WO2014081005A1 - セラミックス炭素複合材の特性制御方法並びにセラミックス炭素複合材 - Google Patents

セラミックス炭素複合材の特性制御方法並びにセラミックス炭素複合材 Download PDF

Info

Publication number
WO2014081005A1
WO2014081005A1 PCT/JP2013/081485 JP2013081485W WO2014081005A1 WO 2014081005 A1 WO2014081005 A1 WO 2014081005A1 JP 2013081485 W JP2013081485 W JP 2013081485W WO 2014081005 A1 WO2014081005 A1 WO 2014081005A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
carbon composite
composite material
carbonaceous material
carbonaceous
Prior art date
Application number
PCT/JP2013/081485
Other languages
English (en)
French (fr)
Inventor
宮本 欽生
衛武 陳
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to EP13856647.6A priority Critical patent/EP2924016A4/en
Priority to CN201380061584.7A priority patent/CN104822639A/zh
Priority to US14/440,386 priority patent/US20150299053A1/en
Priority to JP2014548625A priority patent/JPWO2014081005A1/ja
Publication of WO2014081005A1 publication Critical patent/WO2014081005A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a method for controlling characteristics of a ceramic carbon composite material, which is a composite material of graphite and ceramics, and a ceramic carbon composite material.
  • carbon materials have low specific gravity, excellent heat resistance, corrosion resistance, slidability, electrical conductivity, thermal conductivity, and workability, and are used in a wide range of fields such as semiconductors, metallurgy, machinery, electricity, and nuclear power. ing.
  • a SiC-coated graphite composite material obtained by coating a graphite base material with SiC or TaC by a gas phase reaction or a melt reaction is used as a susceptor for compound semiconductor manufacturing by chemical vapor deposition.
  • these products have heat resistance and chemical stability and prevent the generation of graphite particles, they do not lead to improvement in strength and are high in production cost, and are limited to applications such as susceptors. Further, it is technically difficult to uniformly coat a three-dimensionally complicated graphite base material.
  • SiC / carbon composite materials in which molten carbon is impregnated with porous carbon at a high temperature to excite the combustion synthesis reaction to convert the pores of the porous carbon into SiC have been developed (see Patent Document 1).
  • This composite material can be formed into a near net product based on a porous carbon material processed into a relatively simple three-dimensional shape such as bolts and nuts, but lacks the denseness peculiar to impregnating materials, has a rough surface, and costs Is not used at present.
  • Patent Document 2 a C—SiC sintered body in which SiC ultrafine powder having an average particle size of 10 to 100 nm and graphite particles are mixed and densified to a high density by plasma discharge sintering has been developed (see Patent Document 2). .
  • This composite material contains 1 to 95% by weight of SiC, has a relative density of 70 to 99.5%, and a high bending strength of 100 to 350 MPa has been reported.
  • it is a composite structure in which SiC particles and carbon particles are uniformly mixed, and is not based on the concept of separating and forming the interface between carbon particles with ceramics. Ceramics are limited to SiC.
  • C / C composites obtained by impregnating carbon fiber fabrics with pitch impregnated and baked, and composite materials impregnated with resins are widely used. Has not been improved and its use at high temperatures in the air is limited. In addition, the surface is rough, processing is difficult, and production takes a long time.
  • the present applicant has developed a ceramic carbon composite material in which a ceramic interface layer is formed between carbonaceous materials, and the ceramic interface layer has a three-dimensional network structure continuous between the carbonaceous materials.
  • This composite material is lighter than ceramics and has excellent oxidation resistance, dust generation resistance, thermal conductivity, electrical conductivity, strength, denseness, etc., and has characteristics that can solve the problems of the prior art. It was. However, since the degree of freedom of the manufacturing process is limited in order to firmly bond the carbonaceous material and the ceramic material, it is difficult to adjust the manufacturing conditions, which is a conventional means for controlling the characteristics, and as a composite material It was difficult to control the characteristics.
  • An object of the present invention is to control the characteristics of a ceramic carbon composite material in which a ceramic interface layer is formed between carbonaceous materials, and the ceramic interface layer has a continuous three-dimensional network structure between the carbonaceous materials. And a ceramic carbon composite material with controlled properties.
  • the method for controlling characteristics of a ceramic carbon composite material according to the first aspect of the present invention has a three-dimensional network structure in which a ceramic interface layer is formed between carbonaceous materials, and the ceramic interface layer is continuous between carbonaceous materials.
  • a method for controlling characteristics of a ceramic carbon composite material wherein by specifying and selecting at least one of the shape, hardness, and graphitization degree of the carbonaceous material, It is characterized by controlling the characteristics.
  • the ceramic carbon composite of the second aspect of the present invention is a ceramic having a three-dimensional network structure in which a ceramic interface layer is formed between carbonaceous materials, and the ceramic interface layer is continuous between the carbonaceous materials.
  • a carbon composite material, wherein the carbonaceous material is carbon fiber.
  • the characteristic of the ceramic carbon composite material can be controlled by selecting an appropriate carbonaceous material without depending on the adjustment of the manufacturing conditions.
  • FIG. 1 is a schematic cross-sectional view showing a ceramic carbon composite material of one embodiment according to the present invention.
  • FIG. 2 is a scanning electron micrograph showing a cross section of a ceramic carbon composite material in an example according to the present invention.
  • FIG. 3 is a scanning electron micrograph showing a cross section of a ceramic carbon composite material in an example according to the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a ceramic carbon composite material in an embodiment according to the present invention.
  • the ceramic carbon composite material 1 is formed by disposing a ceramic interface layer 3 between graphite or carbon particles 2 containing graphite.
  • the ceramic interface layer 3 forms a continuous three-dimensional network structure between the carbon particles 2. Since the ceramic material constituting the ceramic interface layer 3 is excellent in oxidation resistance, heat resistance, wear resistance, strength, etc., the ceramic interface layer 3 forms a continuous three-dimensional network structure. These characteristics in the composite material 1 can be enhanced.
  • the carbonaceous material 2 is made of particles of coke such as petroleum, coal-derived raw coke, calcined coke, and needle coke, and carbon material having a relatively low degree of graphitization such as char, soot, and glassy carbon. Or as appropriate, such as natural graphite made of phosphorus graphite, flake graphite, earthy graphite, etc., artificial graphite made of coke or mesophase spherules, etc., and carbon material with a relatively high degree of graphitization, etc. Can be used.
  • the characteristics of the ceramic carbon composite material 1 can be controlled by using those carbonaceous materials with the shape, hardness and graphitization degree appropriately specified.
  • the average particle diameter (d50) of the carbonaceous material 2 is preferably about 50 nm to 500 ⁇ m, more preferably about 1 ⁇ m to 250 ⁇ m, and further preferably about 5 ⁇ m to 100 ⁇ m. If the average particle diameter (d50) of the carbonaceous material 2 is too small, the carbonaceous material 2 may be agglomerated. If the carbonaceous material 2 is too agglomerated, the ceramic carbon composite material 1 may not obtain carbon characteristics. is there. On the other hand, if the average particle diameter (d50) of the carbonaceous material 2 is too large, the strength of the fired ceramic carbon composite material 1 may be reduced.
  • the plurality of carbonaceous materials 2 may include only one type of carbonaceous material 2 or may include a plurality of types of carbonaceous material 2.
  • the carbonaceous material 2 a material having an aspect ratio (average major axis diameter / average minor axis diameter) of 1.5 to 20 may be used.
  • the ceramic carbon composite material 1 having a three-dimensional network structure is formed using the carbonaceous material 2 having the above aspect ratio, the carbonaceous particles 2 are oriented in the direction of the long axis, together with the ceramic interface layer 3. Due to the anisotropy, the characteristics of the ceramic carbon composite material 1 can be made anisotropic.
  • the aspect ratio is less than 1.5, the above anisotropy is hardly expressed, and when it exceeds 20, the carbonaceous material 2 is more likely to be damaged.
  • the average major axis diameter and average minor axis diameter of the carbonaceous material can be measured, for example, by observation with an electron microscope.
  • the major axis diameter and minor axis diameter of about 100 carbonaceous materials 2 can be measured, and the average major axis diameter and average minor axis diameter can be calculated from these values to determine the aspect ratio.
  • the average major axis diameter and the average minor axis diameter may be obtained by image processing.
  • Examples of the carbonaceous material having an aspect ratio of 1.5 to 20 include columnar materials and fibrous materials.
  • the carbonaceous material 2 may use particulate carbon having a wide particle size distribution.
  • the carbonaceous material 2 having a narrow particle size distribution since the ceramic interface layer 3 is formed with a uniform thickness, the characteristics in the material are stable, but when the particulate carbon having a wide particle size distribution is used, Since the thickness of the ceramic interface layer 3 is also non-uniform, it is possible to control the direction in which the characteristics are different in a part of the material and the mechanical characteristics are reduced.
  • the particle size distribution (that is, the particle size distribution) of the carbonaceous material 2 can be obtained by image analysis using an electron microscope, a laser diffraction particle size distribution measuring device, or the like.
  • carbonaceous material 2 having a graphitization degree of 20 to 100% it is preferable to use.
  • carbonaceous material 2 having a relatively low graphitization degree is selected, the hardness, bending strength, etc. of ceramic carbon composite material 1 are selected.
  • the mechanical properties and thermal properties of the thermal conductivity can be enhanced, and electrical properties such as the electrical conductivity of the ceramic carbon composite material 1 can be enhanced by selecting a carbonaceous material having a high degree of graphitization. . If the degree of graphitization is less than 20%, the characteristics of the ceramic carbon composite material 1 are hardly expressed in the electrical characteristics and thermal characteristics.
