於佈局規則確定各標準版圖在初級版圖中的位置。
在初級標準單元庫中,標準單元對應的標準版圖是符合工藝設計規則的。工藝設計規則是考慮器件在正常工作的條件下,根據實際工藝水平(包括光刻特性、刻蝕能力、對準容差等)和成品率要求,給出的一組同一工藝層及不同工藝層之間幾何尺寸的限制,主要包括線寬、間距、覆蓋、露頭、凹口、面積等規則,分別給出它們的最小值,以防止設計出的掩膜圖形出現斷裂、連接和一些不良物理效應。總體來說,工藝設計規則可以包括寬度規則、間距規則和交疊規則。
以P型金屬氧化物半導體(Positive Metal Oxide Semiconductor,PMOS)電晶體或N型金屬氧化物半導體(Positive channel Metal Oxide Semiconductor,NMOS)電晶體為例,針對其的工藝設計規則可以包括規定:(1)N井層的最小寬度、最小間距、N井內N井覆蓋P型注入有源區的尺寸、N井外N井到N型注入有源區的距離等;(2)P型有源區、N型有源區的寬度、間距等;(3)多晶矽(Poly)層的最小寬度、間距、多晶矽與有源區最小外間距、多晶矽伸出有源區距離、多晶矽與有源區最小內間距等;(4)接觸孔大小、間距、多晶矽覆蓋孔尺寸、有源區覆蓋孔尺寸、有源區孔到柵距離、多晶矽孔到有源區距離、金屬覆蓋孔尺寸等;(5)金屬連線的金屬寬度、間距;(6)最小焊盤大小、最小焊盤邊間距、最小金屬覆蓋焊盤尺寸、焊盤外到有源區最小距離;等等。
在設計初級標準單元庫中的標準版圖時,為了使標準單元能夠在與不同器件拼接時均滿足工藝設計規則,對其幾何尺寸的限制盡可能採用最嚴格的標準。例如,在一些情況下,可能會增加標準版圖的寬度,以增加其中關鍵圖形(譬如,金屬連線)到版圖邊界的距離。在一些實施例中,第一標準版圖和第二標準版圖中的至少一個的版圖寬度/面積大於其版圖寬度/面積的理論最小值。版圖寬度/面積的理論最小值可以是該版圖在滿足工藝設計規則且能夠實現其電路邏輯功能的前提下所能達到的最小版圖寬度/面積。需認識到,由於標準版圖遵循高度相等、寬度可變的設計原則,因此版圖的寬度直接決定了版圖的面積。若非特別指出,否則在本文中版圖寬度和版圖面積二者可以互換使用。
下面以圖2和圖3為例說明初級標準單元庫中的標準版圖的這種設計冗餘。圖2是兩輸入互斥或閘(XOR2)標準單元的電路圖。圖3是在現有初級標準單元庫中針對圖2的XOR2的標準版圖300。
在圖2中,使用了5個PMOS電晶體(M1, M2, M5, M7, M8)和5個NMOS電晶體(M3, M4, M6, M9, M10),即,5對MOS管。MOS管M1、M3、M8、M9的閘極連接第一輸入A1,MOS管M2、M4、M7、M10的閘極連接第二輸入A2。PMOS管M1和M5的源極連接電源VDD,NMOS管M3、M4、M6和M10的源極接地VSS。
理論上,對於這樣的電路圖,在版圖中,使用5根多晶矽作為閘極就足夠,加上左右2根作為隔離邊界的虛擬(dummy)多晶矽,所形成的版圖的單元寬度應該是6個有接觸孔的閘極多晶矽的最小間距(Contacted Poly Pitch, CPP)。CPP是兩個閘極多晶矽之間的最小中心距,是用於衡量標準單元寬度的重要指標。也就是說,這樣的XOR2電路的版圖的理論最小寬度是6個CPP。
在圖3中,版圖300包括電源總線301、接地總線302、P型注入有源區303、N型注入有源區304、虛擬多晶矽305(為簡便,在本文中將邊界多晶矽305-1和305-2統稱為虛擬多晶矽305)、閘極多晶矽306(為簡便,在本文中將閘極多晶矽306-1、306-2……306-6統稱為閘極多晶矽306)、金屬連線307和接觸孔(包括過孔)308。可以看到,版圖300使用了6根多晶矽306-1、306-2……306-6作為閘極,使得單元寬度增加到7個CPP。這是因為,理論上雖然只需要5根閘極多晶矽(306-1至306-5),但為了滿足工藝設計規則,第5根閘極多晶矽(即,閘極多晶矽306-5)上的金屬連線和接觸孔需要向邊界偏移,導致金屬連線和接觸孔與邊界的距離過近;為了盡可能減少在與某些器件拼接時出現的問題,在圖3中虛線框所示出的邊界區域310中,標準版圖300利用互連將第5根閘極多晶矽上的連接關係部分轉移到了增加的閘極多晶矽(即,閘極多晶矽306-6)上,在該增加的閘極多晶矽上的金屬連線和過孔距離邊界的距離可以更大。從電路邏輯功能的角度來看,增加的這一根多晶矽是多餘的,因為理論上僅需要5根閘極多晶矽就能實現該電路邏輯功能。增加的閘極多晶矽使得現有的標準版圖300的寬度/面積大於其理論最小值(6個CPP)。因此,該版圖300雖然能夠在與各種器件的版圖鄰接時滿足工藝設計規則,卻犧牲了單元寬度/面積這一性能。
返回到圖1,在步驟S102中,在一些實施例中,在從初級標準單元庫中找到相應標準版圖後,由計算機設備基於佈局規則確定各標準版圖在初級版圖中的位置。佈局規則可以規定每個版圖在晶片上的優化位置,以使佔用晶片面積減小且佈線結果改善。佈局規則可以人為預先設定或者根據一些現有的佈局算法(例如,基於最小割或枚舉等)來制定。
在步驟S104中,由計算機設備基於第一標準版圖與第二標準版圖在初級版圖中的拼接關係,將第一標準版圖與第二標準版圖合併以對合併版圖進行優化。
在步驟S102中生成初級版圖後,可以確定第一標準版圖和第二標準版圖在初級版圖中的位置,由此判斷二者是否具有拼接關係。兩個版圖具有拼接關係可以意味著兩個版圖在邊界上是相鄰接的。在一些實施例中,第一標準版圖和第二標準版圖具有拼接關係可以包括第一標準版圖對應的第一標準單元與第二標準版圖對應的第二標準單元在功能上是相關的和/或在電氣端口上是相連接的,因而將第一標準版圖和第二標準版圖放置為鄰接。例如,在加法器的電路實現中包括兩個相連接的XOR2。這兩個XOR2功能上相關而且是相連接的,所以在利用佈局規則確定其在初級版圖中的位置時,這兩個XOR2的版圖往往被放置為鄰接。在另一些實施例中,第一標準單元和第二標準單元可以在功能上不相關或者在電氣端口上不相連接,而僅僅是在版圖佈局位置上鄰接。
