TWI748662B - 閘極驅動器積體電路 - Google Patents

閘極驅動器積體電路 Download PDF

Info

Publication number
TWI748662B
TWI748662B TW109133185A TW109133185A TWI748662B TW I748662 B TWI748662 B TW I748662B TW 109133185 A TW109133185 A TW 109133185A TW 109133185 A TW109133185 A TW 109133185A TW I748662 B TWI748662 B TW I748662B
Authority
TW
Taiwan
Prior art keywords
low
driver
circuit
gate
transistor
Prior art date
Application number
TW109133185A
Other languages
English (en)
Other versions
TW202118208A (zh
Inventor
阿納托利 V. 提爾伽諾比契
列奧尼德 A. 奈曼
Md 亞布杜斯 沙塔
弗拉迪米爾 楚卡諾夫
Original Assignee
美商艾賽斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商艾賽斯股份有限公司 filed Critical 美商艾賽斯股份有限公司
Publication of TW202118208A publication Critical patent/TW202118208A/zh
Application granted granted Critical
Publication of TWI748662B publication Critical patent/TWI748662B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/012Modifications of generator to improve response time or to decrease power consumption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0051Diode reverse recovery losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/04123Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0072Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

一種閘極驅動器積體電路。在具有電感負荷的切換變換器中,即使電晶體的閘極被控制保持將電晶體關斷電流亦可流經電晶體的本體二極體。接著,當切換支路的另一電晶體導通時,反向恢復電流在反向方向上流經本體二極體。為降低與此種電流流動相關聯的切換損失,閘極驅動器積體電路偵測流經本體二極體的電流何時增大至高於臨限電流。閘極驅動器積體電路接著控制將電晶體導通。接著,當切換支路的另一電晶體導通時,閘極驅動器首先將電晶體關斷。當將關斷的電晶體的閘極-源極電壓下降至低於臨限電壓時,閘極驅動器積體電路接著允許及控制另一電晶體導通。

