TWI766113B - 加熱晶座 - Google Patents

加熱晶座 Download PDF

Info

Publication number
TWI766113B
TWI766113B TW107136256A TW107136256A TWI766113B TW I766113 B TWI766113 B TW I766113B TW 107136256 A TW107136256 A TW 107136256A TW 107136256 A TW107136256 A TW 107136256A TW I766113 B TWI766113 B TW I766113B
Authority
TW
Taiwan
Prior art keywords
heating
susceptor
temperature
wafer
graphite
Prior art date
Application number
TW107136256A
Other languages
English (en)
Other versions
TW201923171A (zh
Inventor
大窪修一
高橋輝
鈴木俊哉
薄葉秀彦
Original Assignee
日商新日本科技炭素股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66173632&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI766113(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日商新日本科技炭素股份有限公司 filed Critical 日商新日本科技炭素股份有限公司
Publication of TW201923171A publication Critical patent/TW201923171A/zh
Application granted granted Critical
Publication of TWI766113B publication Critical patent/TWI766113B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明提供一種溫度控制的響應性提升了的加熱晶座,且目的在於無損生產性而獲得高品質的晶圓製品。一種加熱晶座,其藉由感應加熱而發熱,所述加熱晶座的特徵在於具有石墨基材與陶瓷塗佈層,且石墨基材的室溫下的面內的比電阻分佈的偏差(ρmaxmin )為1.00~1.05,800℃與1600℃下的比電阻的高溫變化率(ρ1600800 )為1.14~1.30。