在確定第一標準版圖和第二標準版圖在初級版圖中具有拼接關係後,基於該拼接關係,可以將第一標準版圖和第二標準版圖合併,並對合併後的版圖進行優化。
將第一標準版圖和第二標準版圖合併可以包括將第一標準版圖和第二標準版圖組合起來作為一個整體進行考慮。對合併版圖的優化可以包括本領域版圖設計人員基於經驗或各種公知算法在版圖設計中能夠做出的改善晶片面積/功耗/速度等方面的各種優化。在一些實施例中,對合併版圖進行優化可以包括以下中的至少一項:(1)減少合併版圖的寬度/面積;和(2)減少後續佈線中互連的長度。
在減少合併版圖的寬度/面積的優化方面,在一些實施例中,將第一標準版圖和第二標準版圖合併以對合併版圖進行優化可以包括:首先,識別第一標準版圖和第二標準版圖中的至少一個中的潛在可優化區域。潛在可優化區域可以是標準版圖中使得版圖的寬度/面積大於其理論最優寬度/面積的區域。例如,圖3中版圖300的潛在可優化區域是邊界區域310,因為該區域使得版圖的面積/寬度大於其理論最小值。潛在可優化區域可以是一個或多個。更進一步地,在第一標準版圖和第二標準版圖中的該至少一個標準版圖是基於MOS電晶體實現的時,潛在可優化區域可以是包括相對於該標準版圖的電路邏輯功能而言多餘的閘極多晶矽的區域。
然後,基於第一標準版圖和第二標準版圖是拼接的,可以確定第二標準版圖對第一標準版圖的潛在可優化區域是否存在限制,由此能夠確定該潛在可優化區域是否實際上可優化。存在限制意味著:如果該潛在可優化區域被優化,則第一或第二標準版圖將難以滿足工藝設計規則。如果確定第二標準版圖對第一標準版圖的潛在可優化區域沒有限制,則可以確定該潛在可優化區域實際上可優化。反之,亦可以確定第一標準版圖對第二標準版圖的潛在可優化區域是否存在限制,由此能夠確定該潛在可優化區域是否實際上可優化。例如,後文將結合圖4B詳細介紹的,因為進行拼接的是兩個XOR2,一個XOR2對另一個XOR2的邊界區域的寬度沒有特別要求,因此可以確定XOR2的潛在可優化區域(例如,圖3中的邊界區域310)在這種拼接關係的情況下實際上是可以優化的。又例如,如果進行拼接的兩個標準版圖中的一個標準版圖的潛在可優化區域靠近兩個標準版圖的邊界,而另一個標準版圖卻存在超出邊界的構件(譬如金屬連線等),此時若對該潛在可優化區域進行優化,將導致兩個標準版圖難以滿足工藝設計規則,因此,可以確定該潛在可優化區域是不可優化的。
接下來,在確定潛在可優化區域為可優化區域後,可以對第一標準版圖和第二標準版圖的合併版圖進行優化。為減少合併版圖的寬度/面積,優化的實現手段可以包括對包括可優化區域的第一或第二標準版圖的佈局進行調整,以減小可優化區域的寬度/面積。例如,可以調整該標準版圖內的各種構件(包括閘極層、有源區層、接觸孔/通孔層、焊盤層、N井層等)和互連(金屬連線)的位置。更進一步地,在具有可優化區域的標準版圖是基於MOS電晶體實現的時,優化的實現手段可以包括將可優化區域中的多餘的閘極多晶矽上的連接關係(包括金屬連線和接觸孔等構件)轉移至其它適當的構件(例如,其它適當的閘極多晶矽)上,並去除該多餘的閘極多晶矽。由於版圖的寬度/面積是根據閘極多晶矽的數量(即有多少個CPP)來決定的,因此,去除閘極多晶矽可以減小寬度/面積。
在減少後續佈線中互連的長度的優化方面,在一些實施例中,將第一標準版圖和第二標準版圖合併以對合併版圖進行優化可以包括:利用已有的自動佈線算法對第一標準版圖和第二標準版圖進行自動佈線,識別自動佈線後第一標準版圖和第二標準版圖之間的互連與第一標準版圖或第二標準版圖的版圖內的構件之間的互連處於不同的金屬層上,將第一標準版圖和第二標準版圖之間的互連調整到與第一標準版圖或第二標準版圖的版圖內的構件之間的互連相同的金屬層上。由此,可以節省其它金屬層上的佈線資源,或者可以減少金屬層的數量,從而減少金屬層間互連的長度,提高晶片的處理速度。
在一些實施例中,經優化的合併版圖可以是符合工藝設計規則的。這樣,可以在合併版圖的基礎上設計出最終的晶片版圖並生成晶片製造商據以製造晶片的相應數據文件。
在一些實施例中,第二標準版圖可以是初級版圖中與第一標準版圖具有拼接關係的任何標準版圖。在進一步的實施例中,第二標準版圖可以是初級版圖中與第一標準版圖的拼接頻次高於參考值的標準版圖。該參考值可以是人為預先設定的閾值或者第一標準版圖與初級版圖中其它標準版圖的拼接頻次。可以分析初級版圖中包括第一標準版圖和第二標準版圖在內的所有標準版圖之間是否存在拼接關係並統計拼接的頻次。若第一標準版圖和第二標準版圖在初級版圖中被拼接在一起的頻次較高,例如,高於某個人為預先設定的閾值或者高於第一標準版圖與其它標準版圖被拼接在一起的頻次,則將第二標準版圖和第一標準版圖進行合併優化。這樣,通過對拼接次數較多的標準單元進行合併優化,可以以較低的設計代價實現晶片設計整體性能的更大改進。
下面結合圖4A-4B以XOR2為例說明根據本公開的實施例的版圖的合併和優化的一種實現方式。
圖4A示出了在第一標準單元和第二標準單元均為基於CMOS電晶體實現的XOR2時生成的初級版圖400。其中,第一標準版圖401和第二標準版圖402具有拼接關係。第一標準版圖401除了與第二標準版圖402拼接的位置外,其餘與圖3中的標準版圖300相同。類似地,第二標準版圖402除了與第一標準版圖401拼接的位置外,其餘與圖3中的標準版圖300相同。對於拼接位置,可以認為第一標準版圖401是將圖3的標準版圖300的虛擬多晶矽305-2從中間切斷,只保留左側部分,第二標準版圖402是將圖3的標準版圖300的虛擬多晶矽305-1從中間切斷,只保留右側部分。然後將第一標準版圖401和第二標準版圖402拼接起來。即,採用了所謂的單擴散區切斷(Single Diffusion Break,SDB)技術。這樣,所形成的圖4A的初級版圖400的寬度為14個CPP。與之形成對照的是,若採用雙擴散區切斷(Double Diffusion Break,DDB)技術,即,與圖3中單個XOR2的標準版圖相比,在拼接時對於第一標準單元和第二標準單元不對邊界的虛擬多晶矽進行切斷,那麼所形成的初級版圖400的寬度將比14個CPP更大。
