WO2017115831A1 - カーボンナノチューブ接合シートおよびカーボンナノチューブ接合シートの製造方法 - Google Patents

カーボンナノチューブ接合シートおよびカーボンナノチューブ接合シートの製造方法 Download PDF

Info

Publication number
WO2017115831A1
WO2017115831A1 PCT/JP2016/089030 JP2016089030W WO2017115831A1 WO 2017115831 A1 WO2017115831 A1 WO 2017115831A1 JP 2016089030 W JP2016089030 W JP 2016089030W WO 2017115831 A1 WO2017115831 A1 WO 2017115831A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
carbon nanotube
array sheet
cnt array
cnt
Prior art date
Application number
PCT/JP2016/089030
Other languages
English (en)
French (fr)
Inventor
井上 鉄也
拓行 円山
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to US16/066,519 priority Critical patent/US20190010376A1/en
Priority to CN201680074758.7A priority patent/CN108430919B/zh
Priority to JP2017559229A priority patent/JP6714616B2/ja
Priority to EP16881805.2A priority patent/EP3398906A4/en
Priority to KR1020187018111A priority patent/KR102693898B1/ko
Publication of WO2017115831A1 publication Critical patent/WO2017115831A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/80Sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/24Thermal properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/275Manufacturing methods by chemical or physical modification of a pre-existing or pre-deposited material
    • H01L2224/27505Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29193Material with a principal constituent of the material being a solid not provided for in groups H01L2224/291 - H01L2224/29191, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]