Description

加熱晶座
本發明是有關於一種加熱晶座(susceptor),其於發光二極體(light emitting diode,LED)、功率裝置(power device)等的製造領域中被用於用以使半導體被膜於晶圓上磊晶成長(epitaxial growth)的化學氣相沈積(chemical vapor deposition,CVD)裝置內,其搭載晶圓並藉由感應加熱而發熱。
關於利用磊晶成長的半導體被膜,除Si以外,已知有GaN或SiC等的化合物半導體,為了降低成本,提出有一種可將多個晶圓搭載於大型加熱晶座並加熱處理至1600℃的磊晶成長裝置(專利文獻1)。 於磊晶成長裝置中設置有用以搭載晶圓的加熱晶座,利用源自藉由感應加熱而發熱的加熱晶座的導熱將晶圓加熱,並利用金屬有機化學氣相沈積法(metal organic chemical vapor deposition,MOCVD法)於晶圓上形成半導體被膜,從而製造晶圓製品。形成有所述半導體被膜的晶圓製品視用途而被切斷為一定尺寸的晶片(chip),並被供於LED或功率裝置的半導體零件。
關於被供於白色LED的晶圓製品,通常將藍寶石基板搭載於加熱晶座來進行加熱,並使作為載氣的氫、作為原料氣體的氨與三甲基鎵(trimethyl gallium,TMG)於藍寶石基板上流動,藉此形成GaN被膜,為了使作為LED的功能體現出來,例如將摻雜有Al的緩衝層、摻雜有Si的n型層、摻雜有In的活性層、摻雜有Mg的p型層依此順序積層(專利文獻2)。 關於所述含有成分不同的GaN被膜,可藉由將晶圓加熱為最佳溫度並成膜來保持品質,並藉由按照各被膜的積層迅速調整加熱晶座溫度來維持生產性。
為了能夠迅速進行溫度調節,加熱晶座採用具備耐熱性與導電性的石墨基材,並藉由感應加熱而發熱。另外,對磊晶成長裝置進行如下的裝置設計,所述裝置設計是用以藉由使感應加熱線圈成為多個並分割發熱區域、或者相對於感應加熱線圈而使加熱晶座旋轉驅動,從而使加熱晶座的溫度分佈均勻。 [現有技術文獻] [專利文獻]
[專利文獻1]日本專利特表2004-507619號公報 [專利文獻2]日本專利特開2004-281863號公報
但是,即便於磊晶成長裝置中進行了均勻加熱的設計,由於在感應加熱的情況下加熱晶座的發熱特性直接影響晶圓的溫度,因此若不將構成加熱晶座的石墨基材的比電阻的特性最佳化,則無法進行精密的溫度控制。關於加熱晶座,為了於有限的製程時間內使半導體被膜積層於晶圓,需要迅速調節晶圓溫度,就晶圓製品的品質與生產性的觀點而言,針對溫度控制而要求良好的響應性。 另一方面,石墨基材的比電阻有溫度依存性,若石墨基材的比電阻不適合於伴隨感應加熱的溫度變化,則響應性良好的溫度控制變得困難,並發生由偏離最佳溫度所導致的晶圓製品的品質下降或者由製程時間的延長所致的生產性的下降。另外,若石墨基材的比電阻分佈的偏差大,則發熱產生不均且加熱晶座面內的溫差變大,藉由熱應力而加熱晶座破損等耐久性的問題亦產生。 本發明提供一種藉由使石墨基材的高溫下的比電阻適合於感應加熱,提升溫度控制的響應性的加熱晶座,且目的在於無損生產性而獲得高品質的晶圓製品。
本發明為一種加熱晶座,其包括石墨基材與陶瓷塗佈層,且藉由感應加熱而發熱,所述加熱晶座的特徵在於,石墨基材的室溫下的面內的比電阻分佈的偏差(ρmaxmin )為1.00~1.05,800℃與1600℃下的比電阻的高溫變化率(ρ1600800 )為1.14~1.30。 作為所述陶瓷塗佈層,SiC、TaC、PBN(熱分解氮化硼)中的至少一種材料適合。
根據本發明,利用感應加熱的加熱晶座的溫度的響應性高,因此可高精度且迅速地進行溫度控制,且可兼顧晶圓製品的品質提升與由製程時間的縮短帶來的生產性的提升。
本發明的加熱晶座是藉由感應加熱而發熱的加熱晶座,且具有石墨基材與陶瓷塗佈層。而且,石墨基材的室溫下的面內的比電阻分佈的偏差(ρmaxmin )為1.00~1.05,800℃與1600℃下的比電阻的高溫變化率(ρ1600800 )為1.14~1.30。
根據本發明,藉由將石墨基材的室溫下的面內的比電阻分佈的偏差(ρmaxmin )設為1.00~1.05,相對於感應加熱而加熱晶座面內的發熱變得均勻,加熱晶座面內的溫度均勻化。 藉此,可將所搭載的多個晶圓於同一溫度下加熱,從而可消除晶圓製品的品質的偏差。另外,藉由加熱晶座面內的溫度的均勻化,亦能夠解決耐久性的問題,例如避免由熱應力所致的加熱晶座的破損等。
當ρmaxmin 為1.00時,不存在偏差,因此於面內最均勻地發熱,但若ρmaxmin 超過1.05,則於面內溫度分佈的差變大,於所搭載的多個晶圓之間無法設為同一溫度,晶圓製品的品質發生偏差。而且,由於加熱晶座面內的溫度分佈的偏差過大,因此,存在加熱晶座中產生熱應力且陶瓷被膜(陶瓷塗佈層)發生損傷的情況、或者因由渦電流的集中所帶來的局部性異常過熱而陶瓷被膜發生熱分解的情況。