  • the degree of graphitization of the carbonaceous material 2 can be determined by measuring the (002) plane spacing of the graphite crystal by X-ray diffraction.
  • the carbonaceous material 2 may be controlled by using carbonaceous materials having different hardnesses to control the characteristics of the ceramic carbon composite material.
  • carbonaceous material having different hardness for example, carbonaceous materials having different graphitization degrees can be used.
  • carbon fiber can be used as the carbonaceous material 2.
  • the carbon fiber is a carbon material in which mechanical characteristics, electrical characteristics, and thermal characteristics are extremely biased in the fiber length direction, and can be a material suitable for developing the anisotropy of the ceramic carbon composite material 1.
  • As the carbon fiber an appropriate one according to the characteristics such as PAN, pitch, and vapor grown carbon fiber can be selected.
  • the average fiber diameter of the carbon fiber is preferably 1 to 100 ⁇ m, and if it is less than 1 ⁇ m, mechanical properties are hardly expressed, and if it exceeds 100 ⁇ m, the formation of the ceramic carbon composite material 1 may be difficult.
  • the average fiber length of the carbon fibers is preferably 20 to 5000 ⁇ m, more preferably 20 to 3000 ⁇ m. If the thickness is less than 20 ⁇ m, it is difficult to develop anisotropy, and if it exceeds 5000 ⁇ m, it is difficult to form the ceramic carbon composite material 1, and the carbon fiber may be broken halfway.
  • the average fiber length is preferably larger than the fiber diameter. In providing these average fiber diameters and average fiber lengths, chopped fibers and milled fibers can be suitably used.
  • the ceramic carbon composite material 1 using carbon fibers as the carbonaceous material 2 preferably has a relative density of 90% or more. Conventionally, there is no ceramic carbon composite material 1 having a three-dimensional network structure using carbon fibers having a fibrous shape, and a ceramic carbon composite material 1 utilizing the excellent characteristics of carbon fibers has not been obtained.
  • the relative density is 90% or more, preferably 90 to 99%, so that the carbon fiber and the ceramic are firmly integrated, and the ceramic carbon composite utilizing the characteristics of the carbon fiber while having the characteristics of the ceramic. Material 1 can be obtained.
  • the carbon fiber is preferably contained in an amount of 50% by volume or more, and more preferably in the range of 50 to 80% by volume.
  • the carbon fiber is less than 50% by volume, the characteristics of the carbon fiber are hardly expressed and it is difficult to obtain a lightweight composite material.
  • the ceramic carbon composite 1 By controlling the type, shape, and size of the carbonaceous particles 2, the type of ceramic material forming the ceramic interface layer 3, the thickness of the ceramic interface layer, and three-dimensional continuity, the ceramic carbon composite 1
  • the oxidation resistance, wear resistance, strength, bulk density, and the like of the resin can be improved, and properties such as electrical conductivity and thermal conductivity can be controlled higher or lower than desired.
  • the ceramic material constituting the ceramic interface layer 3 As the ceramic material constituting the ceramic interface layer 3, a material such as AlN, Al 2 O 3 , SiC, Si 3 N 4 , SiO 2 , ZrO 2, etc. having electrical insulation is used, and the carbonaceous particles 2 are converted into the ceramic interface layer 3. By forming a continuous three-dimensional network structure that is completely covered with the ceramic carbon composite material 1, the ceramic carbon composite material 1 can be provided with ceramic characteristics.
  • the ceramic material for forming the ceramic interface layer 3 SiC or ZnO is used, and when the ceramic interface layer 3 is made thin by several hundreds of nanometers, when a voltage higher than a certain level is applied, the ceramic interface layer 3 A tunnel current or a Schottky current is generated in the ceramic carbon composite material 1, and a varistor effect indicating a nonlinear current-voltage characteristic can be imparted to the ceramic carbon composite material 1, and these characteristics can be controlled.
  • a ceramic carbon composite material 1 shown in FIG. 1 forms a molded body made of a ceramic-coated powder obtained by coating a carbonaceous particle 2 with a ceramic layer made of a ceramic material constituting the ceramic interface layer 3, and sinters this molded body.
  • the ceramic interface layer 3 is silicon carbide, silicon nitride, a carbonaceous material, and a binder are mixed, a mixture containing the carbonaceous material with silicon nitride attached to the surface is molded, and the molded body is pressed and fired.
  • a method of converting silicon nitride into silicon carbide can also be used.
  • a molded body including the carbonaceous material 2 having ceramics attached to the surface is produced.
  • the shape of the ceramic adhered to the surface of the carbonaceous material 2 is not particularly limited. For example, particle shape, film shape, etc. are mentioned.
  • the average particle size is preferably about 50 nm to 10 ⁇ m, and more preferably about 100 nm to 1 ⁇ m.
  • the average particle size of the ceramic is preferably in the range of 1/100 to 1/5 of the average particle size of the carbonaceous material 2. In this case, substantially the entire surface of the carbonaceous material 2 can be covered with ceramics.
  • the average particle size of the ceramic is more preferably in the range of 1/50 to 1/10 of the average particle size of the carbonaceous material 2, and more preferably in the range of 1/40 to 1/20.
  • the mixing ratio of ceramics and carbonaceous material 2 (the volume of ceramics: the volume (volume ratio) of carbonaceous material 2) is preferably 5:95 to 50:50, and 10:90 to 30:70. It is more preferable.
  • the method for attaching ceramics to the surface of the carbonaceous material 2 is not particularly limited.
  • the carbonaceous material 2 and ceramics may be mixed.
  • Specific examples include a gas phase method, a liquid phase method, a mechanical mixing method in which ceramics and carbonaceous material 2 are mixed using a mixer, a slurry method, or a method in which these are combined.
  • Specific examples of the vapor phase method include a chemical vapor deposition method (CVD method) and a conversion method (CVR method).
  • Specific examples of the liquid phase method include a chemical precipitation method.
  • Specific examples of the slurry method include a gel casting method, slip casting, tape casting, and the like.
  • the method for forming the carbonaceous material 2 having ceramics attached to the surface is not particularly limited.
  • the gel cast method it is possible to simultaneously attach and form ceramics to the surface of the carbonaceous material 2, and to prevent the carbonaceous material 2 from being damaged and to consult the maintenance of the shape.
  • a liquid solvent and a binder are mixed to form a slurry, and a carbonaceous material is added to the slurry, mixed, and then dried to obtain a solid mixture.
  • the molded body is fired.
  • a discharge plasma sintering method for example, a discharge plasma sintering method, a normal pressure sintering method, a hot press sintering method, or the like can be used.
  • the discharge plasma sintering method is convenient because high-density sintering can be performed in a short time of 2 to 60 minutes.
  • the firing temperature and firing time of the molded body, the type of firing atmosphere, the pressure of the firing atmosphere, and the like can be appropriately set according to the type, shape, size, etc. of the material used. .
  • the firing temperature may be 1700 ° C. or higher, for example.
  • the firing temperature is preferably about 1700 ° C. to 2100 ° C., more preferably about 1800 ° C. to 2000 ° C.
  • the firing time can be, for example, about 5 minutes to 2 hours.
  • the kind of baking atmosphere can be made into vacuum, inert gas atmosphere, such as nitrogen and argon, for example.
  • the pressure of the firing atmosphere can be, for example, about 0.01 MPa to 10 MPa.
  • the ceramic interface layer 3 is formed on the surface of the carbonaceous material 2. At this time, the ceramic interface layer 3 is formed between the plurality of carbonaceous materials 2. That is, in the firing step, the plurality of carbonaceous materials 2 are covered by the ceramic interface layer 3 and connected by the ceramic interface layer 3. In the ceramic carbon composite material 1, unconverted Si 3 N 4 or the like may remain.
  • Example 1 Artificial graphite particles (manufactured by Toyo Tanso Co., Ltd., mesophase graphite, particle size distribution (d10 to d90) 15 to 20 ⁇ m, degree of graphitization 67%) as carbonaceous material, aluminum nitride powder (particle size distribution (d10 to d90) 1-5 ⁇ m) 3.55 g and Y2O3 (0.19 g) as a sintering aid mixed with acrylamide (8 g) and N, N′-methylenebisacrylamide (1 g) dissolved in isopropanol (45 g) The prepared binder solution (2.84 g) was mixed by a gel casting method, and the mixture was cast into a plastic mold.
  • the volume ratio of the carbonaceous material and ceramics in the mixture was 80:20.
  • the obtained mixture was dried at 80 ° C. for 12 hours under normal pressure to obtain a molded body.
  • the compact was subjected to pulsed current sintering under vacuum conditions at 2000 ° C. for 5 minutes while applying a pressure of 30 MPa by a discharge plasma sintering method under vacuum, to obtain a ceramic carbon composite material A. It was.
  • Example 2 As in Example 1, except that artificial graphite particles (manufactured by Toyo Tanso Co., Ltd., cutting residue powder, particle size distribution (d10 to d90) 2 to 100 ⁇ m, graphitization degree 83%) were used as the carbonaceous material, A ceramic carbon composite material B was obtained.
  • artificial graphite particles manufactured by Toyo Tanso Co., Ltd., cutting residue powder, particle size distribution (d10 to d90) 2 to 100 ⁇ m, graphitization degree 83%) were used as the carbonaceous material.
  • Example 3 A ceramic carbon composite material C was prepared in the same manner as in Example 1 except that artificial graphite particles (manufactured by Toyo Tanso Co., Ltd., graphite material pulverized powder, aspect ratio 3.5, graphitization degree 98%) were used as the carbonaceous material. Obtained.
  • Example 4 Ceramic carbon composite material in the same manner as in Example 1 except that natural graphite particles (manufactured by Toyo Tanso Co., Ltd., particle size distribution (d10 to d90) 15 to 20 ⁇ m, degree of graphitization 92%) were used as the carbonaceous material. D was obtained.
  • natural graphite particles manufactured by Toyo Tanso Co., Ltd., particle size distribution (d10 to d90) 15 to 20 ⁇ m, degree of graphitization 92%) were used as the carbonaceous material. D was obtained.
  • the bending strength was measured by a three-point bending strength test. Specifically, it was measured based on JIS A1509-4. Test pieces were sampled at portions parallel to and perpendicular to the direction of the press of the spark plasma sintering method, and the bending strength was measured for each of the parallel and perpendicular.
