TWI769436B - 測量電子元件之接腳之輸入電容值之方法及其裝置 - Google Patents

測量電子元件之接腳之輸入電容值之方法及其裝置 Download PDF

Info

Publication number
TWI769436B
TWI769436B TW109105094A TW109105094A TWI769436B TW I769436 B TWI769436 B TW I769436B TW 109105094 A TW109105094 A TW 109105094A TW 109105094 A TW109105094 A TW 109105094A TW I769436 B TWI769436 B TW I769436B
Authority
TW
Taiwan
Prior art keywords
pin
circuit
value
voltage
current source
Prior art date
Application number
TW109105094A
Other languages
English (en)
Other versions
TW202107099A (zh
Inventor
畢思曼 艾倫
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Publication of TW202107099A publication Critical patent/TW202107099A/zh
Application granted granted Critical
Publication of TWI769436B publication Critical patent/TWI769436B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本發明提出一種測量一電子元件之接腳之輸入電容值之方法,包含使用一包含接腳電路之測試器,在接腳與接腳電路斷開時取得一第一電容量測值,以及在接腳連接至接腳電路時取得一第二電容量測值;以及根據第一電容量測值及第二電容量測值計算接腳之輸入電容值。

Description

測量電子元件之接腳之輸入電容值之方法及其裝置
本發明係有關於自動化測試機台(ATE),更具體地說,是有關於使用ATE量測待測元件(DUT)之輸入電容值。
自動化測試機台(ATE)用於在一元件(以下將其稱為待測元件或是DUT)上進行測試。當待測元件為一電子元件,例如積體電路(IC)時,此ATE通常會施加電壓以及電流樣本(voltage and current patterns)至待測元件之輸入端,以及測量待測元件之輸出端的電壓以及電流。
ATE亦可用於量測元件特性,例如量測在各種變化條件下待測元件之參數。
大致上,ATE技術包含硬體以及軟體,1999年F.Liguori在Wiley Encyclopedia of Electrical and Electronics Engineering上發表的”自動化測試機台(Automatic Test Equipment)”文件中可發現相關內容。
根據一實施例,本發明提供一種測量一電子元件之一接腳之一輸入電容值之方法,其包含以下步驟:使用一包含接腳電路之測試器,在該接腳與該接腳電路斷開時取得一第一電容量測值,以及在該接腳連接至該接腳電路時取得一第二電容量測值;以及根據第一電容量測值及第二電容量測值計算該接腳之該輸入電容值。
根據一實施例,取得第一電容量測值及第二電容量測值之每一個之步驟包含:使用一電流源以至少一預先定義電流驅動該接腳電路,以及測量接腳電路對應該至少一預先定義電流而產生的至少一電壓。根據一實施例,至少一電壓包含至少二電壓,其中計算輸入電容值之步驟包含:從至少一電壓推導出一隨時間變化的電壓斜率,以及根據電壓斜率計算輸入電容值。
根據一實施例,取得第一電容量測值及第二電容量測值之每一個之步驟包含:在取得第一電容量測值之前提示使用者將該接腳與該接腳電路斷開,以及在取得第二電容量測值之前提示使用者連接該接腳以及該接腳電路。
根據一實施例,本發明再提供一種測量一電子元件之一接腳之一輸入電容值之裝置,包含:複數個接腳電路,連接至該接腳;以及一控制器,係在該接腳與接腳電路斷開時取得一第一電容量測值,以及在該接腳連接至接腳電路時取得一第二電容量測值,以及根據第一電容量測值及第二電容量測值計算該接腳之該輸入電容值。
根據一實施例,本發明再提供一種計算機軟體產品,用以測量一電子元件之一接腳之一輸入電容值,該計算機軟體產品包含一實體非暫態電腦可讀媒體,用以儲存程式指令,當耦接於連接至該接腳之接腳電路的處理器讀取該程式指令時,該處理器執行:在該接腳與該接腳電路斷開時取得一第一 電容量測值,以及在該接腳連接至該接腳電路時取得一第二電容量測值;以及根據該第一電容量測值及該第二電容量測值計算該接腳之該輸入電容值。
100:自動化測試機台
102:控制器
104:接腳電路
106:待測元件
108:測試頭
110:插座
202、204、206、208、210、212、214、216、218、220、222、252、254、256、258、260、262:步驟
250:流程
302:可程式化驅動器
304:開關
306:VOH比較器
308:VOL比較器
310:IOL可程式化電流源
312:IOH可程式化電流源
314:二極體橋
316、318:取樣器
320、322、324、326:二極體
第1圖係示意性繪示根據本發明的實施例之自動化測試機台(ATE)之方塊圖。
第2圖係示意性描述根據本發明的實施例之測量待測元件之輸入接腳電容值方法之流程圖。
第3圖係示意性描述根據本發明的實施例之接腳電路(Pin Electronics,PE)之結構方塊圖。
第3A圖係示意性描述驅動IOL電流至待測元件接腳之方塊圖。
第3B圖係示意性描述從待測元件接腳接收IOH電流之方塊圖。
第4圖係根據本發明一實施例之自動化測試機台之接腳電路設定之屏幕截圖。
第5圖係根據本發明一實施例之自動化測試機台之直流設定之屏幕截圖。
第6圖係根據本發明一實施例自動化測試機台測試樣本之屏幕截圖。
上述圖式為示意性且並未按比例縮放。圖式中相對尺寸與比例因精確與/或方便之目的而放大或縮小,且尺寸為任意的且不限於此。於圖式中相似之參考符號代表相似之元件。
以下將配合圖式及實施例來詳細說明本發明之實施方式,藉此對本發明如何應用技術手段來解決技術問題並達成技術功效的實現過程能充分理解並據以實施。
當在此使用時,除非文中另行明確地表示,否則「一」、「該」、「此」等單數型式亦旨在包含複數型式。
概論
用於電子系統以及積體電路之自動化測試的測試裝置係稱為自動化測試機台(automatic test equipment,ATE)。自動化測試機台可用於元件測試(例如晶圓測試或是組裝測試),以及元件特性量測,例如量測在變化條件下的元件參數。