Definitions

  • the present invention relates to a carbon nanotube bonding sheet and a method for producing the carbon nanotube bonding sheet.
  • a heat conductive material (Thermal Interface Material: hereinafter referred to as TIM) is arranged between the electronic component and the heat sink to reduce the gap between the electronic component and the heat sink, thereby reducing the heat generated from the electronic component. It is known to conduct efficiently to a heat sink.
  • a TIM a polymer sheet made of a polymer material, silicone grease, and the like are known.
  • the polymer sheet cannot sufficiently follow the fine irregularities (surface roughness) on the surface of the electronic component and the heat sink, and the fine irregularities cause a gap between the electronic component and the heat sink. There is a limit to improving the thermal conductivity.
  • Silicone grease can follow fine irregularities on the surface of the electronic component and the heat sink, but may be pumped out (flowed out between the electronic component and the heat sink) due to repeated temperature changes. It is difficult to ensure the heat conduction performance of the TIM over a long period of time.
  • CNT Carbon nanotubes
  • thermal interface pad including a substrate and CNTs arranged in an array on both surfaces of the substrate has been proposed (see, for example, Patent Document 1).
  • Such a thermal interface pad is manufactured by growing CNTs on both sides of a substrate by chemical vapor deposition.
  • the CNTs since the CNTs are arranged on both sides of the substrate, the CNTs can follow the fine irregularities on the surfaces of the electronic component and the heat sink.
  • the thermal interface pad described in Patent Document 1 is manufactured by growing CNTs on both surfaces of the substrate by chemical vapor deposition, it is not possible to sufficiently secure the adhesive strength between the substrate and the CNTs. Therefore, when the thermal interface pad is used as a TIM, the CNT may fall off the substrate. In this case, it is difficult to ensure the thermal conductivity performance of the thermal interface pad, and the dropped CNT may cause a short circuit of an electronic component or the like.
  • an object of the present invention is to provide a carbon nanotube bonded sheet and a method of manufacturing the carbon nanotube bonded sheet that can suppress the falling of the carbon nanotube while being able to follow the fine irregularities on the surface of the object. is there.
  • the present invention [1] includes a carbon nanotube bonding sheet comprising a fixed sheet formed of an inorganic sintered body and a carbon nanotube array sheet bonded to the sintered body of the fixed sheet. It is out.
  • the carbon nanotube bonding sheet includes the carbon nanotube array sheet
  • the plurality of CNTs of the carbon nanotube array sheet are attached to the surface of the target object. It is possible to follow fine irregularities.
  • the carbon nanotube array sheet is bonded to the sintered body of the fixed sheet, it is possible to suppress the CNTs included in the carbon nanotube array sheet from dropping from the fixed sheet.
  • the inorganic substance includes silicon and / or titanium, and the sintered body is sintered between carbon included in the carbon nanotube array sheet and silicon and / or titanium included in the fixed sheet.
  • the sintered body includes a sintered body of carbon included in the carbon nanotube array sheet and silicon and / or titanium included in the fixing sheet, the carbon nanotube array sheet and the sintered body are sintered.
  • the affinity with the body can be improved, and the carbon nanotube array sheet can be reliably bonded to the sintered body. Therefore, it is possible to reliably suppress the CNT included in the carbon nanotube array sheet from falling off the fixed sheet.
  • the present invention [3] includes the carbon nanotube bonding sheet according to the above [1] or [2], wherein an end portion of the carbon nanotube array sheet bonded to the sintered body is embedded in the sintered body. It is out.
  • the present invention [4] includes the carbon nanotube bonding sheet according to any one of the above [1] to [3], wherein an average bulk density of the carbon nanotube array sheet is 50 mg / cm 3 or more. .
  • the average bulk density of the carbon nanotube array sheet is not less than the above lower limit, it is possible to improve the thermal conductivity of the carbon nanotube array sheet, and consequently the thermal conductivity of the carbon nanotube bonded sheet. Can be improved.
  • the carbon nanotube array sheet peeled from the growth substrate is bonded to the sintered body of the fixed sheet, the carbon nanotube array sheet is peeled off from the growth substrate and then densified. Can be processed. Therefore, the average bulk density of the carbon nanotube array sheet can be set to the above lower limit or more.
  • the present invention [5] includes a step of preparing a fixed sheet formed of an inorganic sintered body, a step of growing vertically aligned carbon nanotubes on a growth substrate, and peeling the vertically aligned carbon nanotubes from the growth substrate.
  • the carbon nanotubes are fired by firing them.
  • the array sheet can be firmly bonded to the fixed sheet.
  • a carbon nanotube bonding sheet including a carbon nanotube array sheet to be bonded to a sintered body of a fixed sheet can be efficiently manufactured with a simple method.
  • the present invention [6] includes a step of preparing a resin sheet containing inorganic particles, a step of growing vertically aligned carbon nanotubes on a growth substrate, a step of peeling the vertically aligned carbon nanotubes from the growth substrate, and a carbon nanotube array A step of forming a sheet, a step of disposing the carbon nanotube array sheet on the resin sheet, and a step of firing the resin sheet on which the carbon nanotube array sheet is disposed in a vacuum or an inert atmosphere. Including a method for producing a carbon nanotube bonding sheet.
  • the carbon nanotube array sheet peeled from the growth substrate is placed on a resin sheet containing inorganic particles and then baked, whereby the inorganic particles can be made into a sintered body and fixed.
  • a sheet can be formed.
  • a carbon nanotube array sheet can be joined with the sintered compact of a fixed sheet.
  • a carbon nanotube bonding sheet including a carbon nanotube array sheet to be bonded to a sintered body of a fixed sheet can be efficiently manufactured with a simple method.
  • the present invention [7] includes a step of growing vertically aligned carbon nanotubes on a growth substrate, a step of peeling the vertically aligned carbon nanotubes from the growth substrate to form a carbon nanotube array sheet, and the carbon nanotube array sheet, Including a step of applying a paste containing inorganic particles, and a step of firing the carbon nanotube array sheet to which the paste has been applied in a vacuum or under an inert atmosphere. Yes.
  • the inorganic particles after applying the paste containing inorganic particles to the carbon nanotube array sheet peeled from the growth substrate, the inorganic particles can be made into a sintered body by firing, and the fixed sheet Can be formed. And a carbon nanotube array sheet can be joined with the sintered compact of a fixed sheet.
  • a carbon nanotube bonding sheet including a carbon nanotube array sheet to be bonded to a sintered body of a fixed sheet can be efficiently manufactured with a simple method.
  • the carbon nanotube bonding sheet of the present invention can follow the fine irregularities on the surface of the object and can prevent CNTs from falling off.
  • the method for producing a carbon nanotube bonding sheet of the present invention is a simple method, but can efficiently produce the above-mentioned carbon nanotube bonding sheet.
  • FIG. 1A is a side view of a thermally conductive sheet as a first embodiment of a carbon nanotube bonding sheet of the present invention.
  • FIG. 1B is a schematic configuration diagram illustrating a state in which the thermally conductive sheet illustrated in FIG. 1A is disposed between the electronic component and the heat sink.
  • FIG. 2A is an explanatory diagram for explaining an embodiment of a process of growing vertically aligned carbon nanotubes (VACNTs) on a growth substrate, and shows a process of forming a catalyst layer on the substrate.
  • FIG. 2B shows a process of heating the substrate to agglomerate the catalyst layer into a plurality of granules following FIG. 2A.
  • FIG. 2C shows a process of preparing VACNTs by supplying a raw material gas to a plurality of granular bodies and growing a plurality of carbon nanotubes, following FIG. 2B.
  • FIG. 3A is an explanatory diagram for explaining a process of peeling VACNTs, and shows a process of cutting VACNTs from the growth substrate.
  • FIG. 3B shows a process of peeling VACNTs from the growth substrate to obtain a carbon nanotube array sheet (CNT array sheet) following FIG. 3A.
  • FIG. 3C is a perspective view of the CNT array sheet shown in FIG. 3B.
  • FIG. 4A is an explanatory diagram for explaining a process of densifying the CNT array sheet shown in FIG.
  • FIG. 3C shows a process of housing the CNT array sheet in a heat-resistant container.
  • FIG. 4B shows a process of densifying the CNT array sheet by heating the CNT array sheet, following FIG. 4A.
  • FIG. 4C shows a process of forming a metal thin film on the densified CNT array sheet shown in FIG. 4B and disposing it on both the front and back surfaces of the fixed sheet.
  • FIG. 5A shows a process of arranging the densified CNT array sheet shown in FIG. 4B on both the front and back surfaces of the resin sheet.
  • FIG. 5B shows a process of applying a paste to the densified CNT array sheet shown in FIG. 4B to form a paste layer.
  • FIG. 4B shows a process of densifying the CNT array sheet by heating the CNT array sheet, following FIG. 4A.
  • FIG. 4C shows a process of forming a metal thin film on the densified CNT array sheet shown in FIG. 4B and disposing it on both the
  • FIG. 5C shows a process of arranging the CNT array sheet on the surface of the paste layer following FIG. 5B.
  • FIG. 6 is a side view of a thermally conductive sheet as a second embodiment of the carbon nanotube bonding sheet of the present invention.
  • FIG. 7A is an explanatory diagram for explaining a process of mechanically densifying the VACNTs shown in FIG. 2C, and shows a process of arranging a pressing plate so as to sandwich the VACNTs.
  • FIG. 7B shows a process of compressing VACNTs by a pressing plate following FIG. 7A.
  • the carbon nanotube bonding sheet of the present invention (hereinafter referred to as a CNT bonding sheet) includes a fixed sheet formed from an inorganic sintered body, and a carbon nanotube array sheet bonded to the fixed sheet sintered body. I have.
  • the carbon nanotube array sheet only needs to be bonded to the fixed sheet.
  • the carbon nanotube array sheet is bonded to at least one of the front surface and the back surface of the fixed sheet.
  • a thermally conductive sheet 1 (an example of a CNT bonded sheet) includes a fixed sheet 2 and two carbon nanotube array sheets 3 (hereinafter referred to as CNTs). Array sheet 3).
  • the fixed sheet 2 has a sheet shape (flat plate shape). Specifically, the fixed sheet 2 has a predetermined thickness and is in a plane direction (longitudinal direction and lateral direction) orthogonal to the thickness direction. It has a flat front surface 2A (one surface in the thickness direction) and a flat back surface 2B (the other surface in the thickness direction).
  • the thickness of the fixing sheet 2 is, for example, preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, for example, preferably 500 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the fixing sheet 2 is formed from an inorganic sintered body.
  • the fixed sheet 2 is a ceramic sheet formed by bonding inorganic particles to each other by sintering.
  • FIG. 1A an inorganic sintered body is shown as a sintered body 4.
  • inorganic substances include metals (eg, titanium, silicon, tungsten, etc.), inorganic oxides (eg, silica, alumina, titanium oxide, zinc oxide, magnesium oxide, etc.), inorganic nitrides (eg, aluminum nitride, boron nitride, etc.) , Silicon nitride, etc.) and inorganic carbides (eg, silicon carbide, titanium carbide, tungsten carbide, etc.).
  • metals eg, titanium, silicon, tungsten, etc.
  • inorganic oxides eg, silica, alumina, titanium oxide, zinc oxide, magnesium oxide, etc.
  • inorganic nitrides eg, aluminum nitride, boron nitride, etc.
  • Silicon nitride, etc. silicon carbide, titanium carbide, tungsten carbide, etc.
  • Such inorganic substances can be used alone or in combination of two or more.
  • the inorganic carbide preferably includes inorganic carbide containing silicon and / or titanium, that is, silicon carbide and titanium carbide.
  • the fixed sheet 2 has electrical insulation, and the electric resistance (conductive resistance) in the thickness direction of the fixed sheet 2 is preferably 10 3 ⁇ or more, for example, at 25 ° C., preferably 10 4 ⁇ or more. More preferably, for example, it is preferably 10 8 ⁇ or less.
  • the thermal conductivity of the fixed sheet 2 is preferably 2 W / (m ⁇ K) or more, and more preferably 5 W / (m ⁇ K) or more in the thickness direction, for example.
  • the CNT array sheet 3 is peeled from the growth substrate 15 (described later; see FIG. 3B), and is formed into a sheet shape from a plurality of carbon nanotubes 6 (hereinafter referred to as CNT 6). It is an aggregate of nanotubes.
  • the plurality of CNTs 6 are oriented in the thickness direction of the CNT array sheet 3, and are not continuous in the thickness direction but continuous in the plane direction (vertical direction and horizontal direction). Are arranged in a sheet shape.
  • a plurality of carbon nanotubes 6 (CNT6) oriented in a predetermined direction are continuously formed into a sheet shape in a direction perpendicular to the orientation direction of the carbon nanotubes 6. It is formed as follows.
  • the CNT array sheet 3 maintains its shape so that the plurality of CNTs 6 are in contact with each other in the surface direction in a state where they are peeled off from the growth substrate 15 (described later). Moreover, the CNT array sheet 3 has flexibility. In addition, van der Waals force is acting between mutually adjacent CNT6 among several CNT6.
  • CNT6 may be any of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes, and preferably multi-walled carbon nanotubes.
  • the plurality of CNTs 6 may include only one of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes, and any two or more of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes May be included.
  • the average outer diameter of CNT6 is, for example, preferably 1 nm or more, more preferably 5 nm or more, for example, preferably 100 nm or less, more preferably 50 nm or less, and 20 nm or less. Is particularly preferred.
  • the average length (size in the average orientation direction) of CNT6 is, for example, preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, for example, preferably 1000 ⁇ m or less, and more preferably 500 ⁇ m or less. Preferably, it is especially preferable that it is 200 micrometers or less.
  • the average outer diameter and average length of CNT are measured by well-known methods, such as observation with an electron microscope, for example.
  • the average bulk density of the plurality of CNTs 6 is preferably, for example, 10 mg / cm 3 or more, more preferably 50 mg / cm 3 or more, and particularly preferably 100 mg / cm 3 or more. Preferably, for example, it is preferably 500 mg / cm 3 or less, more preferably 300 mg / cm 3 or less, and particularly preferably 200 mg / cm 3 or less.
  • the average bulk density of CNT6 is, for example, the mass per unit area (weight per unit: mg / cm 2 ) and the average length of carbon nanotubes (SEM (manufactured by JEOL)) or non-contact film thickness meter (Keyence Corporation). Measured by).
  • the G / D ratio of the CNT array sheet 3 is, for example, preferably 1 or more, more preferably 2 or more, particularly preferably 5 or more, and particularly preferably 10 or more. It is preferably 20 or less, and more preferably 15 or less.
  • the G / D ratio is the ratio of the spectral intensity of a peak called G band observed near 1590 cm ⁇ 1 to the spectral intensity of a peak called D band observed near 1350 cm ⁇ 1 in the Raman spectrum of the carbon nanotube. It is.
  • the spectrum of the D band is derived from the defects of the carbon nanotube, and the spectrum of the G band is derived from the in-plane vibration of the carbon six-membered ring.
  • the electrical resistance (conductive resistance) in the thickness direction of the CNT array sheet 3 is, for example, preferably 1 ⁇ or less, more preferably 0.1 ⁇ or less at 25 ° C.
  • the thermal conductivity of the CNT array sheet 3 is, for example, preferably 1 W / (m ⁇ K) or more in the thickness direction, more preferably 2 W / (m ⁇ K) or more, and 10 W / (m ⁇ K). K) or more, particularly preferably 30 W / (m ⁇ K) or more, for example, preferably 60 W / (m ⁇ K) or less, and 40 W / (m ⁇ K) or less. More preferably.
  • the CNT array sheet 3 is supported by the fixed sheet 2 by bonding to the inorganic sintered body 4 on both the front surface 2A and the back surface 2B of the fixed sheet 2.
  • the two CNT array sheets 3 are bonded to each of the front surface 2A and the back surface 2B of the fixed sheet 2, and are arranged so as to sandwich the fixed sheet 2 in the thickness direction.
  • the CNT array sheet 3 bonded to the front surface 2A of the fixed sheet 2 is defined as the first CNT array sheet 3A, and the CNT array sheet 3 bonded to the back surface 2B of the fixed sheet 2 is used. Is a second CNT array sheet 3B.
  • the end of the CNT array sheet 3 on the fixed sheet 2 side is embedded and bonded to the sintered body 4 of the fixed sheet 2, and the end of the CNT array sheet 3 opposite to the fixed sheet 2 is the free end. It has become. That is, the end portion of the CNT array sheet 3 to be joined with the sintered body 4 is embedded in the sintered body 4 of the fixed sheet 2.
  • the other end portion of the first CNT array sheet 3A is embedded and bonded to the sintered body 4 on the surface 2A of the fixed sheet 2, and the one end portion of the first CNT array sheet 3A becomes a free end.
  • one end portion of the second CNT array sheet 3B is embedded and bonded to the sintered body 4 on the back surface 2B of the fixed sheet 2, and the other end portion of the second CNT array sheet 3B is a free end.
  • the thickness direction of the CNT array sheet 3 and the thickness direction of the fixed sheet 2 coincide with each other, and the CNT 6 of each CNT array sheet 3 extends along the thickness direction of the fixed sheet 2.