  • Thermal conductivity was measured by a laser flash method. Specifically, it was measured based on JIS R1650-3. Similar to the bending test, the thermal conductivity was measured in each of the directions parallel and perpendicular to the direction of the press of the spark plasma sintering method.
  • Examples 1 to 4 are all manufactured under the same conditions, and are common in that the ceramic interface layer has a three-dimensional network structure. However, the characteristics of the obtained ceramic carbon composite are greatly different, and It is clear that the characteristics are controlled by the change.
  • Example 1 and Example 4 use carbonaceous materials having the same diameter, but because the degree of graphitization is different, both bending strength and thermal conductivity are higher in Example 1, and the graphitization degree is higher. In Example 4, which uses a high, that is, soft carbonaceous material, the values are all lower. Since the thermal conductivity depends on the degree of graphitization of the graphite raw material, the density of the produced material, and the like, it is difficult to judge the influence of the raw material graphite on the thermal conductivity only from the results of Example 1 and Example 4. . However, it can be seen that the bending strength can be improved by using a carbonaceous material having a uniform graphite particle size and a low graphitization degree.
  • Example 2 it is presumed from the low relative density that the carbonaceous material having different particle diameters coexists, so that a relatively insufficient portion was formed for the formation of the ceramic interface layer. Therefore, both bending strength and thermal conductivity remain at low levels. Therefore, the bending strength and thermal conductivity can be controlled low by using a carbonaceous material having a wide particle size distribution, and the bending strength and thermal conductivity can be increased by using a carbonaceous material having a narrow particle size distribution. You can see that
  • Example 3 a carbonaceous material having an aspect ratio of 1.5 to 20 is used, so that the direction of the major axis is oriented in the direction perpendicular to the press pressure method by the press pressure in the spark plasma sintering method.
  • the thermal conductivity shows a specifically high value in the vertical direction. Therefore, it can be seen that the use of a carbonaceous material having an aspect ratio of 1, 5 to 20 can improve the thermal conductivity in a specific direction.
  • the ratio of the thermal conductivity in the parallel and vertical directions is about 3.5.
  • the ratio approximates the ratio.
  • the ceramic carbon composite material D of Example 4 using a carbonaceous material having an aspect ratio of about 1 and a graphitization degree of 96% has a thermal conductivity ratio in the parallel and vertical directions of about 1.2. Therefore, it has been shown that if a carbonaceous material having a high degree of graphitization is used, the thermal conductivity in the parallel and vertical directions can be controlled by the aspect ratio of the carbonaceous material.
  • the graphitization degree is preferably 90% or more and the aspect ratio is preferably 2 to 15, more preferably 95% or more and the aspect ratio is preferably 3 to 10.
  • FIG. 2 shows surface polishing photographs of Examples 1 to 4.
  • a) to d) correspond to Examples 1 to 4, respectively, where the dark color portion is the carbonaceous material and the light color portion is the ceramic interface layer.
  • the dark color portion is the carbonaceous material and the light color portion is the ceramic interface layer.
  • the continuous sintering of ceramics progresses, and the carbonaceous material and the ceramic interface layer can be clearly distinguished and visually recognized.
  • b) Example 2
  • carbon having a small particle size is visible. Due to the presence of the porous material, an interface layer in which carbon and ceramics are mixed is formed, and ceramics that are not partially sintered remain.
  • Example 3 the left-right direction of the photograph is parallel, but it is presumed that the carbonaceous material is oriented in the vertical direction.
  • Example 5 Pitch-based carbon fiber (Mitsubishi Resin, Milled Fiber K223HM, average fiber diameter 11 ⁇ m)
  • a powder obtained by mixing Al 2 O 3 (0.39 g) and Y 2 O 3 (0.19 g) as a sintering aid and ethanol (5.19 g) are mixed by a gel casting method, and the mixture is plastic. Cast into mold.
  • the volume ratio of carbon fiber to ceramics in the mixture was 70:30.
  • the obtained mixture was dried at 80 ° C. for 12 hours under normal pressure to obtain a molded body.
  • the compact was subjected to pulse current sintering under vacuum conditions at 2000 ° C. for 5 minutes while applying a pressure of 30 MPa by a discharge plasma sintering method under vacuum. As a result, a ceramic carbon composite material E was obtained.
  • Example 6 The same carbon fiber (10 g) as in Example 5, silicon nitride (9.1 g), and Al 2 O 3 (0.6 g) and Y 2 O 3 (0.3 g) as sintering aids were mixed. The powder thus obtained and ethanol (6.06 g) were mixed by a gel casting method, and the mixture was cast into a plastic mold. The volume ratio of carbon fiber to ceramics in the mixture was 60:40. The obtained mixture was dried at 80 ° C. for 12 hours under normal pressure to obtain a molded body. Next, the compact was subjected to pulse current sintering under vacuum conditions at 2000 ° C. for 5 minutes while applying a pressure of 30 MPa by a discharge plasma sintering method under vacuum. As a result, a ceramic carbon composite material F was obtained.
  • Example 7 The same carbon fiber (10 g) as in Example 5, silicon nitride (13.65 g), and Al 2 O 3 (0.9 g) and Y 2 O 3 (0.9 g) as sintering aids were mixed. The powder thus obtained and ethanol (7.27 g) were mixed by a gel casting method, and the mixture was cast into a plastic mold. The volume ratio of carbon fiber to ceramics in the mixture was 50:50. The obtained mixture was dried at 80 ° C. for 12 hours under normal pressure to obtain a molded body. Next, the compact was subjected to pulse current sintering under vacuum conditions at 2000 ° C. for 5 minutes while applying a pressure of 30 MPa by a discharge plasma sintering method under vacuum. As a result, a ceramic carbon composite material G was obtained.
  • Example 8 A ceramic carbon composite material H was obtained in the same manner as in Example 5 except that a carbon fiber having a mean fiber length of 50 ⁇ m was used instead of a carbon fiber having a mean fiber length of 50 ⁇ m.
  • Example 9 A ceramic carbon composite I was obtained in the same manner as in Example 2 except that silicon carbide powder (particle size distribution: 1 to 5 ⁇ m) was used instead of silicon nitride.
  • Ceramic carbon composite material J was obtained in the same manner as in Example 5 except that artificial graphite having a particle size distribution of 15 to 20 ⁇ m was used instead of carbon fiber.
  • the bulk density, relative density, bending strength and thermal conductivity of the obtained ceramic carbon composites E to J were measured in the same manner as in Examples 1 to 4.
  • the bending strength the state of the test piece was observed after the test, and the completely separated one was broken, and the one not separated was not broken.
  • the bending strength and thermal conductivity are measured only in the direction perpendicular to the press direction in the spark plasma sintering method. The results are shown in Table 2.
  • Example 8 The bending strength tends to increase as the ceramic content increases in Examples 5 to 8, and Example 8 with a long carbon fiber length shows a bending strength larger than that of Example 6, and is due to the use of carbon fibers. It is clear that the characteristics are controlled. In the comparative example, the test piece broke after the bending test, but in each of the examples, the test piece did not break after the bending test, indicating that it has an advantage in shape retention at the time of breaking. Therefore, it can be seen that by using carbon fiber as the carbonaceous material, a ceramic carbon composite material that does not break the test piece in the bending test and has excellent shape retention at the time of breaking can be obtained.
  • FIG. 3 shows surface polishing photographs of Examples 5 to 7.
  • a) to c) correspond to Examples 5 to 7, respectively, where the dark portion is the carbonaceous material and the light portion is the ceramic interface layer.
  • the ceramic interface layer is formed around the carbon fiber with almost no gap and the relative density is increased. Further, it is presumed that the tendency of the carbon fibers to be oriented in one direction increases as the proportion of the carbon fibers increases.
  • Example 10 Artificial graphite particles (manufactured by Toyo Tanso Co., Ltd., mesophase graphite, particle size distribution (d10 to d90) 15 to 20 ⁇ m) as a carbonaceous material were heat-treated at 1200 ° C. in an inert gas atmosphere.
  • the sintered body is subjected to pulse current sintering under vacuum conditions at 2000 ° C. for 5 minutes while applying a pressure of 30 MPa by a discharge plasma sintering method (SPS method) under vacuum, thereby producing a ceramic carbon composite.
  • Material K was obtained.
  • Example 11 A ceramic carbon composite material L was obtained in the same manner as in Example 10 except that the heat treatment under an inert gas atmosphere was set to 2300 ° C.
  • Example 12 A ceramic carbon composite material M was obtained in the same manner as in Example 10 except that the heat treatment under an inert gas atmosphere was 2500 ° C. and the degree of graphitization was 67%.
  • the bulk density, relative density, bending strength and thermal conductivity of the obtained ceramic carbon composites K to M were measured in the same manner as in Examples 1 to 4.
  • the Shore hardness was measured as follows. Regarding the bending strength, the state of the test piece was observed after the test, and the completely separated one was broken, and the one not separated was not broken. The bending strength and thermal conductivity are measured only in the direction perpendicular to the press direction in the spark plasma sintering method.
  • As a comparative material the above-described ceramic carbon composite material J was used. The results are shown in Table 3.
  • Shore hardness was measured using a hardness tester Shore type D (manufactured by Nakai Seiki Seisakusho, Model No. 20309). Five points were measured for one test piece, and the average value of three points excluding the maximum value and the minimum value of the measured values was defined as Shore hardness. Specifically, JIS Shore hardness was measured according to Z 2246.
  • the ceramic carbon composite materials according to Example 10 and Example 11 showed lower values of bending strength and shore hardness, although the thermal conductivity was lower than that of the comparative example. It has been shown that physical properties are improved by using a carbonaceous material having a low graphitization degree.
  • the ceramic carbon composite material according to Example 12 whose degree of graphitization was increased by the heat treatment had a high thermal conductivity, although the physical properties were inferior to those of Examples 10 and 11, and depending on the carbon particles used. It shows that the characteristics of the ceramic carbon composite material are controlled.