自動化測試機台通常包含”接腳電路(pin electronics,PE)”模組,其耦接於待測元件(DUT)之接腳。應當說明的是,用語”接腳電路(PE)”可意指耦接於待測元件接腳之電子電路之總合。在以下說明將會用”接腳電路(PE)”來描述耦接於單一待測元件接腳之電子電路。經過必要的修改,以下描述之技術亦可應用於其他定義之接腳電路。
每一接腳電路可受控制以驅動一待測元件接腳或是測量待測元件接腳之電壓位準(及/或電流)。傳統上,當接腳電路連接至一待測元件輸入接腳,此接腳電路將驅動此待測元件接腳;當接腳電路連接至一待測元件輸出引腳,此接腳電路將測量此待測元件接腳;當此接腳電路係連接至一待測元件輸入輸出(I/O)接腳,此接腳電路將由自動化測試機台之軟體控制,在不同時間驅動或是測量此待測元件接腳。
對於每一接腳,待測元件之輸出引腳之直流(DC)規格通常會定義,當負載預設直流電流時此接腳之輸出信號應符合的最小及/或最大電壓。對 於待測元件之邏輯接腳,通常會定義兩參數:參數VOH,其為當負載一直流電流IOH時,接腳之最小的邏輯1電壓位準;以及參數VOL,其為當接收直流電流達到IOL時,接腳之最大的邏輯0電壓位準。此直流參數之通常數值為:VOH=2.4V;VOL=0.45V;IOH=400μA;and IOL=16mA.
為了測試待測元件輸出引腳是否符合上述直流規格,接腳電路通常包含一可程式化電流源(programmable current source),用以吸入(sink)電流IOH或是提供(source)電流IOL;以及至少一電壓比較單元,用以比較待測元件輸出引腳上的電壓位準以及一預設電壓(例如,電壓VOL或是VOH)。測試時,測試器會以一電壓序列(a sequence of voltages)驅動待測元件此輸入接腳,使待測元件之輸出接腳輸出已知邏輯值。接著,測試器探測對應接腳電路之電壓比較單元,檢查電壓比較單元之輸出信號,以驗證輸出接腳之電壓係高於電壓VOH(其為邏輯高輸出信號)或是低於VOL(其為邏輯低輸出信號)。
待測元件交流電(AC)參數通常規定為待測元件接腳從待測元件之一輸入接腳有電壓變化開始(例如,時脈輸入信號之上升緣)達到一預設門檻電壓的時間,在待測元件接腳負載有一預先定義負載(例如,50pf)。通常會定義兩個參數:參數Tr,其為待測元件輸出接腳上的正緣信號達到VH(通常是2.0V)的時間;參數Tf,其為待測元件輸出接腳上的負緣信號達到VL(通常是0.8V)的時間。上述直流以及交流規格參數係為縮寫符號;有關積體電路之直流以及交流規格有關的更多資訊可在前述之F.Liguori發表的”自動化測試機台”文件找到。
為了測試待測元件是否符合交流(AC)規格,接腳電路更可包含至少一可程式化計時器(programmable timer),用以在待測元件輸入接腳有對應變化 後在預設時間內取樣電壓比較單元。例如,為了測試待測元件輸出接腳之Tr參數,自動化測試機台可將比較器之電壓門檻值編程為電壓VIH,以及將計時器編程為在時脈(通常由自動化測試機台驅動)之上升緣後對比較器取樣Tr(奈秒)。
可以理解的是,多種校準技術可應用於前述說明。例如,計時器可補償時脈輸出信號從測試器到待測元件接腳之延遲,以及取樣比較器之延遲值。
傳統上,根據測試樣本(test pattern)之刺激(stimuli),除了一些例外,待測元件之輸入接腳是被驅動,而非用於測量。輸入接腳之上升緣與下降緣之斜率可為固定值或是可控制。美國專利申請案號16/269,573,其為本案申請人所申請,揭露藉由將傳統用於測試輸出接腳的電流源,將可程式化迴轉率(programmable-slew-rate)之邊緣信號可施加至待測元件之輸入接腳。上述美國專利申請案之公開內容通過引用併入本文。
根據本發明的實施例,一自動化測試機台系統包含用以產生測試樣本的軟體。一測試常用程式包含靜態接腳電路配置腳本(static PE configuration script)以及動態測試樣本(dynamic PE test pattern)。配置腳本用於設置驅動程式以及接腳電路之比較器。例如,靜態配置接腳電路應分別驅動待測元件之輸入接腳到邏輯高電壓位準(VIH)以及邏輯低電壓位準(VIL),接腳電路應測試待測元件之輸出接腳的邏輯低電壓位準(VOL)以及邏輯高電壓位準(VOH),以及接腳電路應載入待測元件之輸出接腳的高負載電流以及低負載電流,而且此靜態配置在動態測試樣本執行期間不會改變。
根據本發明之實施例,動態測試樣本係動態地在不同時間,定義一些或是所有待測元件接腳、待測元件輸入接腳之驅動方式、以及待測元件輸出接腳之量測(包含預期結果)。傳統上,時間軸係區分成不連續時段(discrete time slot),而動態測試樣本係以時段解析度(time-slot resolution)上定義驅動以及量測(例如預期結果)之特性。
根據實施例,為了驅動待測元件接腳,接腳電路模組通常包含一驅動器,其具有兩信號位準,低輸入電壓(VIL)以及高輸入電壓(VIH)。靜態配置腳本通常對每一個接腳電路模組設定VIL以及VIH數值,而動態測試樣本係定義接腳電路驅動待測元件接腳的每一時槽中接腳電路是否應驅動接腳為VIH或是VIL數值。例如,接腳電路可靜態配置為VIL=0.8V以及VIH=2.0V,而用於接腳電路的動態測試樣本可指定為1-1-0-0-1。在第一及第二時槽,接腳電路將驅動待測元件接腳至2.0V之信號位準,而在第三以及第四時槽中驅動待測元件接腳至0.8V之信號位準,在第五時槽驅動待測元件接腳至2.0V之信號位準。
根據本發明的實施例,接腳電路之量測電路通常包含兩部分:比較器以及負載控制(load control)。比較器係用以比較待測元件接腳上的電壓位準與兩電壓位準,其由配置腳本低輸出VOL以及高輸出VOH所設定。在動態測試之量測部份(例如預期結果)規定應測試此接腳之邏輯高(logic-high)信號的時槽中,接腳電路驗證此接腳上的電壓是否超過VOH。在動態測試之量測部份(例如預期結果)規定應測試此接腳之邏輯低(logic-low)信號的時槽中,接腳電路驗證此接腳上的電壓是否低於VOL。
在一實施例中,負載控制係用以施加兩個可程式化負載電流(低輸出電流IOL以及高輸出電流IOH)中的其中一者至待測元件接腳。配置腳本中都常會編程此兩個電流值。在以下說明,從接腳電路流向接腳的電流係稱為正電流,而從接腳流向接腳電路的電流稱為負電流。此外,驅動電流係意指為”源電流(sourcing current)”,而所接收的電流意指為”灌電流(sinking current)”。在測試樣本表示此接腳需測試邏輯低信號的時槽中,接腳電路將施加等於IOL的電流至 待測元件接腳,以及當測試樣本表示此接腳需測試邏輯高信號的時槽中,接腳電路將施加等於IOH(通常是負電流)至待測元件接腳。