圖4B示出了將第一標準版圖401和第二標準版圖402合併並進行優化後的版圖420。如前文所述,在第一標準版圖401中,為了讓金屬連線與邊界的距離增大,在邊界區域410中增加了一根多餘的閘極多晶矽406-6並將閘極多晶矽406-5上的連接關係至少部分轉移到這根多餘的閘極多晶矽406-6上。對於第二標準版圖402中的邊界區域411也存在同樣情況。邊界區域410和411是潛在可優化區域。而且,對於版圖401和402是兩個XOR2且二者相拼接的情形,版圖402對版圖401的邊界區域410沒有特別要求,沒有必要特意讓邊界區域中金屬連線與邊界的距離增大,因此可以對邊界區域410進行優化。例如,可以對邊界區域410的佈局進行調整。具體來說,將多餘的閘極多晶矽406-6上的連接關係(包括金屬連線和接觸孔等元素)通過轉移恢復到閘極多晶矽406-5上,由此可以去除這根多餘的閘極多晶矽406-6,得到第一優化版圖401’。可以採用同樣方法對區域411進行優化而得到第二優化版圖402’。這樣經過優化後的合併版圖420的寬度為12個CPP。與410相比,優化後的合併版圖的面積節省了14.3%。
值得指出的是,雖然圖4B作為示例僅示出了一根多餘的閘極多晶矽,但應認識到,在一些標準單元的標準版圖中,可能存在多根多餘的閘極多晶矽,可以對這多根多餘的閘極多晶矽中的至少一部分進行優化,包括:將其連接關係轉移到適當的其它閘極多晶矽上,並將其去除。另外,雖然圖4B中示出了對第一標準版圖和第二標準版圖二者都進行優化,但在其它實施例中,也可以只對其中的一者進行優化,也仍然能夠獲得一定的節省面積的效果。
下面結合圖5A-5B以為例說明根據本公開的實施例的版圖的合併和優化的另一種實現方式。圖5A是兩輸入反及閘(NAND2)與兩輸入互斥或閘(XOR2)兩種標準單元相連接的電路圖。圖5B是針對NAND2與XOR2的標準版圖拼接的情形進行合併優化的示意圖。
如圖5A所示,NAND2標準單元的電路圖502在輸出端506產生輸入A1和A2相與的結果。NAND2標準單元的輸出A1A2與XOR2標準單元504的兩個輸入中的一個輸入相連接。XOR2標準單元的電路圖可以與圖2所示的電路圖相同。
在圖5B中,版圖512是標準單元庫中與圖5A中的NAND2標準單元相對應的標準版圖,版圖514是標準單元庫中與圖5A中的XOR2標準單元相對應的標準版圖。現有的自動佈線算法在進行自動佈線時將每個標準版圖視為一個最小完整單元,不改變各標準版圖所使用的金屬層(例如,金屬層1(Metal 1))的連接。由此,如金屬層2(Metal 2)視圖520所示,在經歷自動佈線後,從NAND2的輸出到XOR2的輸入的連接將在金屬層2中使用金屬連線526來實現。在Metal 2視圖520中,版圖512和版圖514不顯示細節,而僅被示意為方框522和524。金屬連線526跨越方框522和524。
根據本實施例的方法可以對版圖512和版圖514進行合併並進行優化以減少後續佈線中互連的長度。如經優化的合併版圖530所示,從NAND2的輸出到XOR2的輸入的連接被轉移至金屬層1中並使用金屬連線532來實現,由此不再需要使用金屬層2上的金屬連線526。由此能夠節省金屬層2的佈線資源,而且減小金屬層之間互連的長度,從而能夠提高晶片的處理速度。添加了金屬層1中的金屬連線532後的合併版圖530可以滿足工藝設計規則。
在獲得經優化的合併版圖後,根據本公開的實施例的方法(例如,圖1的方法100)還可以包括:將經優化的合併版圖拆分成第一標準單元的第一優化版圖和第二標準單元的第二優化版圖。拆分可以在保證第一標準單元和第二標準單元的功能完整的基礎上進行。即,拆分後的第一優化版圖與合併前的第一標準版圖的電路邏輯功能可以是基本一致的,同樣地,拆分後的第二優化版圖與合併前的第二標準版圖的電路邏輯功能可以是基本一致的。在一些實施例中,第一標準單元的第一優化版圖和第二標準單元的第二優化版圖中的至少一個可以不滿足工藝設計規則。
下面結合圖6說明經優化的合併版圖的拆分。圖6採用圖4B中的經優化的合併版圖420作為示例。如圖6所示,合併版圖420被拆分成左右兩個XOR2的優化版圖。左XOR2的優化版圖(A)與圖4B中的區域401’對應,而右XOR2的優化版圖(B)與圖4B中的區域402’基本對應。版圖(A)對應的電路邏輯功能仍然是2輸入互斥或閘,與圖4A中版圖401的電路邏輯功能一致;版圖(B)對應的電路邏輯功能同樣也是2輸入互斥或閘,與圖4A中版圖402的電路邏輯功能一致。值得注意的是,版圖(B)中,有一段金屬連線602超出邊界,因此右XOR2的優化版圖(B)是不符合工藝設計規則的。右XOR2的優化版圖若單獨使用,可能無法通過設計規則檢查(Design Rule Check, DRC)驗證。但若將左XOR2的優化版圖(A)與右XOR2的優化版圖(B)組合使用,則是符合工藝設計規則的。雖然版圖(B)中超出邊界的金屬連線是因為右XOR2與左XOR2在端口上相連接而造成的,但應認識到,在其他示例中,即使第一標準電路與第二標準電路不是相連接的,二者的標準版圖在存在拼接關係的情況下,從它們的經優化的合併版圖所拆分出的第一優化版圖或第二優化版圖也是有可能出現設計規則違例的。
需認識到,雖然圖6以兩個XOR2的拆分作為示例,但根據本公開的對經優化的合併版圖的拆分方法適用於其它標準單元,只要滿足拆分後的優化版圖與合併前的標準版圖的電路邏輯功能基本一致即可。