關於本發明的加熱晶座,藉由將石墨基材的比電阻的高溫變化率(ρ1600800 )設為1.14~1.30,而相對於感應加熱而言的溫度的響應性提升,可高精度且迅速地進行加熱晶座的溫度控制。 關於石墨基材的高溫下的比電阻(ρt ),可藉由使於高溫(800℃與1600℃)下實際測量的電阻值Rt 與室溫下的電阻值R0 之比Rt /R0 乘以室溫下實際測量的比電阻ρ0 而求出。 高溫下的比電阻 ρt = ρ0 (Rt /R0 ) 另外,800℃與1600℃下的比電阻的高溫變化率(ρ1600800 )可使用800℃與1600℃的電阻值(R1600 、R800 )來計算。 關於石墨材料的比電阻的溫度依存性,已知通常自室溫至600℃~800℃附近比電阻減少,於600℃~800℃附近經過極小之後,伴隨溫度的上升而直線性增加,石墨材料的微晶的尺寸越大(石墨材料的結晶性越高),則所述直線的斜度變得越大(碳,No.268,166-170,2015.) 於製造晶圓製品的溫度範圍內(800℃以上),石墨基材的比電阻伴隨溫度的上升而直線性增加,本發明是藉由發現此時的高溫變化率(ρ1600800 )影響加熱晶座的溫度控制的響應性而成。其原因雖不明確,但考慮以下原因。
設置於磊晶成長裝置內的加熱晶座是藉由對其下部的感應加熱線圈供給電力而於石墨基材中產生渦電流並藉由焦耳熱發熱(焦耳定律(Joule's law))。 焦耳熱(P) = 渦電流(I) × 渦電流(I) × 電阻(R) 加熱晶座的電阻(R)是基於磊晶成長裝置的熱處理能力而設計,並選擇與電阻(R)相符的石墨基材的比電阻。電阻(R)與石墨基材的比電阻(ρ)有相關關係,因此電阻這一項可與比電阻同等地進行處理。 關於加熱晶座,藉由對供給於感應加熱線圈的電力進行調節而渦電流(I)發生變化,從而可對溫度進行控制。若加熱基座的溫度開始上升,則於800℃以上,石墨基材的比電阻亦同時開始增加,因此渦電流(I)與電阻(R)兩者有助於加熱晶座的溫度上升。因此,比電阻的高溫變化率(ρ1600800 )越大,伴隨溫度上升的加熱晶座的電阻(R)變得越大,焦耳熱(P)增加並促進溫度上升。因而,相較於對感應加熱線圈的電力進行再調整而更早地發現加熱晶座的溫度上升,因此認為加熱晶座的溫度的響應性提升。 本發明的加熱晶座由於利用感應加熱的溫度的響應性提升,因此可相對於目標溫度而進行迅速的溫度調節,並使用於溫度穩定化的待機時間最小化,藉此,可無損生產性而獲得高品質的晶圓製品。
高溫變化率(ρ1600800 )越大,越促進溫度上升且溫度的響應性越提升,但若大於1.30,則接近目標溫度時的溫度容易發生波動(hunting),需要時間來成為一定溫度。因而,本發明的ρ1600800 的上限設為1.30。 另一方面,若高溫變化率(ρ1600800 )小於1.14,則加熱晶座的溫度的響應性下降。該情況下,伴隨溫度上升的比電阻的增加小,且感應加熱線圈的電力調整所引起的渦電流主要有助於發熱,因此,加熱晶座的溫度的響應性變遲鈍,需要時間來穩定為目標溫度。晶圓製品是反覆調整為不同溫度而製造,因此,若高溫變化率(ρ1600800 )小於1.14,則1次循環所需要的時間變長,晶圓製品的生產性降低。
加熱晶座於高溫下被暴露於氫及氨等蝕刻性氣體中,因此,為了防止石墨基材的急劇消耗而利用耐蝕性優異的陶瓷被膜對表面進行塗佈。陶瓷塗佈層可選自SiC(碳化矽)、TaC(碳化鉭)、或PBN(熱分解氮化硼)中的至少一種材料,且可利用通常的CVD法塗佈於石墨基材的表面。
藉由圖1來說明晶圓製品的製造方法的一例。圖1是將加熱晶座設置於磊晶成長裝置中並製造晶圓製品時的示意圖。 本發明的加熱晶座1可設置在配備於裝置內的感應加熱線圈2的上方,若對感應加熱線圈供給電力,則加熱晶座1藉由感應加熱而發熱。於加熱晶座1的上表面設置有晶圓保持器(wafer holder)3與保護構件4,並藉由源自發熱的加熱晶座1的導熱而被加熱。晶圓保持器3形成有用以保持晶圓5的袋(pocket),並藉由導熱將搭載於袋中的晶圓5加熱。晶圓保持器3與保護構件4通常為與加熱晶座1相同的材料。 晶圓5與加熱晶座1可藉由各放射溫度計6、放射溫度計7來測定溫度,但為了進行晶圓製品的品質管理,理想的是利用放射溫度計6來管理晶圓的溫度並進行製造。晶圓5的溫度是藉由源自加熱晶座1的導熱來調節,因此,自然地需要使加熱晶座1的溫度高於晶圓5的溫度。 感應加熱的溫度調節器8對由放射溫度計6所測定的晶圓溫度進行感知,並基於預先設定的溫度程式向感應加熱電源發送信號,調節感應加熱線圈的電力。放射溫度計6將電力調節後的晶圓溫度的變化迴授至溫度調節器8,藉此對感應加熱線圈的電力進行再調節,從而進行溫度控制。 如上所述,磊晶成長裝置的溫度控制的響應性一次性地由溫度調節器8、感應加熱電源9、感應加熱線圈2的機器性能決定。 可於晶圓的上部空間流入載氣與原料氣體,並藉由MOCVD法將半導體被膜積層於經加熱的晶圓5上,從而製造晶圓製品。
圖2是表示使用本發明的加熱晶座而製造的晶圓製品11的一例的示意剖面圖。藍寶石基板12上的第一層有於GaN中摻雜有Al的AlGaN緩衝層13,並依序積層摻雜有Si的n型GaN層14、將摻雜有In的InGaN井層15a與未摻雜In的GaN障壁層15b交替層疊而成的多重量子井(multiple quantum well)結構的活性層15、摻雜有Mg的p型GaN層16。
圖3是表示使用本發明的加熱晶座製造晶圓製品時的一例的溫度程式的模式(pattern)。例如,於將晶圓的加熱溫度控制於600℃~1100℃左右的範圍內的情況下,加熱晶座的溫度於較之高100℃~200℃左右的溫度下發熱。 加熱晶座是搭載藍寶石基板並開始感應加熱。首先,為了將藍寶石基板的表面淨化,並不於高溫下流動原料氣體而是進行被稱作熱清洗(thermal cleaning)的熱處理。繼而,一面依次進行用以將構成晶圓製品的各GaN層積層的溫度控制,一面將被膜積層,於1次循環的預定的製程時間內製造晶圓製品。