例如,對於一待測元件接腳,測試腳本可定義負載電流(IOL)為1.6mA時邏輯低位準(VOL)不超過0.4V,且負載電流(IOH)為0.1mA時邏輯高位準(VOH)應不小於2.0V。對於輸出接腳,動態測試樣本之電流範例為1-1-1-0-1-1。在時槽1、2、3、5、6,接腳電路將以-0.1mA驅動接腳,且檢查此接腳上的電壓是否高於2.0V。在時槽4,接腳電路將以1.6mA驅動接腳,並檢查接腳上的電壓是否低於0.4V。
特徵化過程
根據本發明的實施例,自動化測試機台可藉由測量交流以及直流參數(以及其他參數),在變化條件(例如環境溫度、電源電壓等)下描繪積體電路的特性。此特徵化過程可包含測試複數個元件,有時是來自不同製造批次的元件,並計算測量參數之平均值以及標準差。
在一些實施例中,自動化測試機台之接腳電路係使用量測電路直接測量參數,例如VOH、VOL、Tr以及Tf。在其他的實施例中,參數量測可由接腳電路之交流以及直流測試電路完成,不須額外電路。例如,在一實施例中,為了測量VOH,自動化測試機台可重覆地以變化的VOH電壓值執行測試;以及,回應測試結果決定VOH之實際值。在一些實施例中,為了測試一參數,自動化測試機台一開始設定此參數為一極端值(例如,VOL=0V),接著在重複測試中將參數遞增(或是遞減)一小數值(例如1mV),並記錄每一測試之結果,直到達到另一極端值。在其他的實施例中,可藉由搜索完成量測,其中參數值係根據前一測試之通過或失敗結果而遞增或是遞減。
傳統上,積體電路之一些輸入參數係由特製設備進行特徵化,有時不會特徵化。例如,待測元件輸入接腳之電容值通常有規定但少被特徵化(或 是使用專用設備進行特徵化)。量測輸入電容值之難度在於自動化測試機台電路之雜散電容(stray capacitance),其耦合於待測元件接腳且通常大於接腳之輸入電容值。
(在以下說明,用語”接腳電容值”係指接腳與待測元件之其中一接地腳之間的電容值)
根據本發明之實施例,提供一種測量待測元件輸入接腳之電容值的簡易方法,其使用不用於待測元件輸出接腳之交流以及直流測試之接腳電路資源,且不須增加專用電路。其他的實施例提供一種用以測試以及特徵化積體電路之裝置積體電路其中一些裝置電路可用以測試待測元件輸出接腳之交流以及直流參數,且測量待測元件輸入接腳之輸入電容值。
在一實施例中,此方法包含:當待測元件不連接時,取得測試輸入接腳相關的接腳電路之第一電容量測值,以及當連接待測元件時,取得測試輸入接腳相關的接腳電路之第二電容量測值,並根據此兩電容量測值,計算此輸入接腳之電容值(例如,將第二電容量測值減去第一電容量測值)。應注意的是上述用語”第一”以及”第二”不表示量測之時間先後順序。
在一些實施例中,取得兩引線(lead)之間電容量測值之步驟包含將其中一引線連接至電流源,並測量引線之間電壓等於第一門檻電壓V1所需的時間T1;以及測量引線之間電壓等於第二門檻電壓V2所需的時間T2。以及,根據兩量測的時間以及電流源提供之電流計算電容值,例如,C=I*(T2-T1)/(V2-V1),其中I為電流(amps),T1以及T2之單位為秒,V1以及V2之單位為volts。
在實施例中,其中一引線為待測元件之接地引線(或是多個接地引線中的一個);接地引線上的電壓為零,所以只需參考另一引線(接腳)上的電 壓。用語”接腳電壓”意指接腳以及接地腳之間的電壓,以及用語”接腳電容值”意指接腳以及接地腳之間的電容值。
在本發明之一些實施例中,每一接腳電路包含兩個電壓比較單元。待測元件之每一輸入接腳係平行連接至個別接腳電路之兩個電壓比較單元,其中第一電壓比較器比較接腳電壓與第一門檻值,而第二電壓比較器係比較接腳電壓與第二門檻電壓。在一些實施例中,為了測量接腳上電壓上升到等於門檻值所需的時間,接腳電路係測試接腳電壓是否在給定時間(初始值為0)上升超過門檻值;測試器接著重複執行測試,增加時間直到測試通過。在另一實施例中,此時間一開始設定為高數值,如果測試失敗,則接著遞減此時間在進行測試,直到測試通過。
在又一實施例,在連續測試中執行二進制搜索(binary search),如表1所示:
Figure 109105094-A0305-02-0012-1
Figure 109105094-A0305-02-0013-2
首先,時間設定為0,而測試失敗。接著,在連續步驟中,根據前一次測試結果,時間遞增或是遞減為前一測試所增加或減少的時間的一半,直到滿足所要求之量測解析度(在表1之範例實施例中,測量時間結果=909ns,解析度1ns)。
應當說明的是,雖然本發明的自動化測試機台之實施例主要測試數位輸入接腳,但是此測量輸入電容值之方法可用於數位以及類比輸入接腳。
應再說明的是,在一些實施例中,本發明所揭露之技術可用在傳統測試器(例如,較簡易且低端的測試器)上執行的軟體來實現,因此,根據本發明的實施例,待測元件輸入接腳之電容值可藉由自動化測試機台量測電路進行測試以及特徵化,而不須使用額外電路。
系統說明
第1圖係根據本發明的實施例示意性繪示自動化測試機台(ATE)100的方塊圖。
自動化測試機台100包含一控制器102,其用以執行軟體程式以及控制自動化測試機台操作;複數個接腳電路模組(PE)104,每一接腳電路模組104係用以測試及/或刺激待測元件(DUT)106之其中一接腳。控制器係使用匯流排連 接至接腳電路單位,其中控制器與接腳電路單位進行組態以及動態測試樣本之數據通訊,接腳電路係將測試結果傳送回控制器。
接腳電路模組的數量係等於測試待測元件接腳的數量(當測試腳位的數量低於接腳電路模組的數量時,可關閉一些接腳電路模組)。
自動化測試機台100更包含一測試頭(test head)108,其在插座110上提供介面以進行特徵化,或是介面於晶圓級測試以及組裝元件測試的負載板(圖中未顯示)。
插座110可為一零插入力(zero-insertion-force,ZIF)插座,其可迅速輕鬆插拔待測元件。
自動化測試機台可用於晶圓級測試或是用以封裝元件測試、或是用以元件特徵化。在測試的專用術語中,晶圓級測試係指在”晶圓測試(wafer-Sort)”,而封裝元件測試係指”組裝測試(assembly sort)”。
為了測量待測元件輸入接腳之電容值,控制器設置一對應的接腳電路以耦接電流源至待測元件接腳,以及藉由執行一連串測試(以下將搭配第2圖進行描述),以測量接腳上電壓變化率。控制器接著根據變化率以及電流源計算電容值。
自動化測試機台重覆兩次上述電容量測。一次是待測元件106插置在零插入力插座110中,另一次是待測元件沒有插置在零插入力插座110中。輸入接腳之電容值可從上述兩次量測值計算出,例如,將待測元件插置而測量到的電容值減去待測元件未插置而測量到的電容值。
因此,根據搭配第1圖所描述之範例實施例,自動化測試機台可相同於自動化測試機台用以直流以及交流測試的電路,來測量以及特徵化待測元件接腳之輸入電容值。