在獲得第一優化版圖和第二優化版圖後,根據本公開的實施例的方法(例如,圖1的方法100)還可以進一步包括將第一優化版圖和第二優化版圖添加到初級標準單元庫,以形成經優化的標準單元庫。可以將第一優化版圖與第一標準單元的電路圖或電路圖網表相關聯,將第二優化版圖與第二標準單元的電路圖或電路圖網表相關聯。第一優化版圖可以包括用於指示第一優化版圖在版圖設計中需要與第二優化版圖組合使用的信息,以及第二優化版圖可以包括用於指示第二優化版圖在版圖設計中需要與第一優化版圖組合使用的信息。由此,在後續進行版圖設計時,若電路圖網表中包括第一標準單元,可以首先從優化的標準單元庫中檢索到第一優化版圖,並基於指示第一優化版圖在版圖設計中需要與第二優化版圖組合使用的信息確定(1)電路圖網表中是否包括與第二優化版圖對應的第二標準單元以及(2)第二標準單元的版圖是否與第一標準單元的版圖有拼接關係,進而確定是否同時使用第一優化版圖和第二優化版圖。若沒有第二標準單元或者第二標準單元與第一標準單元沒有拼接關係,則不使用第一優化版圖。通過將經優化的標準單元庫用於後續版圖設計,可以大大節省後續版圖設計的設計成本,提高設計效率和質量。
根據本公開的實施例的方法(例如,圖1的方法100)還可進一步包括對第一優化版圖和第二優化版圖分別進行特徵化。對優化版圖進行特徵化可以包括對優化版圖進行電路提取,所提取的電路圖含有版圖中的寄生電阻和寄生電容元件,然後對其進行仿真以確定版圖所對應的標準單元的延遲特性。所確定的延遲特性可用於後續對設計的晶片進行時序驗證。
需要注意的是,這裡為了描述簡便,只說明了包括兩個標準單元的情形。但是本領域技術人員應當理解,本公開的方法可以擴展到多個標準單元進行合併優化。在考慮對多個標準單元進行合併優化時,可以在其中至少兩個標準單元之間採用根據本公開的版圖設計方法。
本領域技術人員將理解,雖然前文結合兩個XOR2的組合描述了本公開的構思,但是該組合方式不意圖對本公開構思構成任何限制。本公開構思可以應用於公知可知的任何標準單元及其組合。
根據本公開的實施例,可以提供一種積體電路,其包括第一標準單元和第二標準單元,其中第一標準單元的第一版圖和第二標準單元的第二版圖具有拼接關係,第一版圖是通過調整初級標準單元庫中第一標準單元的第一標準版圖的佈局得到的,第二版圖是初級標準單元庫中第二標準單元的第二標準版圖或者是通過調整初級標準單元庫中第二標準單元的第二標準版圖的佈局得到的,使得第一版圖和第二版圖的面積之和小於第一標準版圖和第二標準版圖的面積之和。積體電路可以用於實現較為簡單的數據處理功能,例如其可以是加法器、乘法器等等。
在一些實施例中,第一標準單元和第二標準單元可以是基於CMOS電晶體實現。第一版圖是通過將第一標準版圖的多餘閘極多晶矽上的連接關係轉移到第一標準版圖中的適當的其它閘極多晶矽上並且去除第一標準版圖的多餘閘極多晶矽得到的,第二版圖是第二標準版圖或者是通過將第二標準版圖的多餘閘極多晶矽上的連接關係轉移到第二標準版圖中的適當的其它閘極多晶矽上並去除第二標準版圖的多餘閘極多晶矽得到的。
在一些實施例中,第一標準單元和第二標準單元可以是兩輸入互斥或閘。
本領域技術人員將理解,可以通過用諸如Verilog或VHDL的硬件描述語言(HDL)來實現根據本公開的電路和/或晶片。可以針對給定積體電路製造技術設計的單元庫合成HDL描述,並可以出於定時、功率和其他原因修改,以獲得最終的設計數據庫,可以將最終的設計數據庫傳輸到工廠以通過半導體製造系統生產積體電路。半導體製造系統可通過(例如在可包括掩膜的晶片上)沉積半導體材料、移除材料、改變所沉積材料的形狀、(例如通過摻雜材料或利用紫外處理修改介電常數)對材料改性等等來生產積體電路。積體電路可以包括電晶體並還可以包括其他電路元件(例如,諸如電容器、電阻器、電感器等無源元件)以及電晶體和電路元件之間的互連。
圖7示例性地示出了根據本公開的實施例的運算晶片和計算設備的示意圖。
根據本公開的實施例,還提供一種運算晶片。參考圖7,運算晶片704包括至少一個如前文中所述的積體電路702。在一些實施例中,該運算晶片704可以同時包括如前文所述的包括第一標準單元和第二標準單元並對標準單元的標準版圖進行調整以減小版圖面積的積體電路702和完全採用標準版圖未作調整的其它數位積體電路或類比積體電路。運算晶片704可以用於實現較為複雜的運算功能,例如可以實現某種算法(諸如散列算法)。本領域技術人員將理解,雖然圖7中所示的運算晶片704是計算設備700的一部分,但運算晶片704也可以作為獨立的部件單獨使用。
根據本公開的實施例,還提供一種計算設備,其可以用於執行挖掘虛擬數位貨幣的算法。參考圖7,該計算設備700可以包括:至少一個如前文中所述的運算晶片704;控制晶片706;電源模組708;以及散熱器710。其中,控制晶片706與至少一個運算晶片704耦接;電源模組708可用於向至少一個運算晶片704、控制晶片706提供電力;散熱器710可用於給至少一個運算晶片704、控制晶片706和水流程圖中的方框的組合,可以由執行規定的功能或行為的或執行專用或通用硬件與計算機指令的組合的基於專用或通用硬件的系統來實現。
在這裡示出和討論的所有示例中,任何具體值應被解釋為僅僅是示例性的,而不是作為限制。因此,示例性實施例的其它示例可以具有不同的值。
如在此所使用的,詞語“示例性的”意指“用作示例、實例或說明”,而不是作為將被精確複製的“模型”。在此示例性描述的任意實現方式並不一定要被解釋為比其它實現方式優選的或有利的。而且,本公開不受在技術領域、背景技術、發明內容或具體實施方式中所給出的任何所表述的或所暗示的理論所限定。
另外,本文的描述可能提及了被“連接”在一起的元件或特徵。如在此所使用的,除非另外明確說明,“連接”意指一個元件/節點/特徵與另一種元件/節點/特徵在電學上、機械上、邏輯上或以其它方式直接地連接(或者直接通信)。