積層於藍寶石基板(晶圓)上的GaN被膜的品質可藉由利用光致發光法(photoluminescence,PL法)的光學分析方法進行評價。 例如,若對晶圓製品照射雷射光,則於半導體的固有能帶隙附近生成電子-電洞對,且當該些再結合時發光。藉由測定其發光光譜,可評價能帶隙、結晶性、摻雜量等。(第11次氮化物半導體應用研究會「使用原位監視器(in-situ monitor)的氮化物結晶成長的觀測」2011.7.7)
圖4是對自搭載於磊晶成長裝置中的PL分析裝置21對晶圓製品11照射雷射光時的發光光譜的波長(PL波長)進行測定的方法的示意圖。 晶圓製品的分析是以如下方式進行:使雷射光以微小間隔對晶圓整個面進行掃描,藉此,針對半導體被膜整個面,測定與場所對應的PL波長。晶圓製品的品質評價是使用對在晶圓整個面中測定的PL波長進行統計處理所得的平均值與標準偏差(standard deviation,STD)來進行。 針對各晶圓而獲得的PL波長的平均值成為用以判斷例如適合於針對各製品而不同的LED的波長標準的指標,本發明中,將目標PL波長的±3 nm以內設為合格。 針對各晶圓而獲得的成為偏差指標的STD影響自1片晶圓製品以良品形式獲得的LED晶片的數量。STD值越小,PL波長的偏差越少,因此判斷為晶圓製品的品質良好。本發明中,將STD未滿2 nm設為合格。
圖5中,針對作為本發明的一例而使用的加熱晶座示意圖的石墨基材,表示對面內的比電阻進行測定的場所。面內的比電阻可藉由四探針法以非破壞性的方式測定石墨基材表面的16處(●記號)。 比電阻分佈的偏差(ρmaxmin )可利用在石墨基材的多處測定的最大值(ρmax )相對於最小值(ρmin )之比加以指標化。藉由將所測定的16處的比電阻加以平均而獲得平均值(ρav )。
圖6表示對高溫下的電阻進行測定的裝置的示意圖。 高溫下的電阻的測定是以如下方式進行:將自石墨基材切取的石墨試樣1A(f10 ×100 mm)設置於電爐31中,一面自室溫加熱至1600℃,一面將直流電源32連接至安裝於石墨試樣1A的兩端的端子,並藉由電流計33、電位差計34測定電流值與電壓下降值。溫度是將熱電偶35直接安裝於石墨試樣1A的中央並藉由溫度記錄計36來測定。此處,使用所測定的電流值與電壓下降值來算出各溫度下的電阻值Rt
對本發明的加熱晶座中使用的石墨基材的製造方法進行說明,但並不限定於以下方法。 較佳為可將利用冷均壓成形(Cold Isostatic Pressing/CIP)的石墨材料機械加工為加熱晶座的形狀而獲得。 本發明中使用的石墨材料理想的是石墨的微晶的尺寸大且石墨的結晶性高,因此,成為原料的骨材是利用針狀焦炭(coke)粉、或者使用針狀焦炭粉而製造的人造石墨的粉碎粉、天然石墨粉等。進而,藉由調配無定形焦炭粉作為骨材,可調整石墨材料的物性。本發明中使用的骨材原料較佳為混合使用該些的兩種以上。例如,較佳為無定形焦炭粉30重量份~80重量份與針狀焦炭粉20重量份~70重量份的混合原料。另外,亦較佳為無定形焦炭粉50重量份~80重量份與石墨粉20重量份~50重量份的混合原料。 骨材是粉碎成規定的粒徑來利用,但本發明中,較佳為粒徑分佈於1 μm~200 μm的範圍內且平均粒徑(中值粒徑D50 )不超過20 μm。特別是針狀焦炭粉對於增大石墨基材的微晶的尺寸(提高石墨材料的結晶性)而言有效,因此,利用粉碎後的分級操作將微粉去除並粒度調整為粗粒、或者使平均粒徑大於20 μm會有使石墨基材的高溫變化率(ρ1600800 )過大之虞。較佳為平均粒徑5 μm~15 μm。
所述骨材以規定的調配比例與黏合材(焦油(tar)、瀝青(pitch)等)一併進行熱混煉後,冷卻至室溫附近,然後利用粉碎機進行粉碎。將粉碎粉填充於橡膠製的橡膠箱(rubber case)中並加以密封後,利用CIP成形機進行加壓而獲得成形體。 於非氧化性環境下將所獲得的成形體熱處理至1000℃而煆燒碳化。煆燒體視需要可含浸熱熔融的含浸用瀝青並再次煆燒。藉由含浸瀝青,而所獲得的石墨材料的體積密度或強度變高,比電阻降低。 於石墨化爐中於2800℃~3000℃的範圍內對所獲得的煆燒體進行熱處理而石墨化,藉此可獲得石墨材料。石墨化溫度越高,石墨的微晶的尺寸變得越大,結晶性變得越高,因此熱處理溫度理想的是3000℃。 若要抑制石墨基材的比電阻分佈的偏差,只要以使石墨化時的熱處理溫度變得均勻的方式進行即可。一般而言,石墨化爐使用艾其遜爐(Acheson furnace)或高頻感應爐,但石墨基材的尺寸越大,比電阻分佈的偏差越容易變大,因此與艾其遜爐相比,理想的是利用高頻感應爐。
關於石墨基材的物性值,自石墨基材的任意場所切取試片/TP(test piece)(10 mm×10 mm×50 mm)並測定體積密度、熱膨脹係數、彎曲強度、比電阻。 體積密度是對試片的重量與體積進行實際測量而算出。熱膨脹係數是使用配備有差動變壓器(differential transformer)的市售的熱分析裝置對試片測定自室溫加熱至500℃時的線膨脹係數而算出。彎曲強度是參考日本工業標準(Japanese Industrial Standards,JIS)R 7222:1997(石墨素材的物理特性測定方法)並測定以支點間的距離40 mm、載荷速度0.5 mm/min進行破壞時的最大載荷而算出。比電阻是利用依據JIS R 7222:1997(石墨素材的物理特性測定方法)的電壓下降法進行測定。 作為可用作加熱晶座的石墨基材的物性,例如可列舉:體積密度為1.70 g/cm3 ~1.80 g/cm3 、熱膨脹係數為3.5×10-6 /K~4.5×10-6 /K、彎曲強度為35 MPa~60 MPa、比電阻(ρ0 )為8.0 μΩm~13.0 μΩm。