可以理解的是,上述自動化測試機台100之結構係僅為舉例。本發明所揭露之技術之自動化測試機台不限於上述舉例。
在一些實施例中,控制器包含一通用處理器以及一介面板卡(interface board)。在一實施例中,沒有使用介面板卡,而計算機直接與接腳電路模組104進行通訊。在一些實施例中,控制器包含複數個處理器;在其他的實施例中,自動化測試機台沒有使用處理器,而是在其他計算機或是經由通訊網路(例如互聯網)與自動化測試機台連接的計算機上執行測試軟體。
第2圖係根據本發明的實施例示意性描述待測元件輸入接腳之電容值測量方法之流程圖200。此流程圖200係由第1圖所示之控制器102來執行。
流程一開始,在一待測元件拔出步驟202,處理器請求一處理程序(圖中未顯示)將待測元件106從插座110拔出(或是斷開),而在一些實施例中,此步驟係由使用者手動完成。接著,在步驟202,控制器進入一電壓設定步驟204,兩門檻電壓(其分別相對應至測試腳位V1以及V2)設定至接腳電路模組104(第1圖)。處理器接著進入一連接電流源步驟206,控制接腳電路將電流源(提供電流I)連接至接腳。
接著,在步驟206,控制器進入一測量T1d步驟208,控制器測量輸入接腳電壓從初始低電壓(例如,0V伏特)上升到V1所需的時間。當待測元件斷開(時間量測步驟208包含子步驟,其將以下段落描述),此結果係指T1d-T1。接著,在步驟208,控制器進入一測量T2d步驟210,控制器測量輸入接腳電壓從初始低電壓上升到V2所需的時間。當待測元件斷開,結果係為T2d-T2。步驟210包含與步驟208相同的子步驟,其將於以下內容描述。
從步驟202到210,上述測量的參數可用於計算雜散電容,其為連接至待測元件接腳之線路與電路之電容值。接著,當待測元件接腳連接至自動化測試機台時,控制器測量用於計算待測元件接腳之電容值之所需參數。在一 DUT插入步驟212中,控制器要求待測元件(DUT)插入至插座;接著,當待測元件連接時,在一測量T1c步驟214,控制器測量T1值;以及當待測元件連接時,在一測量T2c步驟216,測量T2值。
在步驟216之後,所有量測皆完成,控制器可計算電容值。當待測元件斷開時,在計算Cd步驟218,控制器計算電容值,例如根據以下公式:Cd=(T2d-T1d)*I/(V2-V1)
接著,當待測元件連接時,在一計算Cc步驟220,控制器計算電容值,例如,根據以下公式:Cc=(T2c-T1c)*I/(V2-V1)
最後,在一計算C步驟222,控制器將Cc減去Cd,以取得待測元件接腳之輸入電容值。
流程250描述每個時間量測步驟208、210、214以及216的子步驟。由控制器執行,此流程可測量待測元件接腳上升到電壓位準V的所需時間。此流程從一設定T步驟252開始,控制器設定一時間變數T至最小值(在第2圖之範例實施例,最小值為0),以及設定一△T時間變數至一初始值,其相同或是大於最大預期T數值之一半。接著,在一執行測試步驟254,控制器執行測試,並檢查是否在T=0通過測試(當重新進入步驟254時,在其他的T值是否通過測試。)
如果,在步驟254測試失敗,則控制器進入一遞增△T步驟256,T值每次增加△T數值之一半。相似地,如果在步驟254通過測試,則控制器進入一遞減△T步驟258,T每次減少△T數值之一半。
在步驟256或是步驟258之後,控制器進入一更新△T步驟260,把△T之數值減半。接著,處理器進入確認最小△T值步驟262,檢查是否△T之電流值仍然不小於一最小值(其為所要求的量測解析度)。如果△T小於所要求之解 析度,則此流程結束;或者,如果△T沒有小於解析度,則控制器重新進入步驟254。
因此,實際上,時間量測流程250是一二進制搜索,其以log2(max_value/resolution)方式測試測量時間,其中max_value為T參數可達到之最大值,而resolution為量測解析度。
綜上所述,流程200描述計算待測元件接腳之輸入電容值之方法,其包含:(a)將一預設電流源連接至待測元件接腳;(b)斷開待測元件,取得量測接腳達到第一電壓門檻值以及第二電壓門檻值所對應的兩個時間;(c)連接待測元件,再取得量測接腳達到第一電壓門檻值以及第二電壓門檻值所對應的兩個時間;(d)根據四個量測時間,計算C。
因此,根據第2圖所述之範例實施例,可實現測量待測元件輸入接腳之輸入之方法,其使用用於測試待測元件之交流以及直流參數之測試器資源。本發明揭露之方法費用不高,且除了使用於待測元件之交流以及直流測試之資源之外,此方法不要求任何硬體資源。
可以理解的是,上述搭配第2圖之範例實施例之說明僅為舉例。本發明所揭露之技術之電容量測值方法不限於上述舉例。例如,在其他實施例,步驟202以及212可包含確認拔出/插入動作是否完成(如果是由操作者執行拔出/插入動作,則此確認結果預設為真實)。在各種實施例中,上述步驟之順序可改變,例如,當待測元件插入時進行量測之步驟可再拔出待測元件時進行量測之步驟之前;步驟218可在步驟212之後完成。
在一些實施例中,當待測元件拔出時所使用V1以及V2門檻值可與待測元件插入時使用的V1以及V2門檻值不同,例如,藉此可將量測錯誤降到最低。
時間量測流程250係為使用二進制搜索的時間量測方法之一範例。此方法快速,但容易有量測錯誤。在一些實施例中,可使用一種較慢的線性方法,其中預期時間結果的全部範圍都有進行測試,並記錄。接著,控制器可檢查結果,將單次(singular)通過或是失敗事件(當T前移或後退時,發現一通過結果被多個失敗結果環繞的事件,或是一失敗結果被多個通過結果環繞)濾除,以推導出一濾除雜訊的時間量測結果。
在其他的實施例,二進位及/或線性搜索可執行數次,可根據此結果推導出最後時間參數。例如,在一實施例中,二進制搜索係執行兩次;如果同意得到的結果,則時間量測完成;如果結果有變化,則執行線性搜索。
第3圖係根據本發明的實施例示意性描述接腳電路104(第1圖)之結構。接腳電路係與控制器102進行通訊,以接收組態以及樣本數據,並傳送測試結果。接腳電路係連接至經由測試頭108以及插座110連接至待測元件106之單一接腳(如第1圖所示)的線路。
為了驅動待測元件接腳,接腳電路104係包含一可程式化驅動器302,用以根據一控制輸入信號(圖式中的HIGH/LOW)輸出兩個預先配置信號位準VIL與VIH中的其中一個;以及,一開關304,其用以將可程式化驅動器連接待測元件接腳或是將可程式化驅動器斷開待測元件接腳。
為了測量待測元件接腳,每一接腳電路104包含:一VOH比較器306,其用以驗證待測元件接腳之電壓位準是否高於預先配置VOH;一VOL比較器308,其用以驗證待測元件接腳之電壓位準是否低於預先配置VOL;一IOL可程式化電流源310,其用以提供一預先配置電流IOL;一IOH可程式化電流源312,其用以吸入預先配置電流IOH;以及一二極體橋314,其包含四個二極體以及一可程式化電壓源VREF。