Abstract

炭素質材料間にセラミックスの界面層が形成され、前記セラミックスの界面層が炭素質材料間で連続した3次元網目構造を有しているセラミックス炭素複合材において、特性を制御する方法、及び特性が制御されたセラミックス炭素複合材を提供することにある。 炭素質材料2間にセラミックスの界面層3が形成され、前記セラミックスの界面層3が炭素質材料2間で連続した3次元網目構造を有しているセラミックス炭素複合材1の特性制御方法であって、前記炭素質材料2の形状、硬さ、及び黒鉛化度の、いずれか少なくとも1つを特定して選択することで特性を制御し、製造条件の調整に頼ることなく、特性の制御されたセラミックス炭素複合材1を得ることができる。

Description

セラミックス炭素複合材の特性制御方法並びにセラミックス炭素複合材
 本発明は、黒鉛とセラミックスの複合材であるセラミックス炭素複合材の特性制御方法並びにセラミックス炭素複合材に関するものである。
 従来より、炭素材は、低比重で、耐熱性、耐食性、摺動性、電気伝導性、熱伝動性、加工性に優れ、半導体、冶金、機械、電気、原子力等の広範な分野で利用されている。
 しかしながら、炭素材は、一般に、耐酸化性と強度において劣っているという問題がある。この問題を解消するため、セラミックスなどの他の材料との複合化が検討されている。
 炭素材とセラミックス材を複合化した例として、黒鉛基材にSiCやTaCを気相反応や溶融反応で被覆したSiC被覆黒鉛複合材が、化学蒸着法による化合物半導体製造用のサセプターとして利用されている。これらの製品は、耐熱性や化学的安定性を有し、黒鉛粒子の発塵を防止するものの、強度向上にはつながらず、製造コストも高いためサセプターなどの用途に限られる。また、3次元的に複雑形状の黒鉛基材に均一被覆するのは技術的に難しい。
 一方、溶融シリコンを多孔質炭素に高温で含浸させて燃焼合成反応を励起し、多孔質炭素の気孔内部をSiC化したSiC/炭素複合材が開発されている(特許文献1参照)。この複合材は、ボルトやナットのような比較的簡単な3次元形状に加工した多孔質炭素材を基にニアネット品に形成できるが、含浸材特有の緻密性に欠け、表面が荒く、コストも高く現状では利用されていない。
 また最近では、平均粒径10~100nmのSiC超微粉末と黒鉛粒子を混合し、プラズマ放電焼結により高密度に緻密化したC-SiC焼結体が開発されている(特許文献2参照)。この複合材はSiCを1~95重量%含有し、相対密度70~99.5%で、曲げ強度は100~350MPaと高い値が報告されている。但し、SiC粒子と炭素粒子を均一に混合した複合構造であり、炭素粒子同士の界面をセラミックスで分離し形成するコンセプトによるものではない。またセラミックスはSiCに限定されている。
 炭素複合材の中では、炭素繊維の織物にピッチを含浸し焼成したC/Cコンポジットや、樹脂を含浸した複合材が広く利用されているが、強度に優れているものの、いずれも耐酸化性は改善されておらず、空気中高温での使用は制限される。また表面が荒く、加工も難しく製造に長時間を要する。
 そこで、本出願人により、炭素質材料間にセラミックスの界面層が形成され、前記セラミックスの界面層が炭素質材料間で連続した3次元網目構造を有しているセラミックス炭素複合材が開発されている(特許文献3参照)。この複合材は、セラミックスに比べ軽量で、かつ耐酸化性、耐発塵性、熱伝導性、電気伝導性、強度、緻密性等に優れ、上記従来技術の課題を解決可能な特性を有していた。しかしながら、炭素質材料とセラミック材とを強固に接合するために、製造プロセスの自由度が制限されるため、特性を制御するための常套手段である製造条件の調整が行いにくく、複合材としての特性の制御が難しい面があった。
特開昭60-25569号公報 特開2004-339048号公報 特開2011-051867号公報
 本発明の目的は、炭素質材料間にセラミックスの界面層が形成され、前記セラミックスの界面層が炭素質材料間で連続した3次元網目構造を有しているセラミックス炭素複合材において、特性を制御する方法、及び特性が制御されたセラミックス炭素複合材を提供することにある。
 本発明の第1の局面のセラミックス炭素複合材の特性制御方法は、炭素質材料間にセラミックスの界面層が形成され、前記セラミックスの界面層が炭素質材料間で連続した3次元網目構造を有しているセラミックス炭素複合材の特性制御方法であって、前記炭素質材料の形状、硬さ、及び黒鉛化度の、いずれか少なくとも1つを特定して選択することで、セラミックス炭素複合材の特性を制御することを特徴とする。
 本発明の第2の局面のセラミックス炭素複合材は、炭素質材料間にセラミックスの界面層が形成され、前記セラミックスの界面層が炭素質材料間で連続した3次元網目構造を有しているセラミックス炭素複合材であって、前記炭素質材料が炭素繊維であることを特徴とする。
 本発明の特性制御方法によれば、製造条件の調整に頼ることなく、適宜の炭素質材料を選択することでセラミックス炭素複合材の特性を制御することができる。
 また本発明によれば、炭素繊維の物性や繊維長などを調整することで、容易に特性が制御されたセラミックス炭素複合材を得ることができる。
図1は、本発明に従う一実施形態のセラミックス炭素複合材を示す模式的断面図。 図2は、本発明に従う実施例におけるセラミックス炭素複合材の断面を示す走査型電子顕微鏡写真。 図3は、本発明に従う実施例におけるセラミックス炭素複合材の断面を示す走査型電子顕微鏡写真。
 以下、本発明を具体的な実施形態により説明するが、本発明は以下の実施形態に限定されるものではない。
 図1は、本発明に従う実施形態におけるセラミックス炭素複合材を示す模式的断面図である。
 図1に示すように、セラミックス炭素複合材1は、黒鉛もしくは黒鉛を含む炭素粒子2同士の間に、セラミックス界面層3を配置することにより形成されている。セラミックス界面層3は、炭素粒子2の間で、連続した3次元網目構造を形成している。セラミックス界面層3を構成するセラミックス材料は、耐酸化性、耐熱性、耐摩耗性、強度等において優れているので、セラミックス界面層3が、連続した3次元網目構造を形成することにより、セラミックス炭素複合材1におけるこれらの特性を高めることができる。
 炭素質材料2は、石油、石炭由来の生コークス、か焼コークス、ニードルコークス等のコークス類や、チャー、スート、ガラス状炭素といった黒鉛化度の比較的低い炭素材料を粒子状としたもの、又はりん状黒鉛、りん片状黒鉛、土状黒鉛等からなる天然黒鉛、コークスやメソフェーズ小球体を原料とした人造黒鉛など、比較的黒鉛化度の高い炭素材料を粒子状としたもの等を適宜用いることができる。これらの炭素質材料の、形状、硬さ及び黒鉛化度を適宜特定したものを用いることで、セラミックス炭素複合材1の特性を制御することができる。炭素質材料2の平均粒子径(d50)は、50nm~500μm程度であることが好ましく、1μm~250μm程度であることがより好ましく、5μm~100μm程度であることがさらに好ましい。炭素質材料2の平均粒子径(d50)が小さすぎると、凝集してしまう可能性があり、炭素質材料2が凝集しすぎると、セラミックス炭素複合材1が炭素の特性を得られない場合がある。一方、炭素質材料2の平均粒子径(d50)が大きすぎると、焼成したセラミックス炭素複合材1の強度が低下する場合がある。複数の炭素質材料2は、1種類の炭素質材料2のみを含んでいてもよいし、複数種類の炭素質材料2を含んでいてもよい。
 また炭素質材料2は、アスペクト比(平均長軸径/平均短軸径)が1.5~20であるものを用いても良い。3次元網目構造を有するセラミックス炭素複合材1を形成する際に、上記アスペクト比を有する炭素質材料2を用いて形成すると、長軸の方向に炭素質粒子2が配向し、セラミックス界面層3と共に異方性が生じることで、セラミックス炭素複合材1の特性を異方性とすることができる。アスペクト比が1.5を下回ると上記の異方性が発現されにくくなり、20を上回ると炭素質材料2が破損する恐れが大きくなる。
 炭素質材料の平均長軸径及び平均短軸径は、例えば、電子顕微鏡による観察で測定することができる。例えば、100個程度の炭素質材料2の長軸径及び短軸径を測定し、それらの値から平均長軸径及び平均短軸径を算出し、アスペクト比を求めることができる。画像処理により平均長軸径及び平均短軸径を求めてもよい。
 アスペクト比が1.5~20である炭素質材料としては、柱状のものや、繊維状のものなどが挙げられる。
 炭素質材料2は、粒度分布が広い粒子状炭素を用いても良い。粒度分布が狭い炭素質材料2を用いた場合、セラミックス界面層3が均一な厚さで形成されるため、材料中での特性は安定するが、粒度分布が広い粒子状炭素を用いた場合、セラミックス界面層3の厚みも不均一となるため、材料中の一部で特性を相違させ、機械的特性などを低下させる方向に制御することが可能となる。
 炭素質材料2の粒度分布(すなわち粒子径分布)は、電子顕微鏡による画像解析や、レーザー回折式粒度分布測定装置などで求めることができる。
 また炭素質材料2の黒鉛化度は20~100%のものを用いるのが好ましく、黒鉛化度が比較的低い炭素質材料2を選択すると、セラミックス炭素複合材1の硬さ、曲げ強度等の機械的特性及び熱伝導率の熱的特性を高めることができ、黒鉛化度の高い炭素質材料を選択することにより、セラミックス炭素複合材1の電気伝導率等の電気的特性を高めることができる。黒鉛化度が20%を下回ると電気的特性や熱的特性においてセラミックス炭素複合材1の特徴が発現されにくくなる。
 炭素質材料2の黒鉛化度は、X線回折による黒鉛結晶の(002)面間隔を測定することで求めることができる。
 参考文献;Houska C R, Warren B E.
X-ray study of the graphitization of carbon black. J Appl Phys 1954; 25(12):
1503-10.
 また、炭素質材料2として、硬さの異なる炭素質材料を用いて、セラミックス炭素複合材の特性を制御してもよい。硬さの異なる炭素質材料としては、例えば、黒鉛化度の異なる炭素質材料などを用いることができる。