(陶瓷塗佈層) 本發明的加熱晶座是較佳為藉由CVD法並利用陶瓷被膜對將石墨材料機械加工為加熱晶座的形狀的石墨基材進行塗佈而成者。 陶瓷塗佈層理想的是SiC、TaC、或PBN中的至少一種材料。特別是較佳為將同種或不同種材料積層2層以上而成者。陶瓷塗佈層的厚度較佳為50 μm~200 μm。 加熱晶座於高溫下暴露於NH3 、H2 等反應性氣體中,因此,藉由將對於該些氣體而耐蝕性優異的所述陶瓷被膜塗佈於加熱晶座,而變得能夠反覆使用。 利用陶瓷被膜對石墨基材的表面進行塗佈的方法是利用使用CVD法的習知方法。 [實施例]
以下,基於實施例對本發明進行具體說明,但本發明的加熱晶座並不由該些實施例的內容限制。
實施例1 作為骨材原料,將無定形焦炭與針狀焦炭藉由霧化器粉碎機分別粉碎至最大粒徑200 μm,且分別獲得平均粒徑15 μm的骨材。各骨材的粒徑為使用雷射繞射式粒度分佈測定裝置測定而得的值,平均粒徑以中直徑來表示。 調配無定形焦炭粉40重量份與針狀焦炭粉60重量份而製成骨材。 將該骨材100重量份與黏合劑瀝青(binder pitch)70重量份一併投入至捏合(kneading)裝置中,一面以220℃進行加熱一面混煉10小時。將該混煉物冷卻後,再粉碎至最大粒徑250 μm而獲得成形用的二次粉末。將其填充於橡膠箱中並藉由冷均壓成形(CIP)以1 t/cm2 的壓力進行成形。將所獲得的成形體裝入煆燒爐中,於非氧化性環境下進行煆燒碳化處理至1000℃,從而獲得煆燒體。所獲得的煆燒體將含浸用瀝青含浸並再次以1000℃進行煆燒。將其移至高頻感應爐(high-frequency induction furnace,HF),於非氧化性環境下加熱至3000℃而進行石墨化,藉此獲得石墨材料。
自所獲得的石墨材料將多個石墨基材加工為圓環(doughnut)型的加熱晶座形狀。自其中的1片切下石墨材料的試片(10 mm×10 mm×50 mm)並測定室溫下的物性值(表2)。 比電阻的分佈是針對石墨基材的面內,測定圖5中示出的16處的比電阻而獲得。比電阻的測定是使用迪亞儀器(DIA Instruments)公司製造的電阻率計(羅萊絲塔(Loresta)-EP)來進行。關於所獲得的比電阻,將平均值ρav 、最大值ρmax 、最小值ρmin 示於表2。將使用所述結果而計算的比電阻的偏差(ρmaxmin )示於表3。 關於高溫下的比電阻的特性,使用將自石墨基材切取的石墨試樣(f10 ×100 mm)設置於圖6的裝置中並測定出的電阻值,以各溫度相對於室溫的相對值(ρt0 )來表示(圖7)。使用800℃與1600℃下的相對值來算出比電阻的高溫變化率(ρ1600800 )並示於表3。
將加工為加熱晶座形狀的石墨基材放入至精煉爐中並於高溫下利用Cl2 氣體進行精製後,放入至CVD爐中並於高溫下將SiCl4 與C3 H8 的混合氣體與H2 載氣一併導入,於石墨基材的表面形成厚度100 μm(塗佈兩次50 μm)的SiC被膜,從而獲得加熱晶座。 將所述加熱晶座設置於磊晶成長裝置(A)中,並載置11片4吋的藍寶石基板,藉由MOCVD法以製程時間8小時將GaN被膜積層,從而製作面向LED的晶圓製品(目標波長443 nm)。 利用光致發光(PL)分析裝置並以面內1 mm×1 mm間隔對所獲得的晶圓製品的活性層進行測定,對各晶圓進行統計處理並將11片加以平均,結果,PL波長的平均值為443.8 nm,標準偏差(STD)為1.3。反覆使用加熱晶座,結果可使用超過200次循環。
實施例2 調配無定形焦炭粉50重量份與針狀焦炭粉50重量份而製成骨材,除此以外,藉由與實施例1同樣的方法獲得加熱晶座。 使用所述加熱晶座,按照與實施例1相同的順序製作晶圓製品並測定PL波長。其結果為,PL波長的平均值為443.5 nm,標準偏差為1.4。反覆使用加熱晶座,結果可使用超過200次循環。
實施例3 作為骨材原料,將利用針狀焦炭製造的人造石墨材料的切削粉藉由霧化器粉碎機加以粉碎,獲得平均粒徑70 μm的骨材。 調配無定形焦炭粉67重量份與所述人造石墨粉33重量份而製成骨材,且對所獲得的煆燒體於不含浸瀝青的狀態下進行石墨化處理,除此以外,藉由與實施例1同樣的方法獲得石墨材料。 自所述石墨材料獲得加工為加熱晶座形狀的石墨基材後,藉由與實施例1同樣的方法獲得加熱晶座。 將所述加熱晶座設置於磊晶成長裝置(B)中,並載置14片4吋的藍寶石基板,藉由MOCVD法以製程時間8小時將GaN被膜積層,從而製作面向LED的晶圓製品(目標波長443 nm)。 利用光致發光(PL)分析裝置並以面內1 mm×1 mm間隔對所獲得的晶圓製品的活性層進行測定,對各晶圓進行統計處理並將14片加以平均,結果,PL波長的平均值為443.2 nm,標準偏差為1.6。反覆使用加熱晶座,結果可使用超過200次循環。