二極體橋用以執行以下步驟:(a)當待測元件接腳上之電壓位準低於VREF時,將IOL可程式化電流源310提供之電流流向待測元件接腳,以及從VREF電壓源吸入由IOH可程式化電流源312提供的電流;(b)當接腳的電位高於VREF,從待測元件接腳吸入IOH可程式化電流源312提供的電流,以即將IOL可程式化電流源310提供之電流流入VREF電壓源(以下將搭配第3A與3B圖描述二極體橋314之功能以及操作)。
為了交流測試,接腳電路104更包含一取樣器316與318,取樣器316用以閂鎖鎖存VOL比較器308在時間T1之輸出,取樣器318用以鎖存閂鎖鎖存VOL比較器308在時間T2之輸出。
以下將搭配第3A與3B圖解釋二極體橋314之操作。
第3A圖係示意性描述驅動IOL電流流入待測元件接腳。電壓Vref係設定為比預期的待測元件輸出電壓高至少1.3V,其為矽二極體之門檻電壓的兩倍(為了方便解釋,在此假定矽二極體之順向門檻電壓為0.65V)。二極體320導通,讓電流IOL流入待測元件接腳。二極體橋之IOL端口之電壓為Vdut+0.65V;二極體324逆偏壓而不導通。IOH電流源吸入的電流係經由二極體326由Vref供應;二極體橋之IOH端口之電壓為Vref-0.65V=Vdut+0.65V。二極體322逆偏壓而不導通。
第3B圖係示意性描述從待測元件接腳吸入IOH電流之方塊圖。電壓Vref係設定為比預期待測元件輸出電壓低至少1.3V。二極體322導通,從待測元件接腳吸入電流IOH。二極體橋之IOH端口之電壓為Vdut-0.65V;因此,二極體326逆偏壓而不導通。IOL電流源提供之電流可經由二極體324由Vref吸入;二極體橋之IOL端口之電壓為Vref+0.65V=Vdut-0.65V。二極體320逆偏壓而不導通。
綜上所述,控制器102(第1圖)可獨立控制每一待測元件接腳進行以下操作:(a)根據開關304之設定,判斷是否應驅動接腳電路或是監控接腳;(b) 如果接腳電路驅動接腳,則根據驅動器302之高/低輸入之設定,判斷是否接腳電路以邏輯低或是邏輯高信號驅動接腳,以及判斷所驅動之電壓位準(如果接腳電路驅動邏輯高則為VIH,如果接腳電路驅動邏輯低則為VIL);(c)如果接腳電路監控接腳,則根據所設定之Vref電壓,判斷是否接腳電路耦接電流源IOL(驅動電流流入接腳)或是IOH電流源(從接腳吸入電流),以及(藉由設定IOL以及IOH)判斷電流源速率;(d)如果接腳電路監控接腳,設定測試門檻值VOL以及VOH,用以測試此待測元件驅動之電壓位準的待測元件之邏輯低以及邏輯高電壓位準;以及(e)為了進行交流測試,選擇待測元件接腳必須符合之上昇時間(T2)或是下降時間(T1)參數。通常,在交流測試中,沒有電流源會連接至接腳。
在此說明,在測試過程中此配置(configuration)可頻繁改變。根據動態測試樣本,在一些時槽(time slot),接腳可測試邏輯低(logic low);而在其他時槽,接腳可測試邏輯高(logic high)。再者,在一些時槽為輸入接腳而在其他時槽為輸出接腳的IO接腳可根據動態測試樣本交替進行驅動以及測試, 根據本發明的實施例,為了測量輸入電容值,接腳電路耦接電流源至接腳,並測量Tr或是Tf。
因此,根據第3、3A與3B圖繪示之範例實施例,具有接腳電路之自動化測試機台可測試以及特徵化待測元件之邏輯功能,包含特徵化待測元件接腳之輸入電容值,且不須增加專用電容量測電路。
可以理解的是,上述接腳電路104之結構係為舉例說明。本發明所揭露之技術之接腳電路不限於上述舉例。在一些實施例中,例如,為了精密類比量測,額外電路可耦合至每一或是一些接腳電路。在一實施例中,二極體橋314包含以不同電路實現的相似功能。在實施例中開關304可為一機電繼電器(electro-mechanical relay)或是一電子開關。
在目前專利申請案所描述之另一實施例,其揭露市售自動化測試機台(Chroma 3650-EX)之範例之待測元件之輸入接腳之量測方法,使用測試器之直流以及交流量測電路。Chroma在2017年公布之3650-EX-E-201709-500”SOC/ANALOG測試系統模型3650-EX”的內容,係做為參考文獻進行引述。
第4圖係根據本發明一實施例之自動化測試機台之接腳電路(PE)設定之屏幕截圖400之示意圖。此屏幕截圖係為使用者圖形介面(GUI)之一部份,其讓使用者能容易編程接腳電路設定。
此屏幕截圖包含一可程式化驅動器402(第3圖所示之302),其可驅動待測元件接腳可配置的電壓位準VIL或是VIH(根據動態測試樣本);一開關404(第3圖所示之304),其用以根據動態測試樣本而連接驅動器302至待測元件接腳;VOH與VOL比較器406,其用以對待測元件接腳上之電壓與可配置的VOH以及VOL數值;以及一負載單位408,包含一具有可程式化電流源IOL以及IOH(與第3圖之單元314、310與312相似)的二極體橋。可使用測試腳本設定所有可配置的參數VIH、VIL、VOH、VOL、IOH、IOL以及VREF;或是在第4圖所示的數字輸入子視窗中輸入所需要的數值。
根據本發明的實施例,使用者可編程自動化測試機台分別在待測元件連接時以及待測元件斷開時測量接腳電壓之一信號上昇時間(或是其他實施例,量測下降時間),以測量輸入接腳電容值。為了測量上昇時間,自動化測試機台設定VREF=VOH+1.3V(或是更高)、IOL=I1(例如1mA)、VIL=0V(或其他低於VOL的適當電位)、VOL(例如0.4V)、以及VOH(例如,2.0V)。接著,在第一時槽,自動化測試機台設定開關402導通,以確保接腳從低電壓開始,在第二次時槽,自動化測試機台關掉開關402。接腳上的電壓上升,其上升斜率由電流源以及電容值(主要)決定。藉由重覆上述測試,取樣比較器406之輸出之變化時間, 測試器可測量接腳上電壓從電壓VOL至電壓VOH之上升時間,並計算電容值C=Tr*I/(VOH-VOL)。(在此說明,Tr在此範例中的定義僅包含從電壓VOL升至電壓VOH之信號之時間。)
時間量測可亦藉由測量待測元件接腳之下降緣(falling edge)來完成。為了測量下降時間,自動化測試機台設定VREF=VOL-1.3V(或是更低),IOH=I1(例如-1mA),VIH=5V(或其他高於VOH的適當電位),VOL(例如0.4V)以及VOH(例如2.0V)。在第一時槽,當自動化測試機台設定開關402導通,接腳從高電壓開始。在第二時槽,接腳上之電壓下降。藉由重覆上述測試,對比較器406之輸出之時間變化進行取樣,測試器可測量接腳上電壓從VOH至VOL之下降時間,以及計算電容值C=Tf*I/(VOH-VOL)。