另外,僅僅為了參考的目的,還可以在本文中使用“第一”、“第二”等類似術語,並且因而並非意圖限定。例如,除非上下文明確指出,否則涉及結構或元件的詞語“第一”、“第二”和其它此類數字詞語並沒有暗示順序或次序。
還應理解,“包括”一詞在本文中使用時,說明存在所指出的特徵、整體、步驟、操作、單元和/或組件,但是並不排除存在或增加一個或多個其它特徵、整體、步驟、操作、單元和/或組件以及/或者它們的組合。
雖然已通過示例詳細展示了本公開的一些具體實施例,但是本領域技術人員應當理解,上述示例僅意圖是說明性的而不限制本公開的範圍。本領域技術人員應該理解,上述實施例可以在不脫離本公開的範圍和實質的情況下被修改。本公開的範圍是通過所附的申請專利範圍限定的。
100:方法 300:標準版圖 301:電源總線 302:接地總線 303:P型注入有源區 304:N型注入有源區 305:虛擬多晶矽 305-1,305-2:邊界多晶矽 306:閘極多晶矽 306-1,306-2,306-3,306-4,306-5,306-6:閘極多晶矽 307:金屬連線 308:接觸孔 310:邊界區域 401:第一標準版圖 402:第二標準版圖 401’:第一優化版圖 402’:第二優化版圖 406-5,406-6:閘極多晶矽 410,411:邊界區域 420:合併版圖 502:電路圖 504:標準單元 506:輸出端 512,514:版圖 520:視圖 522,524:方框 526:金屬連線 530:合併版圖 532:金屬連線 602:金屬連線 700:計算設備 702:積體電路 704:運算晶片 706:控制晶片 708:電源 710:散熱器 M1,M2,M5,M7,M8:PMOS電晶體 M3,M4,M6,M9,M10:NMOS電晶體 A1:第一輸入 A2:第二輸入
所包括的圖式用於說明性目的,並且僅用於提供本文所公開的發明性裝置以及將其應用到計算設備的方法的可能結構和佈置的示例。這些圖式決不限制本領域的技術人員在不脫離實施方案的實質和範圍的前提下可對實施方案進行的在形式和細節方面的任何更改。所述實施方案通過下面結合圖式的具體描述將更易於理解,其中類似的圖式標記表示類似的結構元件。
圖1是根據本公開的實施例的版圖設計的方法的流程圖。
圖2是兩輸入互斥或閘(XOR2)標準單元的電路圖。
圖3是標準單元庫中的XOR2標準單元的標準版圖。
圖4A是在第一標準單元和第二標準單元均為基於CMOS電晶體實現的XOR2時生成的初級版圖。
圖4B是根據本公開的實施例的對圖4A的初級版圖進行合併優化後的版圖。
圖5A是兩輸入反及閘(NAND2)標準單元與XOR2標準單元相連接的電路圖。
圖5B是根據本公開的實施例的對NAND2與XOR2的標準版圖相拼接的情形進行合併優化的示意圖。
圖6是根據本公開的實施例的對經優化的合併版圖進行拆分的示意圖。
圖7是根據本公開的實施例的運算晶片和計算設備的示意圖。
注意,在以下說明的實施方式中,有時在不同的圖式之間共同使用同一圖式標記來表示相同部分或具有相同功能的部分,而省略其重複說明。在本說明書中,使用相似的標號和字母表示類似項,因此,一旦某一項在一個圖式中被定義,則在隨後的圖式中不需要對其進行進一步討論。
為了便於理解,在圖式等中所示的各結構的位置、尺寸及範圍等有時不表示實際的位置、尺寸及範圍等。因此,所公開的發明並不限於圖式等所公開的位置、尺寸及範圍等。此外,圖式不必按比例繪製,一些特徵可能被放大以示出具體組件的細節。

Claims (14)

  1. 一種版圖設計的方法,其中,所述方法包括:利用初級標準單元庫基於用於第一積體電路的電路圖網表生成用於第一積體電路的初級版圖,所述電路圖網表包括第一標準單元和第二標準單元,所述初級標準單元庫包括所述第一標準單元的第一標準版圖和所述第二標準單元的第二標準版圖;分析所述初級版圖中包括第一標準版圖和第二標準版圖的標準版圖之間是否具有拼接關係並統計標準版圖之間的拼接頻次;以及回應於確定所述第一標準版圖與所述第二標準版圖在所述初級版圖中具有拼接關係以及確定所述第二標準版圖是所述初級版圖中與所述第一標準版圖的拼接頻次高於所述第一標準版圖與所述初級版圖中除所述第一標準版圖和第二標準版圖之外的其它一個或多個標準版圖之間的拼接頻次的標準版圖,基於所述第一標準版圖與所述第二標準版圖在所述初級版圖中的拼接關係,將所述第一標準版圖與所述第二標準版圖合併以對用於第一積體電路的合併版圖進行優化。
  2. 如請求項1所述的版圖設計的方法,其中,所述第一標準版圖和所述第二標準版圖中的至少一個標準版圖的版圖面積大於所述至少一個標準版圖的版圖面積的理論最小值,並且將所述第一標準版圖與所述第二標準版圖合併以對用於第一積體電路的合併版圖進行優化包括:減小所述第一標準版圖和所述第二標準版圖的合併版圖的面積。
  3. 如請求項2所述的版圖設計的方法,其中,減小所述第一標準版圖和所述第二標準版圖的合併版圖的面積包括:識別所述第一標準版圖和所述第二標準版圖中的所述至少一個標準版圖中的潛在可優化區域; 基於所述第一標準版圖與所述第二標準版圖的拼接關係,確定所述第一標準版圖和所述第二標準版圖對所述潛在可優化區域是否存在限制;響應於確定所述第一標準版圖和所述第二標準版圖對所述潛在可優化區域沒有限制,確定所述潛在可優化區域是可優化區域;以及對包括所述可優化區域的所述至少一個標準版圖的佈局進行調整,以減小所述可優化區域的面積。
  4. 如請求項2所述的版圖設計的方法,其中,所述至少一個標準版圖是基於MOS電晶體實現的,並且減小所述第一標準版圖和所述第二標準版圖的合併版圖的面積包括:將所述至少一個標準版圖中的多餘閘極多晶矽上的連接關係轉移到所述至少一個標準版圖中的適當的其它閘極多晶矽上,並去除所述多餘閘極多晶矽,其中所述多餘閘極多晶矽不同於用作隔離邊界的虛擬多晶矽。