  • the electrical resistance (conductive resistance) in the thickness direction of such a heat conductive sheet 1 is, for example, preferably 10 3 ⁇ or more, more preferably 10 4 ⁇ or more, for example, 10 7 ⁇ or less. Preferably, it is 10 6 ⁇ or less.
  • the thermal conductivity of the heat conductive sheet 1 is, for example, preferably 1 W / (m ⁇ K) or more in the thickness direction, more preferably 2 W / (m ⁇ K) or more, and 10 W / (m More preferably KW or more, particularly preferably 25 W / (m ⁇ K) or more, particularly preferably 50 W / (m ⁇ K) or more, for example 300 W / (m ⁇ K). Or less, more preferably 100 W / (m ⁇ K) or less.
  • a fixed sheet 2 formed from a sintered body of inorganic carbide is prepared (preparation step).
  • a CNT array sheet 3 is prepared separately from the fixed sheet 2.
  • vertically aligned carbon nanotubes 19 are grown on the growth substrate 15 by chemical vapor deposition (CVD).
  • VACNTs19 is grown (CNT growth step).
  • a growth substrate 15 is prepared.
  • the growth substrate 15 is not specifically limited, For example, the well-known board
  • Examples of the growth substrate 15 include a silicon substrate and a stainless steel substrate 16 on which a silicon dioxide film 17 is laminated, and preferably a stainless steel substrate 16 on which a silicon dioxide film 17 is laminated.
  • 2A to 3C show the case where the growth substrate 15 is the stainless steel substrate 16 on which the silicon dioxide film 17 is laminated.
  • a catalyst layer 18 is formed on the growth substrate 15, preferably on the silicon dioxide film 17.
  • a metal catalyst is formed on the growth substrate 15 (preferably the silicon dioxide film 17) by a known film formation method.
  • metal catalyst examples include iron, cobalt, nickel and the like, and preferably iron. Such metal catalysts can be used alone or in combination of two or more.
  • film forming method examples include vacuum evaporation and sputtering, and preferably vacuum evaporation.
  • the catalyst layer 18 is disposed on the growth substrate 15.
  • the growth substrate 15 is the stainless steel substrate 16 on which the silicon dioxide film 17 is laminated
  • the silicon dioxide film 17 and the catalyst layer 18 are formed of silicon dioxide as described in, for example, Japanese Patent Application Laid-Open No. 2014-94856.
  • the mixed solution in which the precursor solution and the metal catalyst precursor solution are mixed is applied to the stainless steel substrate 16, and then the mixed solution is phase-separated and then dried to form the mixed solution at the same time.
  • the growth substrate 15 on which the catalyst layer 18 is disposed is heated to, for example, 700 ° C. or more and 900 ° C. or less as shown in FIG. 2B. Thereby, the catalyst layer 18 aggregates and becomes the some granular body 18A.
  • the source gas contains a hydrocarbon gas having 1 to 4 carbon atoms (lower hydrocarbon gas).
  • hydrocarbon gas having 1 to 4 carbon atoms include methane gas, ethane gas, propane gas, butane gas, ethylene gas, acetylene gas and the like, and preferably acetylene gas.
  • the raw material gas can contain hydrogen gas, inert gas (for example, helium, argon, etc.), water vapor, etc., if necessary.
  • inert gas for example, helium, argon, etc.
  • the supply time of the raw material gas is, for example, preferably 1 minute or more, more preferably 5 minutes or more, for example, preferably 60 minutes or less, and more preferably 30 minutes or less.
  • a plurality of CNTs 6 grow from each of the plurality of granular bodies 18A as a starting point.
  • FIG. 2C for convenience, it is described that one CNT6 grows from one granular body 18A.
  • the present invention is not limited to this, and even if a plurality of CNT6 grow from one granular body 18A. Good.
  • the plurality of CNTs 6 extend in the thickness direction (vertical direction) of the growth substrate 15 so as to be substantially parallel to each other on the growth substrate 15. That is, the plurality of CNTs 6 are oriented (orientated vertically) so as to be orthogonal to the growth substrate 15.
  • VACNTs 19 grow on the growth substrate 15.
  • the VACNTs 19 includes a plurality of rows 19A in which the plurality of CNTs 6 are linearly arranged in the vertical direction in the horizontal direction.
  • the plurality of CNTs 6 are densely arranged in the surface direction (vertical direction and horizontal direction).
  • the VACNTs 19 are peeled from the growth substrate 15 (peeling step).
  • the cutting blade 20 is slid along the upper surface of the growth substrate 15, and the base ends (the growth substrate 15 side ends) of the plurality of CNTs 6 are collectively cut. To do. As a result, the VACNTs 19 are separated from the growth substrate 15.
  • Examples of the cutting blade 20 include known metal blades such as a cutter blade and a razor, and preferably a cutter blade.
  • the separated VACNTs 19 are pulled up from the growth substrate 15 as shown in FIG. 3B.
  • the VACNTs 19 are peeled from the growth substrate 15 to form the CNT array sheet 3.
  • two CNT array sheets 3, specifically, a first CNT array sheet 3A and a second CNT array sheet 3B are prepared.
  • Such a CNT array sheet 3 can be used as it is for the heat conductive sheet 1, but since the average bulk density is relatively low, it is preferably densified from the viewpoint of improving the thermal conductivity. (Densification process).
  • Examples of the densification process include a method of heat-treating the CNT array sheet 3 (see FIGS. 4A and 4B) and a method of supplying a volatile liquid to the CNT array sheet 3.
  • the CNT array sheet 3 is accommodated in a heat-resistant container 45 and placed in a heating furnace.
  • the heat-resistant container 45 is a heat-resistant container having a heat-resistant temperature exceeding 2600 ° C., and examples thereof include known heat-resistant containers such as a carbon container formed from carbon and a ceramic container formed from ceramics. Among such heat-resistant containers, a carbon container is preferable.
  • the heating furnace examples include a resistance heating furnace, an induction heating furnace, a direct current electric furnace, and preferably a resistance heating furnace.
  • the heating furnace may be a batch type or a continuous type.
  • an inert gas is introduced into the heating furnace to replace the inside of the heating furnace with an inert gas atmosphere.
  • an inert gas nitrogen, argon, etc. are mentioned, for example, Preferably argon is mentioned.
  • the temperature in the heating furnace is raised to the heating temperature at a predetermined rate of temperature rise, and then left for a predetermined time while maintaining the temperature.
  • the rate of temperature increase is, for example, preferably 1 ° C./min or more, more preferably 5 ° C./min or more, for example, preferably 40 ° C./min or less, and 20 ° C./min or less. More preferably.
  • the heating temperature is, for example, preferably 2600 ° C. or higher, more preferably 2700 ° C. or higher, and particularly preferably 2800 ° C. or higher.
  • the heating temperature is equal to or higher than the above lower limit, a plurality of CNTs 6 can be reliably gathered in the CNT array sheet 3.
  • the heating temperature may be lower than the sublimation temperature of CNT6, and is preferably 3000 ° C. or lower. If heating temperature is below the said upper limit, it can suppress that CNT6 sublimes.
  • the predetermined time is, for example, preferably 10 minutes or more, more preferably 1 hour or more, for example, preferably 5 hours or less, and more preferably 3 hours or less.
  • the CNT array sheet 3 is preferably heat-treated in an unloaded state (a state where no load is applied to the CNT array sheet 3, that is, under atmospheric pressure).
  • an unloaded state a state where no load is applied to the CNT array sheet 3, that is, under atmospheric pressure.
  • the CNT array sheet 3 is placed in the heat-resistant container 45 so as to be spaced from the lid and side walls of the heat-resistant container 45. To house.
  • the CNT array sheet 3 is heated.
  • the crystallinity of graphene constituting the plurality of CNTs 6 in the CNT array sheet 3 is improved, and the orientation (linearity) of the CNTs 6 is improved.
  • the CNTs 6 adjacent to each other are densely packed into a bundle shape while maintaining the orientation (linearity) by van der Waals force acting between them.
  • the entire CNT array sheet 3 is uniformly densely packed, and the CNT array sheet 3 is densified. Thereafter, the CNT array sheet 3 is cooled (for example, naturally cooled) as necessary.
  • the thickness of the CNT array sheet 3 after the heat treatment is substantially the same as the thickness of the CNT array sheet 3 before the heat treatment because the plurality of CNTs 6 are concentrated while maintaining the orientation (linearity). More specifically, the thickness of the CNT array sheet 3 after heat treatment is preferably 95% or more and 105% or less, for example, 100% with respect to the thickness of the CNT array sheet 3 before heat treatment. It is more preferable.
  • the volume of the CNT array sheet 3 after the heat treatment is, for example, preferably 10% or more, more preferably 30% or more with respect to the volume of the CNT array sheet 3 before the heat treatment, 70% or less, more preferably 50% or less.
  • the G / D ratio of the CNT array sheet 3 after the heat treatment is preferably 2 or more, for example.
  • the CNT array sheet 3 is sprayed with a volatile liquid or the CNT array sheet 3 is immersed in the volatile liquid.
  • Examples of the volatile liquid include water and organic solvents.
  • Examples of the organic solvent include lower (C1-3) alcohols (for example, methanol, ethanol, propanol, etc.), ketones (for example, acetone), ethers (for example, diethyl ether, tetrahydrofuran, etc.), alkyl esters. (Eg, ethyl acetate), halogenated aliphatic hydrocarbons (eg, chloroform, dichloromethane, etc.), polar aprotics (eg, N-methylpyrrolidone, dimethylformamide, etc.), and the like.
  • volatile liquids water is preferable.
  • volatile liquids can be used alone or in combination of two or more.
  • the volatile liquid When a volatile liquid is supplied to the CNT array sheet 3, the volatile liquid is vaporized, whereby a plurality of CNTs 6 are densely packed together, and the density of the CNT array sheet 3 is improved.
  • such a densification process is performed at least once and can be repeated a plurality of times.
  • the same densification process may be repeated a plurality of times, or a plurality of types of densification processes may be combined.
  • only the above heat treatment can be repeated a plurality of times, and the above heat treatment and the above liquid supply treatment can be combined.
  • the average bulk density of the plurality of CNTs 6 is preferably, for example, 50 mg / cm 3 or more, and the electric resistance (conducting resistance) in the thickness direction is 25 ° C. It is preferably 1 ⁇ or more, and the thermal conductivity is preferably, for example, 10 W / (m ⁇ K) or more in the thickness direction.
  • the fixed sheet 2 formed from the sintered body of inorganic carbide and the two CNT array sheets 3 are prepared.
  • the metal thin film 30 is disposed between the fixed sheet 2 and the CNT array sheet 3 (thin film disposing step).
  • the metal thin film 30 is formed on each of the two CNT array sheets 3 (thin film forming step).
  • the metal thin film 30 is formed on the other surface in the thickness direction of the first CNT array sheet 3A, and the metal thin film 30 is formed on the one surface in the thickness direction of the second CNT array sheet 3B.
  • a metal is deposited on the CNT array sheet 3.
  • the metal include the above metals.
  • the same metal as the metal element contained in the inorganic carbide of the fixed sheet 2 is preferable from the viewpoint of affinity.
  • the inorganic carbide of the fixed sheet 2 is titanium carbide
  • titanium is preferably used as the metal of the metal thin film 30
  • the metal of the metal thin film 30 is preferable.
  • silicon is preferable.
  • the combination of the inorganic carbide of the fixed sheet 2 and the metal of the metal thin film 30 is preferably a combination of titanium carbide and titanium and a combination of silicon carbide and silicon.
  • the CNT array sheet 3 is disposed on both the front surface 2A and the back surface 2B of the fixed sheet 2 so that the metal thin film 30 is in contact with the fixed sheet 2.
  • the first CNT array sheet 3A is arranged so that the metal thin film 30 of the first CNT array sheet 3A is in contact with the front surface 2A of the fixed sheet 2, and the second CNT array sheet is disposed on the back surface 2B of the fixed sheet 2.
  • the second CNT array sheet 3B is arranged so that the 3B metal thin film 30 contacts.
  • the first CNT array sheet 3A and the second CNT array sheet 3B are disposed so as to sandwich the fixed sheet 2 in the thickness direction, and the metal thin film 30 is disposed between the CNT array sheet 3 and the fixed sheet 2.
  • the thickness of the metal thin film 30 is 5 nm or more and 1 micrometer or less, for example.
  • the fixed sheet 2 on which the CNT array sheet 3 is disposed (the CNT array sheet 3 and the fixed sheet 2 on which the metal thin film 30 is disposed) is fired in a vacuum or in an inert atmosphere (firing step).
  • the fixed sheet 2 on which the CNT array sheet 3 is disposed is disposed in the heating furnace. And the inside of a heating furnace is made into a vacuum state by a well-known method (for example, vacuum pump etc.), or it replaces with said inert gas atmosphere.
  • a well-known method for example, vacuum pump etc.
  • the vacuum pressure is, for example, preferably 100 Pa or less, and more preferably 10 Pa or less.
  • the inert gas is preferably argon.
  • the temperature is maintained and left for a predetermined time.
  • the firing temperature is equal to or higher than the temperature at which the metal thin film 30 melts and lower than the sublimation temperature of the CNT 6, for example, preferably 1000 ° C. or higher, more preferably 1500 ° C. or higher, for example, 2500 ° C. or lower. It is preferable, and it is more preferable that it is 2000 degrees C or less.
  • the firing time is, for example, preferably 1 minute or more, more preferably 5 minutes or more, for example, preferably 1 hour or less, and more preferably 30 minutes or less.
  • the metal of the metal thin film 30 deposited on the CNT array sheet 3 reacts with the carbon of the CNT 6 of the CNT array sheet 3 to generate inorganic carbides.
  • the inorganic carbide of the fixed sheet 2 is silicon carbide and the metal of the metal thin film 30 is silicon
  • the carbon of the CNT 6 of the CNT array sheet 3 reacts with silicon to form silicon carbide (inorganic carbide).
  • the silicon carbide (inorganic carbide) is sintered so as to be integrated with the silicon carbide (inorganic carbide) sintered body 4 of the fixed sheet 2, and the CNT 6 and the fixed sheet are sintered. 2 is joined.
  • the CNT 6 of the CNT array sheet 3 is firmly bonded to the sintered body 4 by silicon carbide (inorganic carbide) generated by the reaction.
  • the end portion of the CNT array sheet 3 (CNT6) is embedded in the sintered body 4 and bonded.
  • the CNT array sheet 3 is supported by the fixed sheet 2.
  • the other side end portion of the CNT 6 in the first CNT array sheet 3A is embedded and bonded to the sintered body 4 on the surface 2A of the fixed sheet 2, and one side end of the CNT 6 in the second CNT array sheet 3B.
  • the part is embedded in and bonded to the sintered body 4 on the back surface 2B of the fixed sheet 2.
  • the heat conductive sheet 1 is manufactured by cooling.
  • the CNT array sheet 3 is joined to the sintered body 4 by reactive sintering involving the reaction of carbon of the CNT 6 and silicon in the firing step.
  • the sintered body 4 contains silicon carbide (inorganic carbide) as a reaction product of the carbon of the CNT array sheet 3 and silicon. That is, the sintered body 4 includes a sintered body of carbon included in the CNT array sheet 3 and silicon included in the fixed sheet 2.
  • the inorganic carbide of the fixed sheet 2 is titanium carbide and the metal thin film 30 is formed of titanium
  • the carbon of the CNT 6 of the CNT array sheet 3 reacts with the titanium of the metal thin film 30 in the above firing step.
  • titanium carbide is produced, and the titanium carbide is sintered so as to be integrated with the titanium carbide sintered body 4 of the fixed sheet 2 and joined to the CNT 6 and the fixed sheet 2.
  • the CNT array sheet 3 is joined to the sintered body 4 by reactive sintering involving a reaction between carbon of the CNT 6 and titanium.
  • the sintered body 4 contains titanium carbide (inorganic carbide) as a reaction product of the carbon of the CNT array sheet 3 and titanium. That is, the sintered body 4 includes a sintered body of carbon included in the CNT array sheet 3 and titanium included in the fixed sheet 2.
  • such a thermal conductive sheet 1 includes, for example, an electronic component 11 (target object) and a heat dissipation member 10 (target object) as a TIM. It is arranged and used so as to be sandwiched in the thickness direction between them.
  • Examples of the electronic component 11 include a semiconductor element (such as an IC (integrated circuit) chip), a light emitting diode (LED), a high output laser oscillation element, a high output lamp, and a power semiconductor element.
  • a semiconductor element such as an IC (integrated circuit) chip
  • LED light emitting diode
  • a high output laser oscillation element a high output lamp
  • a power semiconductor element such as an IC (integrated circuit) chip
  • Examples of the heat radiating member 10 include a heat sink and a heat spreader.
  • fine irregularities are formed on the surface 11B of the electronic component 11 and the surface 10A of the heat radiating member 10.
  • Their surface roughness Rz (10-point average roughness according to JIS B0601-2013) is preferably 1 ⁇ m or more and 10 ⁇ m or less, for example.
  • the plurality of CNTs 6 of the first CNT array sheet 3A are in stable contact with the surface 10A of the heat radiating member 10 following the fine irregularities of the surface 10A of the heat radiating member 10. Further, the plurality of CNTs 6 of the second CNT array sheet 3B are in stable contact with the surface 11B of the electronic component 11 following the fine irregularities of the surface 11B of the electronic component 11.
  • the heat from the electronic component 11 is transmitted to the heat radiating member 10 through the second CNT array sheet 3B, the fixed sheet 2 and the first CNT array sheet 3A sequentially.
  • the thermal conductive sheet 1 includes a CNT array sheet 3 as shown in FIG. 1B. Therefore, when the heat conductive sheet 1 is brought into contact with an object (for example, the heat radiating member 10 and the electronic component 11), the plurality of CNTs 6 of the CNT array sheet 3 can follow the fine unevenness of the object surface. .