可以理解的是,上述屏幕截圖400僅為舉例說明。在其他實施例,可使用其他任何GUI編程設定VIH、VIL、VOH、VOL、IOL、IOH以及VREF之數值;或是,使用非圖形化編程設定腳本。
第5圖係根據本發明一實施例之一自動化測試機台之直流設定之屏幕截圖500。此屏幕截圖包含兩個設定位準指令(set level command)502以及504,用以分別設定一正緣(上拉)以及一負(下拉)緣。設定位準指令通常內嵌在靜態配置腳本。
在第5圖描述之範例實施例中,設定位準指令係接收8個引數:1.一接腳名稱引數506;2.一邏輯低驅動位準引數508(“VIL”),其可用於設定Tr量測之斜率開始位準;3.一邏輯高驅動位準引數510(“VIH”),其可用於設定Tf量測之斜率開始位準;4.一邏輯低比較門檻引數512(“VOL”); 5.一邏輯高比較門檻引數514(“VOH”);6.一邏輯低負載引數516(“IOL”);7.一邏輯高負載引數518(“IOH”);以及8.一二極體橋電壓參考引數520(“VREF),其可針對上升緣設定一高位準,而針對下降緣設定一低位準。
上述引數可藉由設定位準指令輸入,其與本發明不相關,故在此不再贅述。
第6圖係根據本發明一實施例之一自動化測試機台測試樣本之屏幕截圖600。根據第6圖之範例實施例,此測試樣本包含一PIN_PAT部分,其中接腳名稱之順序清單定義如下。一WAVE部分(圖式中的3600_WAVE),其中定義主樣本中所使用之符號,以及一主樣本部分(圖式中之MAIN_PAT),其定義此樣本之所有時槽中的所有接腳之編程。PIN_PAT以及WAVE係為配置腳本,然而MAIN_PAT部係為動態測試樣本。
根據第6圖之範例實施例,一ATE時槽係區分成6的個別可程式化”時段”。此時段之時序係定義在”時序設定(timing-set)”行,其為測試設定(例如一配置腳本)之一部分,且圖中沒有顯示應當說明的是此期間不一定互相排斥。
測試樣本之WAVE部之每一行包含:
1.符號、或是一對小寫以及大寫符號。符號將用於動態測試樣本中。當使用一對小寫以及大寫字母來表示時,小寫字母表示邏輯低位準,而大寫字母表示邏輯高位準。
2.在等號(=)之後,6個指標用於表示在時槽之6個時段期間的接腳電路之6個狀態。
3.額外符號資訊(與本發明不相關)
每個時槽之6個時段以下稱為T1~T6。T1以及T2定義為驅動時段。T3以及T4定義為從驅動切換至比較(但亦可用於定義驅動時段,與T1以及T2類似)。T5以及T6定義為比較時段(在第3圖之一般說明中T5以及T6也分別對應為T1以及T2)。
以下說明WAVE部份中的時段用語之定義(前6個引數):DX:驅動,數值=x(不在意)。接腳電路設定在此時段中不會改變(與前一時段之數值相同)。
IOFF:在此時段,接腳電路為比較器(第4圖之驅動器402關閉)。
ION:驅動器402開啟
SX:S表示閃現(strobe)而X表示”不在意(don’t care)”。自動化測試機台係在比較模式但忽視失敗/通過結果(IOH以及IOL係啟動)。
DTP:驅動資料。根據樣本部分(例如,針對a/A符號,當樣本表示為”a”時驅動接腳至邏輯低,而樣本表示為”A”時驅動接腳至邏輯高),驅動0或是1。
D1:在此時段驅動邏輯”1”,不管樣本數據為何。
DTP/:與DTP相似,但是所驅動之數據為反相(例如,對於大寫樣本符號,驅動邏輯低;對於小寫樣本符號,驅動邏輯高)。
h/H標號-於上述相同。
STP:比較。
測試樣本之第三部分為動態樣本(MAIN_PAT)。此樣本包含一註解接腳表頭,接著為符號行。此些行對應連續的時槽;每一行包含多個符號,其中連續符號定義對於連續接腳電路模組在此對應時槽中的樣本。
在每一樣本行(pattern line)之末端的符號”Super0_0”係指定一時間設定,其為測試配置腳本之一部分且用以定義6個時段之時序數值。
在第6圖之範例實施例,自動化測試機台測量CLK接腳602上的時序。CLK接腳可假設a/A格式604或是h/H格式606,其中a/A格式604係定義為:
‧時段1為DTP(驅動資料)
‧時段2為DX:繼續驅動數據
‧時段3為ION:開啟驅動器402(第4圖)
‧在時段4為DX:與時段3的內容相同而未改變
‧時段5以及6為SX:進行比較但忽視比較結果(由於ION在時段T3中進行編程,所以IOL以及IOH皆關閉);h/H格式係定義為:‧在時段1為DX:繼續前一時槽之最後一時段的狀態;‧在時段2為DX:繼續前一狀態;‧在時段3為IOFF:關閉驅動器402(第4圖);‧在時段4為DX:與時段3相同而沒有改變;‧在時段5為STP:數據與此樣本中的符號;‧在時段6為STP/:比較數據與此樣本中的符號之相反值。
屏幕截圖之樣本部分中,在第六時槽608中CLK接腳602(以及除了重置接腳之外的所有其他接腳)假設一”a”格式,並驅動對應接腳為0V(第5圖所示之引數508)。在第七時槽610期間,CLK接腳602(以及除了重置接腳之外的所有其他接腳)係假設一h格式,以檢查此行之邏輯值是否在時段5為邏輯低”0”而在時段6為邏輯高”1”。
接著,自動化測試機台可變化第五以及第六時段之時序,以測量在接腳以1mA電流源(第5圖所示之引數516)充電時接腳電壓達到1V以及2V(第5圖所示之引數512以及514)所需的時間。
因此,根據第5與6圖之範例實施例,可使用本發明之方法之實施例操作市售Chroma3650測試器可編程以測量在既定負載電流充電下的電壓上升或是下降時間,以及計算待測元件之任何輸入接腳之電容值。
第4至6圖所示之Chroma 3650自動化測試機台以及Chroma 3650之屏幕截圖之多個單位之設定以及編程設定係僅為清楚解釋概念的。其他實施例可使用其他任何適當的設定編程以及屏幕截圖。上述設定以及編程適用於Chroma測試器;可根據其他測試器之硬體設定以及編程介面可改變其他測試器的設定以及編程,也可應用不同的屏幕截圖。
接腳電路104(第1圖)可為一單一積體電路、複數個積體電路之集合、多晶片載體或是一印刷電路板。在一些實施例中,接腳電路群組或是所有接腳電路可聚集在相同的實體物件中(例如在一單一積體電路中)。
自動化測試機台100之一部分,例如控制器102,可用硬體、軟體或是硬體以及軟體之組合來實現。控制器102及/或接腳電路104可為一現場可程式邏輯閘陣列(FPGA)、一特定應用積體電路(ASIC)、或是現場可程式邏輯閘陣列以及應用導向積體電路之組合。
在一些實施例中,控制器102包含一通用可編程處理器,其可用軟體編程以執行本發明所描述之功能。此軟體可透過電子信號形式下載至處理器,或者例如,軟體可儲存在非暫時性有形媒體,例如磁性記憶體、光學記憶體、或是電子記憶體。
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。
100:自動化測試機台
102:控制器
104:接腳電路
106:待測元件
108:測試頭
110:插座