  5. 如請求項1所述的版圖設計的方法,其中,將所述第一標準版圖與所述第二標準版圖合併以對合併版圖進行優化包括:減少後續佈線中互連的長度。
  6. 如請求項5所述的版圖設計的方法,其中,減少後續佈線中互連的長度進一步包括:將經由自動佈線得到的、與所述第一標準版圖或所述第二標準版圖內的互連處於不同金屬層的所述第一標準版圖和所述第二標準版圖之間的互連調整到與所述第一標準版圖或所述第二標準版圖內的互連相同的金屬層上。
  7. 如請求項1所述的版圖設計的方法,其中,所述方法還包括:將經優化的合併版圖拆分成所述第一標準單元的第一優化版圖和所述第二標準單元的第二優化版圖;以及 將所述第一優化版圖和所述第二優化版圖添加到所述初級標準單元庫,以形成經優化的標準單元庫。
  8. 如請求項7所述的版圖設計的方法,其中,所述第一優化版圖包括用於指示所述第一優化版圖在版圖設計中需要與所述第二優化版圖組合使用的信息,以及所述第二優化版圖包括用於指示所述第二優化版圖在版圖設計中需要與所述第一優化版圖組合使用的信息。
  9. 如請求項1所述的版圖設計的方法,其中,所述第一標準版圖、所述第二標準版圖和經優化的合併版圖滿足工藝設計規則。
  10. 一種積體電路,其中,所述積體電路包括:第一標準單元;和第二標準單元,其中所述第一標準單元的第一版圖和所述第二標準單元的第二版圖具有拼接關係,所述第一版圖是通過調整初級標準單元庫中所述第一標準單元的第一標準版圖的佈局得到的,所述第二版圖是所述初級標準單元庫中所述第二標準單元的第二標準版圖或者是通過調整所述初級標準單元庫中所述第二標準單元的第二標準版圖的佈局得到的,使得所述第一版圖和所述第二版圖的面積之和小於所述第一標準版圖和所述第二標準版圖的面積之和,其中,調整第一標準版圖的佈局包括將所述第一標準版圖的多餘閘極多晶矽上的連接關係轉移到所述第一標準版圖中的適當的其它閘極多晶矽上並且去除所述第一標準版圖的多餘閘極多晶矽,並且調整第二標準版圖的佈局包括將所述第二標準版圖的多餘閘極多晶矽上的連接關係轉移到所述第二標準版圖中的適當的其它閘極多晶矽上並去除所述第二標準版圖的多餘閘柵極多晶矽,其中,所述第一標準版圖和所述第二標準版圖的多餘閘極多晶矽不同於用作隔離邊界的虛擬多晶。
  11. 如請求項10所述的積體電路,其中,所述第一標準單元和所述第二標準單元是基於CMOS電晶體實現的。
  12. 如請求項11所述的積體電路,其中,所述第一標準單元和所述第二標準單元是兩輸入互斥或閘,所述積體電路是加法器電路。
  13. 一種運算晶片,其中,包括至少一個如請求項10至12中任意一項所述的積體電路。
  14. 一種計算設備,其中,所述計算設備用於執行挖掘虛擬數位貨幣的算法,並且包括:至少一個如請求項13所述的運算晶片;控制晶片;電源模組;和散熱器;其中,所述控制晶片與所述至少一個運算晶片耦接並用於控制所述至少一個運算晶片的操作,其中,所述電源模組用於向所述至少一個運算晶片和/或所述控制晶片提供電力,以及其中,所述散熱器用於給所述至少一個運算晶片、所述控制晶片和/或所述電源模組散熱。
TW110123038A 2020-11-30 2021-06-24 版圖設計的方法和積體電路、運算晶片和計算設備 TWI773401B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011376998.7 2020-11-30
CN202011376998.7A CN112507648B (zh) 2020-11-30 2020-11-30 版图设计的方法和集成电路、运算芯片和计算设备

Publications (2)

Publication Number Publication Date
TW202139051A TW202139051A (zh) 2021-10-16
TWI773401B true TWI773401B (zh) 2022-08-01

Family

ID=74969596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110123038A TWI773401B (zh) 2020-11-30 2021-06-24 版圖設計的方法和積體電路、運算晶片和計算設備

Country Status (5)

Country Link
US (1) US20230342537A1 (zh)
KR (1) KR20230075521A (zh)
CN (1) CN112507648B (zh)
TW (1) TWI773401B (zh)
WO (1) WO2022110787A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112507648B (zh) * 2020-11-30 2022-01-04 深圳比特微电子科技有限公司 版图设计的方法和集成电路、运算芯片和计算设备
WO2023108649A1 (zh) * 2021-12-17 2023-06-22 华为技术有限公司 用于版图映射的方法、装置、设备、介质以及程序产品
CN114925650B (zh) * 2022-07-22 2022-10-21 北京智芯微电子科技有限公司 Soc芯片单元混合布局方法和系统
CN115659901B (zh) * 2022-09-07 2023-07-07 上海为旌科技有限公司 一种芯片物理设计的距离布线优化方法和装置
CN115392181B (zh) * 2022-10-28 2023-02-07 成都复锦功率半导体技术发展有限公司 基于外界边框设计的拼版设计方法、芯片及终端
CN115444426B (zh) * 2022-11-09 2023-04-28 之江实验室 片上电极集成的无线肌电SoC系统、芯片及采集装置