  • the CNT array sheet 3 is joined to the sintered body 4 of the fixed sheet 2 as shown in FIG. 1A. Therefore, it is possible to suppress the CNT 6 included in the CNT array sheet 3 from dropping from the fixed sheet 2.
  • the sintered body 4 includes a sintered body of carbon included in the CNT array sheet 3 and silicon and / or titanium included in the fixed sheet 2. Therefore, the affinity between the CNT array sheet 3 and the sintered body 4 can be improved, and the CNT array sheet 3 can be reliably bonded to the sintered body 4. As a result, it is possible to reliably prevent the CNT 6 included in the CNT array sheet 3 from dropping from the fixed sheet 2.
  • the end of the CNT array sheet 3 is embedded in the sintered body 4. Therefore, it is possible to further reliably prevent the CNT 6 included in the CNT array sheet 3 from dropping from the fixed sheet 2.
  • the average bulk density of the CNT array sheet 3 is 50 mg / cm 3 or more. Therefore, the thermal conductivity of the CNT array sheet 3 can be improved, and consequently the thermal conductivity of the thermal conductive sheet 1 can be improved.
  • the CNT array sheet 3 peeled from the growth substrate 15 is bonded to the sintered body 4 of the fixed sheet 2, the CNT array sheet 3 is peeled from the growth substrate 15 and then subjected to a densification treatment. Can do. Therefore, the average bulk density of the CNT array sheet 3 can be set to the above lower limit or more.
  • the CNT array sheet 3 is placed on the fixed sheet 2 formed from the inorganic sintered body 4, and then fired.
  • the CNT array sheet 3 can be firmly bonded to the fixed sheet 2.
  • the heat conductive sheet 1 provided with the CNT array sheet 3 joined to the sintered body 4 of the fixed sheet 2 can be efficiently manufactured.
  • the metal thin film 30 is formed on the CNT array sheet 3 and the CNT array sheet 3 is disposed on the fixed sheet 2 in the thin film disposing step. After forming the metal thin film 30 on the fixed sheet 2, the CNT array sheet 3 can be disposed on the metal thin film 30. Also by this, the metal thin film 30 can be disposed between the CNT array sheet 3 and the fixed sheet 2.
  • a fixed sheet 2 formed from an inorganic sintered body 4 is prepared, and a CNT array sheet 3 is arranged on the fixed sheet 2 and then fired.
  • the heat conductive sheet 1 is manufactured, the present invention is not limited to the method for manufacturing such a heat conductive sheet.
  • a resin sheet 7 containing inorganic particles 8 is prepared.
  • the resin sheet 7 has a sheet shape (flat plate shape), and has a flat front surface 7A (one surface in the thickness direction) and a flat back surface 7B (the other surface in the thickness direction).
  • the resin sheet 7 is formed from a resin material. That is, the resin sheet 7 contains the resin material and the inorganic particles 8. Examples of the resin material include a thermosetting resin and a thermoplastic resin.
  • thermosetting resin is a cured body (thermosetting resin after curing), for example, epoxy resin, polyimide resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, thermosetting elastomer (for example, Vulcanized rubber, silicone rubber, acrylic rubber, etc.).
  • thermoplastic resin examples include polyester (for example, polyethylene terephthalate), polyolefin (for example, polyethylene, polypropylene, etc.), polyamide, polystyrene, polyvinyl chloride, polyvinyl alcohol (PVA), polyvinylidene chloride, polyacrylonitrile, polyurethane, Fluorine polymer (eg, polytetrafluoroethylene (PTFE), polyvinyl fluoride, polyvinylidene fluoride, etc.), thermoplastic elastomer (eg, olefin elastomer (eg, ethylene-propylene rubber, ethylene-propylene-diene rubber, etc.), styrene Based elastomers, vinyl chloride based elastomers, etc.).
  • polyester for example, polyethylene terephthalate
  • polyolefin for example, polyethylene, polypropylene, etc.
  • polyamide polystyrene
  • polyvinyl chloride polyviny
  • thermoplastic resin a thermoplastic resin is preferable, PVA and a fluorine-based polymer are more preferable, and PVA is particularly preferable.
  • resin materials can be used alone or in combination of two or more.
  • the thickness of the resin sheet 7 is, for example, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, for example, preferably 300 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the inorganic particle 8 is a particle formed from the above inorganic substance.
  • the inorganic particles 8 may be composed of one kind of inorganic particles or may be composed of two or more kinds of inorganic particles.
  • the average primary particle diameter of the inorganic particles 8 is, for example, preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, for example, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the content ratio of the inorganic particles 8 is, for example, preferably 5% by mass or more, more preferably 10% by mass or more, for example, 50% by mass or less, with respect to the total amount of the resin sheet 7. It is preferably 40% by mass or less.
  • the CNT array sheets 3 prepared in the same manner as in the first embodiment are arranged on both the front surface 7A and the back surface 7B of the resin sheet 7. Then, the resin sheet 7 on which the CNT array sheet 3 is arranged is fired in a vacuum or in an inert atmosphere as in the first embodiment (firing step).
  • the resin material of the resin sheet 7 is burned out, and the inorganic particles 8 come into contact with each other, and the end of the CNT array sheet 3 on the resin sheet 7 side comes into contact with the inorganic particles 8.
  • the inorganic particles 8 that are in contact with each other are sintered, and the CNT 6 and the inorganic particles 8 of the CNT array sheet 3 are sintered. Thereby, the inorganic particles 8 become the sintered body 4 to form the fixed sheet 2, and the end of the CNT array sheet 3 (CNT 6) is joined to the sintered body 4.
  • the CNT 6 of the CNT array sheet 3 reacts with the carbon of the CNT 6 and the metal and / or inorganic carbide as in the first embodiment. Embedded in and bonded to the sintered body 4 by reaction sintering accompanied by.
  • the sintered body 4 contains a sintered body of metal and inorganic carbide or contains only a sintered body of inorganic carbide.
  • the CNT 6 of the CNT array sheet 3 does not react with the inorganic particles 8 as the inorganic particles 8 are sintered. It is physically embedded and bonded to the sintered body 4.
  • the sintered body 4 does not contain an inorganic carbide sintered body but contains an inorganic oxide and / or inorganic nitride sintered body.
  • the two CNT array sheets 3 are embedded in and bonded to the inorganic sintered body 4 on both the front surface 2A and the back surface 2B of the fixed sheet 2 and supported by the fixed sheet 2 as in the first embodiment. Is done.
  • the range of the electrical resistance (conductive resistance) in the thickness direction is the same as the range of the electrical resistance in the thickness direction of the thermal conductive sheet 1 described above.
  • the range of the conductivity is the same as the range of the thermal conductivity of the thermal conductive sheet 1 described above.
  • the heat conductive sheet 1 provided with the CNT array sheet 3 joined to the sintered body 4 of the fixed sheet 2 can be efficiently manufactured.
  • the resin sheet 7 containing the inorganic particles 8 is prepared and the CNT array sheets 3 are arranged on both surfaces of the resin sheet 7, the resin sheet 7 is heated to thereby form the inorganic particles 8.
  • the heat conductive sheet 1 is manufactured by sintering, this invention is not limited to the manufacturing method of such a heat conductive sheet.
  • a paste containing inorganic particles 8 is prepared (paste preparation step).
  • the paste contains the above resin material and inorganic particles 8.
  • the inorganic particles 8 are dispersed in a resin solution.
  • the content ratio of the inorganic particles 8 is, for example, preferably 5% by mass or more, more preferably 10% by mass or more, for example, preferably 50% by mass or less, based on the total amount of the paste. It is more preferable that the amount is not more than mass%.
  • Resin solution is a solution in which the above resin material is dissolved in a solvent (for example, water, organic solvent, etc.).
  • the resin material is preferably a thermoplastic resin, more preferably PVA.
  • the paste is applied to one surface in the thickness direction of the second CNT array sheet 3B (CNT array sheet 3) prepared in the same manner as in the first embodiment to form the paste layer 40 (application process). . Therefore, the paste layer 40 contains a resin material and inorganic particles 8.
  • the thickness of the paste layer 40 is, for example, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, for example, preferably 3 mm or less, more preferably 200 ⁇ m or less, and 100 ⁇ m or less. Is particularly preferred.
  • the first CNT array sheet 3A (CNT array sheet 3) is disposed on the surface 40A (one side surface in the thickness direction) of the paste layer 40.
  • the paste layer 40 is sandwiched between the first CNT array sheet 3A and the second CNT array sheet 3B.
  • the CNT array sheets 3 first CNT array sheet 3A and second CNT array sheet 3B
  • the front surface 40A and the back surface 40B of the paste layer 40 are arranged on both the front surface 40A and the back surface 40B of the paste layer 40.
  • the paste layer 40 (CNT array sheet 3 coated with the paste) on which the CNT array sheet 3 is disposed is heated in a vacuum or in an inert atmosphere to fire the inorganic particles 8 (firing step).
  • the range of baking temperature and baking time is the same as said 1st Embodiment.
  • the resin material of the resin sheet 7 is burned out, the inorganic particles 8 come into contact with each other, and the end of the CNT array sheet 3 on the resin sheet 7 side comes into contact with the inorganic particles 8. And while the inorganic particle 8 which mutually contacts is sintered, CNT6 of the CNT array sheet
  • seat 3 is embedded in the sintered compact 4, and is joined.
  • the inorganic particles 8 are formed on the sintered body 4 by firing. Thereby, the fixed sheet 2 can be formed, and the CNT array sheet 3 can be joined to the sintered body 4 of the fixed sheet 2.
  • the heat conductive sheet 1 provided with the CNT array sheet 3 joined to the sintered body 4 of the fixed sheet 2 can be efficiently manufactured.
  • the heat conductive sheet 1 includes the CNT array sheet 3 bonded to both the front surface 2A and the back surface 2B of the fixed sheet 2, but is not limited thereto. As shown in FIG. 6, if the thermal conductive sheet 1 includes a CNT array sheet 3 bonded to the sintered body 4 of the fixed sheet 2 on at least one of the front surface 2A and the back surface 2B of the fixed sheet 2. Good.
  • the CNT array sheet 3 after the densification treatment is used for manufacturing the heat conductive sheet 1, but the CNT array sheet 3 is not limited to this. After peeling off, the heat conductive sheet 1 may be used for the production without being densified.
  • the CNT array sheet 3 is bonded to the sintered body 4 of the fixed sheet 2 and densified in the firing step.
  • the average bulk density of the plurality of CNTs 6 in the CNT array sheet 3 is, for example, 50 mg / cm 3 or more.
  • the VACNTs 19 on the growth substrate 15 are compressed by two pressing plates 46 to prepare a densified CNT array sheet 3.
  • the two pressing plates 46 are arranged so as to sandwich the VACNTs 19, they are slid so as to approach each other to compress the VACNTs 19. Then, the plurality of CNTs 6 of the VACNTs 19 are separated from the corresponding granular material 18A and compressed so as to contact each other.
  • the VACNTs 19 can be separated from the growth substrate 15 and the CNT array sheet 3 having a high density can be prepared.
  • the fixed sheet 2 may contain graphite (graphite) generated by graphitizing the resin material in the firing step.
  • graphite graphite generated by graphitizing the resin material in the firing step.
  • the content rate of graphite is 10 mass% or more and 50 mass% or less with respect to the whole quantity of the fixed sheet 2, for example.
  • the fixed sheet 2 has electrical insulation
  • the heat conductive sheet 1 is configured as an electrical insulating sheet. May be formed to be electrically conductive, and the thermally conductive sheet 1 may be configured as an electrically conductive sheet.
  • heat conductive sheet 1 is an electrically conductive sheet
  • inorganic fine particles may be dispersed in the volatile liquid supplied in the densification process of the CNT array sheet 3.
  • examples of the inorganic fine particles include carbon fine particles (for example, carbon black and amorphous carbon), metal fine particles, and ceramic fine particles having electrical conductivity. Such inorganic fine particles can be used alone or in combination of two or more.
  • the CNT bonding sheet is the heat conductive sheet 1
  • the use of the CNT bonding sheet is not limited to the heat conductive sheet.
  • Examples of the use of the CNT bonding sheet include an adhesive sheet, a vibration isolating material, and a heat insulating material.
  • Example 1 After a silicon dioxide film was laminated on the surface of a stainless steel growth substrate (stainless steel substrate), iron was deposited as a catalyst layer on the silicon dioxide film.
  • the growth substrate was heated to a predetermined temperature, and a source gas (acetylene gas) was supplied to the catalyst layer.
  • a source gas acetylene gas
  • a plurality of CNTs extend so as to be substantially parallel to each other, and are aligned (vertically aligned) so as to be orthogonal to the growth substrate.
  • the CNT was a multi-walled carbon nanotube, the average outer diameter of the CNT was about 12 nm, the average length of the CNT was about 80 ⁇ m, and the bulk density of the VACNTs was about 50 mg / cm 3 .
  • the cutter blade (cutting blade) was moved along the growth substrate, and the VACNTs were separated from the growth substrate to prepare a CNT array sheet.
  • the CNT array sheet was accommodated in a carbon container which is a heat-resistant container, and the carbon container was placed in a resistance heating furnace (high temperature heating furnace).
  • the temperature was raised to 2800 ° C. at 10 ° C./min, and held at 2800 ° C. for 2 hours.
  • the CNT array sheet was densified and then cooled to room temperature by natural cooling.
  • the bulk density of the densified CNT array sheet is about 100 mg / cm 3 , and the electric resistance (conductive resistance) in the thickness direction of the CNT array sheet is 0.1 ⁇ at 25 ° C.
  • the thermal conductivity of the sheet was about 30 W / (m ⁇ K) in the thickness direction.
  • a silicon thin film (metal thin film) having a thickness of 20 nm was formed on one side of each of the two CNT array sheets by vapor deposition.
  • a ceramic sheet (fixed sheet) having a thickness of 100 ⁇ m and formed from a sintered body of silicon carbide was prepared.
  • the CNT array sheets were arranged on both the front and back surfaces of the fixed sheet so that the silicon thin film was in contact with the ceramic sheet.
  • the ceramic sheet on which the CNT array sheet was placed was placed in a resistance heating furnace (high temperature heating furnace) and heated at 1700 ° C. for 15 minutes in an inert gas atmosphere.
  • a resistance heating furnace high temperature heating furnace
  • Example 2 A resin sheet formed of PVA and having silicon particles (inorganic particles) dispersed therein was prepared.
  • the average primary particle diameter of the silicon particles was 2 ⁇ m
  • the content ratio of the silicon particles was 20% by mass with respect to the total amount of the resin sheet.
  • the content rate of PVA was 80 mass% with respect to the resin sheet whole quantity.
  • Example 2 CNT array sheets prepared in the same manner as in Example 1 were arranged on both the front and back surfaces of the resin sheet. Subsequently, the resin sheet on which the CNT array sheet was placed was placed in a resistance heating furnace (high temperature heating furnace) and heated at 1700 ° C. for 15 minutes in an inert gas atmosphere.
  • a resistance heating furnace high temperature heating furnace
  • the PVA of the resin sheet is burned out, the carbon of the CNT reacts with the silicon particles of the resin sheet to generate silicon carbide, and the silicon carbide and the silicon particles form a sintered body to be fixed.
  • a sheet was formed. That is, the fixed sheet contained a sintered body of silicon carbide and silicon. The thickness of the fixed sheet was 100 ⁇ m.
  • Paste was prepared by dispersing silicon particles (inorganic particles) in a PVA solution (resin solution, PVA concentration: 10 mass%) in which PVA was dissolved in water (solvent).
  • the average primary particle diameter of the silicon particles was 2 ⁇ m
  • the content ratio of the silicon particles was 20% by mass with respect to the total amount of the paste.
  • the content rate of PVA was 80 mass% with respect to the paste whole quantity.
  • the paste was applied to one of the two CNT array sheets prepared in the same manner as in Example 1 to form a paste layer having a thickness of about 2 mm.
  • the other CNT array sheet was placed on the paste layer so that the paste layer was sandwiched between the two CNT array sheets.
  • the paste layer on which the CNT array sheet was placed was placed in a resistance heating furnace (high temperature heating furnace) and heated at 1700 ° C. for 15 minutes in an inert gas atmosphere. Then, it cooled and obtained the heat conductive sheet.
  • the fixed sheet had a thickness of 100 ⁇ m.
  • Example 4 A thermally conductive sheet was obtained in the same manner as in Example 2 except that a resin sheet formed of PVA and having silicon nitride particles (inorganic particles) dispersed therein was prepared. In addition, the thickness of the fixing sheet of a heat conductive sheet was 100 micrometers.
  • VACNTs having a substantially rectangular shape in plan view were formed on both the front and back surfaces of the substrate.
  • the average outer diameter of CNT, the average length of CNT, and the bulk density were the same as in Example 1.
  • the growth substrate on which VACNTs are arranged on both sides was used as a heat conductive sheet.
  • the CNT bonding sheet can be applied to various industrial products, and can be used as, for example, a heat conductive material, an adhesive sheet, a vibration isolating material, a heat insulating material and the like.
  • the manufacturing method of a CNT joining sheet can be used suitably for manufacture of the CNT joining sheet used for various industrial products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