Claims (9)

  1. 一種測量一電子元件之一接腳之一輸入電容值之方法,包含:一驅動器選擇性控制一第一可程式化電流源、或一第二可程式化電流源輸送電流至該接腳,且該第一可程式化電流源之輸出電流值高於該第二可程式化電流源之輸出電流值;使用一包含接腳電路之測試器,在該接腳與該接腳電路斷開時取得一第一電容量測值,以及在該接腳連接至該接腳電路時取得一第二電容量測值;以及根據該第一電容量測值及該第二電容量測值計算該接腳之該輸入電容值。
  2. 如請求項1所述之方法,其中取得該第一電容量測值及該第二電容量測值之每一個之步驟包含:使用一電流源以至少一預先定義電流驅動該接腳電路,以及測量該接腳電路對應該至少一預先定義電流而產生的至少一電壓。
  3. 如請求項2所述之方法,其中該至少一電壓包含至少二電壓,其中計算該輸入電容值之步驟包含:從該至少一電壓推導出一隨時間變化的電壓斜率,以及根據該電壓斜率計算該輸入電容值。
  4. 如請求項1所述之方法,其中取得該第一電容量測值及該第二電容量測值之步驟包含:在取得該第一電容量測值之前提示一使用者將該接腳與該接腳電路斷開,以及在取得該第二電容量測值之前提示該使用者連接該接腳以及該 接腳電路。
  5. 一種測量一電子元件之一接腳之一輸入電容值之裝置,包含:複數個接腳電路,連接至該接腳,各接腳電路分別包括一第一可程式化電流源、一第二可程式化電流源,及一驅動器,該第一可程式化電流源之輸出電流值高於該第二可程式化電流源之輸出電流值,該驅動器分別連接該第一可程式化電流源及該第二可程式化電流源,用以供選擇性令該第一可程式化電流源或該第二可程式化電流源輸出電流至該接腳;以及一控制器,係在該接腳與該接腳電路斷開時取得一第一電容量測值,以及在該接腳連接至該接腳電路時取得一第二電容量測值,以及根據該第一電容量測值及該第二電容量測值計算該接腳之該輸入電容值。
  6. 如請求項5所述之裝置,更包含一電流源,其中該控制器藉由指示一電流源以至少一預先定義電流驅動該接腳電路,以及測量該接腳電路回應該電流而產生之至少一電壓,以取得每一該第一電容量測值及該第二電容量測值。
  7. 如請求項6所述之裝置,其中該至少一電壓包含至少二電壓,其中該控制器係從該電壓推導出一隨時間變化的電壓斜率,以及根據該電壓斜率計算該輸入電容值。
  8. 如請求項5所述之裝置,其中在取得該第一電容量測值之前,該控制器提示一使用者將該接腳與該接腳電路斷開,以及在取得該第二電容量測值之前,該控制器提示該使用者連接該接腳以及該接腳電路。
  9. 一種實體非暫態電腦可讀媒體,一驅動器可供選擇性控制一第一可程式化電流源、或一第二可程式化電流源輸送電流至該接腳,且該第一可程式化電流源之輸出電流值高於該第二可程式化電流源之輸出電 流值,用以測量一電子元件之一接腳之一輸入電容值,該實體非暫態電腦可讀媒體用以儲存程式指令,當耦接於連接至該接腳之接腳電路的處理器讀取該程式指令時,該處理器執行:在該接腳與該接腳電路斷開時取得一第一電容量測值,以及在該接腳連接至該接腳電路時取得一第二電容量測值;以及根據該第一電容量測值及該第二電容量測值計算該接腳之該輸入電容值。
TW109105094A 2019-08-11 2020-02-18 測量電子元件之接腳之輸入電容值之方法及其裝置 TWI769436B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/537,579 2019-08-11
US16/537,579 US20210041488A1 (en) 2019-08-11 2019-08-11 Measuring Input Capacitance with Automatic Test Equipment (ATE)