實施例4 調配無定形焦炭粉60重量份與針狀焦炭粉40重量份而製成骨材,除此以外,藉由與實施例3同樣的方法獲得加熱晶座。 使用所述加熱晶座,按照與實施例3相同的順序製作晶圓製品並測定PL波長。其結果為,PL波長的平均值為443.6 nm,標準偏差為1.7。反覆使用加熱晶座,結果可使用超過200次循環。
實施例5 調配無定形焦炭粉70重量份、針狀焦炭粉30重量份而製成骨材,除此以外,藉由與實施例3同樣的方法獲得加熱晶座。 使用所述加熱晶座,按照與實施例3相同的順序製作晶圓製品並測定PL波長。其結果為,PL波長的平均值為444.1 nm,標準偏差(STD)為1.8。反覆使用加熱晶座,結果可使用超過200次循環。
比較例1 調配將無定形焦炭藉由霧化器粉碎機粉碎至最大粒徑30 μm而得的平均粒徑5 μm的粉末60重量份、與將針狀焦炭藉由霧化器粉碎機粉碎至最大粒徑200 μm後藉由分級機去除投入量的30%的微粉而得的平均粒徑50 μm的粉末40重量份而製成骨材,且對所獲得的煆燒體於不含浸瀝青的狀態下進行石墨化處理,除此以外,藉由與實施例1同樣的方法獲得加熱晶座。 使用所述加熱晶座,按照與實施例1相同的順序製作晶圓製品並測定PL波長。其結果為,PL波長的平均值為447.8 nm,標準偏差(STD)為1.6,PL波長偏離所述目標值,晶圓製品變得不良。因此,中止使用加熱晶座。
比較例2 調配無定形焦炭粉80重量份與針狀焦炭粉20重量份而製成骨材,除此以外,藉由與實施例1同樣的方法獲得加熱晶座。 使用所述加熱晶座,按照與實施例1相同的順序製作晶圓製品並測定PL波長。PL波長偏離所述目標值,晶圓製品變得不良。因此,中止使用加熱晶座。
比較例3 調配無定形焦炭粉50重量份與針狀焦炭粉50重量份而製成骨材,使煆燒體含浸瀝青並再次以1000℃進行煆燒後,將石墨化處理於艾其遜爐(AC)中設為2500℃,除此以外,藉由與實施例3同樣的方法獲得加熱晶座。 使用所述加熱晶座,按照與實施例3相同的順序製作晶圓製品並測定PL波長。PL波長、STD均偏離所述目標值或標準值,晶圓製品變得不良。加熱晶座使用1次而SiC被膜破損,因此中止使用。
比較例4 使煆燒體含浸瀝青並再次以1000℃進行煆燒後,將石墨化處理設為2500℃,除此以外,藉由與實施例4同樣的方法獲得加熱晶座。 使用所述加熱晶座,按照與實施例4相同的順序製作晶圓製品並測定PL波長。PL波長偏離所述目標值,晶圓製品變得不良。因此,中止使用加熱晶座。
比較例5 使煆燒體含浸瀝青並再次以1000℃進行煆燒後,將石墨化處理設為2500℃,除此以外,藉由與實施例5同樣的方法獲得加熱晶座。 使用所述加熱晶座,按照與實施例5同樣的順序製作晶圓製品,晶圓製品的品質雖然合格,但溫度響應性差,不得不將製程時間設為10小時。
關於所使用的骨材與石墨化條件,示於表1。關於所獲得的石墨基材的物性值,示於表2。將所獲得的加熱晶座的評價結果彙總於表3。
[表1]
Figure 107136256-A0304-0001
[表2]
Figure 107136256-A0304-0002
[表3]
Figure 107136256-A0304-0003
(備註) * :PL波長偏離目標值(443 nm),晶圓製品變得不良,中止使用加熱晶座 ** :晶圓製品變得不良,且加熱晶座破損,中止使用加熱晶座 ***:由於製程時間的延長而生產性差,中止使用加熱晶座 ○ :PL波長收於規定範圍內,晶圓製品良好,生產性亦優異,可良好地用作加熱晶座 × :無法用作加熱晶座
根據表3的結果,於實施例1~實施例5的使用處於本發明的範圍內的石墨基材的加熱晶座中,利用MOCVD法製造的晶圓製品的PL波長(平均值)為目標值的443±3 nm以內,標準偏差(STD)未滿2,滿足品質標準。 相對於此,比電阻的高溫變化率(ρ1600800 )大於1.3的比較例1與未滿1.14的比較例2、比較例3、比較例4由於加熱晶座的溫度不穩定,因此PL波長偏離±3 nm以上。另外,比電阻的偏差(ρmaxmin )超過1.05的比較例3由於加熱晶座的溫度的偏差大,因此,標準偏差(STD)大且超過3,進而藉由熱應力而塗佈被膜破裂。 於比電阻的高溫變化率ρ1600800 未滿1.14的比較例5中,雖然加熱晶座的溫度的響應性低,但藉由將製程時間延長為10小時而使晶圓製品的品質合格。但是,由於晶圓製品的生產性下降,因此無法面向量產而使用。 [產業上之可利用性]
本發明可較佳地用於進行氣相磊晶成長時所使用的加熱晶座。
1‧‧‧加熱晶座1A‧‧‧石墨試樣(石墨基材)2‧‧‧感應加熱線圈3‧‧‧晶圓保持器4‧‧‧保護構件5‧‧‧晶圓6、7‧‧‧放射溫度計8‧‧‧溫度調節器9‧‧‧感應加熱電源11‧‧‧晶圓製品12‧‧‧藍寶石基板(晶圓)13‧‧‧AlGaN緩衝層14‧‧‧n型GaN層15a‧‧‧InGaN井層15b‧‧‧GaN障壁層15‧‧‧活性層16‧‧‧p型GaN層21‧‧‧PL分析裝置31‧‧‧電爐32‧‧‧直流電源33‧‧‧電流計34‧‧‧電位差計35‧‧‧熱電偶36‧‧‧溫度記錄計ρ0‧‧‧室溫下的比電阻ρt‧‧‧高溫下的比電阻
圖1是加熱晶座於裝置內的示意圖。 圖2是晶圓製品的示意剖面圖。 圖3是製造晶圓製品時的溫度程式。 圖4是晶圓製品的品質評價的示意圖。 圖5是石墨基材的面內的比電阻的測定場所。 圖6是高溫下的比電阻測定裝置的示意圖。 圖7是本發明的實施例的石墨基材的比電阻的溫度依存性。 圖8是本發明的比較例的石墨基材的比電阻的溫度依存性。
ρ0‧‧‧室溫下的比電阻
ρt‧‧‧高溫下的比電阻