 また炭素質材料2として、炭素繊維を用いることができる。炭素繊維は繊維長方向に機械的特性、電気的特性及び熱的特性が極度に偏向した炭素材料であり、セラミックス炭素複合材1の異方性を発現させるのに適した材料となり得る。炭素繊維としては、PAN系、ピッチ系、気相成長炭素繊維等、特性に応じた適宜のものを選択できる。
 炭素繊維の平均繊維径は1~100μmが好ましく、1μmを下回ると機械的特性が発現されにくくなり、100μmを上回るとセラミックス炭素複合材1の形成が困難となる恐れがある。また炭素繊維の平均繊維長は20~5000μmが好ましく、さらに好ましくは、20~3000μmである。20μmを下回ると異方性を発現させることが困難となり、5000μmを上回ると、セラミックス炭素複合材1の形成が困難となり、また炭素繊維が途中で破断する恐れも生じる。平均繊維長は、繊維径を上回る寸法であることが好ましい。これらの平均繊維径及び平均繊維長を備えるにおいては、チョップドファイバーやミルドファイバーを好適に用いることができる。
 炭素質材料2として炭素繊維を用いたセラミックス炭素複合材1は、相対密度が90%以上であることが好ましい。従来繊維状の形状を有する炭素繊維を用いて3次元網目構造を備えたセラミックス炭素複合材1は存在せず、炭素繊維の優れた特性を活用したセラミックス炭素複合材1は得られなかったが、本発明は相対密度が90%以上、好ましくは90~99%とすることで、炭素繊維とセラミックスとが強固に一体化され、セラミックスの特性を備えつつ、炭素繊維の特性を活かしたセラミックス炭素複合材1を得ることが出来ている。
 また前記炭素繊維は、50体積%以上含まれていることが好ましく、さらには50~80体積%の範囲で含まれていることが好ましい。炭素繊維が50体積%を下回ると、炭素繊維の特性が発現されにくく、また軽量な複合材が得られにくくなる。
 炭素質粒子2の種類、形状、及びサイズと、セラミックス界面層3を形成するセラミックス材料の種類、及びセラミックス界面層の厚み、並びに3次元的な連続性を制御することにより、セラミックス炭素複合材1の耐酸化性、耐摩耗性、強度、かさ密度等を向上させることができ、電気伝導性、熱伝導性等の特性を、所望よりも高く、あるいは低く制御することができる。
 セラミックス界面層3を構成するセラミック材料として、電気絶縁性を有するAlN、Al、SiC、Si、SiO、ZrOなどの材料を用い、炭素質粒子2をセラミックス界面層3で完全に被覆する連続的な3次元網目構造を形成することにより、セラミックス炭素複合材1にセラミックスの特性を備えさせることができる。また、セラミックス界面層3を形成するセラミックス材料としては、SiCやZnOを用い、セラミックス界面層3の厚みを数100nmの薄い状態にすることにより、一定以上の電圧が印加されるとセラミックス界面層3にトンネル電流やショットキー電流が発生し、非線形電流-電圧特性を示すバリスター効果を、セラミックス炭素複合材1に付与することもでき、これらの特性を制御することも可能となる。
 図1に示すセラミックス炭素複合材1は、セラミックス界面層3を構成するセラミックス材料からなるセラミックス層を炭素質粒子2に被覆したセラミックス被覆粉末からなる成形体を成形し、この成形体を焼結することにより、製造することができる。またセラミックス界面層3が炭化ケイ素である場合、窒化ケイ素と炭素質材料とバインダーとを混合し、窒化ケイ素が表面に付着した炭素質材料を含む混合物を成形し、当該成形体を加圧焼成して窒化ケイ素を炭化ケイ素に転化する方法を用いることもできる。
 次に、セラミックス炭素複合材1の製造方法の一例を説明する。
 (成形体作製工程)
 セラミックスが表面に付着した炭素質材料2を含む成形体を作製する。
 炭素質材料2の表面に付着させるセラミックスの形状は、特に限定されない。例えば粒子状、被膜状などが挙げられる。
 セラミックスが粒子状である場合、平均粒子径は、50nm~10μm程度であることが好ましく、100nm~1μm程度であることがより好ましい。
 セラミックスの平均粒子径は、炭素質材料2の平均粒子径の1/100~1/5の範囲内であることが好ましい。この場合、炭素質材料2の表面の実質的に全体をセラミックスで覆うことが可能となる。セラミックスの平均粒子径は、炭素質材料2の平均粒子径の1/50~1/10の範囲内であることがより好ましく、1/40~1/20の範囲内であることがさらに好ましい。
 セラミックスと炭素質材料2との混合割合(セラミックスの体積:炭素質材料2の体積(体積比))は、5:95~50:50であることが好ましく、10:90~30:70であることがより好ましい。
 炭素質材料2の表面にセラミックスを付着させる方法は、特に限定されない。例えば、炭素質材料2とセラミックスとを混合すればよい。具体例としては、気相法、液相法、ミキサー等を用いてセラミックスと炭素質材料2とを混合する機械的混合方法、スラリー法またはこれらを組み合わせた方法が挙げられる。気相法の具体例としては、化学気相蒸着法(CVD法)、転化法(CVR法)などが挙げられる。液相法の具体例としては、例えば、化学沈殿法等が挙げられる。スラリー法の具体例としては、例えばゲルキャスト法、スリップキャスティング、テープキャスティングなどが挙げられる。
 セラミックスが表面に付着した炭素質材料2を成形する方法は、特に限定されない。例えばゲルキャスト法によれば、炭素質材料2の表面へのセラミックスの付着と成形とを同時に行うことができ、また炭素質材料2の破損を防いで、形状の維持を諮ることができる。ゲルキャスト法では、液体である溶媒及びバインダーを混合してスラリーとし、このスラリー中に炭素質材料を添加し、混合した後、乾燥させて固形混合物が得られる。例えば、バインダーとしてアクリアミドとN,N’-メチレンビスアクリルアミドを加えたイソプロパノール有機溶媒に炭素粉末とセラミックス粉末を加えたり、又はバインダーと有機溶媒とを兼ねるメタノールと加えたりして、自転・公転ミキサーで撹拌することで、スラリーを調製し、そのスラリーを型に入れ乾燥させ、成形体を得る。
 (焼成工程)
 次に、成形体を焼成する。焼成方法としては、例えば、放電プラズマ焼結法、常圧焼結法、ホットプレス焼結法等を用いることができる。この内、放電プラズマ焼結法は、2分~60分の短時間で高密度焼結ができるので、便利である。
 放電プラズマ焼結法を用いる場合、成形体の焼成温度や焼成時間、焼成雰囲気の種類、焼成雰囲気の圧力等は、使用する材料の種類、形状、大きさ等に応じて適宜設定することができる。焼成温度は、例えば1700℃以上とすればよい。焼成温度は、1700℃~2100℃程度であることが好ましく、1800℃~2000℃程度であることがより好ましい。焼成時間は、例えば、5分間~2時間程度とすることができる。焼成雰囲気の種類は、例えば、真空や、窒素、アルゴンなどの不活性ガス雰囲気とすることができる。焼成雰囲気の圧力は、例えば、0.01MPa~10MPa程度とすることができる。
 焼成工程において、炭素質材料2の表面にセラミックス界面層3が形成される。このとき、セラミックス界面層3は、複数の炭素質材料2の間に形成される。すなわち、焼成工程において、複数の炭素質材料2は、セラミックス界面層3により覆われ、かつセラミックス界面層3により接続される。なお、セラミックス炭素複合材1には、未転化のSiなどが残っていてもよい。
 以下、具体的な実施例を挙げて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 炭素質材料としての人造黒鉛粒子(東洋炭素社製、メソフェーズ黒鉛、粒子径分布(d10~d90)15~20μm、黒鉛化度67%)10gと、窒化アルミニウム粉末(粒子径分布(d10~d90)1~5μm)3.55gと、焼結助剤としてY2O3(0.19g)とを混合した粉末と、アクリルアミド(8g)及びN,N’-メチレンビスアクリルアミド(1g)をイソプロパノール(45g)に溶解して調整したバインダー溶液(2.84g)とをゲルキャスティング法により混合し、混合物をプラスティックモールドにキャスティングした。混合物中の炭素質材料とセラミックスとの体積比は80:20であった。得られた混合物を常圧下、80℃で12時間乾燥して成形体を得た。次に、成形体を真空下で、放電プラズマ焼結法にて、30MPaの圧力を印加しつつ、2000℃で5分間、真空条件でパルス通電焼結して、セラミックス炭素複合材Aが得られた。
 (実施例2)
 炭素質材料として、人造黒鉛粒子(東洋炭素社製、切削加工残粉、粒子径分布(d10~d90)2~100μm、黒鉛化度83%)を用いた以外は実施例1と同様にして、セラミックス炭素複合材Bを得た。
 (実施例3)
 炭素質材料として、人造黒鉛粒子(東洋炭素社製、黒鉛材粉砕粉、アスペクト比3.5、黒鉛化度98%)を用いた以外は実施例1と同様にして、セラミックス炭素複合材Cを得た。
 (実施例4)
 炭素質材料として、天然黒鉛粒子(東洋炭素社製、、粒子径分布(d10~d90)15~20μm、黒鉛化度92%)を用いた以外は実施例1と同様にして、セラミックス炭素複合材Dを得た。
 得られたセラミックス炭素複合材A~Dのかさ密度、相対密度、曲げ強度及び熱伝導率を下記の要領で測定した。結果は表1に示す。
 〔かさ密度〕
 アルキメデス法により、かさ密度を測定した。具体的には、JIS A1509-3に基づき測定した。
 〔相対密度〕
 上記の方法で測定したかさ密度と、同じサンプルの理論密度(気孔のない状態おける密度)との比により相対密度を計算した(JIS Z2500-3407を参照)。
 〔曲げ強度〕
 3点曲げ強度試験により、曲げ強度を測定した。具体的には、JIS A1509-4に基づき測定した。テストピースは、放電プラズマ焼結法のプレスの方向に対して平行、垂直となる部位でそれぞれ採取し、前記平行、垂直の各々について曲げ強度を測定した。
 〔熱伝導率〕