Publications (2)

Publication Number Publication Date
TW202107099A TW202107099A (zh) 2021-02-16
TWI769436B true TWI769436B (zh) 2022-07-01

Family

ID=74498454

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109105094A TWI769436B (zh) 2019-08-11 2020-02-18 測量電子元件之接腳之輸入電容值之方法及其裝置

Country Status (4)

Country Link
US (2) US20210041488A1 (zh)
JP (1) JP2021028630A (zh)
CN (1) CN112394230A (zh)
TW (1) TWI769436B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI760157B (zh) * 2021-03-24 2022-04-01 德律科技股份有限公司 多核並行測試單一待測物的系統及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097213A (en) * 1990-05-24 1992-03-17 Hunting Curtis J Apparatus for automatic testing of electrical and electronic connectors
EP1226447B1 (en) * 1999-10-26 2004-06-16 Teradyne, Inc. High resolution skew detection apparatus and method
US20060273781A1 (en) * 2005-06-03 2006-12-07 Persons Thomas W Compensating for loss in a transmission path
TW200841029A (en) * 2007-04-09 2008-10-16 Yokogawa Electric Corp Testing method for semiconductor integrated circuit and IC tester thereof
TW201305571A (zh) * 2011-07-20 2013-02-01 Hon Hai Prec Ind Co Ltd 功率測試電路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010297A (en) * 1989-12-01 1991-04-23 Analog Devices, Incorporated Automatic test equipment with active load having high-speed inhibit mode switching
US5493519A (en) * 1993-08-16 1996-02-20 Altera Corporation High voltage driver circuit with fast current limiting for testing of integrated circuits
US6624640B2 (en) * 2001-02-07 2003-09-23 Fluke Corporation Capacitance measurement
US6940271B2 (en) * 2001-08-17 2005-09-06 Nptest, Inc. Pin electronics interface circuit
JP4481155B2 (ja) * 2004-12-08 2010-06-16 パナソニック株式会社 セルの入力端子容量の算出方法、および遅延算出方法
TW200916798A (en) * 2007-10-05 2009-04-16 King Yuan Electronics Co Ltd Method for measuring accurate stray capacitance of automatic test equipment and system thereof
JP2009156580A (ja) * 2007-12-25 2009-07-16 Yokogawa Electric Corp 入力容量測定回路
JP2009257853A (ja) * 2008-04-15 2009-11-05 Yokogawa Electric Corp 半導体試験装置
US8866499B2 (en) * 2009-08-27 2014-10-21 Analog Devices, Inc. System and method for measuring capacitance
TWI628448B (zh) * 2017-03-07 2018-07-01 慧榮科技股份有限公司 電路測試方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097213A (en) * 1990-05-24 1992-03-17 Hunting Curtis J Apparatus for automatic testing of electrical and electronic connectors
EP1226447B1 (en) * 1999-10-26 2004-06-16 Teradyne, Inc. High resolution skew detection apparatus and method
US20060273781A1 (en) * 2005-06-03 2006-12-07 Persons Thomas W Compensating for loss in a transmission path
TW200841029A (en) * 2007-04-09 2008-10-16 Yokogawa Electric Corp Testing method for semiconductor integrated circuit and IC tester thereof
TW201305571A (zh) * 2011-07-20 2013-02-01 Hon Hai Prec Ind Co Ltd 功率測試電路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網路文獻 TDA System,Inc. Measurement of Input and Output Die Measurement of Input and Output Die Capacitance for M-LVDS and Other VDS and Other Signaling Standards Using TDR, TDA System,Inc. 2002 https://studylib.net/doc/7880597/measurement-m-lvds-input-and-output-die *

Also Published As

Publication number Publication date
TW202107099A (zh) 2021-02-16
US11662372B2 (en) 2023-05-30
US20210382101A1 (en) 2021-12-09
CN112394230A (zh) 2021-02-23
JP2021028630A (ja) 2021-02-25
US20210041488A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
KR100649648B1 (ko) 자동 테스트 장치용 원격 테스트 모듈
EP1701174A1 (en) Pin electronic for usage in an automatic test equipment for testing integrated circuits
US9488674B2 (en) Testing device and a circuit arrangement
EP1582885A1 (en) Test system with differential signal measurement
CN1761886A (zh) 自动测试设备的系统性能有效性的校准方法
JP6738798B2 (ja) ワンショット回路と自動試験装置
US6677775B2 (en) Circuit testing device using a driver to perform electronics testing
TWI769436B (zh) 測量電子元件之接腳之輸入電容值之方法及其裝置
TWI739154B (zh) 用於自動測試電子設備電子元件的裝置及其方法
CN106233150B (zh) 保护测试仪器的电路
CN109004904A (zh) 一种校准参数的设定方法、装置、系统、设备及介质
US6102960A (en) Automatic behavioral model generation through physical component characterization and measurement
CN105823990B (zh) 一种用于测试soc电源的模拟负载
CN111931444A (zh) 用于功能对等检测中的仿真方法
TWM458558U (zh) 用於檢測系統的控制介面
CN103376345A (zh) 最小负载电流测试装置
US9645195B2 (en) System for testing integrated circuit
CN113325226B (zh) 低压线性稳压器压降电压的测试方法
JP2010009475A (ja) 電子回路解析装置
CN111175639A (zh) 一种ate提供多电平电压的方法
CN216848050U (zh) 芯片测试装置
Koniar et al. Automated Testing of Electronic Devices: Virtual Instrumentation-Based Platform
JPH01121779A (ja) Ic試験装置
CN115309223B (zh) 直流电压拉偏设置方法、装置、计算机设备及存储介质
EP1722245A1 (en) Measurement of output voltage characeristics on dynamic logic signals