Claims (1)

  1. 一種加熱晶座,其特徵在於,其搭載有半導體晶圓,並藉由感應加熱而發熱,所述加熱晶座與感應加熱機構隔開,且具有石墨基材與陶瓷塗佈層,所述石墨基材是由石墨基材本身藉由感應加熱而發熱,且石墨基材的室溫下的面內的比電阻分佈的偏差ρmaxmin為1.00~1.05,800℃與1600℃下的比電阻的高溫變化率ρ1600800為1.14~1.30,所述陶瓷塗佈層為選自SiC及TaC中的至少一種材料。
TW107136256A 2017-10-18 2018-10-16 加熱晶座 TWI766113B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017201582 2017-10-18
JP2017-201582 2017-10-18

Publications (2)

Publication Number Publication Date
TW201923171A TW201923171A (zh) 2019-06-16
TWI766113B true TWI766113B (zh) 2022-06-01

Family

ID=66173632

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107136256A TWI766113B (zh) 2017-10-18 2018-10-16 加熱晶座

Country Status (7)

Country Link
US (2) US20200385864A1 (zh)
EP (1) EP3627536B1 (zh)
JP (1) JP6621971B2 (zh)
KR (1) KR102088493B1 (zh)
CN (1) CN110914955B (zh)
TW (1) TWI766113B (zh)
WO (1) WO2019078036A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908715B2 (en) 2018-07-05 2024-02-20 Lam Research Corporation Dynamic temperature control of substrate support in substrate processing system
CN112391606B (zh) * 2020-11-13 2022-01-14 南昌大学 一种SiC-Hf(Ta)C复合涂层的制备方法、复合涂层及石墨基座