 レーザーフラッシュ法により、熱伝導率を測定した。具体的には、JIS R1650-3に基づき測定した。曲げ試験と同様に、放電プラズマ焼結法のプレスの方向に対して平行、垂直となる方向の各々について熱伝導率を測定した。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4はいずれも同一の条件で製造され、セラミックス界面層が3次元網目構造となっている点で共通するが、得られたセラミックス炭素複合材の特性は大きく異なり、炭素質材料の変更による特性の制御が図られていることが明らかである。実施例1と実施例4は同一径の炭素質材料を用いているが、黒鉛化度が異なるため曲げ強度、熱伝導率共に実施例1の方が高い値となっており、黒鉛化度の高い、即ち柔らかい炭素質材料を用いた実施例4の方がいずれも低い値となっている。熱伝導率は黒鉛原料の黒鉛化度と作製した材料の密度等にも依存するため、実施例1と実施例4の結果だけで、原料黒鉛が熱伝導率に与える影響を判断するのは難しい。しかし、黒鉛粒子サイズが均一で、黒鉛化度の低い炭素質材料を用いることにより、曲げ強度を向上できることがわかる。 
 実施例2は、炭素質材料の粒径が異なるものが混在することで、セラミックス界面層の形成に比較的不十分な箇所が生じたことが相対密度の低さより推定される。従って曲げ強度、熱伝導率共に低いレベルに留まっている。従って、粒子径分布の広い炭素質材料を用いることにより、曲げ強度及び熱伝導率を低く制御することができ、粒子径分布の狭い炭素質材料を用いることにより、曲げ強度及び熱伝導率を高めることができることがわかる。
 実施例3は、アスペクト比が1.5~20である炭素質材料を用いることで、放電プラズマ焼結法におけるプレス圧力によって長軸の方向がプレス圧力の方法と垂直方向に配向されることで、熱伝導率が垂直方向において特異的に高い値を示している。従って、アスペクト比が1,5~20である炭素質材料を用いることにより、特定方向の熱伝導率を向上できることがわかる。
 実施例3の、セラミック炭素複合材Cでは、アスペクト比3.5、黒鉛化度98%の炭素質材料を用いることで、平行、垂直方向の熱伝導率の比率が約3.5と、アスペクト比に近似する比率となっている。またアスペクト比がほぼ1、黒鉛化度96%の炭素質材料を用いた実施例4のセラミック炭素複合材Dは、平行、垂直方向の熱伝導率の比率が約1.2である。従って、黒鉛化度の高い炭素質材料を用いれば、平行、垂直方向の熱伝導率を炭素質材料のアスペクト比により制御することが可能であることが示されている。この様な制御を行う場合、黒鉛化度は90%以上、アスペクト比は2~15とするのが好ましく、より好ましくは黒鉛化度95%以上、アスペクト比は3~10とするのが好ましい。
 図2に、実施例1~4の表面研磨写真を示す。a)~d)がそれぞれ実施例1~4に対応しており、色調の濃い部分が炭素質材料、色調の薄い部分がセラミックス界面層である。a)(実施例1)は、連続的なセラミックスの焼結が進んで、炭素質材料とセラミックス界面層とが明確に区別して視認できるが、b)(実施例2)では粒径の小さい炭素質材料が存在するため、炭素とセラミックス混合した界面層が形成され、一部焼結されてないセラミックスが残存している。c)(実施例3)は写真左右方向が平行方向であるが、炭素質材料が垂直方向に配向していることが推測される。
 次に、炭素質材料2として炭素繊維を用いた実施例を以下に示す。
 (実施例5)
 ピッチ系炭素繊維(三菱樹脂社製、ミルドファイバーK223HM、平均繊維径11μm)平均繊維長50μmの炭素繊維(10g)と、窒化ケイ素(宇部興産株式会社製Si、4.63g)と、焼結助剤としてのAl(0.39g)及びY(0.19g)とを混合した粉末と、エタノール(5.19g)とをゲルキャスティング法により混合し、混合物をプラスティックモールドにキャスティングした。混合物中の炭素繊維とセラミックスとの体積比は70:30であった。得られた混合物を常圧下、80℃で12時間乾燥して成形体を得た。次に、成形体を真空下で、放電プラズマ焼結法にて、30MPaの圧力を印加しつつ、2000℃で5分間、真空条件でパルス通電焼結した。その結果、セラミックス炭素複合材Eが得られた。
 (実施例6)
 実施例5と同一の炭素繊維(10g)と、窒化ケイ素(9.1g)と、焼結助剤としてのAl(0.6g)及びY(0.3g)とを混合した粉末と、エタノール(6.06g)とをゲルキャスティング法により混合し、混合物をプラスティックモールドにキャスティングした。混合物中の炭素繊維とセラミックスとの体積比は60:40であった。得られた混合物を常圧下、80℃で12時間乾燥して成形体を得た。次に、成形体を真空下で、放電プラズマ焼結法にて、30MPaの圧力を印加しつつ、2000℃で5分間、真空条件でパルス通電焼結した。その結果、セラミックス炭素複合材Fが得られた。
 (実施例7)
 実施例5と同一の炭素繊維(10g)と、窒化ケイ素(13.65g)と、焼結助剤としてのAl(0.9g)及びY(0.9g)とを混合した粉末と、エタノール(7.27g)とをゲルキャスティング法により混合し、混合物をプラスティックモールドにキャスティングした。混合物中の炭素繊維とセラミックスとの体積比は50:50であった。得られた混合物を常圧下、80℃で12時間乾燥して成形体を得た。次に、成形体を真空下で、放電プラズマ焼結法にて、30MPaの圧力を印加しつつ、2000℃で5分間、真空条件でパルス通電焼結した。その結果、セラミックス炭素複合材Gが得られた。
 (実施例8)
 炭素繊維として、平均繊維長50μmのものに替えて200μmのものを用いた以外は、実施例5と同様にして、セラミックス炭素複合材Hを得た。
 (実施例9)
 窒化ケイ素の替りに、炭化ケイ素粉末(粒子径分布1~5μm)を用いた以外は、実施例2と同様にして、セラミックス炭素複合材Iを得た。
 (比較例1)
 炭素繊維に替えて、粒子径分布15~20μmの人造黒鉛を用いた以外は実施例5と同様にして、セラミックス炭素複合材Jを得た。
 得られたセラミックス炭素複合材E~Jのかさ密度、相対密度、曲げ強度及び熱伝導率を実施例1~4で行ったものと同様の要領で測定した。曲げ強度については、試験後に試験片の状態を観察し、完全に分離したものは破断、分離していないものは破断せずとした。また曲げ強度、熱伝導率は、放電プラズマ焼結法の、プレス方向の垂直方向のみ測定している。その結果は表2に示す。
Figure JPOXMLDOC01-appb-T000002
 曲げ強度において、実施例5~8でセラミックス分が増えるに従い上昇する傾向が見られ、また炭素繊維長の長い実施例8は実施例6より大きい曲げ強度を示しており、炭素繊維を用いることによる特性の制御が図られていることは明白である。また比較例では曲げ試験後に試験片が破断したが、実施例ではいずれも曲げ試験後に試験片は破断せず、破壊時の形状保持において優位にあることが示されている。従って、炭素質材料として、炭素繊維を用いることにより、曲げ試験において試験片が破断しない、破壊時における形状保持性に優れたセラミックス炭素複合材が得られることがわかる。
 図3に、実施例5~7の表面研磨写真を示す。a)~c)がそれぞれ実施例5~7に対応しており、色調の濃い部分が炭素質材料、色調の薄い部分がセラミックス界面層である。いずれも炭素繊維の周囲にセラミックス界面層がほぼ隙間なく形成され、相対密度が高められていることが明確に見て取れる。また炭素繊維の割合が大きいほど、炭素繊維が一つの方向に配向する傾向が大きくなることが推測される。
 次に、炭素質材料2として熱処理した黒鉛粒子を用いた実施例を以下に示す。
 (実施例10)
 炭素質材料としての人造黒鉛粒子(東洋炭素社製、メソフェーズ黒鉛、粒子径分布(d10~d90)15~20μm)を不活性ガス雰囲気下で1200℃の熱処理を行った。この熱処理後の黒鉛10gと、窒化アルミニウム粉末(粒子径分布(d10~d90)1~5μm)5.96gと、焼結助剤としてのAl(0.39g)及びY(0.20g)とを混合した粉末と、アクリルアミド(8g)及びN,N’-メチレンビスアクリルアミド(1g)をイソプロパノール(45g)に溶解して調整したバインダー溶液(2.84g)とをゲルキャスティング法により混合し、混合物をプラスティックモールドにキャスティングした。混合物中の炭素質材料とセラミックスとの体積比は70:30であった。得られた混合物を常圧下、80℃で12時間乾燥して成形体を得た。次に、成形体を真空下で、放電プラズマ焼結法(SPS法)にて、30MPaの圧力を印加しつつ、2000℃で5分間、真空条件でパルス通電焼結することで、セラミックス炭素複合材Kが得られた。
 (実施例11)
 不活性ガス雰囲気下での熱処理を2300℃とした以外は、実施例10と同様にして、セラミックス炭素複合材Lを得た。
 (実施例12)
 不活性ガス雰囲気下での熱処理を2500℃として黒鉛化度を67%とした以外は、実施例10と同様にして、セラミックス炭素複合材Mを得た。
 得られたセラミックス炭素複合材K~Mのかさ密度、相対密度、曲げ強度及び熱伝導率を実施例1~4で行ったものと同様の要領で測定した。またショア硬さについて下記の要領で測定した。曲げ強度については、試験後に試験片の状態を観察し、完全に分離したものは破断、分離していないものは破断せずとした。また曲げ強度、熱伝導率は、放電プラズマ焼結法の、プレス方向の垂直方向のみ測定している。比較材としては、先述のセラミックス炭素複合材Jを用いた。その結果は表3に示す。
〔ショア硬さ〕
 硬さ試験機ショア式D型(仲井精機製作所製、型番20309)を用いて、ショア硬さを測定した。1つの試験片に対し5点測定し、測定値の最大値及び最小値を除いた3点の平均値を、ショア硬さとした。具体的には、JIS
Z 2246に従いショア硬さを測定した。
Figure JPOXMLDOC01-appb-T000003
 実施例10及び実施例11に係るセラミック炭素複合材は、比較例と較べ熱伝導率は低くなるものの、曲げ強さ及びショア硬さは高い数値を示した。黒鉛化度の低い炭素質材料を用いることで、物理特性が向上されることが示されている。また熱処理により黒鉛化度が高められた実施例12に係るセラミック炭素複合材は、実施例10及び11に対して物理特性は劣るものの、熱伝導率が高い値となっており、用いる炭素粒子によってセラミックス炭素複合材の特性が制御されていることが表わされている。
 1…セラミックス炭素複合材
 2…炭素粒子
 3…セラミックス界面層
 