CN115859897B (zh) * 2022-12-23 2023-05-23 海光集成电路设计(北京)有限公司 模型的生成方法、版图面积预测方法、装置及相关设备
CN116108790B (zh) * 2023-04-12 2023-07-28 广州智慧城市发展研究院 一种模拟电路版图结构化特性表示方法及相关组件
CN117272910B (zh) * 2023-11-22 2024-02-23 江山季丰电子科技有限公司 一种集成电路老化电路板的模块化设计方法及装置
CN117521587B (zh) * 2024-01-03 2024-04-05 北京开源芯片研究院 系统级芯片的设计方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200604870A (en) * 2004-05-07 2006-02-01 Mentor Graphics Corp Integrated circuit layout design methodology with process variation bands
US20140282344A1 (en) * 2013-03-15 2014-09-18 Taiwan Semiconductor Manufacturing Co., Ltd. Layout boundary method
US20150278428A1 (en) * 2014-04-01 2015-10-01 Taiwan Semiconductor Manufacturing Co., Ltd. Cell boundary layout
CN109145423A (zh) * 2018-08-09 2019-01-04 广东工业大学 一种pcb合拼与排样集成优化方法及系统
TW201941112A (zh) * 2018-02-07 2019-10-16 以色列商應用材料以色列公司 產生可用於檢查半導體樣品的訓練集之方法及其系統
CN111241772A (zh) * 2019-05-23 2020-06-05 叶惠玲 标准单元库版图及其设计方法与系统以及计算机存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8060843B2 (en) * 2008-06-18 2011-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Verification of 3D integrated circuits
CN101673735B (zh) * 2008-09-12 2011-11-16 台湾积体电路制造股份有限公司 默认多晶硅间距设计规则下的混合多晶硅间距单元设计结构及系统
US8539388B2 (en) * 2010-07-14 2013-09-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for low power semiconductor chip layout and low power semiconductor chip
CN102622466B (zh) * 2012-02-17 2014-01-29 浙江大学 一种基于标准单元库扩展的乘法器的eco优化方法
CN102760651B (zh) * 2012-07-26 2017-04-26 上海华虹宏力半导体制造有限公司 版图逻辑运算方法以及集成电路制造方法
CN103678741A (zh) * 2012-09-17 2014-03-26 北京华大九天软件有限公司 一种集成电路版图验证中短路路径的图形优化方法
CN103022032B (zh) * 2012-12-07 2015-11-18 中国科学院微电子研究所 标准单元库版图设计方法、布局方法及标准单元库
CN105868449B (zh) * 2016-03-24 2019-03-15 中国科学院微电子研究所 一种标准单元库的优化方法及系统
CN106783840B (zh) * 2016-12-05 2019-12-31 武汉新芯集成电路制造有限公司 一种标准单元库的版图结构
CN108647390B (zh) * 2018-01-31 2022-04-22 深圳大学 标准单元库设计方法、设计装置、标准单元库和cmos图像传感芯片
KR102653951B1 (ko) * 2018-09-06 2024-04-02 삼성전자주식회사 반도체 소자의 레이아웃 패턴 분할 방법 및 이를 포함하는 광 근접 보정 방법
KR102539066B1 (ko) * 2018-11-09 2023-06-01 삼성전자주식회사 서로 다른 타입의 셀들을 포함하는 집적 회로, 그 설계 방법 및 설계 시스템
CN111327330B (zh) * 2018-12-14 2022-04-08 深圳市中兴微电子技术有限公司 一种信息处理方法、设备及计算机存储介质
CN111488717B (zh) * 2020-04-15 2022-06-10 飞腾信息技术有限公司 标准单元时序模型的抽取方法、装置、设备及存储介质
CN111709213B (zh) * 2020-06-18 2023-04-14 成都微光集电科技有限公司 标准单元库设计检查方法和系统以及可读存储介质
CN111914500B (zh) * 2020-07-23 2022-09-20 清华大学 一种快速单磁通量子rsfq电路布局方法和装置
CN111898334B (zh) * 2020-08-04 2022-02-01 深圳比特微电子科技有限公司 用于系统级芯片设计的标准单元及应用其的数据处理单元、运算芯片和计算设备
CN112131830B (zh) * 2020-09-25 2021-06-15 成都海光微电子技术有限公司 一种寄生参数验证方法、装置、电子设备和存储介质