Description

閘極驅動器積體電路
本發明所述實施例是有關於用於驅動功率電晶體(例如功率場效電晶體(所謂的金屬氧化物半導體場效電晶體(MOSFET)))的閘極的閘極驅動器。
在切換功率變換器中存在若干類型的功率損失。為對此進行例示,此處簡要闡述一種特定類型的切換變換器。所述特定類型的切換變換器為通常被稱為「逆變器(inverter)」的直流(direct current,DC)-交流(alternating current,AC)切換變換器。逆變器接收直流供應電壓並輸出正弦交流電壓或電流。逆變器有各種電路拓撲,但圖1A示出一個示例性逆變器電路的一部分的一個實例。逆變器電路涉及被指定為QHS的所謂的「高側」電晶體以及被指定為QLS的所謂的「低側」電晶體。該些電晶體中的每一者是N通道場效電晶體,所述N通道場效電晶體有時被通俗地稱為N通道金屬氧化物半導體場效電晶體(Metal-Oxide Semiconductor Field Effect Transistor,MOSFET)。該些電晶體中的每一者是作為半導體晶粒的一部分達成的。存在固有的本體二極體作為所述晶粒的一部分。所述二極體可以N通道電晶體的符號來例示或者可根本不被例示出,但所述二極體與電晶體一起存在。在逆變器電路中,在節點N1上存在第一直流供應電壓,且在節點N2上存在第二更高的直流供應電壓。節點GND是接地節點。參考編號L標識變壓器的第一繞組(初級側繞組)。圖中未示出變壓器的核心及變壓器的第二繞組(次級側繞組)。逆變器電路的總體目標是產生流經第一繞組L的交流電流。此使得相似的交流電流在變壓器的第二繞組中流動,且第二繞組中的此種交流電流通過負荷。圖中未示出控制高側電晶體及低側電晶體的控制及驅動電路系統。
在繞組L中流動的輸出正弦交流電流的前半循環中,高側電晶體被控制關斷。此在圖1A、圖1B、圖1C及圖1D中由在高側電晶體QHS旁邊出現的文本「關斷」指定。另一方面,低側電晶體QLS接通及斷開以使正弦交流電流流經第一繞組。接著,在正弦交流電流的下半循環中,低側電晶體QLS被控制關斷。圖中未示出逆變器電路在此下半循環中的操作。在正弦交流電流的下半循環中,高側電晶體QHS接通及斷開以使正弦交流電流流動。
圖1A、圖1B、圖1C及圖1D示出正弦交流電流的示例性前半循環期間的電流流動。圖1A示出第一情況。低側電晶體QLS被控制導通。電流如箭頭A所示一般流動。電流自節點N1、經由繞組L以及經由電晶體QLS流動至接地節點GND。在一段時間之後,低側電晶體QLS關斷。此會引起圖1B所示情況。由於電流無法在第一繞組L的電感中立即停止,且由於電流亦無法流經阻斷的低側電晶體QLS,因此電流在箭頭B所示路徑中流動。高側電晶體QHS關斷,但電流B流經本體二極體DHS直至到達節點N2。在一段時間之後,低側電晶體QLS再次導通。電流接著如圖1C中的箭頭C所示一般流動。低側電晶體QLS是導通且導電的,因此電流自節點N1、經由繞組L以及經由低側電晶體QLS流動至接地節點GND。然而,當低側電晶體QLS第一次導通時,高側電晶體的本體二極體DHS的兩端被施加反向電壓。此使反向恢復電流的短的脈衝串流經本體二極體DHS。反向恢復電流的此種脈衝串在圖1C所示路徑C中流動。一旦此種反向恢復電流流動已停止,則所述電流流動便如圖1D所示一般。
流經本體二極體DHS的電流可在切換變換器中造成功率損失。儘管圖1C所示反向恢復電流的突波持續時間相對短,然而反向恢復電流的突波是大的電流且是在本體二極體的兩端存在大的反向電壓的時間期間出現的。流經本體二極體DHS的瞬時電流隨著時間的積分乘以本體二極體DHS兩端的瞬時電壓降表示能量損失。此為因反向恢復電流的流動引起的能量損失。另外,存在因正向電流流經本體二極體DHS而引起的能量損失。當圖1B所示電流B流過本體二極體DHS時,在本體二極體DHS的兩端存在大約一伏特的電壓降。流經本體二極體DHS的瞬時電流的積分乘以本體二極體DHS兩端的瞬時電壓降表示能量損失。
在第一新穎態樣中,閘極驅動器積體電路具有高側閘極驅動器及低側閘極驅動器。閘極驅動器積體電路控制直流-交流逆變器電路的高側N通道場效電晶體及低側N通道場效電晶體。高側電晶體及低側電晶體是切換支路或相位支路電路的一部分。高側電晶體的源極在中心切換節點SW處耦合至低側電晶體的汲極。大的電感器或變壓器繞組的一端亦耦合至中心切換節點SW。
閘極驅動器積體電路具有VHSC1輸入端子,閘極驅動器積體電路藉由VHSC1輸入端子接收高側驅動器數位控制訊號。當此VHSC1輸入訊號被驅動至高數位邏輯位準時,高側電晶體將導通。閘極驅動器積體電路亦具有VLSC1輸入端子,閘極驅動器積體電路藉由VLSC1輸入端子接收低側驅動器數位控制訊號。當此VLSC1輸入訊號被驅動至高數位邏輯位準時,低側電晶體將導通。VHSC1輸入訊號及VLSC1輸入訊號是通常由微控制器積體電路分別供應至閘極驅動器積體電路的VHSC1輸入端子及VLSC1輸入端子上的數位邏輯訊號。
當電晶體中的一者正在被微控制器控制成關斷且非導電的,但是當儘管如此電流仍因電感負荷而流經電晶體的本體二極體時,則會偵測到此種電流狀況。若偵測到流經本體二極體的電流超過預定電流臨限,則驅動器積體電路控制將電晶體導通。即使自微控制器接收到的傳入數位控制訊號指示微控制器想要電晶體關斷,閘極驅動器積體電路仍將電晶體導通。原本將流經本體二極體的電流因此流經並聯連接的導電電晶體。當切換支路的另一電晶體接著因微控制器的控制而導通時,閘極驅動器積體電路偵測到此種情況並首先採取措施來將導電電晶體關斷。閘極驅動器積體電路監測正在被關斷的電晶體的閘極-源極電壓。當閘極驅動器積體電路偵測到電晶體的閘極-源極電壓已降低至低於預定臨限電壓時,則閘極驅動器積體電路控制將切換支路的另一電晶體導通並使所述另一電晶體成為導電的。如此一來,避免了原本可能在電流路徑中流經導電高側電晶體且接著流經導電低側電晶體的擊穿電流。對正在被關斷的電晶體的閘極-源極電壓的監測使得另一電晶體的導通時序能夠被最佳化。
藉由使電晶體在電流原本將流經電晶體的本體二極體的時間期間導通,本體二極體中的功率損失降低。原本將在隨後的二極體換向時出現的反向恢復電流的量值減小。二極體中的正向傳導損失亦減小,此乃因原本將流經本體二極體且跨越較大的電壓降的一些正向電流將因並聯耦合的導電電晶體而流經跨越較小的電壓降的導電電晶體。此兩種效果(即,對跨越導電電晶體的較小的電壓降的一些正向電流的分流以及減小本體二極體中的反向恢復電流的量值)用於降低本體二極體中的損失。
若因高側電晶體及低側電晶體被控制的方式而使高側電晶體的本體二極體傳導電流,則在該些時間期間,新穎閘極驅動器積體電路將高側電晶體控制成導通且導電的。閘極驅動器積體電路運作成降低高側電晶體的本體二極體中的損失。另一方面,若因高側電晶體及低側電晶體被控制的方式而使低側電晶體的本體二極體傳導電流,則在該些時間期間,新穎閘極驅動器積體電路將低側電晶體控制成導通且導電的。閘極驅動器積體電路運作成降低低側電晶體的本體二極體中的損失。
在另一新穎態樣中,閘極驅動器積體電路僅具有一個閘極驅動器電路。閘極驅動器電路用於驅動功率場效電晶體,所述功率場效電晶體為另一半導體晶粒的一部分。功率場效電晶體的本體二極體亦為另一半導體晶粒的一部分。閘極驅動器積體電路包括驅動器數位控制訊號輸入端子、驅動器輸出端子、閘極驅動器電路、本體二極體電流監測構件以及用於將所述功率場效電晶體關斷的構件。閘極驅動器電路將閘極驅動器輸出訊號輸出至所述驅動器輸出端子上,且如此一來所述閘極驅動器電路驅動所述功率場效電晶體的所述閘極以在所述驅動器數位控制訊號輸入端子上存在為預定數位邏輯值的數位訊號時將所述功率場效電晶體導通。本體二極體電流監測構件用於在所述閘極驅動器電路正在控制將所述功率場效電晶體關斷的時間期間確定流經所述本體二極體的電流何時增大至高於預定臨限電流,並因應於所述確定而使所述功率場效電晶體導通以使得即使在所述驅動器數位控制訊號輸入端子上不存在為所述預定數位邏輯值的數位訊號所述功率場效電晶體亦導通。用於將所述功率場效電晶體關斷的構件用於因應於第二數位控制訊號的轉變而將所述功率場效電晶體關斷。所述第二數位控制訊號的所述轉變是在所述功率場效電晶體導通但所述驅動器數位控制訊號輸入端子上的所述數位訊號不處於所述預定數位邏輯值的時間期間發生的。舉例而言,第二數位控制訊號可為用於控制另一外部分立的功率場效電晶體裝置的數位控制訊號。舉例而言,第二數位控制訊號可被專用輸入端子接收至閘極驅動器積體電路上。
另外的詳細情況及實施例以及方法及技術在以下實施方式中進行闡述。此發明內容並非旨在界定本發明。本發明是由申請專利範圍界定的。
現將詳細參照本發明的實施例,本發明的實例在附圖中示出。在此專利文件中可互換地使用用語「數位邏輯位準」與「數位邏輯值」。
圖2是根據一個新穎態樣的直流-交流逆變器電路系統1的圖。直流-交流逆變器系統1包括微控制器積體電路2、驅動器積體電路3、低側電晶體裝置4、高側電晶體裝置5、包括第一繞組6及第二繞組7的變壓器、第一電壓源8、第二電壓源9、高側電流感測電阻器10、高側電晶體裝置的電流限制閘極電阻器11、低側電流感測電阻器12以及低側電晶體裝置的電流限制閘極電阻器13。
低側電晶體裝置4與高側電晶體裝置5是相同的裝置。在一個實例中,該些裝置是可自加利福尼亞米爾皮塔斯1590博克耶路的IXYS公司(IXYS Corporation of 1590 Buckeye Drive, Milpitas, California)購買的MMIXT132N5OP3裝置的實例。低側電晶體裝置4包括低側N通道場效電晶體QLS 14以及較小電流感測N通道場效電晶體QLSS 15。參考編號16標識低側電晶體14的本體二極體D2。參考編號17標識電流感測電晶體15的本體二極體D2S。電晶體14的閘極與電晶體15的閘極耦合於一起。電晶體14的汲極與電晶體15的汲極耦合於一起。電流感測電晶體15較主電晶體14小得多。電流感測電晶體15與主低側電晶體一起設置於同一半導體晶粒上以使得流經電流感測電晶體15的電流將與流經主低側電晶體14的電流成比例。
高側電晶體裝置5包括高側N通道場效電晶體QHS 18以及較小電流感測N通道場效電晶體QHSS 19。參考編號20標識高側電晶體18的本體二極體D1。參考編號21標識電流感測電晶體19的本體二極體D1S。電晶體18的閘極與電晶體19的閘極耦合於一起。電晶體18的汲極與電晶體19的汲極耦合於一起。
第一電壓源8在節點22上提供+200直流電壓。此+200伏特是相對於接地節點GND 23上的接地電位而言。第一電壓源8可例如為電池或另一電壓源與並聯耦合的大的電容器的堆疊。第二電壓源9在節點24上提供+200直流電壓。此+200伏特是相對於節點22上的+200伏特電位而言。因此,相對於接地節點GND 23上的接地電位而言,在節點24上存在+400伏特直流電位。第二電壓源9可例如為電池或另一電壓源與並聯耦合的大的電容器的堆疊。
高側電晶體18的汲極耦合至節點24。高側電晶體18的源極在SW節點25處耦合至低側電晶體14的汲極。低側電晶體14的源極耦合至接地節點GND 23。繞組6的第一端6A耦合至切換節點SW 25且作為切換節點SW 25的一部分。繞組6的第二端6B耦合至節點22且作為節點22的一部分。
驅動器積體電路3包括低側(low-side,LS)閘極驅動器邏輯電路26、高側(high-side,HS)閘極驅動器邏輯電路27、低側閘極驅動器電路28、高側閘極驅動器電路29、高側電流感測比較器32、高側電壓感測比較器33、低側電流感測比較器30、低側電壓感測比較器31、電壓參考(voltage reference,VREF)電路34至37、位準偏移(level shift,LS)電路38至40、VLSC1低側驅動器數位控制訊號輸入端子41、VHSC1高側驅動器數位控制訊號輸入端子42、接地端子43、低側電流感測輸入端子44、低側驅動器輸出端子45、低側電壓感測輸入端子46、低側驅動器供應電壓端子47、SW節點端子48、高側電流感測輸入端子49、高側驅動器輸出端子50、高側電壓感測輸入端子51及高側驅動器供應電壓端子52。該些端子是包含驅動器積體電路3的電路系統的半導體裝置封裝的封裝端子。對於每一個封裝端子而言皆存在相關聯的積體電路晶粒端子(例如,結合墊)。圖2中的端子符號表示封裝端子以及封裝端子的相關聯的積體電路晶粒端子二者。
在操作中,驅動器積體電路3自微控制器2接收數位低側控制訊號VLSC1。當此VLSC1低側驅動器控制訊號具有低數位邏輯位準時,則微控制器2正在控制低側閘極驅動器電路28將正電壓驅動至低側電晶體QLS 14的閘極上以使得低側電晶體QLS 14是導通且導電的。同樣,驅動器積體電路3自微控制器2接收數位高側控制訊號VHSC1。當此VHSC1控制訊號具有高數位邏輯位準時,則微控制器2正在控制高側閘極驅動器電路29將正電壓驅動至高側電晶體QHS 18的閘極上以使得高側電晶體QHS 18是導通且導電的。
當自微控制器2接收到的此VLSC1低側驅動器數位控制訊號具有低數位邏輯位準時,則可認為驅動器積體電路3將始終控制低側閘極驅動器電路28來將低電壓驅動至低側電晶體QLS 14的閘極上以使得低側電晶體QLS 14關斷且不導電,但根據本發明此並非始終正確。如以下進一步詳細闡釋,驅動器積體電路3偵測是否存在正向電流流經低側電晶體14的本體二極體16,並在此狀況中將高電壓驅動至低側電晶體QLS 14的閘極上以使低側電晶體QLS 14導通。因此,即使自微控制器2接收的VLSC1低側驅動器數位控制訊號處於低數位邏輯位準低側電晶體QLS 14亦導通。低側電晶體QLS 14的導通對本體二極體16周圍的電流進行分流,並降低在此時間期間本體二極體16兩端原本存在的電壓降,且藉此降低本體二極體16中的功率耗散。若本體二極體16接著將快速換向,則低側電晶體QLS 14導通亦用於減小反向恢復電流的量值。然而,低側電晶體QLS 14被控制成在高側電晶體QHS 18被控制成導通且導電的時間期間不導通且不導電。
相似地,當自微控制器2接收到的VHSC1高側驅動器數位控制訊號具有低數位邏輯位準時,則可認為驅動器積體電路3將始終控制高側閘極驅動器電路29來將低電壓驅動至高側電晶體QHS 18的閘極上以使高側電晶體QHS 18關斷且不導電,但根據本發明此並非始終正確。如以下進一步詳細闡釋,驅動器積體電路3偵測是否存在正向電流流經高側電晶體18的本體二極體20,並在此狀況中將高電壓驅動至高側電晶體QHS 18的閘極上以使高側電晶體QHS 18導通。因此即使自微控制器2接收的VHSC1高側驅動器數位控制訊號處於低數位邏輯位準高側電晶體QHS 18亦導通。高側電晶體QHS 18的導通對本體二極體20周圍的電流進行分流,並降低在此時間期間本體二極體20兩端原本存在的電壓降,且藉此降低本體二極體20中的功率耗散。若本體二極體20接著將快速換向,則高側電晶體QHS 18導通亦用於減小反向恢復電流的量值。然而,高側電晶體QHS 18被控制成在低側電晶體QLS 14被控制成導通且導電的時間期間不導通且不導電。
圖3是LS驅動器邏輯26的電路系統的一個實例的方塊圖。LS驅動器邏輯26包括延時電路80、兩個下降邊緣偵測電路81及82、上升邊緣偵測電路83、兩個或閘84及85以及正反器86。上升邊緣偵測電路及下降邊緣偵測電路是單觸發電路(one-shot circuit)。
圖4是HS驅動器邏輯27的電路系統的一個實例的方塊圖。HS驅動器邏輯27包括延時電路90、下降邊緣偵測電路91、兩個上升邊緣偵測電路92及93、兩個或閘94及95以及正反器96。上升邊緣偵測電路及下降邊緣偵測電路是單觸發電路。
圖5是示出圖2所示直流-交流逆變器電路的操作的波形圖。頂部波形55表示由直流-交流逆變器電路驅動通過繞組6的期望正弦交流電流。此繞組電流亦被稱為電感器電流並表示為IL。第二波形VLSC1 56表示由驅動器積體電路3在端子VLSC1 41上接收的VLSC1低側驅動器數位控制訊號。第三波形VHSC1 57表示由驅動器積體電路3在端子VHSC1 42上接收的VHSC1數位控制訊號。底部波形58表示由直流-交流逆變器電路驅動通過繞組6的實際交流電流。實際電感器電流IL不具有完美的正弦波形,但是實際電感器電流IL近似於正弦波形。在電感器電流正弦波的前半循環59期間,VLSC1低側驅動器控制訊號受微控制器2的控制而上下轉變,但是VHSC1控制訊號保持為數位邏輯低位準。應注意,當VLSC1低側驅動器控制訊號處於數位邏輯高位準時,則呈底部波形的電感器電流IL的量值增大。應注意,當VLSC1低側驅動器控制訊號處於數位邏輯低位準時,則呈底部波形的電感器電流IL的量值下降。VLSC1低側驅動器控制訊號的脈波的時序及工作循環使得呈底部波形58的所得電感器電流近似於理想正弦波形。
在電感器電流正弦波的後半循環60期間,VHSC1控制訊號受微控制器2的控制而上下轉變,但是VLSC1低側驅動器控制訊號保持為數位邏輯低位準。應注意,當VHSC1控制訊號處於數位邏輯高位準時,則呈底部波形的電感器電流IL的量值下降。應注意,當VHSC1控制訊號處於數位邏輯低位準時,則呈底部波形的電感器電流IL的量值增大。VHSC1控制訊號的脈波的時序及工作循環使得所得電感器電流具有期望的正弦波形。
圖6更詳細地示出時間T1與時間T6之間的時間段。圖6所示上部的兩個波形表示由驅動器積體電路3自微控制器2接收的數位控制訊號VHSC1及VLSC1。由於T1與T6之間的時間段在輸出電感器電流IL的前半循環59期間發生,因此微控制器2正在保持使高側控制訊號VHSC1處於數位邏輯低位準。標記為VLSC2的第四波形是由低側驅動器邏輯電路26輸出至低側閘極驅動器電路28的輸入引線上的電壓訊號。當低側驅動器數位控制訊號VLSC1在時間T2與時間T3之間處於高數位邏輯位準時,低側閘極驅動器電路28正在將12伏特VGs電壓驅動至低側電晶體QLS 14的閘極上。低側電晶體QLS 14因此是導通且導電的。電感器電流IL因此如標記為「電感器電流(IL)」的第五波形所示在時間T2與時間T3之間上升。然而,在時間T3處微控制器2使VLSC1低側驅動器控制訊號轉變成數位邏輯低位準。此下降邊緣由LS驅動器邏輯26中的下降邊緣偵測器82偵測到。對下降邊緣的偵測在圖6中由標記有圓圈「1」的箭頭表示。第三波形中示出的脈波示出由此下降邊緣偵測器82輸出的訊號FED82。作為此偵測的結果,低側驅動器邏輯26向低側閘極驅動器電路28輸出數位邏輯低訊號VLSC2。低側閘極驅動器電路28繼而將低側電晶體QLS 14上的閘極電壓VGs向下驅動至零伏特。此在圖6中由標記有圓圈「2」的箭頭表示。當低側電晶體QLS 14的閘極上的電壓被驅動至低時,低側電晶體QLS 14關斷。此在圖6中由標記有圓圈「3」的箭頭表示。流經低側電晶體QLS的電流IQLS如第六波形所示下降至零。然而,流經變壓器繞組6的大的電感的電流IL無法立即停止,因此電流IL自SW節點25向上轉向至高側電晶體裝置5。高側電晶體QHS 18此時關斷,因此電流經由本體二極體D1 20流動至節點24。自SW節點25向上流動至高側電晶體裝置5的電流IQHS的此種突然增大在圖6中由標記有圓圈「4」的箭頭表示。電流在時間T3處的增大在標記為IQHS的波形中示出。當此電流IQHS超過預定臨限電流61時,則比較器32輸出數位邏輯高訊號。在位準偏移電路38進行位準偏移之後,此訊號成為訊號ICOMPHS。訊號ICOMPHS的上升邊緣由高側驅動器邏輯27中的上升邊緣偵測器93偵測到。此在圖6中由標記有圓圈「5」的箭頭表示。上升邊緣偵測器93偵測到訊號ICOMPHS的上升邊緣並輸出訊號RED93的高脈波。訊號RED93被供應至正反器96的置位輸入引線上,因此高側驅動器邏輯27中的正反器96被設定,且高側驅動器邏輯電路27將其輸出訊號VHSC2設定至高數位邏輯位準。此在圖6中由標記有圓圈「6」的箭頭表示。高側閘極驅動器電路29繼而將12伏特閘極電壓(VGHS)驅動至高側電晶體QHS 18的閘極上。此在圖6中由標記有圓圈「7」的箭頭表示。高側電晶體18的閘極上的12伏特VGHS電壓(相對於SW節點上的電壓而言)使高側電晶體QHS 18導通。此在圖6中由標記有圓圈「8」的箭頭表示。如IQHS(NFET)波形所示,高側電晶體QHS 18傳導電流。此電流減小流經本體二極體D1 20的電流的量值,如標記為IQHS(DIODE)的底部波形所示。應注意,當電流IQHS(NFET)增大時,電流IQHS(DIODE)以對應的方式減小。即使端子42上的傳入數位控制訊號VHSC1處於數位邏輯低位準,高側電晶體QHS 18亦被控制成導通且導電的。
此種狀況一直持續到微控制器2在時間T4處將低側驅動器數位控制訊號VLSC1置位至數位邏輯高位準。驅動器積體電路3偵測低側驅動器數位控制訊號VLSC1的上升邊緣,但不立即控制低側電晶體QLS 14轉向。而是,驅動器積體電路3首先控制將高側電晶體QHS 18關斷。首先,高側驅動器邏輯27中的上升邊緣偵測器92偵測到VLSC1低側驅動器控制訊號的上升邊緣。此在圖6中由標記有圓圈「9」的箭頭表示。圖6所示第七波形RED92所示的脈波表示由此上升邊緣偵測器92輸出的脈波。因應於此,高側驅動器邏輯27迫使VHSC2控制訊號處於數位邏輯低位準。此在圖6中由標記有圓圈「10」的箭頭表示。此使高側電晶體18的閘極上的電壓降低。此在圖6中由標記有圓圈「11」的箭頭表示。高側電晶體18的閘極上的電壓訊號VGHS以由電阻器11的電阻以及高側電晶體裝置5的閘極-源極電容決定的速率降低。由於電阻器11以及高側電晶體的閘極電容,端子50上的訊號VHSGDOS的電壓不與高側電晶體QHS 18的閘極上的訊號VGHS的電壓相同。隨著高側電晶體QHS 18的閘極上的訊號VGHS的電壓降低,流經高側電晶體QHS 18的電流減小。此在圖6中由標記有圓圈「12」的箭頭表示。當高側電晶體QHS 18的閘極上的電壓VGHS降低至低於預定臨限電壓62時,則比較器33將其輸出訊號置位至高數位邏輯位準。在位準偏移之後,此訊號成為數位訊號VCOMPHS。數位訊號VCOMPHS的低至高訊號轉變使正反器86以數位高值計時。控制訊號VLSC2因此轉變成高數位邏輯值。此在圖6中由標記有圓圈「13」的箭頭表示。此使低側電晶體QLS 14導通,且使電感器電流IL自SW節點25經由低側電晶體QLS 14向下重新定向至接地節點GND 23。此在圖6中由標記有圓圈「14」的箭頭表示。自時間T5至時間T6,流經低側電晶體QLS 14的電流增大,如圖6中標記為IQLS的波形所示。
因此,當低側電晶體QLS 14在前半循環59期間第一次被控制關斷時,偵測到流經高側電晶體的本體二極體D1 20的電流的快速增大。此種偵測用作觸發條件來將高側電晶體QHS 18導通。原本將通過本體二極體D1 20的電流通過高側電晶體QHS 18。此會降低原本將在本體二極體D1 20中發生的功率損失。高側電晶體QHS 18繼續被控制成導通且導電的直至驅動器積體電路3自微控制器2接收到VLSC1低側驅動器數位控制訊號的上升邊緣。因應於自微控制器2接收到VLSC1低側驅動器數位控制訊號的此上升邊緣,驅動器積體電路3首先控制將高側電晶體QHS 18關斷。當高側電晶體QHS 18的閘極-源極電壓降低至低於臨限電壓時,則驅動器積體電路3可將低側電晶體QLS 14導通而不會造成擊穿問題。因此,因應於偵測到高側電晶體QHS 18上的VGs閘極電壓已降低至低於臨限電壓,驅動器積體電路3控制將低側電晶體QLS 14導通。只要自微控制器2接收的VLSC1低側驅動器數位控制訊號繼續為高(處於數位邏輯高值),低側電晶體QLS 14此後便被控制成保持導通且導電。
圖7是圖6所示波形圖中闡述的方法100的流程圖。此方法100屬於在正弦交流輸出電流IL的前半循環59期間驅動器積體電路3的操作。在開始時,在例如圖6中的時間T3的時間處,低側電晶體QLS 14導通。VHSC1高側驅動器數位控制訊號處於數位邏輯低位準並在圖7所示方法100自始至終維持處於此位準。微控制器2接著將低側驅動器控制訊號VLSC1取消置位至數位邏輯低位準。此使低側電晶體QLS 14關斷,且使電感器電流IL的流動自SW節點25向上重新定向至高側電晶體裝置5。電流IQHS因此增大。當比較器32偵測到電流IQHS超過臨限電流(步驟101)時,則驅動器積體電路3控制將高側電晶體QHS 18導通(步驟102)。在圖2所示實例中,此種偵測藉由偵測流經感測本體二極體D1S 21的電流是否超過臨限電流來間接地完成。即使微控制器2正在保持VHSC1訊號處於數位邏輯低位準,驅動器積體電路3亦控制將高側電晶體QHS導通。只要微控制器2繼續控制使低側電晶體QLS 14保持關斷,驅動器積體電路3便繼續控制使高側電晶體QHS 18保持導通且導電。此對本體二極體D1 20周圍的電流進行分流。分流電流流經高側電晶體QHS。當微控制器2接著將VLSC1低側驅動器數位控制訊號置位至數位邏輯高位準以導通低側電晶體QLS 14(步驟103)時,則驅動器積體電路3首先控制將高側電晶體QHS 18關斷(步驟104)。當比較器33偵測到高側電晶體QHS 18的閘極上的電壓VGs已降低至低於臨限電壓(步驟105)時,則驅動器積體電路3將「低側閘極驅動器輸出訊號」(VLSGDOS)置位至端子45上。此使低側電晶體QLS 14導通(步驟106)。只要微控制器2繼續將VLSC1低側驅動器控制訊號置位至數位邏輯高位準,驅動器積體電路3便繼續將高閘極-源極電壓訊號VGLS驅動至低側電晶體QLS 14的閘極上。當微控制器2接著將VLSC1低側驅動器控制訊號取消置位至數位邏輯低位準(步驟107)時,則驅動器積體電路3控制將低側電晶體QLS 14關斷(步驟108),並重複進行步驟101至步驟108。
除了在圖5所示前半循環59期間降低功率損失之外,驅動器積體電路3在圖5所示後半循環60期間亦以相似的方式運作以降低損失。在後半循環60期間,微控制器2將VLSC1低側驅動器數位控制訊號保持處於固定數位邏輯低位準。然而,微控制器2使VHSC1數位控制訊號脈動成使電感器電流IL具有圖5所示正弦波形。在此後半循環60期間,高側電晶體QHS 18在微控制器2的控制下導通以推動電流IL通過繞組6。此種電流的脈波處於與圖2中表示為IL的箭頭的方向相反的方向上,因此電流的脈動被視為負IL電流。因此,在圖5所示後半循環60中出現的IL波形涉及電感器電流IL為負。在負IL電流的此種脈波流經高側電晶體QHS 18之後,高側電晶體QHS 18關斷。此使負電流的流動重新定向。負電流被重新定向成自接地節點GND 23經由低側電晶體QLS 14的本體二極體D2 16向上流動至SW節點25,且接著經由變壓器的繞組6流動至節點22。在一個新穎態樣中,驅動器積體電路3在此時間期間控制將低側電晶體QLS 14導通。原本將流經本體二極體D2 16的一些電流因此流經導電低側電晶體QLS 14。接著當微控制器2將VHSC1數位控制訊號置位以將高側電晶體QHS 18導通時,驅動器積體電路3不會立即將12伏特VGHS訊號驅動至高側電晶體QHS 18的閘極上,而是低側驅動器邏輯26首先使低側電晶體QLS 14關斷。驅動器積體電路3對低側電晶體QLS 14的閘極上的閘極電壓訊號VGLS(VGs)進行監測。當偵測到低側電晶體QLS 14的閘極上的閘極電壓VGs已降低至低於電壓臨限值62時,則高側驅動器邏輯27控制將高側電晶體QHS 18導通。
圖7所示流程圖是針對微控制器2將VHSC1訊號保持處於數位邏輯低的狀況而言的。若微控制器2將VHSC1訊號置位至數位邏輯高,則低至高轉變將通過高側驅動器邏輯27的延時元件90,且將通過或閘95以及將對正反器96進行計時。由於在正反器96的D輸入上存在數位「1」,因此正反器96將以數位邏輯高位準計時,且VHSC2訊號將被置位至數位邏輯高位準。此將通過高側驅動器29並將自驅動器積體電路3中通過且將高側電晶體QHS導通。若如上所述驅動器積體電路3控制將低側電晶體QLS導通(以使得即使VLSC1低亦對低側電晶體QLS的本體二極體D2周圍的電流進行分流),則在將高側電晶體QHS導通的過程中的延時為低側電晶體QLS被關斷提供時間。在一個實施例中,若低側電晶體QLS上的VGLS低於臨限電壓,則驅動器積體電路3僅允許高側電晶體QHS導通。
圖8是在其中微控制器對高側電晶體的導通與關斷進行切換但保持VLSC1低的狀況中驅動器積體電路3的操作的方法200的流程圖。在開始時,微控制器2正在控制將高側電晶體QHS 18導通且導電。VLSC1低側驅動器數位控制訊號處於數位邏輯低位準並在圖8所示方法200自始至終維持為此位準。微控制器2接著將數位控制訊號VHSC1取消置位至數位邏輯低位準。因應於此,驅動器積體電路3控制將高側電晶體QHS 18關斷。高側電晶體QHS 18的關斷使電感器電流IL的流動重新定向。電感器電流的流動自接地節點GND 23向上通過低側電晶體QLS 14的本體二極體D2 16到達SW節點25,且接著通過繞組6到達節點22。電流的此種流動與IQLS電流的箭頭相反,因此電流的此種流動被視為負IQLS電流。當比較器30偵測到電流IQLS超過臨限電流(步驟201)時,則驅動器積體電路3控制將低側電晶體QLS 14導通(步驟202)。在圖2所示實例中,此種偵測藉由偵測流經感測電晶體的本體二極體D2S 17的電流是否超過成比例的臨限電流來間接地完成。只要微控制器2繼續控制使高側電晶體QHS 18保持關斷,驅動器積體電路3便繼續控制使低側電晶體QLS保持導通且導電。此對本體二極體D2 16周圍的電流進行分流。當微控制器2將VHSC1高側驅動器數位控制訊號置位至數位邏輯高位準以導通高側電晶體QHS 18(步驟203)時,則驅動器積體電路3首先控制將低側電晶體QLS 14關斷(步驟204)。當比較器31偵測到低側電晶體QLS 14的閘極上的電壓訊號VGLS(VGs)已降低至低於臨限電壓(步驟205)時,則驅動器積體電路3將「高側閘極驅動器輸出訊號」(VHSGDOS)置位至端子50上。此使高側電晶體QHS 18導通(步驟206)。只要微控制器2繼續將VHSC1高側驅動器數位控制訊號置位至數位邏輯高位準,驅動器積體電路3便繼續將12伏特閘極-源極電壓VGs驅動至高側電晶體QHS 18的閘極上。當微控制器2接著將VHSC1高側驅動器數位控制訊號取消置位至數位邏輯低位準(步驟207)時,則驅動器積體電路3控制將高側電晶體QHS 18關斷(步驟208),並重複進行步驟201至步驟208。
圖8所示流程圖是針對微控制器2將VLSC1訊號保持處於數位邏輯低的狀況而言的。若微控制器2將VLSC1訊號置位至數位邏輯高,則低至高轉變將通過低側驅動器邏輯26的延時元件80,且將通過或閘84以及將對正反器86進行計時。由於在正反器86的D輸入上存在數位「1」,因此正反器86將以數位邏輯高位準進行計時,且VLSC2訊號將被置位至數位邏輯高位準。此將通過低側驅動器28並將自驅動器積體電路3中通過且將低側電晶體QLS導通。若如上所述驅動器積體電路3將高側電晶體QHS控制成導通(以使得即使VHSC1低亦對高側電晶體QHS的本體二極體D1周圍的電流進行分流),則在將低側電晶體QLS導通的過程中的延時為高側電晶體QHS被關斷提供時間。在一個實施例中,若高側電晶體QHS上的VGs低於臨限電壓,則驅動器積體電路3僅允許低側電晶體QLS導通。
微控制器可基於諸多不同的感測器輸入(包括感測電流及感測電壓)來採用複雜的方式對高側驅動器及低側驅動器進行控制。因此,可認為經計時的數位微控制器可實行新穎驅動器積體電路3的功能。然而,通常並非如此。在一個實施例中,以相對慢的時脈速率來對控制閘極驅動器積體電路3的高側驅動器及低側驅動器的微控制器進行計時。微控制器2的此種相對慢的計時出於若干原因而為期望的。因此,微控制器2不進行必要的電流及/或電壓偵測,並基於該些偵測做出決定,且藉由盡可能快地控制高側驅動器及低側驅動器來進行因應。因此,新穎閘極驅動器積體電路3包括比較器30至33以及相關聯的電路系統,藉此使驅動器積體電路3能夠更快地且在類比域中進行偵測並對所述偵測進行因應。由於必須等待數位時脈訊號的時脈邊緣,因此圖6中由箭頭「1」至「8」表示以及由箭頭「9」至「14」表示的訊號傳播不會減慢。閘極驅動器積體電路3不包括任何提取指令並執行所述指令的經計時的數位處理器。
圖9示出圖2所示驅動器積體電路3的數位接口邏輯63及相關聯的端子64及65。端子64及65以及數位接口邏輯63未在圖2的簡化圖中示出。數位接口邏輯63包括用於自微控制器2接收串列資訊的積體間電路(Inter Integrated Circuit,I2 C)接口、四個多位元數位控制暫存器以及四個對應的數位-類比變換器(digital­to-analog converter,DAC)。電壓參考電路34至37中的每一者是該些多位元控制暫存器及其相關聯的DAC中的一者。儲存於暫存器中的多位元數位控制值被供應至DAC以使DAC將繼而輸出期望的參考電壓。微控制器2以串列方式將數位訊號供應至端子SDA 64及端子SCL 65上,且藉此將多位元數位電壓控制值寫入至所述四個控制暫存器中的每一者中,且藉此對由電壓參考電路34至37輸出的參考電壓中的每一者進行控制及設定。導體68耦合至比較器33的反向輸入引線。導體69耦合至比較器32的非反向輸入引線。導體70耦合至比較器31的非反向輸入引線。導體71耦合至比較器30的非反向輸入引線。垂直虛線72表示圖2所示驅動器積體電路3的左側邊界。由電壓參考電路34至37輸出的參考電壓因此可由微控制器2程式化。
儘管以上出於指導目闡述了某些特定實施例,但是本專利文件的教示內容具有普遍適用性,且並非僅限於上述特定實施例。儘管此種新穎閘極驅動器最有利地設置於與微控制器分開的積體電路上,但是新穎閘極驅動器亦可與微控制器一起設置於同一積體電路上。因此,在不背離申請專利範圍所述的本發明的範圍的條件下,可實踐所述實施例的各種特徵的各種修改、改編及組合。
1:直流-交流逆變器電路系統/直流-交流逆變器系統 2:微控制器積體電路/微控制器 3:驅動器積體電路/閘極驅動器積體電路 4:低側電晶體裝置 5:高側電晶體裝置 6:第一繞組/繞組/變壓器繞組 6A:第一端 6B:第二端 7:第二繞組 8:第一電壓源 9:第二電壓源 10:高側電流感測電阻器 11:電流限制閘極電阻器/電阻器 12:低側電流感測電阻器 13:電流限制閘極電阻器 14:低側N通道場效電晶體/低側電晶體/電晶體/主電晶體/主低側電晶體/導電低側電晶體 15、19:較小電流感測N通道場效電晶體/電流感測電晶體/電晶體 16、17、20、21、D1、D1S、D2、D2S、DHS、DLS:本體二極體 18:高側N通道場效電晶體/高側電晶體/電晶體 22、24、25、N1、N2:節點 23:接地節點 26:低側閘極驅動器邏輯電路/LS驅動器邏輯/低側驅動器邏輯電路/低側驅動器邏輯 27:高側閘極驅動器邏輯電路/高側(HS)驅動器邏輯/高側驅動器邏輯電路 28:低側閘極驅動器電路/低側驅動器 29:高側閘極驅動器電路/高側驅動器 30:低側電流感測比較器/比較器 31:低側電壓感測比較器/比較器 32:高側電流感測比較器/比較器 33:高側電壓感測比較器/比較器 34、35、36、37:電壓參考(VREF)電路 38、39、40:位準偏移(LS)電路 41:VLSC1低側驅動器數位控制訊號輸入端子/端子 42:VHSC1高側驅動器數位控制訊號輸入端子/端子 43:接地端子 44:低側電流感測輸入端子 45:低側驅動器輸出端子/端子 46:低側電壓感測輸入端子 47:低側驅動器供應電壓端子 48:SW節點端子 49:高側電流感測輸入端子 50:高側驅動器輸出端子/端子 51:高側電壓感測輸入端子 52:高側驅動器供應電壓端子 55:頂部波形 56:第二波形 57:第三波形 58:底部波形 59:前半循環 60:後半循環 61:臨限電流/預定臨限電流 62:臨限電壓/預定臨限電壓/電壓臨限值 63:數位接口邏輯 64、65、SCL、SDA:端子 68、69、70、71:導體 72:垂直虛線 80、90:延時電路/延時元件 81、91:下降邊緣偵測電路 82:下降邊緣偵測電路/下降邊緣偵測器 83:上升邊緣偵測電路 84、85、94、95:或閘 86、96:正反器 92、93:上升邊緣偵測電路/上升邊緣偵測器 100、200:方法 101、102、103、104、105、106、107、108、201、202、203、204、205、206、207、208:步驟 ①、②、③、④、⑤、⑥、⑦、⑧、⑨、⑩、⑪、⑫、⑬、⑭、A:箭頭 B:箭頭/電流 C、D:箭頭/路徑 FED82、ICOMPHS、ICOMPLS、RED93、VCOMPLS:訊號 GND:節點/接地節點 IL:實際電感器電流/電感器電流/電流/正弦交流輸出電流 IQHS、IQHS(NFET)、IQLS:電流/波形 IQHS(DIODE):底部波形/電流 L:第一繞組/繞組 QHS:高側電晶體 QHSS:較小電流感測N通道場效電晶體 QLS:低側電晶體/電晶體/低側N通道場效電晶體/導電低側電晶體 QLSS:較小電流感測N通道場效電晶體 RED92:第七波形 SW:中心切換節點/切換節點 T1、T2、T3、T4、T5、T6:時間 VCOMPHS:數位訊號 VGHS:電壓訊號/訊號/電壓 VGLS:高閘極-源極電壓訊號/閘極電壓訊號/電壓訊號 VHSC1:數位高側控制訊號/第三波形/數位控制訊號/高側控制訊號/傳入數位控制訊號/訊號 VHSC2:輸出訊號/訊號 VHSGDOS:訊號/高側閘極驅動器輸出訊號 VLSC1:數位低側控制訊號/第二波形/數位控制訊號/低側驅動器數位控制訊號/低側驅動器控制訊號/訊號 VLSC2:第四波形/數位邏輯低訊號/控制訊號/訊號 VLSGDOS:低側閘極驅動器輸出訊號
附圖示出本發明的實施例,在附圖中相同的編號表示相同的組件。 圖1A(先前技術)是示出當低側電晶體導通且導電時直流-交流逆變器電路中的電流流動的圖。 圖1B(先前技術)是示出當低側電晶體關斷時圖1A所示直流-交流逆變器電路中的電流流動的圖。 圖1C(先前技術)是示出當低側電晶體再次導通時圖1A所示逆變器電路中的電流流動的圖。 圖1D(先前技術)是示出在高側電晶體的本體二極體中流動的反向恢復電流消退之後的後續時間處圖1A所示逆變器電路中的電流流動的圖。 圖2是包括根據一個新穎態樣的新穎驅動器積體電路的切換直流-交流逆變器電路的圖。 圖3是圖2所示驅動器積體電路的低側驅動器邏輯電路的方塊圖。 圖4是圖2所示驅動器積體電路的高側驅動器邏輯電路的方塊圖。 圖5是示出圖2所示直流-交流逆變器電路的操作的波形圖。 圖6是更詳細地示出圖5所示時間T2與時間T6之間的時間段的簡化波形圖。所述波形圖是簡化圖。為達成對波形的更準確的理解,應製作電路且接著應利用測試設備來監測並檢查實際電路中的實際訊號。 圖7是其中高側電晶體QHS導通以對高側電晶體QHS的本體二極體D1周圍的電流進行分流從而降低因流經本體二極體D1的反向恢復電流引起的損失的方法100的流程圖。 圖8是其中低側電晶體QLS導通以對低側電晶體QLS的本體二極體D2周圍的電流進行分流從而降低因流經本體二極體D2的反向恢復電流引起的損失的方法200的流程圖。 圖9是示出串列數位接口的圖,驅動器積體電路3藉由串流數位接口而自微控制器接收多位元數位控制值,其中多位元數位控制值控制臨限電壓(例如,臨限電壓62)及臨限電流(例如,臨限電流61)。
1:直流-交流逆變器電路系統/直流-交流逆變器系統
2:微控制器積體電路/微控制器
3:驅動器積體電路/閘極驅動器積體電路
4:低側電晶體裝置
5:高側電晶體裝置
6:第一繞組/繞組/變壓器繞組
6A:第一端
6B:第二端
7:第二繞組
8:第一電壓源
9:第二電壓源
10:高側電流感測電阻器
11:電流限制閘極電阻器/電阻器
12:低側電流感測電阻器
13:電流限制閘極電阻器
14:低側N通道場效電晶體/低側電晶體/電晶體/主電晶體/主低側電晶體/導電低側電晶體
15、19:較小電流感測N通道場效電晶體/電流感測電晶體/電晶體
16、17、20、21、D1、D1S、D2、D2S:本體二極體
18:高側N通道場效電晶體/高側電晶體/電晶體
22、24、25:節點
23:接地節點
26:低側閘極驅動器邏輯電路/低側(LS)驅動器邏輯/低側驅動器邏輯電路
27:高側閘極驅動器邏輯電路/高側(HS)驅動器邏輯/高側驅動器邏輯電路
28:低側閘極驅動器電路/低側驅動器
29:高側閘極驅動器電路/高側驅動器
30:低側電流感測比較器/比較器
31:低側電壓感測比較器/比較器
32:高側電流感測比較器/比較器
33:高側電壓感測比較器/比較器
34、35、36、37:電壓參考(VREF)電路
38、39、40:位準偏移(LS)電路
41:VLSC1低側驅動器數位控制訊號輸入端子/端子
42:VHSC1高側驅動器數位控制訊號輸入端子/端子
43:接地端子
44:低側電流感測輸入端子
45:低側驅動器輸出端子/端子
46:低側電壓感測輸入端子
47:低側驅動器供應電壓端子
48:SW節點端子
49:高側電流感測輸入端子
50:高側驅動器輸出端子/端子
51:高側電壓感測輸入端子
52:高側驅動器供應電壓端子
ICOMPHS、ICOMPLS、VCOMPLS:訊號
GND:節點/接地節點
IL:實際電感器電流/電感器電流/電流/正弦交流輸出電流
IQHS、IQLS:電流/波形
QHS:高側電晶體
QHSS:較小電流感測N通道場效電晶體
QLS:低側電晶體/電晶體/低側N通道場效電晶體/導電低側電晶體
QLSS:較小電流感測N通道場效電晶體
SW:中心切換節點/切換節點
VCOMPHS:數位訊號
VGHS:電壓訊號/訊號/電壓
VGLS:高閘極-源極電壓訊號/閘極電壓訊號/電壓訊號
VHSC1:數位高側控制訊號/第三波形/數位控制訊號/高側控制訊號/傳入數位控制訊號/訊號
VHSC2:輸出訊號/訊號
VHSGDOS:訊號/高側閘極驅動器輸出訊號
VLSC1:數位低側控制訊號/第二波形/數位控制訊號/低側驅動器數位控制訊號/低側驅動器控制訊號/訊號
VLSC2:第四波形/數位邏輯低訊號/控制訊號/訊號
VLSGDOS:低側閘極驅動器輸出訊號

Claims (10)

  1. 一種閘極驅動器積體電路,包括: 高側驅動器數位控制訊號輸入端子; 高側驅動器輸出端子; 高側閘極驅動器電路,將高側閘極驅動器輸出訊號輸出至所述高側驅動器輸出端子上; 低側驅動器數位控制訊號輸入端子; 低側驅動器輸出端子; 低側閘極驅動器電路,將低側閘極驅動器輸出訊號輸出至所述低側驅動器輸出端子上; 高側電流感測輸入端子; 高側電壓感測輸入端子; 低側電流感測輸入端子; 低側電壓感測輸入端子; 高側驅動器邏輯電路,向所述高側閘極驅動器電路供應控制訊號並自所述高側驅動器數位控制訊號輸入端子接收高側驅動器數位控制訊號; 低側驅動器邏輯電路,向所述低側閘極驅動器電路供應控制訊號並自所述低側驅動器數位控制訊號輸入端子接收低側驅動器數位控制訊號; 高側電流感測電路,自所述高側電流感測輸入端子接收訊號並向所述高側驅動器邏輯電路供應訊號; 高側電壓感測電路,自所述高側電壓感測輸入端子接收訊號並向所述低側驅動器邏輯電路供應訊號; 低側電流感測電路,自所述低側電流感測輸入端子接收訊號並向所述低側驅動器邏輯電路供應訊號;以及 低側電壓感測電路,自所述低側電壓感測輸入端子接收訊號並向所述高側驅動器邏輯電路供應訊號。
  2. 如請求項1所述的閘極驅動器積體電路,其中所述高側電流感測電路是高側電流感測比較器,其中所述高側電壓感測電路是高側電壓感測比較器,其中所述低側電流感測電路是低側電流感測比較器,且其中所述低側電壓感測電路是低側電壓感測比較器。
  3. 如請求項2所述的閘極驅動器積體電路,更包括: 切換節點輸入端子; 第一參考電壓電路,向所述高側電壓感測比較器供應第一參考電壓,其中所述第一參考電壓是相對於所述切換節點輸入端子上的電壓而言; 接地節點輸入端子;以及 第二參考電壓電路,向所述低側電壓感測比較器供應第二參考電壓,其中所述第二參考電壓是相對於所述接地節點輸入端子上的電壓而言。
  4. 一種適用於將低側閘極訊號驅動至低側電晶體的閘極上以及將高側閘極訊號驅動至高側電晶體的閘極上的閘極驅動器積體電路,其中所述高側電晶體具有本體二極體,所述閘極驅動器積體電路包括: 高側驅動器數位控制訊號輸入端子; 高側驅動器輸出端子; 高側閘極驅動器電路,將高側閘極驅動器輸出訊號輸出至所述高側驅動器輸出端子上; 低側驅動器數位控制訊號輸入端子; 低側驅動器輸出端子; 低側閘極驅動器電路,將低側閘極驅動器輸出訊號輸出至所述低側驅動器輸出端子上; 本體二極體電流監測電路系統,耦合至所述高側電晶體的所述本體二極體; 高側驅動器邏輯電路系統,耦合至所述低側驅動器數位控制訊號輸入端子及所述高側電晶體;以及 閘極電壓監測電路系統,耦合至所述高側電晶體及所述低側閘極驅動器電路。
  5. 如請求項4所述的閘極驅動器積體電路,其中所述本體二極體電流監測電路系統包括第一比較器,其中所述第一比較器輸出第一比較器輸出訊號,所述第一比較器輸出訊號被傳遞至所述高側驅動器邏輯電路系統,其中所述閘極電壓監測電路系統包括第二比較器,其中所述第二比較器輸出第二比較器輸出訊號,所述第二比較器輸出訊號被傳遞至低側驅動器邏輯電路,其中所述高側驅動器邏輯電路系統自所述高側驅動器數位控制訊號輸入端子接收高側驅動器數位控制訊號,且其中所述閘極驅動器積體電路不包括任何提取指令並執行所述指令的數位處理器。
  6. 如請求項5所述的閘極驅動器積體電路,其中所述本體二極體電流監測電路系統更包括電流感測輸入端子及參考電壓電路,其中所述第一比較器的第一差動輸入引線耦合至所述電流感測輸入端子,且其中所述第一比較器的第二差動輸入引線耦合至所述參考電壓電路。
  7. 如請求項5所述的閘極驅動器積體電路,其中所述閘極電壓監測電路系統更包括電壓感測輸入端子及參考電壓電路,其中所述第二比較器的第一差動輸入引線耦合至所述電壓感測輸入端子,且其中所述第二比較器的第二差動輸入引線耦合至所述參考電壓電路。
  8. 如請求項4所述的閘極驅動器積體電路,其中所述閘極電壓監測電路系統用於偵測所述高側電晶體上的閘極-源極電壓何時已降低至低於預定臨限電壓且所述閘極-源極電壓的此種降低是歸因於所述高側驅動器邏輯電路系統使所述高側電晶體關斷,且其中在所述高側驅動器數位控制訊號輸入端子上存在數位邏輯低值的時間期間在所述高側電晶體即將被關斷之前所述高側電晶體是導通且導電的。
  9. 如請求項4所述的閘極驅動器積體電路,更包括: 串列數位接口電路,所述閘極驅動器積體電路藉由所述串列數位接口電路接收多位元數位控制值,其中所述多位元數位控制值設定預定臨限電流。
  10. 如請求項4所述的閘極驅動器積體電路,更包括: 串列數位接口電路,所述閘極驅動器積體電路藉由所述串列數位接口電路接收多位元數位控制值,其中所述多位元數位控制值設定預定臨限電壓。
TW109133185A 2018-02-21 2019-02-20 閘極驅動器積體電路 TWI748662B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/901,829 2018-02-21
US15/901,829 US10090751B1 (en) 2018-02-21 2018-02-21 Gate driver for switching converter having body diode power loss minimization

Publications (2)

Publication Number Publication Date
TW202118208A TW202118208A (zh) 2021-05-01
TWI748662B true TWI748662B (zh) 2021-12-01

Family

ID=63638772

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109133185A TWI748662B (zh) 2018-02-21 2019-02-20 閘極驅動器積體電路
TW108105515A TWI709293B (zh) 2018-02-21 2019-02-20 涉及高側電晶體及低側電晶體的方法以及閘極驅動器積體電路

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108105515A TWI709293B (zh) 2018-02-21 2019-02-20 涉及高側電晶體及低側電晶體的方法以及閘極驅動器積體電路

Country Status (6)

Country Link
US (2) US10090751B1 (zh)
EP (2) EP3570440B1 (zh)
JP (2) JP6855522B2 (zh)
KR (2) KR102195552B1 (zh)
CN (2) CN113315403B (zh)
TW (2) TWI748662B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3386089B1 (en) * 2016-07-13 2020-01-01 Fuji Electric Co., Ltd. Power module
US10090751B1 (en) * 2018-02-21 2018-10-02 Ixys, Llc Gate driver for switching converter having body diode power loss minimization
DE102018220247A1 (de) * 2018-11-26 2020-05-28 Robert Bosch Gmbh Leistungsschalteranordnung
CN110138367B (zh) * 2019-05-16 2020-12-08 东南大学 降低功率器件反向恢复电流的栅极驱动电路
CN110557106B (zh) * 2019-08-14 2023-09-05 成都芯源系统有限公司 一种开关单元关断保护电路及保护方法
EP3958466B1 (en) * 2020-08-18 2024-05-15 Aptiv Technologies AG Triggering circuit and electronic fuse device incorporating the same
US11264985B1 (en) * 2021-03-04 2022-03-01 Aes Global Holdings Pte Ltd. Bipolar pulsed-voltage gate driver
KR20230104923A (ko) 2021-06-07 2023-07-11 양쯔 메모리 테크놀로지스 씨오., 엘티디. 저-드롭아웃 레귤레이터의 누전 차단
KR102526974B1 (ko) * 2021-07-21 2023-04-27 비테스코 테크놀로지스 게엠베하 자동차용 pn 릴레이 제어 장치
US11552633B1 (en) * 2021-10-15 2023-01-10 Stmicroelectronics S.R.L. Driver circuit with enhanced control for current and voltage slew rates
CN114123737A (zh) * 2021-11-03 2022-03-01 哈尔滨工业大学(深圳) 一种降低mosfet功率损耗的系统与方法
TWI788245B (zh) 2022-01-19 2022-12-21 立錡科技股份有限公司 脈波寬度調變控制器及其控制方法
TWI796199B (zh) 2022-02-21 2023-03-11 立錡科技股份有限公司 功率轉換器及其控制方法
US20230396141A1 (en) * 2022-06-02 2023-12-07 Psemi Corporation Circuits and methods for generating a continuous current sense signal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043950A1 (en) * 2010-08-18 2012-02-23 Truong Tom C System and method for controlling a power switch in a power supply system
US20120062190A1 (en) * 2010-09-10 2012-03-15 Holger Haiplik Dc-dc converters
JP2015106741A (ja) * 2013-11-28 2015-06-08 株式会社オートネットワーク技術研究所 制御信号生成回路及び回路装置
CN106200742A (zh) * 2013-03-15 2016-12-07 英特尔公司 调压器的非线性控制
CN107112895A (zh) * 2015-01-12 2017-08-29 曹华 开关稳压器及其操控方法
TW201804277A (zh) * 2014-09-16 2018-02-01 納維達斯半導體公司 用於氮化鎵電路負載之氮化鎵電路驅動器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759692B1 (en) * 2002-02-04 2004-07-06 Ixys Corporation Gate driver with level shift circuit
GB0227792D0 (en) * 2002-11-29 2003-01-08 Koninkl Philips Electronics Nv Driver for switching circuit and drive method
JP4046752B2 (ja) * 2006-05-09 2008-02-13 シャープ株式会社 電源回路装置及びこの電源回路装置を備えた電子機器
JP4735429B2 (ja) * 2006-06-09 2011-07-27 株式会社デンソー 負荷駆動装置
US9118259B2 (en) * 2007-12-03 2015-08-25 Texas Instruments Incorporated Phase-shifted dual-bridge DC/DC converter with wide-range ZVS and zero circulating current
JP2011015461A (ja) * 2009-06-30 2011-01-20 Shindengen Electric Mfg Co Ltd 信号制御回路
US7986172B2 (en) * 2009-08-31 2011-07-26 Freescale Semiconductor, Inc. Switching circuit with gate driver having precharge period and method therefor
DE102010013353A1 (de) * 2010-03-30 2011-10-06 Texas Instruments Deutschland Gmbh Schaltwandler-Steuerschaltung
JP5549685B2 (ja) * 2012-01-10 2014-07-16 株式会社デンソー スイッチング素子の駆動装置
CN104303405B (zh) * 2012-05-24 2018-05-25 西门子公司 用于功率变换器的栅极驱动器
JP5812027B2 (ja) * 2013-03-05 2015-11-11 株式会社デンソー 駆動制御装置
JP5939281B2 (ja) * 2013-07-10 2016-06-22 株式会社デンソー 駆動制御装置
US9590616B2 (en) * 2013-07-10 2017-03-07 Denso Corporation Drive control device
JP6221930B2 (ja) * 2014-05-13 2017-11-01 株式会社デンソー スイッチング素子の駆動回路
US9543940B2 (en) * 2014-07-03 2017-01-10 Transphorm Inc. Switching circuits having ferrite beads
JP6337803B2 (ja) * 2015-03-03 2018-06-06 株式会社デンソー 同期整流回路
JP2017005974A (ja) * 2015-06-04 2017-01-05 株式会社デンソー 同期整流回路
JP6591220B2 (ja) * 2015-07-15 2019-10-16 ルネサスエレクトロニクス株式会社 半導体装置および電力制御装置
US9813055B2 (en) * 2016-04-01 2017-11-07 Ixys Corporation Gate driver that drives with a sequence of gate resistances
JP6207669B2 (ja) * 2016-05-17 2017-10-04 三菱電機株式会社 同期整流回路
US10090751B1 (en) * 2018-02-21 2018-10-02 Ixys, Llc Gate driver for switching converter having body diode power loss minimization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043950A1 (en) * 2010-08-18 2012-02-23 Truong Tom C System and method for controlling a power switch in a power supply system
US20120062190A1 (en) * 2010-09-10 2012-03-15 Holger Haiplik Dc-dc converters
CN106200742A (zh) * 2013-03-15 2016-12-07 英特尔公司 调压器的非线性控制
JP2015106741A (ja) * 2013-11-28 2015-06-08 株式会社オートネットワーク技術研究所 制御信号生成回路及び回路装置
TW201804277A (zh) * 2014-09-16 2018-02-01 納維達斯半導體公司 用於氮化鎵電路負載之氮化鎵電路驅動器
CN107112895A (zh) * 2015-01-12 2017-08-29 曹华 开关稳压器及其操控方法

Also Published As

Publication number Publication date
KR20200145797A (ko) 2020-12-30
KR20190100861A (ko) 2019-08-29
KR102467987B1 (ko) 2022-11-17
CN110176871B (zh) 2021-06-11
KR102195552B1 (ko) 2020-12-28
US10439483B2 (en) 2019-10-08
JP7039744B2 (ja) 2022-03-22
US10090751B1 (en) 2018-10-02
TWI709293B (zh) 2020-11-01
CN110176871A (zh) 2019-08-27
TW201937837A (zh) 2019-09-16
TW202118208A (zh) 2021-05-01
US20190260281A1 (en) 2019-08-22
EP4057509A1 (en) 2022-09-14
EP3570440A1 (en) 2019-11-20
CN113315403B (zh) 2024-05-17
EP3570440B1 (en) 2022-06-08
CN113315403A (zh) 2021-08-27
JP2019180228A (ja) 2019-10-17
JP2022001009A (ja) 2022-01-04
JP6855522B2 (ja) 2021-04-07

Similar Documents

Publication Publication Date Title
TWI748662B (zh) 閘極驅動器積體電路
US9350259B2 (en) Synchronous rectifier control for a double-ended isolated power converter
US9240728B2 (en) Control device for rectifiers of switching converters
US10218258B1 (en) Apparatus and method for driving a power stage
US11165421B1 (en) Driving circuit for switching element and switching circuit
JP6723175B2 (ja) パワー半導体のゲート駆動装置およびゲート駆動方法
JP6849148B2 (ja) 半導体駆動装置および電力変換装置
US8681514B2 (en) Controller for secondary side control of a switch, power converter, and related synchronous rectification control method
US9257965B2 (en) VCC charge and free-wheeling detection via source controlled MOS transistor
Ma et al. 4A isolated half-bridge gate driver with 4.5 V to 18V output drive voltage
US10958065B2 (en) Switching circuit
CN112019199A (zh) 开关晶体管的驱动电路
US11522463B2 (en) System and method to extend low line operation of flyback converters
WO2024100706A1 (ja) 電力用半導体素子の駆動回路および電力変換装置
US20240097669A1 (en) Gate driver system for detecting a short circuit condition
US20230130625A1 (en) Drive device, drive method, and power conversion device
CN111226394B (zh) 电路装置和电力电子转换器电路
EP3993264A1 (en) Switch controller, device and method with overcurrent protection
CN116365477A (zh) 反激变换器的开关保护方法、保护电路和反激式开关电源