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030234248A1 (en) * 2002-06-20 2003-12-25 Shin-Etsu Chemical Co., Ltd. Heating apparatus with electrostatic attraction function
TW201604133A (zh) * 2014-06-05 2016-02-01 Shinetsu Chemical Co 熱分解氮化硼被覆碳及使用其的碳加熱器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671914B2 (ja) * 1986-01-30 1997-11-05 東芝セラミックス 株式会社 サセプタ
JPH07165467A (ja) * 1993-12-14 1995-06-27 Tokai Carbon Co Ltd 等方性黒鉛材の製造方法
DE19803423C2 (de) * 1998-01-29 2001-02-08 Siemens Ag Substrathalterung für SiC-Epitaxie und Verfahren zum Herstellen eines Einsatzes für einen Suszeptor
JP2001031473A (ja) * 1999-07-21 2001-02-06 Toyo Tanso Kk 黒鉛ヒーター
DE10043600B4 (de) 2000-09-01 2013-12-05 Aixtron Se Vorrichtung zum Abscheiden insbesondere kristalliner Schichten auf einem oder mehreren, insbesondere ebenfalls kristallinen Substraten
US20020166503A1 (en) 2001-03-08 2002-11-14 Hitco Carbon Composites, Inc. Hybrid crucible susceptor
JP2004200436A (ja) 2002-12-19 2004-07-15 Toshiba Ceramics Co Ltd サセプタ及びその製造方法
JP4325232B2 (ja) 2003-03-18 2009-09-02 日亜化学工業株式会社 窒化物半導体素子
EP1790757B1 (en) * 2004-07-22 2013-08-14 Toyo Tanso Co., Ltd. Susceptor
JP5110464B2 (ja) 2007-07-12 2012-12-26 東海カーボン株式会社 CVD−SiC単体膜の製造方法
KR100976547B1 (ko) * 2008-06-02 2010-08-17 주식회사 티씨케이 유도가열 서셉터 및 그 제조방법
NL2006146C2 (en) * 2011-02-04 2012-08-07 Xycarb Ceramics B V A method of processing substrate holder material as well as a substrate holder processed by such a method.
JP6062436B2 (ja) * 2012-07-26 2017-01-18 Dowaエレクトロニクス株式会社 サセプタ、結晶成長装置および結晶成長方法
JP6233209B2 (ja) * 2014-06-30 2017-11-22 豊田合成株式会社 サセプターとその製造方法
JP6436896B2 (ja) * 2015-12-04 2018-12-12 信越化学工業株式会社 カーボンヒーターおよびカーボンヒーターの製造方法
JP6827852B2 (ja) * 2017-03-09 2021-02-10 クアーズテック株式会社 石英ガラスルツボの製造方法
CN106948002B (zh) * 2017-03-15 2019-07-09 南京国盛电子有限公司 电磁感应加热外延炉的双面基座结构
EP3549925B1 (en) * 2017-09-28 2022-11-30 Nippon Techno-Carbon Co., Ltd. The use of a graphite material for a graphite heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030234248A1 (en) * 2002-06-20 2003-12-25 Shin-Etsu Chemical Co., Ltd. Heating apparatus with electrostatic attraction function
TW201604133A (zh) * 2014-06-05 2016-02-01 Shinetsu Chemical Co 熱分解氮化硼被覆碳及使用其的碳加熱器

Also Published As

Publication number Publication date
CN110914955B (zh) 2022-10-28
JPWO2019078036A1 (ja) 2019-12-19
US20200385864A1 (en) 2020-12-10
EP3627536A1 (en) 2020-03-25
WO2019078036A1 (ja) 2019-04-25
JP6621971B2 (ja) 2019-12-18
CN110914955A (zh) 2020-03-24
TW201923171A (zh) 2019-06-16
EP3627536B1 (en) 2022-07-27
KR102088493B1 (ko) 2020-03-12
EP3627536A4 (en) 2021-02-24
US20230349045A1 (en) 2023-11-02
KR20200013796A (ko) 2020-02-07

Similar Documents

Publication Publication Date Title
US20230349045A1 (en) Susceptor
JP5251893B2 (ja) 導電性iii族窒化物結晶の製造方法及び導電性iii族窒化物基板の製造方法
WO2017115831A1 (ja) カーボンナノチューブ接合シートおよびカーボンナノチューブ接合シートの製造方法
KR20130109946A (ko) GaN 결정 자립 기판 및 그 제조 방법
US20190252504A1 (en) n-TYPE SiC SINGLE CRYSTAL SUBSTRATE, METHOD FOR PRODUCING SAME AND SiC EPITAXIAL WAFER
JP2020050963A (ja) 窒化ガリウム系膜ならびにその製造方法
US11339500B2 (en) Nitride crystal substrate, semiconductor laminate, method of manufacturing semiconductor laminate and method of manufacturing semiconductor device
JP6232817B2 (ja) ナノ多結晶ダイヤモンドおよびこれを備える工具
EP1179621A1 (en) N-type semiconductor diamond and its fabrication method
US10703677B2 (en) SiC sintered body, heater and method for producing SiC sintered body
JP2020090421A (ja) 炭化珪素多結晶基板およびその製造方法
KR20190001568A (ko) 질화규소 소결체의 제조 방법, 질화규소 소결체 및 이를 이용한 방열 기판
CN117144468A (zh) SiC基板以及SiC外延晶片
TWI616401B (zh) 微米粉體與其形成方法
Elmazria et al. Electrical properties of piezoelectric aluminium nitride films deposited by reactive dc magnetron sputtering
JP6671195B2 (ja) 炭化珪素のエピタキシャル成長方法
CN110499533B (zh) 氮化物晶体基板以及氮化物晶体基板的制造方法
JP2019214496A (ja) 窒化物結晶基板およびその製造方法
JP6349644B2 (ja) 多結晶立方晶窒化ホウ素およびその製造方法
WO2014081005A1 (ja) セラミックス炭素複合材の特性制御方法並びにセラミックス炭素複合材
Deng et al. Measurement of Thermal Field Temperature Distribution Inside Reaction Chamber for Epitaxial Growth of Silicon Carbide Layer
JP2022140445A (ja) 半導体積層物
Biard et al. Tailored Polycrystalline Substrate for SmartSiCTM Substrates Enabling High Performance Power Devices
JP2022520899A (ja) 炭化ケイ素-窒化ケイ素複合材料の製造方法及びそれによる炭化ケイ素-窒化ケイ素複合材料
JP6232816B2 (ja) ナノ多結晶ダイヤモンドおよびこれを備える電子銃、並びにナノ多結晶ダイヤモンドの製造方法