CN112507648B (zh) * 2020-11-30 2022-01-04 深圳比特微电子科技有限公司 版图设计的方法和集成电路、运算芯片和计算设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200604870A (en) * 2004-05-07 2006-02-01 Mentor Graphics Corp Integrated circuit layout design methodology with process variation bands
US20140282344A1 (en) * 2013-03-15 2014-09-18 Taiwan Semiconductor Manufacturing Co., Ltd. Layout boundary method
US20150278428A1 (en) * 2014-04-01 2015-10-01 Taiwan Semiconductor Manufacturing Co., Ltd. Cell boundary layout
TW201941112A (zh) * 2018-02-07 2019-10-16 以色列商應用材料以色列公司 產生可用於檢查半導體樣品的訓練集之方法及其系統
CN109145423A (zh) * 2018-08-09 2019-01-04 广东工业大学 一种pcb合拼与排样集成优化方法及系统
CN111241772A (zh) * 2019-05-23 2020-06-05 叶惠玲 标准单元库版图及其设计方法与系统以及计算机存储介质

Also Published As

Publication number Publication date
TW202139051A (zh) 2021-10-16
CN112507648A (zh) 2021-03-16
WO2022110787A1 (zh) 2022-06-02
CN112507648B (zh) 2022-01-04
KR20230075521A (ko) 2023-05-31
US20230342537A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
TWI773401B (zh) 版圖設計的方法和積體電路、運算晶片和計算設備
US8001517B2 (en) Layout design method of semiconductor integrated circuit cell to adjust distances inside cell between diffusion layers and borders of cell
KR101937851B1 (ko) 반도체 집적 회로, 그 설계 방법 및 제조방법
US10037401B2 (en) Methods of designing a layout of a semiconductor device including field effect transistor and methods of manufacturing a semiconductor device using the same
US6453447B1 (en) Method for fabricating integrated circuits
US10593701B2 (en) Semiconductor device including a gate pitch and an interconnection line pitch and a method for manufacturing the same
KR102391696B1 (ko) 반도체 소자 및 이의 제조 방법
USRE49780E1 (en) Methods of designing a layout of a semiconductor device including field effect transistor and methods of manufacturing a semiconductor device using the same
KR102368618B1 (ko) 시스템 온 칩 및 이의 레이아웃 설계 방법
CN112310224A (zh) 半导体器件
US20240037309A1 (en) Multiplexer
US11302636B2 (en) Semiconductor device and manufacturing method of the same
KR20210142543A (ko) 집적 회로 레이아웃을 위한 시스템들 및 방법들
US20220302131A1 (en) Semiconductor devices and methods of fabricating the same
US11989497B2 (en) Methods of designing layout of semiconductor device and methods for manufacturing semiconductor device using the same
KR101697343B1 (ko) 집적 회로의 레이아웃 설계 방법 및 상기 집적 회로의 제조 방법
TWI771698B (zh) 多工器電路、多工器及製造多工器方法
KR102379450B1 (ko) 반도체 소자
KR102357957B1 (ko) 반도체 소자
TWI694541B (zh) 積體電路及單元結構
KR20210016264A (ko) 반도체 소자
TW202305946A (zh) 自動化標準胞元設計之方法