CNT接合シートは、無機物の焼結体から形成される固定シートと、固定シートの焼結体と接合しているカーボンナノチューブアレイシートと、を備える。

Description

カーボンナノチューブ接合シートおよびカーボンナノチューブ接合シートの製造方法
 本発明は、カーボンナノチューブ接合シートおよびカーボンナノチューブ接合シートの製造方法に関する。
 電子部品とヒートシンクとの間に熱伝導性材料(Thermal Interface Material:以下、TIMとする。)を配置して、電子部品とヒートシンクとの間の隙間を低減して、電子部品から発生する熱を効率よくヒートシンクに伝導することが知られている。このようなTIMとして、高分子材料からなる高分子シートや、シリコーングリースなどが知られている。
 しかし、高分子シートは、電子部品およびヒートシンクの表面の微細な凹凸(表面粗さ)に十分に追従することができず、その微細な凹凸により、電子部品とヒートシンクとの間に空隙が生じる場合があり、熱伝導率の向上を図るには限度がある。
 また、シリコーングリースは、電子部品およびヒートシンクの表面の微細な凹凸に追従することができるが、温度変化が繰り返されることにより、ポンプアウト(電子部品とヒートシンクとの間から流出)する場合があり、長期にわたってTIMの熱伝導性能を確保することは困難である。
 そこで、電子部品およびヒートシンクの表面の微細な凹凸に追従させることができながら、長期にわたって熱伝導性能を確保できるTIMが望まれており、TIMにカーボンナノチューブ(以下、CNTとする。)を利用することが検討されている。
 例えば、基板と、基板の両面にアレイ状に配置されるCNTとを備える熱界面パッドが提案されている(例えば、特許文献1参照)。
 そのような熱界面パッドは、CNTを、化学気相蒸着によって、基板の両面に成長させて製造される。そして、そのような熱界面パッドでは、CNTが基板の両面に配置されているので、そのCNTを電子部品およびヒートシンクの表面の微細な凹凸に追従させることができる。
特表2015-526904号公報
 しかし、特許文献1に記載の熱界面パッドは、化学気相蒸着により、CNTを基板の両面に成長させて製造されているので、基板とCNTとの接着強度を十分に確保することができない。そのため、熱界面パッドをTIMとして使用すると、CNTが基板から脱落してしまう場合がある。この場合、熱界面パッドの熱伝導性能を確保することは困難であり、また、脱落したCNTが電子部品などの短絡を引き起こす場合がある。
 そこで、本発明の目的は、対象物の表面の微細な凹凸に追従させることができながら、カーボンナノチューブが脱落することを抑制できるカーボンナノチューブ接合シートおよびカーボンナノチューブ接合シートの製造方法を提供することにある。
 本発明[1]は、無機物の焼結体から形成される固定シートと、前記固定シートの前記焼結体と接合しているカーボンナノチューブアレイシートと、を備えている、カーボンナノチューブ接合シートを含んでいる。
 このような構成によれば、カーボンナノチューブ接合シートがカーボンナノチューブアレイシートを備えているので、カーボンナノチューブ接合シートを対象物に接触させたときに、カーボンナノチューブアレイシートの複数のCNTを対象物表面の微細な凹凸に追従させることができる。
 また、カーボンナノチューブアレイシートが、固定シートの焼結体と接合しているので、カーボンナノチューブアレイシートが有するCNTが、固定シートから脱落することを抑制できる。
 本発明[2]は、前記無機物は、ケイ素および/またはチタンを含み、前記焼結体は、前記カーボンナノチューブアレイシートが有する炭素と、前記固定シートに含まれるケイ素および/またはチタンとの焼結体を含んでいる、上記[1]に記載のカーボンナノチューブ接合シートを含んでいる。
 このような構成によれば、焼結体が、カーボンナノチューブアレイシートが有する炭素と、固定シートに含まれるケイ素および/またはチタンとの焼結体を含んでいるので、カーボンナノチューブアレイシートと焼結体との親和性の向上を図ることができ、カーボンナノチューブアレイシートを焼結体に確実に接合することができる。そのため、カーボンナノチューブアレイシートが有するCNTが、固定シートから脱落することを確実に抑制できる。
 本発明[3]は、カーボンナノチューブアレイシートの前記焼結体と接合する端部は、前記焼結体に埋め込まれている、上記[1]または[2]に記載のカーボンナノチューブ接合シートを含んでいる。
 このような構成によれば、カーボンナノチューブアレイシートの端部が焼結体に埋め込まれているので、カーボンナノチューブアレイシートが有するCNTが、固定シートから脱落することをより一層確実に抑制できる。
 本発明[4]は、前記カーボンナノチューブアレイシートの平均嵩密度は、50mg/cm以上である、上記[1]~[3]のいずれか一項に記載のカーボンナノチューブ接合シートを含んでいる。
 このような構成によれば、カーボンナノチューブアレイシートの平均嵩密度が上記下限以上であるので、カーボンナノチューブアレイシートの熱伝導率の向上を図ることができ、ひいては、カーボンナノチューブ接合シートの熱伝導率の向上を図ることができる。
 しかるに、カーボンナノチューブアレイを化学気相蒸着により基板の両面に成長させる場合、カーボンナノチューブアレイの平均嵩密度を上記下限以上とすることは困難である。
 一方、上記の構成によれば、成長基板から剥離されたカーボンナノチューブアレイシートが、固定シートの焼結体と接合しているので、カーボンナノチューブアレイシートを、成長基板から剥離した後、高密度化処理することができる。そのため、カーボンナノチューブアレイシートの平均嵩密度を上記下限以上とすることができる。
 本発明[5]は、無機物の焼結体から形成される固定シートを準備する工程と、成長基板上に垂直配向カーボンナノチューブを成長させる工程と、前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、前記カーボンナノチューブアレイシートと前記固定シートとの間に金属薄膜を配置する工程と、前記金属薄膜が配置された前記カーボンナノチューブアレイシートおよび前記固定シートを、真空下または不活性雰囲気下で焼成する工程と、を含む、カーボンナノチューブ接合シートの製造方法を含んでいる。
 このような方法によれば、成長基板から剥離したカーボンナノチューブアレイシートと、無機物の焼結体から形成される固定シートとの間に金属薄膜を配置した後、それらを焼成することにより、カーボンナノチューブアレイシートを固定シートと強固に接合させることができる。
 そのため、簡易な方法でありながら、固定シートの焼結体と接合するカーボンナノチューブアレイシートを備えるカーボンナノチューブ接合シートを効率良く製造することができる。
 本発明[6]は、無機粒子を含有する樹脂シートを準備する工程と、成長基板上に垂直配向カーボンナノチューブを成長させる工程と、前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、前記カーボンナノチューブアレイシートを前記樹脂シート上に配置する工程と、前記カーボンナノチューブアレイシートが配置された前記樹脂シートを、真空下または不活性雰囲気下で焼成する工程と、を含む、カーボンナノチューブ接合シートの製造方法を含んでいる。
 このような方法によれば、成長基板から剥離したカーボンナノチューブアレイシートを、無機粒子を含有する樹脂シート上に配置した後、焼成することにより、無機粒子を焼結体とすることができ、固定シートを形成できる。そして、カーボンナノチューブアレイシートを固定シートの焼結体と接合させることができる。
 そのため、簡易な方法でありながら、固定シートの焼結体と接合するカーボンナノチューブアレイシートを備えるカーボンナノチューブ接合シートを効率良く製造することができる。
 本発明[7]は、成長基板上に垂直配向カーボンナノチューブを成長させる工程と、前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、前記カーボンナノチューブアレイシートに、無機粒子を含有するペーストを塗布する工程と、前記ペーストが塗布されたカーボンナノチューブアレイシートを、真空下または不活性雰囲気下で焼成する工程と、を含む、カーボンナノチューブ接合シートの製造方法を含んでいる。
 このような方法によれば、成長基板から剥離したカーボンナノチューブアレイシートに、無機粒子を含有するペーストを塗布した後、焼成することにより、無機粒子を焼結体とすることができ、固定シートを形成できる。そして、カーボンナノチューブアレイシートを固定シートの焼結体と接合させることができる。
 そのため、簡易な方法でありながら、固定シートの焼結体と接合するカーボンナノチューブアレイシートを備えるカーボンナノチューブ接合シートを効率良く製造することができる。
 本発明のカーボンナノチューブ接合シートは、対象物の表面の微細な凹凸に追従することができながら、CNTが脱落することを抑制できる。
 本発明のカーボンナノチューブ接合シートの製造方法は、簡易な方法でありながら、上記のカーボンナノチューブ接合シートを効率良く製造することができる。
図1Aは、本発明のカーボンナノチューブ接合シートの第1実施形態としての熱伝導性シートの側面図である。図1Bは、図1Aに示す熱伝導性シートが電子部品とヒートシンクとの間に配置された状態の概略構成図である。 図2Aは、成長基板に垂直配向カーボンナノチューブ(VACNTs)を成長させる工程の一実施形態を説明するための説明図であって、基板上に触媒層を形成する工程を示す。図2Bは、図2Aに続いて、基板を加熱して、触媒層を複数の粒状体に凝集させる工程を示す。図2Cは、図2Bに続いて、複数の粒状体に原料ガスを供給して、複数のカーボンナノチューブを成長させて、VACNTsを調製する工程を示す。 図3Aは、VACNTsを剥離する工程を説明するための説明図であって、VACNTsを成長基板から切断する工程を示す。図3Bは、図3Aに続いて、VACNTsを成長基板から剥離して、カーボンナノチューブアレイシート(CNTアレイシート)とする工程を示す。図3Cは、図3Bに示すCNTアレイシートの斜視図である。 図4Aは、図3Cに示すCNTアレイシートを高密度化する工程を説明するための説明図であって、CNTアレイシートを耐熱容器内に収容する工程を示す。図4Bは、図4Aに続いて、CNTアレイシートを加熱処理して、CNTアレイシートを高密度化する工程を示す。図4Cは、図4Bに示す高密度化されたCNTアレイシートに金属薄膜を形成し、固定シートの表面および裏面の両面に配置する工程を示す。 図5Aは、図4Bに示す高密度化されたCNTアレイシートを、樹脂シートの表面および裏面の両面に配置する工程を示す。図5Bは、図4Bに示す高密度化されたCNTアレイシートに、ペーストを塗布してペースト層を形成する工程を示す。図5Cは、図5Bに続いて、CNTアレイシートを、ペースト層の表面に配置する工程を示す。 図6は、本発明のカーボンナノチューブ接合シートの第2実施形態としての熱伝導性シートの側面図である。 図7Aは、図2Cに示すVACNTsを機械的に高密度化する工程を説明するための説明図であって、VACNTsを挟むように押圧板を配置する工程を示す。図7Bは、図7Aに続いて、押圧板によりVACNTsを圧縮する工程を示す。
 本発明のカーボンナノチューブ接合シート(以下、CNT接合シートとする。)は、無機物の焼結体から形成される固定シートと、固定シートの焼結体と接合しているカーボンナノチューブアレイシートと、を備えている。カーボンナノチューブアレイシートは、固定シートに接合されていればよく、例えば、固定シートの表面および裏面の少なくともいずれか一方に接合されている。
 以下に、本発明のCNT接合シートの第1実施形態としての熱伝導性シート1について説明する。
1.第1実施形態
(1)熱伝導性シートの構成
 熱伝導性シート1(CNT接合シートの一例)は、図1Aに示すように、固定シート2と、2つのカーボンナノチューブアレイシート3(以下、CNTアレイシート3とする。)とを備えている。
 固定シート2は、シート形状(平板形状)を有しており、具体的には、固定シート2は、所定の厚みを有し、その厚み方向と直交する面方向(縦方向および横方向)に延びており、平坦な表面2A(厚み方向一方面)および平坦な裏面2B(厚み方向他方面)を有している。
 固定シート2の厚みは、例えば、10μm以上であることが好ましく、50μm以上であることがより好ましく、例えば、500μm以下であることが好ましく、300μm以下であることがより好ましい。
 固定シート2は、無機物の焼結体から形成されている。具体的には、固定シート2は、無機物の粒子が、焼結により互いに接合して形成されるセラミックスシートである。なお、図1Aでは、無機物の焼結体を焼結体4として示す。
 無機物としては、例えば、金属(例えば、チタン、ケイ素、タングステンなど)、無機酸化物(例えば、シリカ、アルミナ、酸化チタン、酸化亜鉛、酸化マグネシウムなど)、無機窒化物(例えば、窒化アルミニウム、窒化ホウ素、窒化ケイ素など)、無機炭化物(例えば、炭化ケイ素、炭化チタン、炭化タングステンなど)が挙げられる。このような無機物は、単独使用または2種類以上併用することができる。
 このような無機物は、熱伝導性シート1の用途に応じて適宜選択される。なお、第1実施形態では、無機物が無機炭化物である場合について詳述する。無機炭化物として、好ましくは、ケイ素および/またはチタンを含む無機炭化物、つまり、炭化ケイ素および炭化チタンが挙げられる。
 固定シート2は、電気絶縁性を有しており、固定シート2の厚み方向の電気抵抗(導電抵抗)は、25℃において、例えば、10Ω以上であることが好ましく、10Ω以上であることがより好ましく、例えば、10Ω以下であることが好ましい。
 また、固定シート2の熱伝導率は、厚み方向において、例えば、2W/(m・K)以上であることが好ましく、5W/(m・K)以上であることがより好ましい。
 CNTアレイシート3は、図3Cに示すように、成長基板15(後述;図3B参照)から剥離されており、複数のカーボンナノチューブ6(以下、CNT6とする。)からシート形状に形成されるカーボンナノチューブ集合体である。
 より詳しくは、CNTアレイシート3において、複数のCNT6は、CNTアレイシート3の厚み方向に配向されており、厚み方向に互いに連続することなく、面方向(縦方向および横方向)に互いに連続してシート形状となるように配列されている。
 つまり、カーボンナノチューブアレイシート3(CNTアレイシート3)は、所定方向に配向される複数のカーボンナノチューブ6(CNT6)が、カーボンナノチューブ6の配向方向と直交する方向に互いに連続してシート形状となるように形成されている。
 これによって、CNTアレイシート3は、成長基板15(後述)から剥離された状態で、複数のCNT6が面方向に互いに接触するように、形状を保持している。また、CNTアレイシート3は、可撓性を有している。なお、複数のCNT6のうち、互いに隣接するCNT6間には、ファンデルワールス力が作用している。
 CNT6は、単層カーボンナノチューブ、二層カーボンナノチューブおよび多層カーボンナノチューブのいずれであってもよく、好ましくは、多層カーボンナノチューブである。複数のCNT6は、単層カーボンナノチューブ、二層カーボンナノチューブおよび多層カーボンナノチューブのいずれか1種のみを含んでいてもよく、単層カーボンナノチューブ、二層カーボンナノチューブおよび多層カーボンナノチューブのいずれか2種以上を含んでいてもよい。
 CNT6の平均外径は、例えば、1nm以上であることが好ましく、5nm以上であることがより好ましく、例えば、100nm以下であることが好ましく、50nm以下であることがより好ましく、20nm以下であることがとりわけ好ましい。
 CNT6の平均長さ(平均配向方向の寸法)は、例えば、10μm以上であることが好ましく、50μm以上であることがより好ましく、例えば、1000μm以下であることが好ましく、500μm以下であることがより好ましく、200μm以下であることがとりわけ好ましい。なお、CNTの平均外径および平均長さは、例えば、電子顕微鏡観察などの公知の方法により測定される。
 CNTアレイシート3において、複数のCNT6の平均嵩密度は、例えば、10mg/cm以上であることが好ましく、50mg/cm以上であることがより好ましく、100mg/cm以上であることがとりわけ好ましく、例えば、500mg/cm以下であることが好ましく、300mg/cm以下であることがより好ましく、200mg/cm以下であることがとりわけ好ましい。なお、CNT6の平均嵩密度は、例えば、単位面積当たり質量(目付量:単位 mg/cm)と、カーボンナノチューブの平均長さ(SEM(日本電子社製)または非接触膜厚計(キーエンス社製)により測定)とから算出される。
 CNTアレイシート3のG/D比は、例えば、1以上であることが好ましく、2以上であることがより好ましく、5以上であることがとりわけ好ましく、10以上であることが特に好ましく、例えば、20以下であることが好ましく、15以下であることがより好ましい。
 G/D比とは、カーボンナノチューブのラマンスペクトルにおいて、1350cm-1付近に観測されるDバンドと呼ばれるピークのスペクトル強度に対する、1590cm-1付近に観測されるGバンドと呼ばれるピークのスペクトル強度の比である。
 なお、Dバンドのスペクトルは、カーボンナノチューブの欠陥に由来し、Gバンドのスペクトルは、炭素の六員環の面内振動に由来する。
 CNTアレイシート3の厚み方向の電気抵抗(導電抵抗)は、25℃において、例えば、1Ω以下であることが好ましく、0.1Ω以下であることがより好ましい。
 CNTアレイシート3の熱伝導率は、厚み方向において、例えば、1W/(m・K)以上であることが好ましく、2W/(m・K)以上であることがより好ましく、10W/(m・K)以上であることがとりわけ好ましく、30W/(m・K)以上であることが特に好ましく、例えば、60W/(m・K)以下であることが好ましく、40W/(m・K)以下であることがより好ましい。
 そして、CNTアレイシート3は、図1Aに示すように、固定シート2の表面2Aおよび裏面2Bの両面において、無機物の焼結体4と接合することにより、固定シート2に支持されている。
 つまり、2つのCNTアレイシート3は、固定シート2の表面2Aおよび裏面2Bのそれぞれに1つずつ接合されており、固定シート2を厚み方向に挟むように配置されている。
 なお、2つのCNTアレイシート3を互いに区別する場合、固定シート2の表面2Aに接合されるCNTアレイシート3を第1CNTアレイシート3Aとし、固定シート2の裏面2Bに接合されるCNTアレイシート3を第2CNTアレイシート3Bとする。
 また、CNTアレイシート3における固定シート2側の端部は、固定シート2の焼結体4に埋め込まれるとともに接合されており、CNTアレイシート3における固定シート2と反対側の端部が自由端となっている。つまり、CNTアレイシート3の焼結体4と接合する端部は、固定シート2の焼結体4に埋め込まれている。
 より詳しくは、第1CNTアレイシート3Aにおける他方側端部が、固定シート2の表面2Aにおいて、焼結体4に埋め込まれるとともに接合され、第1CNTアレイシート3Aにおける一方側端部が自由端となっている。また、第2CNTアレイシート3Bにおける一方側端部が、固定シート2の裏面2Bにおいて、焼結体4に埋め込まれるとともに接合され、第2CNTアレイシート3Bにおける他方側端部が自由端となっている。なお、CNTアレイシート3の厚み方向と、固定シート2の厚み方向とは互いに一致しており、各CNTアレイシート3のCNT6は、固定シート2の厚み方向に沿って延びている。
 このような熱伝導性シート1の厚み方向の電気抵抗(導電抵抗)は、例えば、10Ω以上であることが好ましく、10Ω以上であることがより好ましく、例えば、10Ω以下であることが好ましく、10Ω以下であることがより好ましい。
 熱伝導性シート1の熱伝導率は、厚み方向において、例えば、1W/(m・K)以上であることが好ましく、2W/(m・K)以上であることがより好ましく、10W/(m・K)以上であることがさらに好ましく、25W/(m・K)以上であることがとりわけ好ましく、50W/(m・K)以上であることが特に好ましく、例えば、300W/(m・K)以下であることが好ましく、100W/(m・K)以下であることがより好ましい。
 (2)CNT接合シートの製造方法
 次に、熱伝導性シート1(CNT接合シートの一例)の製造方法の一実施形態について説明する。
 熱伝導性シート1を製造するには、図4Cに示すように、まず、無機炭化物の焼結体から形成される固定シート2を準備する(準備工程)。
 また、固定シート2とは別途、CNTアレイシート3を準備する。
 CNTアレイシート3を準備するには、図2A~図2Cに示すように、例えば、化学気相成長法(CVD法)により、成長基板15上に垂直配向カーボンナノチューブ19(Vertically Aligned carbon nanotubes;以下、VACNTs19とする。)を成長させる(CNT成長工程)。
 詳しくは、図2Aに示すように、まず、成長基板15を準備する。成長基板15は、特に限定されず、例えば、CVD法に用いられる公知の基板が挙げられ、市販品を用いることができる。
 成長基板15としては、例えば、シリコン基板や、二酸化ケイ素膜17が積層されるステンレス基板16などが挙げられ、好ましくは、二酸化ケイ素膜17が積層されるステンレス基板16が挙げられる。なお、図2A~図3Cでは、成長基板15が、二酸化ケイ素膜17が積層されるステンレス基板16である場合を示す。
 そして、図2Aに示すように、成長基板15上、好ましくは、二酸化ケイ素膜17上に触媒層18を形成する。成長基板15上に触媒層18を形成するには、金属触媒を、公知の成膜方法により、成長基板15(好ましくは、二酸化ケイ素膜17)上に成膜する。
 金属触媒としては、例えば、鉄、コバルト、ニッケルなどが挙げられ、好ましくは、鉄が挙げられる。このような金属触媒は、単独使用または2種類以上併用することができる。成膜方法としては、例えば、真空蒸着およびスパッタリングが挙げられ、好ましくは、真空蒸着が挙げられる。
 これによって、成長基板15上に触媒層18が配置される。なお、成長基板15が、二酸化ケイ素膜17が積層されるステンレス基板16である場合、二酸化ケイ素膜17および触媒層18は、例えば、特開2014-94856号公報に記載されるように、二酸化ケイ素前駆体溶液と金属触媒前駆体溶液とが混合される混合溶液を、ステンレス基板16に塗布した後、その混合液を相分離させ、次いで、乾燥することにより、同時に形成することもできる。
 次いで、触媒層18が配置される成長基板15を、図2Bに示すように、例えば、700℃以上900℃以下に加熱する。これにより、触媒層18が、凝集して、複数の粒状体18Aとなる。
 そして、加熱された成長基板15に、図2Cに示すように、原料ガスを供給する。原料ガスは、炭素数1~4の炭化水素ガス(低級炭化水素ガス)を含んでいる。炭素数1~4の炭化水素ガスとしては、例えば、メタンガス、エタンガス、プロパンガス、ブタンガス、エチレンガス、アセチレンガスなどが挙げられ、好ましくは、アセチレンガスが挙げられる。
 また、原料ガスは、必要により、水素ガスや、不活性ガス(例えば、ヘリウム、アルゴンなど)、水蒸気などを含むこともできる。
 原料ガスの供給時間としては、例えば、1分以上であることが好ましく、5分以上であることがより好ましく、例えば、60分以下であることが好ましく、30分以下であることがより好ましい。
 これによって、複数の粒状体18Aのそれぞれを起点として、複数のCNT6が成長する。なお、図2Cでは、便宜上、1つの粒状体18Aから、1つのCNT6が成長するように記載されているが、これに限定されず、1つの粒状体18Aから、複数のCNT6が成長してもよい。
 このような複数のCNT6は、成長基板15上において、互いに略平行となるように、成長基板15の厚み方向(上下方向)に延びている。つまり、複数のCNT6は、成長基板15に対して直交するように配向(垂直に配向)されている。
 これによって、VACNTs19が成長基板15上に成長する。
 VACNTs19は、図3Cが参照されるように、複数のCNT6が縦方向に直線的に並ぶ列19Aを、横方向に複数備えている。VACNTs19において、複数のCNT6は、面方向(縦方向および横方向)に密集している。
 次いで、図3Aおよび図3Bに示すように、成長基板15からVACNTs19を剥離する(剥離工程)。
 VACNTs19を成長基板15から剥離するには、例えば、切断刃20を成長基板15の上面に沿ってスライド移動させて、複数のCNT6の基端部(成長基板15側端部)を一括して切断する。これによって、VACNTs19が成長基板15から分離される。
 切断刃20としては、例えば、カッター刃、剃刀などの公知の金属刃が挙げられ、好ましくは、カッター刃が挙げられる。
 次いで、分離されたVACNTs19を、図3Bに示すように、成長基板15から引き上げる。これにより、VACNTs19が、成長基板15から剥離されて、CNTアレイシート3とされる。また、上記の工程を繰り返すことにより、2つのCNTアレイシート3、具体的には、第1CNTアレイシート3Aおよび第2CNTアレイシート3Bが準備される。
 このようなCNTアレイシート3は、そのまま熱伝導性シート1に利用することができるが、平均嵩密度が相対的に低いため、熱伝導率の向上の観点から好ましくは、高密度化処理される(高密度化工程)。
 高密度化処理として、例えば、CNTアレイシート3を加熱処理する方法(図4Aおよび図4B参照)や、CNTアレイシート3に揮発性の液体を供給する方法が挙げられる。
 CNTアレイシート3を加熱処理するには、例えば、図4Aに示すように、CNTアレイシート3を耐熱容器45に収容して、加熱炉内に配置する。
 耐熱容器45は、耐熱温度が2600℃を超過する耐熱容器であって、例えば、炭素から形成される炭素容器、セラミックスから形成されるセラミックス容器などの公知の耐熱容器が挙げられる。このような耐熱容器のなかでは、好ましくは、炭素容器が挙げられる。
 加熱炉としては、例えば、抵抗加熱炉、誘導加熱炉、直通電型電気炉などが挙げられ、好ましくは、抵抗加熱炉が挙げられる。また、加熱炉は、バッチ式であってもよく、連続式であってもよい。
 次いで、加熱炉内に不活性ガスを流入して、加熱炉内を不活性ガス雰囲気に置換する。不活性ガスとしては、例えば、窒素、アルゴンなどが挙げられ、好ましくは、アルゴンが挙げられる。
 次いで、加熱炉内の温度を、所定の昇温速度で加熱温度まで上昇させた後、温度を維持したまま、所定時間放置する。
 昇温速度としては、例えば、1℃/分以上であることが好ましく、5℃/分以上であることがより好ましく、例えば、40℃/分以下であることが好ましく、20℃/分以下であることがより好ましい。
 加熱温度としては、例えば、2600℃以上であることが好ましく、2700℃以上であることがより好ましく、2800℃以上であることがとりわけ好ましい。加熱温度が上記下限以上であれば、CNTアレイシート3において、複数のCNT6を確実に密集させることができる。
 また、加熱温度としては、CNT6の昇華温度未満であればよく、3000℃以下であることが好ましい。加熱温度が上記上限以下であれば、CNT6が昇華することを抑制できる。
 所定時間としては、例えば、10分以上であることが好ましく、1時間以上であることがより好ましく、例えば、5時間以下であることが好ましく、3時間以下であることがより好ましい。
 また、CNTアレイシート3は、好ましくは、無負荷の状態(CNTアレイシート3に荷重がかけられていない状態、つまり、大気圧下)で加熱処理される。CNTアレイシート3を無負荷の状態で加熱処理するには、図4Aに示すように、CNTアレイシート3を、耐熱容器45の蓋部および側壁に対して間隔を空けるように、耐熱容器45内に収容する。
 以上によって、CNTアレイシート3が加熱処理される。CNTアレイシート3が加熱処理されると、CNTアレイシート3において、複数のCNT6を構成するグラフェンの結晶性が向上し、CNT6の配向性(直線性)が向上する。すると、CNTアレイシート3において、互いに隣接するCNT6は、それらの間に作用するファンデルワールス力などにより、配向性(直線性)を維持したまま、束状となるように密集する。
 これによって、CNTアレイシート3の全体が均一に密集され、CNTアレイシート3が高密度化する。その後、CNTアレイシート3を必要により冷却(例えば、自然冷却)する。
 加熱処理後のCNTアレイシート3の厚みは、複数のCNT6が配向性(直線性)を維持したまま密集するため、加熱処理前のCNTアレイシート3の厚みと略同じである。より具体的には、加熱処理後のCNTアレイシート3の厚みは、加熱処理前のCNTアレイシート3の厚みに対して、例えば、95%以上105%以下であることが好ましく、100%であることがより好ましい。
 また、加熱処理後のCNTアレイシート3の体積は、加熱処理前のCNTアレイシート3の体積に対して、例えば、10%以上であることが好ましく、30%以上であることがより好ましく、例えば、70%以下であることが好ましく、50%以下であることがより好ましい。
 また、加熱処理後のCNTアレイシート3のG/D比は、例えば、2以上であることが好ましい。
 CNTアレイシート3に揮発性の液体を供給するには、例えば、CNTアレイシート3に揮発性の液体をスプレーするか、CNTアレイシート3を揮発性の液体に浸漬させる。
 揮発性の液体としては、例えば、水、有機溶媒などが挙げられる。有機溶媒としては、例えば、低級(C1~3)アルコール類(例えば、メタノール、エタノール、プロパノールなど)、ケトン類(例えば、アセトンなど)、エーテル類(例えば、ジエチルエーテル、テトラヒドロフランなど)、アルキルエステル類(例えば、酢酸エチルなど)、ハロゲン化脂肪族炭化水素類(例えば、クロロホルム、ジクロロメタンなど)、極性非プロトン類(例えば、N-メチルピロリドン、ジメチルホルムアミドなど)などが挙げられる。
 このような揮発性の液体のなかでは、好ましくは、水が挙げられる。このような揮発性の液体は、単独使用または2種類以上併用することができる。
 CNTアレイシート3に揮発性の液体が供給されると、揮発性の液体が気化することにより、複数のCNT6が互いに密集し、CNTアレイシート3の密度が向上する。
 なお、このような高密度化処理は、少なくとも1回実施され、複数回繰り返すこともできる。同一の高密度化処理を複数回繰り返してもよく、複数種類の高密度化処理を組み合わせて実施してもよい。例えば、上記の加熱処理のみを複数回繰り返すこともでき、上記の加熱処理と上記の液体供給処理と組み合わせて実施することもできる。
 高密度化処理後のCNTアレイシート3において、複数のCNT6の平均嵩密度は、例えば、50mg/cm以上であることが好ましく、厚み方向の電気抵抗(導電抵抗)は、25℃において、例えば、1Ω以上であることが好ましく、熱伝導率は、厚み方向において、例えば、10W/(m・K)以上であることが好ましい。
 以上によって、無機炭化物の焼結体から形成される固定シート2と、2つのCNTアレイシート3とが準備される。
 次いで、図4Cに示すように、固定シート2とCNTアレイシート3との間に金属薄膜30を配置する(薄膜配置工程)。固定シート2とCNTアレイシート3との間に金属薄膜30を配置するには、まず、2つのCNTアレイシート3のそれぞれに、金属薄膜30を形成する(薄膜形成工程)。
 より具体的には、第1CNTアレイシート3Aの厚み方向他方面に、金属薄膜30を形成し、第2CNTアレイシート3Bの厚み方向一方面に、金属薄膜30を形成する。
 CNTアレイシート3に金属薄膜30を形成するには、例えば、CNTアレイシート3に金属を蒸着する。金属としては、上記の金属が挙げられる。このような金属のなかでは、親和性の観点から好ましくは、固定シート2の無機炭化物が含有する金属元素と同一の金属が挙げられる。例えば、固定シート2の無機炭化物が炭化チタンである場合、金属薄膜30の金属として好ましくは、チタンが挙げられ、固定シート2の無機炭化物が炭化ケイ素である場合、金属薄膜30の金属として好ましくは、ケイ素が挙げられる。
 つまり、固定シート2の無機炭化物と、金属薄膜30の金属との組み合わせとして、好ましくは、炭化チタンとチタンとの組み合わせ、および、炭化ケイ素とケイ素との組み合わせが挙げられる。
 次いで、金属薄膜30が固定シート2と接触するように、CNTアレイシート3を固定シート2の表面2Aおよび裏面2Bの両面に配置する。
 より具体的には、固定シート2の表面2Aに、第1CNTアレイシート3Aの金属薄膜30が接触するように、第1CNTアレイシート3Aを配置し、固定シート2の裏面2Bに、第2CNTアレイシート3Bの金属薄膜30が接触するように、第2CNTアレイシート3Bを配置する。これにより、第1CNTアレイシート3Aおよび第2CNTアレイシート3Bが、固定シート2を厚み方向に挟むように配置され、金属薄膜30が、CNTアレイシート3と固定シート2との間に配置される。なお、金属薄膜30の厚みは、例えば、5nm以上1μm以下であることが好ましい。
 次いで、CNTアレイシート3が配置された固定シート2(金属薄膜30が配置されたCNTアレイシート3および固定シート2)を、真空下または不活性雰囲気下で焼成する(焼成工程)。
 そのような固定シート2を焼成するには、例えば、CNTアレイシート3が配置された固定シート2を、上記の加熱炉内に配置する。そして、加熱炉内を、公知の方法(例えば、真空ポンプなど)により真空状態とするか、上記の不活性ガス雰囲気に置換する。
 真空状態の圧力は、例えば、100Pa以下であることが好ましく、10Pa以下であることがより好ましい。不活性ガスして、好ましくは、アルゴンが挙げられる。
 次いで、加熱炉内の温度を焼成温度まで上昇させた後、温度を維持したまま、所定時間放置する。
 焼成温度は、金属薄膜30が溶融する温度以上、CNT6の昇華温度未満であって、例えば、1000℃以上であることが好ましく、1500℃以上であることがより好ましく、例えば、2500℃以下であることが好ましく、2000℃以下であることがより好ましい。焼成時間としては、例えば、1分以上であることが好ましく、5分以上であることがより好ましく、例えば、1時間以下であることが好ましく、30分以下であることがより好ましい。
 これによって、CNTアレイシート3に蒸着された金属薄膜30の金属が、CNTアレイシート3のCNT6の炭素と反応して、無機炭化物が生成する。
 より具体的には、固定シート2の無機炭化物が炭化ケイ素であり、金属薄膜30の金属がケイ素である場合、CNTアレイシート3のCNT6の炭素とケイ素とが反応して炭化ケイ素(無機炭化物)が生成し、その炭化ケイ素(無機炭化物)が、図1Aに示すように、固定シート2の炭化ケイ素(無機炭化物)の焼結体4と一体となるように焼結して、CNT6と固定シート2とを接合する。
 そのため、CNTアレイシート3のCNT6が、反応により生成した炭化ケイ素(無機炭化物)により、焼結体4に強固に接合される。
 これにより、CNTアレイシート3(CNT6)の端部が焼結体4に埋め込まれるとともに接合される。そして、CNTアレイシート3が、固定シート2に支持される。
 より具体的には、第1CNTアレイシート3AにおけるCNT6の他方側端部が、固定シート2の表面2Aにおいて、焼結体4に埋め込まれるとともに接合され、第2CNTアレイシート3BにおけるCNT6の一方側端部が、固定シート2の裏面2Bにおいて、焼結体4に埋め込まれるとともに接合される。
 その後、冷却することにより、熱伝導性シート1が製造される。
 このように、金属薄膜30がケイ素から形成される場合、CNTアレイシート3は、焼成工程において、CNT6の炭素とケイ素との反応を伴なう反応焼結により、焼結体4に接合される。この場合、焼結体4は、CNTアレイシート3が有する炭素と、ケイ素との反応生成物としての炭化ケイ素(無機炭化物)を含んでいる。つまり、焼結体4は、CNTアレイシート3が有する炭素と、固定シート2に含まれるケイ素との焼結体を含んでいる。
 また、固定シート2の無機炭化物が炭化チタンであり、金属薄膜30がチタンから形成される場合、上記の焼成工程において、CNTアレイシート3のCNT6の炭素と、金属薄膜30のチタンとが反応して炭化チタンが生成し、その炭化チタンは、固定シート2の炭化チタンの焼結体4と一体となるように焼結し、CNT6と固定シート2と接合する。
 つまり、金属薄膜30がチタンから形成される場合においても、CNT6の炭素とチタンとの反応を伴なう反応焼結により、CNTアレイシート3が焼結体4に接合される。この場合、焼結体4は、CNTアレイシート3が有する炭素と、チタンとの反応生成物としての炭化チタン(無機炭化物)を含んでいる。つまり、焼結体4は、CNTアレイシート3が有する炭素と、固定シート2に含まれるチタンとの焼結体を含んでいる。
 (3)熱伝導性シートの使用態様
 このような熱伝導性シート1は、TIMとして、図1Bに示すように、例えば、電子部品11(対象物)と、放熱部材10(対象物)との間に、厚み方向に挟まれるように配置されて使用される。
 電子部品11としては、例えば、半導体素子(IC(集積回路)チップなど)、発光ダイオード(LED)、高出力レーザ発振素子、高出力ランプ、パワー半導体素子などが挙げられる。
 放熱部材10としては、例えば、ヒートシンク、ヒートスプレッダーなどが挙げられる。
 また、電子部品11の表面11B、および、放熱部材10の表面10Aには、微細な凹凸(表面粗さ)が形成されている。それらの表面粗さRz(JIS B0601-2013に準拠する十点平均粗さ)は、例えば、1μm以上10μm以下であることが好ましい。
 そして、熱伝導性シート1において、第1CNTアレイシート3Aの複数のCNT6は、放熱部材10の表面10Aの微細な凹凸に追従して、放熱部材10の表面10Aと安定して接触している。また、第2CNTアレイシート3Bの複数のCNT6は、電子部品11の表面11Bの微細な凹凸に追従して、電子部品11の表面11Bと安定して接触している。
 そのため、電子部品11が発熱すると、電子部品11からの熱が、第2CNTアレイシート3B、固定シート2および第1CNTアレイシート3Aを順次介して、放熱部材10に伝達される。
 (4)作用効果
 熱伝導性シート1は、図1Bに示すように、CNTアレイシート3を備えている。そのため、熱伝導性シート1を対象物(例えば、放熱部材10および電子部品11)に接触させたときに、CNTアレイシート3の複数のCNT6を対象物表面の微細な凹凸に追従させることができる。
 また、CNTアレイシート3は、図1Aに示すように、固定シート2の焼結体4と接合している。そのため、CNTアレイシート3が有するCNT6が、固定シート2から脱落することを抑制できる。
 焼結体4は、CNTアレイシート3が有する炭素と、固定シート2に含まれるケイ素および/またはチタンとの焼結体を含んでいる。そのため、CNTアレイシート3と焼結体4との親和性の向上を図ることができ、CNTアレイシート3を焼結体4と確実に接合することができる。その結果、CNTアレイシート3が有するCNT6が、固定シート2から脱落することを確実に抑制できる。
 CNTアレイシート3の端部は、焼結体4に埋め込まれている。そのため、CNTアレイシート3が有するCNT6が、固定シート2から脱落することをより一層確実に抑制できる。
 CNTアレイシート3の平均嵩密度は、50mg/cm以上である。そのため、CNTアレイシート3の熱伝導率の向上を図ることができ、ひいては、熱伝導性シート1の熱伝導率の向上を図ることができる。
 また、成長基板15から剥離されたCNTアレイシート3が、固定シート2の焼結体4と接合しているので、CNTアレイシート3を、成長基板15から剥離した後、高密度化処理することができる。そのため、CNTアレイシート3の平均嵩密度を上記下限以上とすることができる。
 また、成長基板15から剥離したCNTアレイシート3に金属薄膜30を形成した後、そのCNTアレイシート3を無機物の焼結体4から形成される固定シート2上に配置した後、焼成することにより、CNTアレイシート3を固定シート2と強固に接合させることができる。
 そのため、簡易な方法でありながら、固定シート2の焼結体4と接合するCNTアレイシート3を備える熱伝導性シート1を効率良く製造することができる。
 なお、上記の熱伝導性シートの製造方法では、薄膜配置工程において、CNTアレイシート3に金属薄膜30を形成し、そのCNTアレイシート3を固定シート2に配置したが、これに限定されず、固定シート2に金属薄膜30を形成した後、その金属薄膜30上にCNTアレイシート3を配置することもできる。これによっても、金属薄膜30を、CNTアレイシート3と固定シート2との間に配置できる。
 2.第2実施形態
 第1実施形態では、図4Cに示すように、無機物の焼結体4から形成される固定シート2を準備し、その固定シート2にCNTアレイシート3を配置した後、焼成して熱伝導性シート1を製造するが、本発明は、そのような熱伝導性シートの製造方法に限定されない。
 第2実施形態では、図5Aに示すように、無機粒子8を含有する樹脂シート7を準備し、その樹脂シート7にCNTアレイシート3を配置した後、焼成して熱伝導性シート1を製造する。なお、第2実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
 より詳しくは、図5Aに示すように、まず、無機粒子8を含有する樹脂シート7を準備する。
 樹脂シート7は、シート形状(平板形状)を有しており、平坦な表面7A(厚み方向一方面)および平坦な裏面7B(厚み方向他方面)を有している。樹脂シート7は、樹脂材料から形成されている。つまり、樹脂シート7は、樹脂材料と、無機粒子8とを含有している。樹脂材料としては、熱硬化性樹脂と、熱可塑性樹脂とが挙げられる。
 熱硬化性樹脂は、硬化体(硬化後の熱硬化性樹脂)であって、例えば、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、熱硬化性エラストマー(例えば、加硫ゴム、シリコーンゴム、アクリルゴムなど)などが挙げられる。
 熱可塑性樹脂としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレートなど)、ポリオレフィン(例えば、ポリエチレン、ポリプロピレンなど)、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリビニルアルコール(PVA)、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリウレタン、フッ素系ポリマー(例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル、ポリフッ化ビニリデンなど)、熱可塑性エラストマー(例えば、オレフィン系エラストマー(例えば、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴムなど)、スチレン系エラストマー、塩化ビニル系エラストマーなど)などが挙げられる。
 このような樹脂材料のなかでは、好ましくは、熱可塑性樹脂、さらに好ましくは、PVAおよびフッ素系ポリマー、とりわけ好ましくは、PVAが挙げられる。このような樹脂材料は、単独使用または2種類以上併用することができる。
 樹脂シート7の厚みは、例えば、5μm以上であることが好ましく、10μm以上であることがより好ましく、例えば、300μm以下であることが好ましく、100μm以下であることがより好ましい。
 無機粒子8は、上記の無機物から形成される粒子である。無機粒子8は、1種類の無機物の粒子から構成されてもよく、2種以上の無機物の粒子から構成されてもよい。
 無機粒子8の平均一次粒子径は、例えば、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、例えば、20μm以下であることが好ましく、10μm以下であることがより好ましい。
 また、無機粒子8の含有割合は、樹脂シート7の全量に対して、例えば、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、例えば、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。
 次いで、第1実施形態と同様にして準備されたCNTアレイシート3を、樹脂シート7の表面7Aおよび裏面7Bの両面に配置する。そして、CNTアレイシート3が配置された樹脂シート7を、第1実施形態と同様に、真空下または不活性雰囲気下で焼成する(焼成工程)。
 すると、樹脂シート7の樹脂材料が焼失して、無機粒子8が互いに接触するとともに、CNTアレイシート3における樹脂シート7側の端部が、無機粒子8と接触する。
 そして、互いに接触する無機粒子8が焼結するとともに、CNTアレイシート3のCNT6と無機粒子8とが焼結する。これにより、無機粒子8が焼結体4となり、固定シート2を形成し、CNTアレイシート3(CNT6)の端部が焼結体4に接合される。
 より詳しくは、無機粒子8が金属および/または無機炭化物から形成されている場合、CNTアレイシート3のCNT6は、第1実施形態と同様に、CNT6の炭素と金属および/または無機炭化物との反応を伴なう反応焼結により、焼結体4に埋め込まれ接合される。この場合、焼結体4は、金属および無機炭化物の焼結体を含有するか、無機炭化物の焼結体のみを含有している。
 また、無機粒子8が無機酸化物および/または無機窒化物から形成されている場合、CNTアレイシート3のCNT6は、無機粒子8の焼結に伴なって、無機粒子8と反応することなく、焼結体4に物理的に埋め込まれ接合される。この場合、焼結体4は、無機炭化物の焼結体を含有しておらず、無機酸化物および/または無機窒化物の焼結体を含有している。
 これによって、2つのCNTアレイシート3は、第1実施形態と同様に、固定シート2の表面2Aおよび裏面2Bの両面において、無機物の焼結体4に埋め込まれ接合されて、固定シート2に支持される。
 このような第2実施形態にかかる熱伝導性シート1において、厚み方向の電気抵抗(導電抵抗)の範囲は、上記の熱伝導性シート1の厚み方向の電気抵抗の範囲と同一であり、熱伝導率の範囲は、上記の熱伝導性シート1の熱伝導率の範囲と同一である。
 このような第2実施形態によれば、成長基板15から剥離したCNTアレイシート3を、図5Aに示すように、無機粒子8を含有する樹脂シート7上に配置した後、焼成して、無機粒子8を焼結体4に形成する。これによって、図1Aに示すように、固定シート2を形成でき、CNTアレイシート3を固定シート2の焼結体4と接合させることができる。
 そのため、簡易な方法でありながら、固定シート2の焼結体4と接合するCNTアレイシート3を備える熱伝導性シート1を効率良く製造することができる。
 このような第2実施形態によっても、上記の第1実施形態と同様の作用効果を奏することができる。
 3.第3実施形態
 次に、図5Bおよび図5Cを参照して、第3実施形態について説明する。なお、上記した第1実施形態および第2実施形態と同様の部材には同様の符号を付し、その説明を省略する。
 上記した第2実施形態では、無機粒子8を含有する樹脂シート7が準備され、CNTアレイシート3が樹脂シート7の両面に配置された後、その樹脂シート7を加熱して、無機粒子8を焼結することにより、熱伝導性シート1が製造されるが、本発明は、そのような熱伝導性シートの製造方法に限定されない。
 第3実施形態では、まず、図5Bに示すように、無機粒子8を含有するペーストを準備する(ペースト準備工程)。
 詳しくは、ペーストは、上記の樹脂材料と、無機粒子8とを含有している。このようなペーストを準備するには、無機粒子8を樹脂溶液に分散させる。
 無機粒子8の含有割合は、ペースト全量に対して、例えば、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、例えば、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。
 樹脂溶液は、上記の樹脂材料が溶媒(例えば、水、有機溶媒など)に溶解された溶液である。樹脂材料としては、好ましくは、熱可塑性樹脂、さらに好ましくは、PVAが挙げられる。
 次いで、上記の第1実施形態と同様にして準備された第2CNTアレイシート3B(CNTアレイシート3)の厚み方向の一方面に、ペーストを塗布して、ペースト層40を形成する(塗布工程)。そのため、ペースト層40は、樹脂材料および無機粒子8を含有している。
 ペースト層40の厚みは、例えば、10μm以上であることが好ましく、20μm以上であることがより好ましく、例えば、3mm以下であることが好ましく、200μm以下であることがより好ましく、100μm以下であることがとりわけ好ましい。
 そして、図5Cに示すように、第1CNTアレイシート3A(CNTアレイシート3)を、ペースト層40の表面40A(厚み方向一方側面)に配置する。
 これにより、ペースト層40が、第1CNTアレイシート3Aと第2CNTアレイシート3Bとの間に挟まれる。換言すれば、CNTアレイシート3(第1CNTアレイシート3Aおよび第2CNTアレイシート3B)が、ペースト層40の表面40Aおよび裏面40Bの両面に配置される。
 そして、CNTアレイシート3が配置されたペースト層40(ペーストが塗布されたCNTアレイシート3)を、真空下または不活性雰囲気下で加熱して、無機粒子8を焼成する(焼成工程)。なお、焼成温度および焼成時間の範囲は、上記の第1実施形態と同一である。
 これによっても、樹脂シート7の樹脂材料が焼失して、無機粒子8が互いに接触するとともに、CNTアレイシート3における樹脂シート7側の端部が、無機粒子8と接触する。そして、互いに接触する無機粒子8が焼結するとともに、CNTアレイシート3のCNT6が、焼結体4に埋め込まれて接合される。
 つまり、成長基板15から剥離したCNTアレイシート3に、無機粒子8を含有するペーストを塗布した後、焼成することで、無機粒子8を焼結体4に形成する。これによって、固定シート2を形成でき、CNTアレイシート3を固定シート2の焼結体4と接合させることができる。
 そのため、簡易な方法でありながら、固定シート2の焼結体4と接合するCNTアレイシート3を備える熱伝導性シート1を効率良く製造することができる。
 また、これよっても、上記の第1実施形態および第2実施形態と同様の作用効果を奏することができる。
 4.変形例
 第1実施形態および第2実施形態では、熱伝導性シート1は、固定シート2の表面2Aおよび裏面2Bの両面に接合されるCNTアレイシート3を備えているが、これに限定されない。図6に示すように、熱伝導性シート1は、固定シート2の表面2Aおよび裏面2Bの少なくともいずれか一方において、固定シート2の焼結体4と接合するCNTアレイシート3を備えていればよい。
 第1実施形態および第2実施形態では、高密度化処理後のCNTアレイシート3が、熱伝導性シート1の製造に用いられるが、これに限定されず、CNTアレイシート3は、成長基板15から剥離後、高密度化処理されることなく、熱伝導性シート1の製造に用いられてもよい。
 この場合、CNTアレイシート3は、焼成工程において、固定シート2の焼結体4に接合されるとともに、高密度化される。CNTアレイシート3における複数のCNT6の平均嵩密度は、例えば、50mg/cm以上となる。
 第1実施形態および第2実施形態では、CNTアレイシート3の高密度化処理として、加熱処理および液体供給処理が挙げられるが、CNTアレイシート3の高密度化処理は、これに限定されず、機械的な圧縮により、CNTアレイシート3を高密度化することもできる。
 例えば、図7Aおよび図7Bに示すように、成長基板15上のVACNTs19を2枚の押圧板46により圧縮して、高密度化されたCNTアレイシート3を調製する。
 より詳しくは、2枚の押圧板46を、VACNTs19を挟むように配置した後、互いに近づくようにスライドさせて、VACNTs19を圧縮する。すると、VACNTs19の複数のCNT6は、対応する粒状体18Aから離脱され、互いに接触するように圧縮される。
 これによっても、VACNTs19を成長基板15から分離でき、高密度化されたCNTアレイシート3を準備できる。
 また、固定シート2は、焼成工程において、上記の樹脂材料が黒鉛化されることにより生成する黒鉛(グラファイト)を含有してもよい。この場合、黒鉛の含有割合は、固定シート2の全量に対して、例えば、10質量%以上50質量%以下であることが好ましい。
 第1実施形態~第3実施形態では、固定シート2が電気絶縁性を有しており、熱伝導性シート1が電気絶縁性シートとして構成されているが、これに限定されず、固定シート2を電気伝導性となるように形成して、熱伝導性シート1を電気伝導性シートとして構成してもよい。
 また、熱伝導性シート1が電気伝導性シートである場合、CNTアレイシート3の高密度化処理において供給される揮発性の液体には、無機微粒子を分散してもよい。
 無機微粒子としては、炭素微粒子(例えば、カーボンブラック、アモルファスカーボンなど)、金属微粒子、電気伝導性を有するセラミックス微粒子などが挙げられる。このような無機微粒子は、単独使用または2種類以上併用することができる。
 この場合、CNTアレイシート3には、無機微粒子が均一に付着する。これによって、CNTアレイシート3に、熱伝導性シート1の用途により、適宜要求される特性を付与することができる。
 第1実施形態~第3実施形態では、CNT接合シートが熱伝導性シート1である場合について詳述するが、CNT接合シートの用途は、熱伝導性シートに限定されない。CNT接合シートの用途としては、例えば、接着シート、防振材、断熱材などが挙げられる。
 これら変形例によっても、上記の第1実施形態~第3実施形態と同様の作用効果を奏することができる。また、これら第1実施形態~第3実施形態および変形例は、適宜組み合わせることができる。
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明は、それらに限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
  (実施例1)
 ステンレス製の成長基板(ステンレス基板)の表面に二酸化ケイ素膜を積層した後、二酸化ケイ素膜上に、触媒層として鉄を蒸着した。
 次いで、成長基板を所定の温度に加熱して、触媒層に原料ガス(アセチレンガス)を供給した。これにより、成長基板上において、平面視略矩形形状のVACNTsを形成した。
 VACNTsにおいて、複数のCNTは、互いに略平行となるように延び、成長基板に対して直交するように配向(垂直配向)されていた。CNTは、多層カーボンナノチューブであり、CNTの平均外径は、約12nm、CNTの平均長さは、約80μm、VACNTsの嵩密度は、約50mg/cmであった。
 次いで、カッター刃(切断刃)を成長基板に沿って移動させて、VACNTsを成長基板から切り離して、CNTアレイシートを準備した。
 次いで、CNTアレイシートを、耐熱容器である炭素容器に収容して、その炭素容器を抵抗加熱炉(高温加熱炉)内に配置した。
 次いで、抵抗加熱炉内を、アルゴン雰囲気に置換した後、10℃/分で2800℃まで昇温し、2800℃で2時間保持した。これにより、CNTアレイシートが高密度化され、その後、自然冷却により室温まで冷却した。
 高密度化されたCNTアレイシートの嵩密度は、約100mg/cmであり、そのCNTアレイシートの厚み方向の電気抵抗(導電抵抗)は、25℃において、0.1Ωであり、そのCNTアレイシートの熱伝導率は、厚み方向において、約30W/(m・K)であった。
 そして、上記と同様にして、高密度化されたCNTアレイシートを2つ準備した。
 次いで、2つのCNTアレイシートのそれぞれの一方面に、蒸着により、厚みが20nmのケイ素薄膜(金属薄膜)を形成した。
 次いで、厚みが100μmであり、炭化ケイ素の焼結体から形成されるセラミックスシート(固定シート)を準備した。
 そして、ケイ素薄膜がセラミックスシートと接触するように、CNTアレイシートを固定シートの表面および裏面の両面に配置した。
 続いて、CNTアレイシートが配置されたセラミックスシートを、抵抗加熱炉(高温加熱炉)内に配置して、不活性ガス雰囲気中において、1700℃で15分間加熱した。
 これにより、CNTの炭素と蒸着されたケイ素とが反応して、炭化ケイ素を生成するとともに、その炭化ケイ素とセラミックスシートとが焼結により接合した。その後、冷却して、熱伝導性シートを得た。
  (実施例2)
 PVAから形成され、ケイ素粒子(無機粒子)が分散されている樹脂シートを準備した。なお、ケイ素粒子の平均一次粒子径は、2μmであり、ケイ素粒子の含有割合は、樹脂シート全量に対して、20質量%であった。また、PVAの含有割合は、樹脂シート全量に対して、80質量%であった。
 次いで、実施例1と同様にして準備されたCNTアレイシートを樹脂シートの表面および裏面の両面に配置した。続いて、CNTアレイシートが配置された樹脂シートを、抵抗加熱炉(高温加熱炉)内に配置して、不活性ガス雰囲気中において、1700℃で15分間加熱した。
 これにより、樹脂シートのPVAが焼失するとともに、CNTの炭素と、樹脂シートのケイ素粒子とが反応して炭化ケイ素を生成し、その炭化ケイ素とケイ素粒子とが焼結体を形成して、固定シートを形成した。つまり、固定シートは、炭化ケイ素とケイ素との焼結体を含有していた。固定シートの厚みは、100μmであった。
 その後、冷却して、熱伝導性シートを得た。
  (実施例3)
 PVAが水(溶媒)に溶解されたPVA溶液(樹脂溶液、PVA濃度:10質量%)に、ケイ素粒子(無機粒子)を分散させて、ペーストを準備した。
 なお、ケイ素粒子の平均一次粒子径は、2μmであり、ケイ素粒子の含有割合は、ペースト全量に対して、20質量%であった。また、PVAの含有割合は、ペースト全量に対して、80質量%であった。
 次いで、実施例1と同様にして準備された2つのCNTアレイシートのうち、一方のCNTアレイシートに、ペーストを塗布して、厚み約2mmのペースト層を形成した。そして、他方のCNTアレイシートを、ペースト層が2つのCNTアレイシートの間に挟まれるように、ペースト層上に配置した。
 その後、CNTアレイシートが配置されたペースト層を、抵抗加熱炉(高温加熱炉)内に配置して、不活性ガス雰囲気中において、1700℃で15分間加熱した。その後、冷却して、熱伝導性シートを得た。なお、固定シートの厚みは、100μmであった。
  (実施例4)
 PVAから形成され、窒化ケイ素粒子(無機粒子)が分散されている樹脂シートを準備したこと以外は、実施例2と同様にして、熱伝導性シートを得た。なお、熱伝導性シートの固定シートの厚みは、100μmであった。
  (比較例1)
 ステンレス製の成長基板の表面および裏面の両面に、二酸化ケイ素膜を積層した後、二酸化ケイ素膜上に、触媒層として鉄を蒸着した。
 次いで、成長基板を所定の温度に加熱して、触媒層に原料ガス(アセチレンガス)を供給した。これにより、基板の表面および裏面の両面に、平面視略矩形形状のVACNTsを形成した。各VACNTsにおいて、CNTの平均外径、CNTの平均長さ、および、嵩密度は、実施例1と同様であった。
 そして、両面にVACNTsが配置される成長基板を、熱伝導性シートとした。
 <評価>
(1)熱伝導率
 各実施例および比較例で得られた熱伝導性シートについて、熱抵抗を熱抵抗測定装置(商品名:T3Ster DynTIM Tester、メンターグラフィックス社製)により測定した。そして、熱伝導性シートの厚みを変更して、熱抵抗を複数点(例えば、3点)測定し、熱伝導性シートの厚みおよび測定された熱抵抗をプロットした。そのプロット結果から、熱伝導性シートの熱伝導率を算出した。その結果を表1に示す。
 (2)電気抵抗
 各実施例および比較例で得られた熱伝導性シートについて、厚み方向の電気抵抗を電気抵抗測定装置(商品名:レジスティビティ・チェンバ、エーディーシー社製)により測定した。その結果を、表1に示す。
 (3)接着強度試験
 各実施例で得られた熱伝導性シートについて、粘着テープを、CNTアレイシートに対して、固定シートと反対側から貼着した後、粘着テープを剥離した。
 また、比較例で得られた熱伝導性シートについて、粘着テープを、VACNTsに対して、成長基板と反対側から貼着した後、粘着テープを剥離した。
 そして、接着強度を、以下の基準により評価した。その結果を表1に示す。
 ○:CNTアレイシート(VACNTs)の固定シート(成長基板)からの顕著な剥離がみられなかった。
 ×:CNTアレイシート(VACNTs)の固定シート(成長基板)からの顕著な剥離がみられた。
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 CNT接合シートは、各種の産業製品に適用でき、例えば、熱伝導性材料、接着シート、防振材、断熱材などとして用いることができる。CNT接合シートの製造方法は、各種の産業製品に用いられるCNT接合シートの製造に好適に用いることができる。
 1   熱伝導性シート
 2   固定シート
 3   CNTアレイシート
 4   焼結体
 6   CNT
 7   樹脂シート
 8   無機粒子
 15  成長基板
 19  VACNTs

Claims (7)

  1.  無機物の焼結体から形成される固定シートと、
     前記固定シートの前記焼結体と接合しているカーボンナノチューブアレイシートと、を備えていることを特徴とする、カーボンナノチューブ接合シート。
  2.  前記無機物は、ケイ素および/またはチタンを含み、
     前記焼結体は、前記カーボンナノチューブアレイシートが有する炭素と、前記固定シートに含まれるケイ素および/またはチタンとの焼結体を含んでいることを特徴とする、請求項1に記載のカーボンナノチューブ接合シート。
  3.  前記カーボンナノチューブアレイシートの前記焼結体と接合する端部は、前記焼結体に埋め込まれていることを特徴とする、請求項1に記載のカーボンナノチューブ接合シート。
  4.  前記カーボンナノチューブアレイシートの平均嵩密度は、50mg/cm以上であることを特徴とする、請求項1に記載のカーボンナノチューブ接合シート。
  5.  無機物の焼結体から形成される固定シートを準備する工程と、
     成長基板上に垂直配向カーボンナノチューブを成長させる工程と、
     前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、
     前記カーボンナノチューブアレイシートと前記固定シートとの間に金属薄膜を配置する工程と、
     前記金属薄膜が配置された前記カーボンナノチューブアレイシートおよび前記固定シートを、真空下または不活性雰囲気下で焼成する工程と、を含むことを特徴とする、カーボンナノチューブ接合シートの製造方法。
  6.  無機粒子を含有する樹脂シートを準備する工程と、
     成長基板上に垂直配向カーボンナノチューブを成長させる工程と、
     前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、
     前記カーボンナノチューブアレイシートを前記樹脂シート上に配置する工程と、
     前記カーボンナノチューブアレイシートが配置された前記樹脂シートを、真空下または不活性雰囲気下で焼成する工程と、を含むことを特徴とする、カーボンナノチューブ接合シートの製造方法。
  7.  成長基板上に垂直配向カーボンナノチューブを成長させる工程と、
     前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、
     前記カーボンナノチューブアレイシートに、無機粒子を含有するペーストを塗布する工程と、
     前記ペーストが塗布されたカーボンナノチューブアレイシートを、真空下または不活性雰囲気下で焼成する工程と、を含むことを特徴とする、カーボンナノチューブ接合シートの製造方法。
     
PCT/JP2016/089030 2015-12-28 2016-12-28 カーボンナノチューブ接合シートおよびカーボンナノチューブ接合シートの製造方法 WO2017115831A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/066,519 US20190010376A1 (en) 2015-12-28 2016-12-28 Carbon nanotube bonded sheet and method for producing carbon nanotube bonded sheet
CN201680074758.7A CN108430919B (zh) 2015-12-28 2016-12-28 碳纳米管接合片以及碳纳米管接合片的制造方法
JP2017559229A JP6714616B2 (ja) 2015-12-28 2016-12-28 カーボンナノチューブ接合シートおよびカーボンナノチューブ接合シートの製造方法
EP16881805.2A EP3398906A4 (en) 2015-12-28 2016-12-28 CARBON NANOTUBE JUNCTION SHEET AND PROCESS FOR PRODUCTION THEREOF OF CARBON NANOTUBE JUNCTION SHEET
KR1020187018111A KR102693898B1 (ko) 2015-12-28 2016-12-28 카본나노튜브 접합시트 및 카본나노튜브 접합시트의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015256721 2015-12-28
JP2015-256721 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115831A1 true WO2017115831A1 (ja) 2017-07-06

Family

ID=59224784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089030 WO2017115831A1 (ja) 2015-12-28 2016-12-28 カーボンナノチューブ接合シートおよびカーボンナノチューブ接合シートの製造方法

Country Status (7)

Country Link
US (1) US20190010376A1 (ja)
EP (1) EP3398906A4 (ja)
JP (1) JP6714616B2 (ja)
KR (1) KR102693898B1 (ja)
CN (1) CN108430919B (ja)
TW (1) TWI725099B (ja)
WO (1) WO2017115831A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735493B2 (en) 2019-05-08 2023-08-22 Fujitsu Limited Conductive heat radiation film, method of manufacturing the same, and method of manufacturing electronic device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306167B (zh) * 2019-06-06 2021-06-04 沈阳航空航天大学 一种原位生长cnt层增强轻质合金胶接界面强度的方法
JP7372092B2 (ja) * 2019-09-18 2023-10-31 日立造船株式会社 カーボンナノチューブ撚糸の製造方法
US11581236B2 (en) * 2020-02-14 2023-02-14 Micron Technology, Inc. Self-cleaning heatsink for electronic components
CN214176013U (zh) 2020-12-23 2021-09-10 迪科特测试科技(苏州)有限公司 半导体结构
KR102283073B1 (ko) * 2021-01-08 2021-07-28 새빛이앤엘 (주) 탄성 인터레이어와 cnt 레이어를 이용한 하이브리드 방열 조립체 및 그 조립 방법
US11653475B2 (en) * 2021-02-01 2023-05-16 Microsoft Technology Licensing, Llc Thermally conductive microtubes for evenly distributing heat flux on a cooling system
DE102023108698A1 (de) 2023-04-05 2024-10-10 Danfoss Silicon Power Gmbh Baugruppe zur Bereitstellung elektronischer Funktionalitäten und Mittel zur Qualitätssicherung einer Fixierschicht davon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227331A (ja) * 2013-05-27 2014-12-08 日立造船株式会社 カーボンナノチューブシートおよびその製造方法
JP2015098418A (ja) * 2013-11-20 2015-05-28 日立造船株式会社 カーボンナノチューブシートの製造方法
JP2015526904A (ja) * 2013-07-10 2015-09-10 ▲ホア▼▲ウェイ▼技術有限公司 熱界面パッド及びその製造方法並びに放熱システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2856939B1 (fr) * 2003-07-03 2005-09-30 Jobin Yvon Sas Humidificateur de gaz
US20050116336A1 (en) * 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
CN100454526C (zh) * 2005-06-30 2009-01-21 鸿富锦精密工业(深圳)有限公司 热界面材料制造方法
JP5364978B2 (ja) * 2007-03-28 2013-12-11 富士通セミコンダクター株式会社 表面改質カーボンナノチューブ系材料、その製造方法、電子部材および電子装置
CN100569509C (zh) * 2007-06-15 2009-12-16 清华大学 一种碳纳米管阵列/层状材料复合物及其制备方法
JP5146371B2 (ja) * 2008-07-11 2013-02-20 株式会社豊田中央研究所 カーボンナノ複合体、それを含む分散液及び樹脂組成物、並びにカーボンナノ複合体の製造方法
JP5463674B2 (ja) * 2009-01-28 2014-04-09 株式会社豊田中央研究所 カーボンナノ複合体、それを含む分散液および樹脂組成物、ならびにカーボンナノ複合体の製造方法
GB0914816D0 (en) * 2009-08-25 2009-09-30 Isis Innovation Method of fabrication of aligned nanotube-containing composites
JP5293561B2 (ja) * 2009-10-29 2013-09-18 富士通株式会社 熱伝導性シート及び電子機器
CN102792441B (zh) * 2010-03-12 2016-07-27 富士通株式会社 散热结构及其制造方法
US9096784B2 (en) * 2010-07-23 2015-08-04 International Business Machines Corporation Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance
JP2014002273A (ja) * 2012-06-19 2014-01-09 Nec Corp 情報表示装置、その制御方法及びプログラム
US9656246B2 (en) * 2012-07-11 2017-05-23 Carbice Corporation Vertically aligned arrays of carbon nanotubes formed on multilayer substrates
JP2014094856A (ja) * 2012-11-09 2014-05-22 Hitachi Zosen Corp カーボンナノチューブ生成用基板の製造方法および連続製造装置
JP2014234339A (ja) * 2013-06-05 2014-12-15 日立造船株式会社 カーボンナノチューブシートおよびカーボンナノチューブシートの製造方法
JP2015001180A (ja) * 2013-06-14 2015-01-05 株式会社東芝 軸流タービン
JP6186933B2 (ja) * 2013-06-21 2017-08-30 富士通株式会社 接合シート及びその製造方法、並びに放熱機構及びその製造方法
CN104973583B (zh) * 2014-04-14 2017-04-05 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN104973584B (zh) * 2014-04-14 2018-03-02 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227331A (ja) * 2013-05-27 2014-12-08 日立造船株式会社 カーボンナノチューブシートおよびその製造方法
JP2015526904A (ja) * 2013-07-10 2015-09-10 ▲ホア▼▲ウェイ▼技術有限公司 熱界面パッド及びその製造方法並びに放熱システム
JP2015098418A (ja) * 2013-11-20 2015-05-28 日立造船株式会社 カーボンナノチューブシートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3398906A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735493B2 (en) 2019-05-08 2023-08-22 Fujitsu Limited Conductive heat radiation film, method of manufacturing the same, and method of manufacturing electronic device
US12027441B2 (en) 2019-05-08 2024-07-02 Fujitsu Limited Conductive heat radiation film, method of manufacturing the same, and method of manufacturing electronic device

Also Published As

Publication number Publication date
TWI725099B (zh) 2021-04-21
JP6714616B2 (ja) 2020-06-24
KR102693898B1 (ko) 2024-08-08
CN108430919A (zh) 2018-08-21
EP3398906A1 (en) 2018-11-07
US20190010376A1 (en) 2019-01-10
EP3398906A4 (en) 2019-10-23
CN108430919B (zh) 2022-01-28
KR20180098560A (ko) 2018-09-04
JPWO2017115831A1 (ja) 2018-11-29
TW201722845A (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
WO2017115831A1 (ja) カーボンナノチューブ接合シートおよびカーボンナノチューブ接合シートの製造方法
US11414321B2 (en) Carbon nanotube composite material and method for producing carbon nanotube composite material
JP6840725B2 (ja) カーボンナノチューブ構造体の起毛方法、カーボンナノチューブ構造体の製造方法およびカーボンナノチューブ構造体
US20060035085A1 (en) High thermal conductivite element, method for manufacturing same, and heat radiating system
US9284196B2 (en) Graphene-like nanosheet structure network on a substrate and the method for forming the same
US7150911B2 (en) Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
EP1588385A1 (en) Carbonaceous material for forming electrically conductive material and use thereof
WO2016136826A1 (ja) カーボンナノチューブ高密度集合体およびカーボンナノチューブ高密度集合体の製造方法
JPWO2019078036A1 (ja) サセプター
JP6917725B2 (ja) カーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材
EP3532539B1 (en) Composite material and method of forming same, and electrical component including composite material
JP2017071528A (ja) 層間熱接合材料およびパワー半導体用冷却システム
JP2007314401A (ja) ダイヤモンドの製造方法
CN117776736A (zh) 氮化硼全陶瓷颗粒、其制备方法及应用
RU2007112860A (ru) Углеродсодержащий наноматериал с низким порогом полевой эмиссии электронов и способ его получения (варианты)
CN106584968A (zh) 一种高散热性能石墨烯复合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017559229

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187018111

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016881805

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881805

Country of ref document: EP

Effective date: 20180730