Claims (9)

  1.  炭素質材料間にセラミックスの界面層が形成され、前記セラミックスの界面層が炭素質材料間で連続した3次元網目構造を有しているセラミックス炭素複合材の特性制御方法であって、
     前記炭素質材料の形状、硬さ、及び黒鉛化度の、いずれか少なくとも1つを特定して選択することで、セラミックス炭素複合材の特性を制御することを特徴とするセラミックス炭素複合材の特性制御方法。
  2.  前記炭素質材料は、アスペクト比(平均長軸径/平均短軸径)1.5~20である請求項1に記載のセラミックス炭素複合材の特性制御方法。
  3.  前記炭素質材料は、炭素繊維を用いることを特徴とする請求項1に記載のセラミックス炭素複合材の特性制御方法。
  4.  前記炭素繊維は、平均繊維長が20~5000μmであることを特徴とする請求項3に記載のセラミックス炭素複合材の特性制御方法。
  5.  前記炭素質材料は、黒鉛化度が20~100%である請求項1又は2に記載のセラミックス炭素複合材の特性制御方法。
  6.  炭素質材料間にセラミックスの界面層が形成され、前記セラミックスの界面層が炭素質材料間で連続した3次元網目構造を有しているセラミックス炭素複合材であって、前記炭素質材料が炭素繊維であることを特徴とするセラミックス炭素複合材。
  7.  相対密度が90%以上であることを特徴とする請求項6に記載のセラミックス炭素複合材。
  8.  前記炭素繊維は、50体積%以上含まれていることを特徴とする請求項6又は7に記載のセラミックス炭素複合材。
  9.  前記炭素繊維は、平均繊維長が20~5000μmであることを特徴とする請求項6~8のいずれか1項に記載のセラミックス炭素複合材。
     
PCT/JP2013/081485 2012-11-26 2013-11-22 セラミックス炭素複合材の特性制御方法並びにセラミックス炭素複合材 WO2014081005A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13856647.6A EP2924016A4 (en) 2012-11-26 2013-11-22 METHOD FOR CONTROLLING THE PROPERTIES OF A CERAMIC CARBON COMPOUND AND CERAMIC CARBON COMPOUND
CN201380061584.7A CN104822639A (zh) 2012-11-26 2013-11-22 陶瓷碳复合材的特性控制方法和陶瓷碳复合材
US14/440,386 US20150299053A1 (en) 2012-11-26 2013-11-22 Method for controlling characteristics of ceramic carbon composite, and ceramic carbon composite
JP2014548625A JPWO2014081005A1 (ja) 2012-11-26 2013-11-22 セラミックス炭素複合材の特性制御方法並びにセラミックス炭素複合材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012257500 2012-11-26
JP2012-257500 2012-11-26

Publications (1)

Publication Number Publication Date
WO2014081005A1 true WO2014081005A1 (ja) 2014-05-30

Family

ID=50776181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081485 WO2014081005A1 (ja) 2012-11-26 2013-11-22 セラミックス炭素複合材の特性制御方法並びにセラミックス炭素複合材

Country Status (6)

Country Link
US (1) US20150299053A1 (ja)
EP (1) EP2924016A4 (ja)
JP (1) JPWO2014081005A1 (ja)
CN (1) CN104822639A (ja)
TW (1) TW201434793A (ja)
WO (1) WO2014081005A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10151362B1 (en) 2017-05-16 2018-12-11 Goodrich Corporation Rapid ceramic matrix composite fabrication of aircraft brakes via field assisted sintering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025569A (ja) 1983-07-25 1985-02-08 Toyo Seikan Kaisha Ltd 塗装焼付乾燥炉の排気量制御方法
JP2002080280A (ja) * 2000-06-23 2002-03-19 Sumitomo Electric Ind Ltd 高熱伝導性複合材料及びその製造方法
JP2004339048A (ja) 2003-04-24 2004-12-02 Mitsuyuki Oyanagi C−SiC焼結体およびその製造方法
WO2011027756A1 (ja) * 2009-09-04 2011-03-10 東洋炭素株式会社 炭化ケイ素被覆炭素基材の製造方法及び炭化ケイ素被覆炭素基材並びに炭化ケイ素炭素複合焼結体、セラミックス被覆炭化ケイ素炭素複合焼結体及び炭化ケイ素炭素複合焼結体の製造方法
JP2011051867A (ja) 2009-09-04 2011-03-17 Toyo Tanso Kk セラミックス炭素複合材及びその製造方法並びにセラミックス被覆セラミックス炭素複合材及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254397A (en) * 1989-12-27 1993-10-19 Sumitomo Electric Industries, Ltd. Carbon fiber-reinforced composite material having a gradient carbide coating
JPH05294733A (ja) * 1991-02-06 1993-11-09 Mitsubishi Kasei Corp 窒化珪素−炭素繊維複合体およびその製造方法
JP2704332B2 (ja) * 1991-10-11 1998-01-26 株式会社ノリタケカンパニーリミテド 炭素繊維強化窒化珪素質ナノ複合材及びその製造方法
JP2735151B2 (ja) * 1994-11-15 1998-04-02 工業技術院長 繊維強化炭化ケイ素複合セラミックス成形体の製造方法
JPH11292647A (ja) * 1998-04-10 1999-10-26 Nabco Ltd 炭素繊維強化複合材料及びその製造方法
JPH11292646A (ja) * 1998-04-10 1999-10-26 Nabco Ltd 炭素系摺動部材及びその製造方法
DE10204860A1 (de) * 2002-02-06 2003-08-14 Man Technologie Gmbh Faserverbundkeramik mit hoher Wärmeleitfähigkeit
AU2003212005A1 (en) * 2002-02-14 2003-09-04 Toyo Tanso Co., Ltd. Oxidation resistant carbon fiber reinforced carbon composite material and process for producing the same
US20040155387A1 (en) * 2003-02-06 2004-08-12 Fivas Joseph D. Graphite fiber-enhanced ceramic
JP4499431B2 (ja) * 2003-07-07 2010-07-07 日本碍子株式会社 窒化アルミニウム焼結体、静電チャック、導電性部材、半導体製造装置用部材及び窒化アルミニウム焼結体の製造方法
KR100624094B1 (ko) * 2004-05-28 2006-09-19 주식회사 데크 탄소섬유 강화 세라믹 복합체 제조방법
JP4297138B2 (ja) * 2005-07-05 2009-07-15 三菱樹脂株式会社 炭素繊維強化SiC系複合材及び摺動材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025569A (ja) 1983-07-25 1985-02-08 Toyo Seikan Kaisha Ltd 塗装焼付乾燥炉の排気量制御方法
JP2002080280A (ja) * 2000-06-23 2002-03-19 Sumitomo Electric Ind Ltd 高熱伝導性複合材料及びその製造方法
JP2004339048A (ja) 2003-04-24 2004-12-02 Mitsuyuki Oyanagi C−SiC焼結体およびその製造方法
WO2011027756A1 (ja) * 2009-09-04 2011-03-10 東洋炭素株式会社 炭化ケイ素被覆炭素基材の製造方法及び炭化ケイ素被覆炭素基材並びに炭化ケイ素炭素複合焼結体、セラミックス被覆炭化ケイ素炭素複合焼結体及び炭化ケイ素炭素複合焼結体の製造方法
JP2011051867A (ja) 2009-09-04 2011-03-17 Toyo Tanso Kk セラミックス炭素複合材及びその製造方法並びにセラミックス被覆セラミックス炭素複合材及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOUSKA, C. R.; WARREN, B. E.: "X-Ray Study of the Graphitization of Carbon Black", J. APPL. PHYS, vol. 25, no. 12, 1954, pages 1503 - 10
See also references of EP2924016A4 *

Also Published As

Publication number Publication date
JPWO2014081005A1 (ja) 2017-01-05
EP2924016A4 (en) 2016-08-03
EP2924016A1 (en) 2015-09-30
US20150299053A1 (en) 2015-10-22
CN104822639A (zh) 2015-08-05
TW201434793A (zh) 2014-09-16

Similar Documents

Publication Publication Date Title
JP5678332B2 (ja) セラミックス炭素複合材及びその製造方法並びにセラミックス被覆セラミックス炭素複合材及びその製造方法
Han et al. A review on the processing technologies of carbon nanotube/silicon carbide composites
JP5737547B2 (ja) 炭化ケイ素被覆黒鉛粒子の製造方法及び炭化ケイ素被覆黒鉛粒子
Yang et al. Ultra‐long single‐crystalline α‐Si3N4 nanowires: derived from a polymeric precursor
EP2676946B1 (en) Ti3sic2 material, electrode, spark plug, and processes for production thereof
JPH0769731A (ja) 高強度、高嵩密度導電セラミックス
Lanfant et al. Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites
JP5748564B2 (ja) 炭化ケイ素−炭素複合材の製造方法
Liu et al. Fabricating superior thermal conductivity SiC–AlN composites from photovoltaic silicon waste
JP6436905B2 (ja) 炭化ホウ素セラミックス及びその作製法
Ge et al. Improving the electrical and microwave absorbing properties of Si3N4 ceramics with carbon nanotube fibers
Chen et al. Microstructural tailoring, mechanical and thermal properties of SiC composites fabricated by selective laser sintering and reactive melt infiltration.
KR102042668B1 (ko) SiC 소결체 및 히터와 SiC 소결체의 제조 방법
WO2014081005A1 (ja) セラミックス炭素複合材の特性制御方法並びにセラミックス炭素複合材
JP2012246172A (ja) 金属材とセラミックス−炭素複合材との接合体及びその製造方法
KR101723675B1 (ko) 전기전도성 탄화규소-질화붕소 복합 소재 제조용 조성물 및 이를 이용한 전기전도성 탄화규소-질화붕소 복합 소재의 제조방법
Huang et al. Si 3 N 4-SiC p composites reinforced by in situ co-catalyzed generated Si 3 N 4 nanofibers
Hirota et al. The study on carbon nanofiber (CNF)‐dispersed B4C Composites
JP5748586B2 (ja) 炭素−炭化ケイ素複合材
Tijjani High temperature applications of carbon nanotubes (CNTs)[v]: thermal conductivity of CNTs reinforced silica nanocomposite
JP6684270B2 (ja) 炭素蒸発源
WO2013190662A1 (ja) 炭素-炭化ケイ素複合材
JP4707380B2 (ja) 導電性材料
TW201400435A (zh) 碳-碳化矽複合材料
JPH02199066A (ja) 導電性炭化珪素焼結体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856647

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014548625

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14440386

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013856647

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013856647

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE