TWI788245B - 脈波寬度調變控制器及其控制方法 - Google Patents

脈波寬度調變控制器及其控制方法 Download PDF

Info

Publication number
TWI788245B
TWI788245B TW111111844A TW111111844A TWI788245B TW I788245 B TWI788245 B TW I788245B TW 111111844 A TW111111844 A TW 111111844A TW 111111844 A TW111111844 A TW 111111844A TW I788245 B TWI788245 B TW I788245B
Authority
TW
Taiwan
Prior art keywords
terminal
current
transistor
coupled
node
Prior art date
Application number
TW111111844A
Other languages
English (en)
Other versions
TW202332199A (zh
Inventor
傅健銘
楊奐箴
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US17/722,796 priority Critical patent/US11658650B1/en
Application granted granted Critical
Publication of TWI788245B publication Critical patent/TWI788245B/zh
Publication of TW202332199A publication Critical patent/TW202332199A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

一種脈波寬度調變控制器,包括:一電流偵測器、一電流模擬器、一電壓對電流轉換器,以及一電流加法器。電流偵測器可偵測一第一電流,並可根據第一電流來產生一第二電流,其中電流偵測器更可接收一輸入電位並輸出一輸出電位。電流模擬器可取得一下橋電流之一相關資訊。電壓對電流轉換器可根據輸入電位和輸出電位來由電流模擬器處汲取一第三電流,其中電流模擬器更可根據相關資訊和第三電流來產生一第四電流。電流加法器可將第二電流與第四電流相加,以產生一總和電流。

Description

脈波寬度調變控制器及其控制方法
本發明係關於一種脈波寬度調變控制器,特別係關於一種可降低失真(Distortion)之脈波寬度調變控制器。
在傳統設計中,脈波寬度調變控制器常有電流資訊(Current Information)傳遞不夠即時和暫態反應時間(Transient Response Time)過長等缺點,此往往導致後續之輸出失真(Distortion)及整體體線性度(Linearity)不佳之問題。有鑑於此,勢必要提出一種全新之解決方案,以克服先前技術所面臨之困境。
在較佳實施例中,本發明提出一種脈波寬度調變控制器,包括:一電流偵測器,偵測一第一電流,並根據該第一電流來產生一第二電流,其中該電流偵測器更接收一輸入電位並輸出一輸出電位;一電流模擬器,取得一下橋電流之一相關資訊;一電壓對電流轉換器,根據該輸入電位和該輸出電位來由該電流模擬器處汲取一第三電流,其中該電流模擬器更根據該相關資訊和該第三電流來產生一第四電流;以及一電流加法器,將該第二電流與該第四電流相加,以產生一總和電流。
在一些實施例中,該第二電流係大致與該第一電流成正比。
在一些實施例中,該第四電流係趨近於該第二電流。
在一些實施例中,該電流偵測器包括:一第一電晶體,具有一控制端、一第一端,以及一第二端,其中該第一電晶體之該控制端係耦接至一第一節點,該第一電晶體之該第一端係耦接至一輸入節點以接收該輸入電位,而該第一電晶體之該第二端係耦接至一第二節點;一電感器,具有一第一端和一第二端,其中該電感器之該第一端係耦接至該第二節點,而該電感器之該第二端係耦接至一輸出節點以輸出該輸出電位;一第二電晶體,具有一控制端、一第一端,以及一第二端,其中該第二電晶體之該控制端係耦接至該第一節點,該第二電晶體之該第一端係耦接至一第三節點,而該第二電晶體之該第二端係耦接至該輸入節點;以及一第三電晶體,具有一控制端、一第一端,以及一第二端,其中該第三電晶體之該控制端係耦接至該第一節點,該第三電晶體之該第一端係耦接至一第四節點,而該第三電晶體之該第二端係耦接至該第二節點;其中該第一電流係流經該第一電晶體。
在一些實施例中,該電流偵測器更包括:一第四電晶體,具有一控制端、一第一端,以及一第二端,其中該第四電晶體之該控制端係耦接至一第五節點,該第四電晶體之該第一端係耦接至該第三節點,而該第四電晶體之該第二端係耦接至該第五節點;以及一第五電晶體,具有一控制端、一第一端,以及一第二端,其中該第五電晶體之該控制端係耦接至該第五節點,該第五電晶體之該第一端係耦接至該第四節點,而該第五電晶體之該第二端係耦接至一第六節點。
在一些實施例中,該電流偵測器更包括:一第六電晶體,具有一控制端、一第一端,以及一第二端,其中該第六電晶體之該控制端係耦接至一第七節點,該第六電晶體之該第一端係耦接至該第五節點,而該第六電晶體之該第二端係耦接至一第八節點;以及一第七電晶體,具有一控制端、一第一端,以及一第二端,其中該第七電晶體之該控制端係耦接至該第七節點,該第七電晶體之該第一端係耦接至該第六節點,而該第七電晶體之該第二端係耦接至一第九節點。
在一些實施例中,該電流偵測器更包括:一輸出電晶體,具有一控制端、一第一端,以及一第二端,其中該輸出電晶體之該控制端係耦接至該第六節點,該輸出電晶體之該第一端係耦接至該第三節點,而該輸出電晶體之該第二端係耦接至一第一加法節點以輸出該第二電流;一第一電流吸收器,由該第八節點處汲取一第一偏壓電流;以及一第二電流吸收器,由該第九節點處汲取一第二偏壓電流,其中該第二偏壓電流係大致等於該第一偏壓電流。
在一些實施例中,該第一電晶體、該第二電晶體,以及該第三電晶體係各自為一N型金氧半場效電晶體(N-type Metal-Oxide-Semiconductor Field-Effect Transistor,NMOSFET)。
在一些實施例中,該第四電晶體、該第五電晶體、該第六電晶體、該第七電晶體,以及該輸出電晶體係各自為一P型金氧半場效電晶體(P-type Metal-Oxide-Semiconductor Field-Effect Transistor,PMOSFET)。
在一些實施例中,該電流模擬器包括:一第八電晶體,具有一控制端、一第一端,以及一第二端,其中該第八電晶體之該控制端係耦接至一第十節點,該第八電晶體之該第一端係耦接至一接地電位,而該第八電晶體之該第二端係耦接至該第十節點以接收該下橋電流;以及一第九電晶體,具有一控制端、一第一端,以及一第二端,其中該第九電晶體之該控制端係耦接至該第十節點,該第九電晶體之該第一端係耦接至該接地電位,而該第九電晶體之該第二端係耦接至一第十一節點。
在一些實施例中,該電流模擬器更包括:一第十電晶體,具有一控制端、一第一端,以及一第二端,其中該第十電晶體之該控制端係耦接至該第十一節點,該第十電晶體之該第一端係耦接至一供應電位,而該第十電晶體之該第二端係耦接至該第十一節點;一第一切換器,具有一第一端和一第二端,其中該第一切換器之該第一端係耦接至該第十一節點,而該第一切換器之該第二端係耦接至一第十二節點;以及一電容器,具有一第一端和一第二端,其中該電容器之該第一端係耦接至該供應電位,而該電容器之該第二端係耦接至該第十二節點。
在一些實施例中,該電流模擬器更包括:一第十一電晶體,具有一控制端、一第一端,以及一第二端,其中該第十一電晶體之該控制端係耦接至該第十二節點,該第十一電晶體之該第一端係耦接至該供應電位,而該第十一電晶體之該第二端係耦接至一第二加法節點以輸出該第四電流;以及一第二切換器,具有一第一端和一第二端,其中該第二切換器之該第一端係耦接至該第十二節點,而該第二切換器之該第二端係耦接至一第十三節點。
在一些實施例中,該第八電晶體和該第九電晶體係各自為一N型金氧半場效電晶體。
在一些實施例中,該第十電晶體和該第十一電晶體係各自為一P型金氧半場效電晶體。
在一些實施例中,該第一切換器係根據一第一控制電位來選擇性地導通或斷開,而該第二切換器係根據一第二控制電位來選擇性地導通或斷開。
在一些實施例中,該第一控制電位和該第二控制電位大致具有互補之邏輯位準。
在一些實施例中,該電壓對電流轉換器包括:一第一電阻器,具有一第一端和一第二端,其中該第一電阻器之該第一端係用於接收該輸入電位,而該第一電阻器之該第二端係耦接至一第十四節點;以及一第二電阻器,具有一第一端和一第二端,其中該第二電阻器之該第一端係耦接至該第十四節點,而該第二電阻器之該第二端係耦接至該接地電位。
在一些實施例中,該電壓對電流轉換器更包括:一第三電阻器,具有一第一端和一第二端,其中該第三電阻器之該第一端係用於接收該輸出電位,而該第三電阻器之該第二端係耦接至一第十五節點;以及一第四電阻器,具有一第一端和一第二端,其中該第四電阻器之該第一端係耦接至該第十五節點,而該第四電阻器之該第二端係耦接至該接地電位。
在一些實施例中,該電壓對電流轉換器更包括:一比較電路,具有一正輸入端、一負輸入端,以及一輸出端,其中該比較電路之該正輸入端係耦接至該第十四節點,該比較電路之該負輸入端係耦接至該第十五節點,而該比較電路之該輸出端係用於輸出一第三控制電位;以及一相依電流吸收器,根據該第三控制電位來由該第十三節點處汲取該第三電流,其中該第三電流係大致與該輸入電位和該輸出電位之間之一電位差成正比。
在另一較佳實施例中,本發明提出一種脈波寬度調變之控制方法,包括下列步驟:偵測一第一電流,並根據該第一電流來產生一第二電流;藉由一電流模擬器,取得一下橋電流之一相關資訊;根據一輸入電位和一輸出電位來由該電流模擬器處汲取一第三電流;藉由該電流模擬器,根據該相關資訊及該第三電流來產生一第四電流;以及將該第二電流與該第四電流相加,以產生一總和電流。
為讓本發明之目的、特徵和優點能更明顯易懂,下文特舉出本發明之具體實施例,並配合所附圖式,作詳細說明如下。
在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。本領域技術人員應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的「包含」及「包括」一詞為開放式的用語,故應解釋成「包含但不僅限定於」。「大致」一詞則是指在可接受的誤差範圍內,本領域技術人員能夠在一定誤差範圍內解決所述技術問題,達到所述基本之技術效果。此外,「耦接」一詞在本說明書中包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接至一第二裝置,則代表該第一裝置可直接電性連接至該第二裝置,或經由其它裝置或連接手段而間接地電性連接至該第二裝置。
第1圖係顯示根據本發明一實施例所述之脈波寬度調變控制器(Pulse Width Modulation Controller,PWM Controller)100之示意圖。例如,脈波寬度調變控制器100可應用於一行動裝置或是一車用晶片當中,但亦不僅限於此。在第1圖之實施例中,脈波寬度調變控制器100包括:一電流偵測器(Current Detector)110、一電流模擬器(Current Emulator)120、一電壓對電流轉換器(Voltage-to-Current Converter)130,以及一電流加法器(Current Adder)140。必須理解的是,雖然未顯示於第1圖中,但脈波寬度調變控制器100更可包括其他元件,例如:一處理器(Processor)、一上橋電路(Upper-Gate Circuit)、一下橋電路(Lower-Gate Circuit),或(且)一驅動電路(Driving Circuit)。
電流偵測器110可偵測一第一電流IA,並可根據第一電流IA來產生一第二電流IB。例如,第二電流IB可大致與第一電流IA成正比。電流偵測器110更可接收一輸入電位VIN並輸出一輸出電位VOUT。電流模擬器120可取得一下橋電流IG之一相關資訊IF,其中下橋電流IG可來自一下橋電路(未顯示)。電壓對電流轉換器130可根據輸入電位VIN和輸出電位VOUT來由電流模擬器120處汲取一第三電流IC。電流模擬器120更可根據下橋電流IG之相關資訊IF和第三電流IC來產生一第四電流ID。最後,電流加法器140可將第二電流IB與第四電流ID相加,以產生一總和電流IS。例如,第四電流ID可趨近於第二電流IB。在本發明之設計下,將可藉由分析總和電流IS來輕易取得電流偵測器110、電流模擬器120,以及電壓對電流轉換器130之操作資訊。根據實際量測結果,所提之脈波寬度調變控制器100有助於縮短其暫態反應時間(Transient Response Time)、抑制其輸出失真(Distortion),以及提升整體之線性度(Linearity)。
以下實施例將介紹脈波寬度調變控制器100之細部結構及操作原理。必須理解的是,這些圖式和敘述僅為舉例,而非用於限制本發明之範圍。
第2圖係顯示根據本發明一實施例所述之脈波寬度調變控制器200之電路圖。在第2圖之實施例中,脈波寬度調變控制器200具有一輸入節點NIN和一輸出節點NOUT,並包括:一電流偵測器210、一電流模擬器220、一電壓對電流轉換器230,以及一電流加法器240,其中脈波寬度調變控制器200之輸入節點NIN可用於接收一輸入電位VIN,而脈波寬度調變控制器200之輸出節點NOUT可用於輸出一輸出電位VOUT。
電流偵測器210包括:一第一電流吸收器(Current Sink)212、一第二電流吸收器214、一第一電晶體(Transistor)M1、一第二電晶體M2、一第三電晶體M3、一第四電晶體M4、一第五電晶體M5、一第六電晶體M6、一第七電晶體M7、一輸出電晶體MG,以及一電感器(Inductor)LM。例如,第一電晶體M1、第二電晶體M2,以及第三電晶體M3可各自為一N型金氧半場效電晶體(N-type Metal-Oxide-Semiconductor Field-Effect Transistor,NMOSFET),而第四電晶體M4、第五電晶體M5、第六電晶體M6、第七電晶體M7,以及輸出電晶體MG可各自為一P型金氧半場效電晶體(P-type Metal-Oxide-Semiconductor Field-Effect Transistor,PMOSFET)。
第一電晶體M1具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第一電晶體M1之控制端係耦接至一第一節點N1,第一電晶體M1之第一端係耦接至輸入節點NIN,而第一電晶體M1之第二端係耦接至一第二節點N2。必須注意的是,一第一電流IA可流經該第一電晶體M1。電感器LM具有一第一端和一第二端,其中電感器LM之第一端係耦接至第二節點N2,而電感器LM之第二端係耦接至輸出節點NOUT。第二電晶體M2具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第二電晶體M2之控制端係耦接至第一節點N1,第二電晶體M2之第一端係耦接至一第三節點N3,而第二電晶體M2之第二端係耦接至輸入節點NIN。第三電晶體M3具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第三電晶體M3之控制端係耦接至第一節點N1,第三電晶體M3之第一端係耦接至一第四節點N4,而第三電晶體M3之第二端係耦接至第二節點N2。
第四電晶體M4具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第四電晶體M4之控制端係耦接至一第五節點N5,第四電晶體M4之第一端係耦接至第三節點N3,而第四電晶體M4之第二端係耦接至第五節點N5。第五電晶體M5具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第五電晶體M5之控制端係耦接至第五節點N5,第五電晶體M5之第一端係耦接至第四節點N4,而第五電晶體M5之第二端係耦接至一第六節點N6。
第六電晶體M6具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第六電晶體M6之控制端係耦接至一第七節點N7,第六電晶體M6之第一端係耦接至第五節點N5,而第六電晶體M6之第二端係耦接至一第八節點N8。第七電晶體M7具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第七電晶體M7之控制端係耦接至第七節點N7,第七電晶體M7之第一端係耦接至第六節點N6,而第七電晶體M6之第二端係耦接至一第九節點N9。
輸出電晶體MG具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中輸出電晶體MG之控制端係耦接至第六節點N6,輸出電晶體MG之第一端係耦接至第三節點N3,而輸出電晶體MG之第二端係耦接至一第一加法節點ND1以輸出一第二電流IB。第一電流吸收器212可由第八節點N8處汲取一第一偏壓電流IK1。第二電流吸收器214可由第九節點N9處汲取一第二偏壓電流IK2。例如,第二偏壓電流IK2可大致等於第一偏壓電流IK1。
電流模擬器220包括一第一切換器(Switch Element)222、一第二切換器224、一第八電晶體M8、一第九電晶體M9、一第十電晶體M10、一第十一電晶體M11,以及一電容器(Capacitor)CM。例如,第八電晶體M8和第九電晶體M9可各自為一N型金氧半場效電晶體,而第十電晶體M10和第十一電晶體M11可各自為一P型金氧半場效電晶體。
第八電晶體M8具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第八電晶體M8之控制端係耦接至一第十節點N10,第八電晶體M8之第一端係耦接至一接地電位(Ground Voltage)VSS,而第八電晶體M8之第二端係耦接至第十節點N10以接收一下橋電流IG。在一些實施例中,脈波寬度調變控制器200更包括一下橋電流源(Current Source)250,其可輸出前述之下橋電流IG至第十節點N10。例如,下橋電流源250可代表相關之下橋電路,其電路結構於本發明中並不特別作限制。第九電晶體M9具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第九電晶體M9之控制端係耦接至第十節點N10,第九電晶體M9之第一端係耦接至接地電位VSS,而第九電晶體M9之第二端係耦接至一第十一節點N11。
第十電晶體M10具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第十電晶體M10之控制端係耦接至第十一節點N11,第十電晶體M10之第一端係耦接至一供應電位(Supply Voltage)VDD,而第十電晶體M10之第二端係耦接至第十一節點N11。第一切換器222具有一第一端和一第二端,其中第一切換器222之第一端係耦接至第十一節點N11,而第一切換器222之第二端係耦接至一第十二節點N12。第一切換器222可根據一第一控制電位VC1來選擇性地導通(Closed)或斷開(Opened)。例如,若第一控制電位VC1為高邏輯位準(High Logic Level,或邏輯「1」),則第一切換器222將可導通;反之,若第一控制電位VC1為低邏輯位準(Low Logic Level,或邏輯「0」),則第一切換器222將可斷開。電容器CM具有一第一端和一第二端,其中電容器CM之第一端係耦接至供應電位VDD,而電容器CM之第二端係耦接至第十二節點N12。
第十一電晶體M11具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第十一電晶體M11之控制端係耦接至第十二節點N12,第十一電晶體M11之第一端係耦接至供應電位VDD,而第十一電晶體M11之第二端係耦接至一第二加法節點ND2以輸出一第四電流ID。第二切換器224具有一第一端和一第二端,其中第二切換器224之第一端係耦接至第十二節點N12,而第二切換器224之第二端係耦接至一第十三節點N13。第二切換器224可根據一第二控制電位VC2來選擇性地導通或斷開。例如,若第二控制電位VC2為高邏輯位準,則第二切換器224將可導通;反之,若第二控制電位VC2為低邏輯位準,則第二切換器224將可斷開。
例如,第一控制電位VC1和第二控制電位VC2可分別來自一下橋驅動器和一上橋驅動器(未顯示)。在一些實施例中,第一控制電位VC1和第二控制電位VC2可大致具有互補(Complementary)之邏輯位準,使得第一切換器222和第二切換器224之一者為導通狀態,而第一切換器222和第二切換器224之另一者為斷開狀態。然而,本發明並不僅限於此。在另一些實施例中,第一控制電位VC1和第二控制電位VC2亦可皆為低邏輯位準,使得第一切換器222和第二切換器224兩者同時斷開。
電壓對電流轉換器230包括一比較電路(Comparison Circuit)232、一相依電流吸收器(Dependent Current Sink)234、一第一電阻器(Resistor)R1、一第二電阻器R2、一第三電阻器R3,以及一第四電阻器R4。
第一電阻器R1具有一第一端和一第二端,其中第一電阻器R1之第一端係耦接至輸入節點NIN以接收輸入電位VIN,而第一電阻器R1之第二端係耦接至一第十四節點N14。第二電阻器R2具有一第一端和一第二端,其中第二電阻器R2之第一端係耦接至第十四節點N14,而第二電阻器R2之第二端係耦接至接地電位VSS。第三電阻器R3具有一第一端和一第二端,其中第三電阻器R3之第一端係耦接至輸出節點NOUT以接收輸出電位VOUT,而第三電阻器R3之第二端係耦接至一第十五節點N15。第四電阻器R4具有一第一端和一第二端,其中第四電阻器R4之第一端係耦接至第十五節點N15,而第四電阻器R4之第二端係耦接至接地電位VSS。在一些實施例中,第一電阻器R1對第二電阻器R2之電阻比值(R1/R2)可大致等於第三電阻器R3對第四電阻器R4之電阻比值(R3/R4)。例如,前述之電阻比值(R1/R2或R3/R4)皆可等於14,但亦不限於此。
比較電路232具有一正輸入端、一負輸入端,以及一輸出端,其中比較電路232之正輸入端係耦接至第十四節點N14,比較電路232之負輸入端係耦接至第十五節點N15,而比較電路232之輸出端係用於輸出一第三控制電位VC3。相依電流吸收器234可根據第三控制電位VC3來由第十三節點N13處汲取一第三電流IC。在一些實施例中,第三電流IC係大致與輸入電位VIN和輸出電位VOUT之間之一電位差(Voltage Difference)成正比。亦即,比較電路232和相依電流吸收器234之組合可視為一等效轉導放大器(Transconductance Amplifier)。然而,比較電路232和相依電流吸收器234之具體實施方式於本發明中並不特別作限制。
最後,電流加法器240可由第一加法節點ND1處接收第二電流IB,並由第二加法節點ND2處接收第四電流ID,再將兩者相加,以產生一總和電流IS(亦即,
Figure 02_image001
)。
第3圖係顯示根據本發明一實施例所述之脈波寬度調變控制器200之電位波形圖,其中橫軸代表時間,而縱軸代表電位位準(Voltage Level)。在第3圖之實施例中,第一控制電位VC1亦可視為一下橋驅動電位VLG,其與一上橋驅動電位VUG具有互補之邏輯位準。另外,第二控制電位VC2與上橋驅動電位VUG大致具有相同波形,惟第二控制電位VC2較諸上橋驅動電位VUG則稍有一些相位延遲。請一併參考第2、3圖以了解脈波寬度調變控制器200之操作原理。
於一第一操作階段T1期間,第一控制電位VC1為高邏輯位準且第二控制電位VC2為低邏輯位準,使得第一切換器222導通且第二切換器224斷開。此時,因為有第八電晶體M8和第九電晶體M9所形成之一第一電流鏡(Current Mirror)以及第十電晶體M10和第十一電晶體M11所形成之一第二電流鏡,故下橋電流IG之一相關資訊IF可被記錄成為第十二節點N12處之一電容電位VF。
於一第二操作階段T2期間,第一控制電位VC1和第二控制電位VC2皆為低邏輯位準,使得第一切換器222和第二切換器224兩者同時斷開。此時,前述之電容電位VF可被維持住並儲存於電容器CM當中。必須注意的是,第二操作階段T2之持續時間非常短暫。
於一第三操作階段T3期間,第一控制電位VC1為低邏輯位準且第二控制電位VC2為高邏輯位準,使得第一切換器222斷開且第二切換器224導通,其中第二控制電位VC2可提供一高邏輯持續時間TON。在此高邏輯持續時間TON之內,相依電流吸收器234可經由導通之第二切換器224從電容器CM處汲取第三電流IC,並針對電容電位VF進行放電。由於電容電位VF逐漸下降,故來自第十一電晶體M11之第四電流I4將會逐漸上升。在一些實施例中,脈波寬度調變控制器200之操作原理可如下列方程式(1)至(7)所述:
Figure 02_image003
……………………………(1) 其中「R1」代表第一電阻器R1之電阻值(Resistance),「R2」代表第二電阻器R2之電阻值,「R3」代表第三電阻器R3之電阻值,「R4」代表第四電阻器R4之電阻值,而「DF」代表電壓對電流轉換器230之一分壓比例。
Figure 02_image005
……………………(2) 其中「IC」代表第三電流IC之電流值,「VIN」代表輸入電位VIN之電位位準,「VOUT」代表輸出電位VOUT之電位位準,而「Gm」代表比較電路232和相依電流吸收器234之一共同轉導值(Transconductance)。
Figure 02_image007
……………………………………(3) 其中「ΔV」代表電容電位VF因第三電流IC之放電操作所造成之一電位降(Voltage Drop),「TON」代表第二控制電位VC2之高邏輯持續時間TON,而「CM」代表電容器CM之電容值(Capacitance)。
Figure 02_image009
…………(4)
Figure 02_image011
……(5) 其中「ID0」代表第四電流ID之一初始電流值,而「gm」代表第十一電晶體M11之一小訊號轉導值。
Figure 02_image013
……………………(6) 其中「IA0」代表第一電流IA之一初始電流值,而「LM」代表電感器LM之電感值(Inductance)。
Figure 02_image015
…………(7) 其中「IB」代表第二電流IB之電流值,而「DS」代表第二電流IB對第一電流IA之一電流比值。
根據方程式(1)至(7)可以發現,第二電流IB和第四電流ID皆與輸入電位VIN和輸出電位VOUT之間之電位差有關。必須注意的是,相較於電流偵測器210,電流模擬器220之結構更簡單且反應時間更短。因此,當電流偵測器210之第二電流IB尚未進入穩定狀態時,電流模擬器220之第四電流ID可先用於代替第二電流IB並提供類似之電流資訊,從而可抑制脈波寬度調變控制器200之輸出失真。
在一些實施例中,若進一步加入下列方程式(8)之假設,則第二電流IB和第四電流ID兩者將可完全相等,且以上元件參數之關係還可進一步簡化為下列方程式(9):
Figure 02_image017
……………………………………… (8)
Figure 02_image019
…………………………… (9)
舉例而言,基於方程式(8)和方程式(9),可將電容器CM之電容值設定為16.45pF,將電感器LM之電感值設定為1.5μH,將分壓比例DF設定為0.0667,將電流比值DS設定為32577,並可將第十一電晶體M11之小訊號轉導值gm設定為0.4mA/V,但亦不僅限於此。
第4圖係顯示根據本發明一實施例所述之脈波寬度調變控制器200之電流波形圖,其中橫軸代表時間,而縱軸代表電流值(Current Magnitude)。根據第4圖之量測結果,無論第一電流IA如何變動,第二電流IB和第四電流ID兩者皆具有相似之波形,其中第四電流ID之相位更可領先於第二電流IB之相位。必須理解的是,第四電流ID可視為一虛擬下橋電流(Pseudo Lower-Gate Current),其可用於提供更為即時之電流資訊。
第5圖係顯示根據本發明一實施例所述之脈波寬度調變之控制方法之流程圖。前述之控制方法包括下列步驟。在步驟S510,偵測一第一電流,並根據第一電流來產生一第二電流。在步驟S520,藉由一電流模擬器,取得一下橋電流之一相關資訊。在步驟S530,根據一輸入電位和一輸出電位來由電流模擬器處汲取一第三電流。在步驟S540,藉由電流模擬器,根據相關資訊及第三電流來產生一第四電流。在步驟S550,將第二電流與第四電流相加,以產生一總和電流。必須理解的是,以上步驟無須依次序執行,而第1-4圖之實施例之每一特徵均可套用至第5圖之控制方法當中。
本發明提出一種新穎之脈波寬度調變控制器及其控制方法。與傳統設計相比,本發明至少具有縮短暫態反應時間、抑制輸出失真,以及提升整體之線性度等優勢,故其很適合應用於各種各式之電子裝置當中。
值得注意的是,以上所述之電位、電流、電阻值、電感值、電容值,以及其餘元件參數均非為本發明之限制條件。設計者可以根據不同需要調整這些設定值。本發明之脈波寬度調變控制器及其控制方法並不僅限於第1-5圖所圖示之狀態。本發明可以僅包括第1-5圖之任何一或複數個實施例之任何一或複數項特徵。換言之,並非所有圖示之特徵均須同時實施於本發明之脈波寬度調變控制器及其控制方法當中。雖然本發明之實施例係使用金氧半場效電晶體為例,但本發明並不僅限於此,本技術領域人士可改用其他種類之電晶體,例如:接面場效電晶體,或是鰭式場效電晶體等等,而不致於影響本發明之效果。
本發明之方法,或特定型態或其部份,可以以程式碼的型態存在。程式碼可以包含於實體媒體,如軟碟、光碟片、硬碟、或是任何其他機器可讀取(如電腦可讀取)儲存媒體,亦或不限於外在形式之電腦程式產品,其中,當程式碼被機器,如電腦載入且執行時,此機器變成用以參與本發明之裝置。程式碼也可以透過一些傳送媒體,如電線或電纜、光纖、或是任何傳輸型態進行傳送,其中,當程式碼被機器,如電腦接收、載入且執行時,此機器變成用以參與本發明之裝置。當在一般用途處理單元實作時,程式碼結合處理單元提供一操作類似於應用特定邏輯電路之獨特裝置。
在本說明書以及申請專利範圍中的序數,例如「第一」、「第二」、「第三」等等,彼此之間並沒有順序上的先後關係,其僅用於標示區分兩個具有相同名字之不同元件。
本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100,200:脈波寬度調變控制器 110,210:電流偵測器 120,220:電流模擬器 130,230:電壓對電流轉換器 140,240:電流加法器 212:第一電流吸收器 214:第二電流吸收器 222:第一切換器 224:第二切換器 232:比較電路 234:相依電流吸收器 250:下橋電流源 CM:電容器 IA:第一電流 IB:第二電流 IC:第三電流 ID:第四電流 IF:下橋電流之相關資訊 IG:下橋電流 IK1:第一偏壓電流 IK2:第二偏壓電流 IS:總和電流 LM:電感器 M1:第一電晶體 M2:第二電晶體 M3:第三電晶體 M4:第四電晶體 M5:第五電晶體 M6:第六電晶體 M7:第七電晶體 M8:第八電晶體 M9:第九電晶體 M10:第十電晶體 M11:第十一電晶體 MG:輸出電晶體 N1:第一節點 N2:第二節點 N3:第三節點 N4:第四節點 N5:第五節點 N6:第六節點 N7:第七節點 N8:第八節點 N9:第九節點 N10:第十節點 N11:第十一節點 N12:第十二節點 N13:第十三節點 N14:第十四節點 N15:第十五節點 ND1:第一加法節點 ND2:第二加法節點 NIN:輸入節點 NOUT:輸出節點 VC1:第一控制電位 VC2:第二控制電位 VC3:第三控制電位 VF:電容電位 VIN:輸入電位 VLG:下橋驅動電位 VOUT:輸出電位 VUG:上橋驅動電位 R1:第一電阻器 R2:第二電阻器 R3:第三電阻器 R4:第四電阻器 S510,S520,S530,S540,S550:步驟 T1:第一操作階段 T2:第二操作階段 T3:第三操作諧段 TON:高邏輯持續時間
第1圖係顯示根據本發明一實施例所述之脈波寬度調變控制器之示意圖。 第2圖係顯示根據本發明一實施例所述之脈波寬度調變控制器之電路圖。 第3圖係顯示根據本發明一實施例所述之脈波寬度調變控制器之電位波形圖。 第4圖係顯示根據本發明一實施例所述之脈波寬度調變控制器之電流波形圖。 第5圖係顯示根據本發明一實施例所述之脈波寬度調變之控制方法之流程圖。
100:脈波寬度調變控制器
110:電流偵測器
120:電流模擬器
130:電壓對電流轉換器
140:電流加法器
IA:第一電流
IB:第二電流
IC:第三電流
ID:第四電流
IF:下橋電流之相關資訊
IG:下橋電流
IS:總和電流
VIN:輸入電位
VOUT:輸出電位

Claims (20)

  1. 一種脈波寬度調變控制器,包括: 一電流偵測器,偵測一第一電流,並根據該第一電流來產生一第二電流,其中該電流偵測器更接收一輸入電位並輸出一輸出電位; 一電流模擬器,取得一下橋電流之一相關資訊; 一電壓對電流轉換器,根據該輸入電位和該輸出電位來由該電流模擬器處汲取一第三電流,其中該電流模擬器更根據該相關資訊和該第三電流來產生一第四電流;以及 一電流加法器,將該第二電流與該第四電流相加,以產生一總和電流。
  2. 如請求項1所述之脈波寬度調變控制器,其中該第二電流係大致與該第一電流成正比。
  3. 如請求項1所述之脈波寬度調變控制器,其中該第四電流係趨近於該第二電流。
  4. 如請求項1所述之脈波寬度調變控制器,其中該電流偵測器包括: 一第一電晶體,具有一控制端、一第一端,以及一第二端,其中該第一電晶體之該控制端係耦接至一第一節點,該第一電晶體之該第一端係耦接至一輸入節點以接收該輸入電位,而該第一電晶體之該第二端係耦接至一第二節點; 一電感器,具有一第一端和一第二端,其中該電感器之該第一端係耦接至該第二節點,而該電感器之該第二端係耦接至一輸出節點以輸出該輸出電位; 一第二電晶體,具有一控制端、一第一端,以及一第二端,其中該第二電晶體之該控制端係耦接至該第一節點,該第二電晶體之該第一端係耦接至一第三節點,而該第二電晶體之該第二端係耦接至該輸入節點;以及 一第三電晶體,具有一控制端、一第一端,以及一第二端,其中該第三電晶體之該控制端係耦接至該第一節點,該第三電晶體之該第一端係耦接至一第四節點,而該第三電晶體之該第二端係耦接至該第二節點; 其中該第一電流係流經該第一電晶體。
  5. 如請求項4所述之脈波寬度調變控制器,其中該電流偵測器更包括: 一第四電晶體,具有一控制端、一第一端,以及一第二端,其中該第四電晶體之該控制端係耦接至一第五節點,該第四電晶體之該第一端係耦接至該第三節點,而該第四電晶體之該第二端係耦接至該第五節點;以及 一第五電晶體,具有一控制端、一第一端,以及一第二端,其中該第五電晶體之該控制端係耦接至該第五節點,該第五電晶體之該第一端係耦接至該第四節點,而該第五電晶體之該第二端係耦接至一第六節點。
  6. 如請求項5所述之脈波寬度調變控制器,其中該電流偵測器更包括: 一第六電晶體,具有一控制端、一第一端,以及一第二端,其中該第六電晶體之該控制端係耦接至一第七節點,該第六電晶體之該第一端係耦接至該第五節點,而該第六電晶體之該第二端係耦接至一第八節點;以及 一第七電晶體,具有一控制端、一第一端,以及一第二端,其中該第七電晶體之該控制端係耦接至該第七節點,該第七電晶體之該第一端係耦接至該第六節點,而該第七電晶體之該第二端係耦接至一第九節點。
  7. 如請求項6所述之脈波寬度調變控制器,其中該電流偵測器更包括: 一輸出電晶體,具有一控制端、一第一端,以及一第二端,其中該輸出電晶體之該控制端係耦接至該第六節點,該輸出電晶體之該第一端係耦接至該第三節點,而該輸出電晶體之該第二端係耦接至一第一加法節點以輸出該第二電流; 一第一電流吸收器,由該第八節點處汲取一第一偏壓電流;以及 一第二電流吸收器,由該第九節點處汲取一第二偏壓電流,其中該第二偏壓電流係大致等於該第一偏壓電流。
  8. 如請求項4所述之脈波寬度調變控制器,其中該第一電晶體、該第二電晶體,以及該第三電晶體係各自為一N型金氧半場效電晶體(N-type Metal-Oxide-Semiconductor Field-Effect Transistor,NMOSFET)。
  9. 如請求項7所述之脈波寬度調變控制器,其中該第四電晶體、該第五電晶體、該第六電晶體、該第七電晶體,以及該輸出電晶體係各自為一P型金氧半場效電晶體(P-type Metal-Oxide-Semiconductor Field-Effect Transistor,PMOSFET)。
  10. 如請求項1所述之脈波寬度調變控制器,其中該電流模擬器包括: 一第八電晶體,具有一控制端、一第一端,以及一第二端,其中該第八電晶體之該控制端係耦接至一第十節點,該第八電晶體之該第一端係耦接至一接地電位,而該第八電晶體之該第二端係耦接至該第十節點以接收該下橋電流;以及 一第九電晶體,具有一控制端、一第一端,以及一第二端,其中該第九電晶體之該控制端係耦接至該第十節點,該第九電晶體之該第一端係耦接至該接地電位,而該第九電晶體之該第二端係耦接至一第十一節點。
  11. 如請求項10所述之脈波寬度調變控制器,其中該電流模擬器更包括: 一第十電晶體,具有一控制端、一第一端,以及一第二端,其中該第十電晶體之該控制端係耦接至該第十一節點,該第十電晶體之該第一端係耦接至一供應電位,而該第十電晶體之該第二端係耦接至該第十一節點; 一第一切換器,具有一第一端和一第二端,其中該第一切換器之該第一端係耦接至該第十一節點,而該第一切換器之該第二端係耦接至一第十二節點;以及 一電容器,具有一第一端和一第二端,其中該電容器之該第一端係耦接至該供應電位,而該電容器之該第二端係耦接至該第十二節點。
  12. 如請求項11所述之脈波寬度調變控制器,其中該電流模擬器更包括: 一第十一電晶體,具有一控制端、一第一端,以及一第二端,其中該第十一電晶體之該控制端係耦接至該第十二節點,該第十一電晶體之該第一端係耦接至該供應電位,而該第十一電晶體之該第二端係耦接至一第二加法節點以輸出該第四電流;以及 一第二切換器,具有一第一端和一第二端,其中該第二切換器之該第一端係耦接至該第十二節點,而該第二切換器之該第二端係耦接至一第十三節點。
  13. 如請求項10所述之脈波寬度調變控制器,其中該第八電晶體和該第九電晶體係各自為一N型金氧半場效電晶體。
  14. 如請求項12所述之脈波寬度調變控制器,其中該第十電晶體和該第十一電晶體係各自為一P型金氧半場效電晶體。
  15. 如請求項12所述之脈波寬度調變控制器,其中該第一切換器係根據一第一控制電位來選擇性地導通或斷開,而該第二切換器係根據一第二控制電位來選擇性地導通或斷開。
  16. 如請求項15所述之脈波寬度調變控制器,其中該第一控制電位和該第二控制電位大致具有互補之邏輯位準。
  17. 如請求項12所述之脈波寬度調變控制器,其中該電壓對電流轉換器包括: 一第一電阻器,具有一第一端和一第二端,其中該第一電阻器之該第一端係用於接收該輸入電位,而該第一電阻器之該第二端係耦接至一第十四節點;以及 一第二電阻器,具有一第一端和一第二端,其中該第二電阻器之該第一端係耦接至該第十四節點,而該第二電阻器之該第二端係耦接至該接地電位。
  18. 如請求項17所述之脈波寬度調變控制器,其中該電壓對電流轉換器更包括: 一第三電阻器,具有一第一端和一第二端,其中該第三電阻器之該第一端係用於接收該輸出電位,而該第三電阻器之該第二端係耦接至一第十五節點;以及 一第四電阻器,具有一第一端和一第二端,其中該第四電阻器之該第一端係耦接至該第十五節點,而該第四電阻器之該第二端係耦接至該接地電位。
  19. 如請求項18所述之脈波寬度調變控制器,其中該電壓對電流轉換器更包括: 一比較電路,具有一正輸入端、一負輸入端,以及一輸出端,其中該比較電路之該正輸入端係耦接至該第十四節點,該比較電路之該負輸入端係耦接至該第十五節點,而該比較電路之該輸出端係用於輸出一第三控制電位;以及 一相依電流吸收器,根據該第三控制電位來由該第十三節點處汲取該第三電流,其中該第三電流係大致與該輸入電位和該輸出電位之間之一電位差成正比。
  20. 一種脈波寬度調變之控制方法,包括下列步驟: 偵測一第一電流,並根據該第一電流來產生一第二電流; 藉由一電流模擬器,取得一下橋電流之一相關資訊; 根據一輸入電位和一輸出電位來由該電流模擬器處汲取一第三電流; 藉由該電流模擬器,根據該相關資訊及該第三電流來產生一第四電流;以及 將該第二電流與該第四電流相加,以產生一總和電流。
TW111111844A 2022-01-19 2022-03-29 脈波寬度調變控制器及其控制方法 TWI788245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/722,796 US11658650B1 (en) 2022-01-19 2022-04-18 Pulse width modulation controller and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263300653P 2022-01-19 2022-01-19
US63/300,653 2022-01-19

Publications (2)

Publication Number Publication Date
TWI788245B true TWI788245B (zh) 2022-12-21
TW202332199A TW202332199A (zh) 2023-08-01

Family

ID=85795278

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111111844A TWI788245B (zh) 2022-01-19 2022-03-29 脈波寬度調變控制器及其控制方法

Country Status (3)

Country Link
US (1) US11658650B1 (zh)
CN (1) CN116505769A (zh)
TW (1) TWI788245B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721192B1 (en) * 2003-03-24 2004-04-13 System General Corp. PWM controller regulating output voltage and output current in primary side
US20080084196A1 (en) * 2006-10-04 2008-04-10 Microsemi Corporation Method and apparatus to compensate for supply voltage variations in a pwm-based voltage regulator
TW201117530A (en) * 2009-11-11 2011-05-16 Richtek Technology Corp Fixed-frequency control circuit and method for pulse width modulation
US20110241641A1 (en) * 2010-04-06 2011-10-06 Chih-Ning Chen Current Mode Buck Converter with Fixed PWM/PFM Boundary
US20150207399A1 (en) * 2014-01-20 2015-07-23 Immense Advance Technology Corp. Pwm controller capable of controlling output current ripple via a resistor, and led driver circuit using same
TW201944710A (zh) * 2018-04-20 2019-11-16 力智電子股份有限公司 脈寬調變控制電路及導通時間信號產生方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI444804B (zh) 2008-06-20 2014-07-11 Richtek Technology Corp Output current detecting device and method of voltage regulator
US9859732B2 (en) 2014-09-16 2018-01-02 Navitas Semiconductor, Inc. Half bridge power conversion circuits using GaN devices
US9471077B2 (en) * 2014-10-30 2016-10-18 Dialog Semiconductor (Uk) Limited Method to pre-set a compensation capacitor voltage
JP6937705B2 (ja) * 2018-01-30 2021-09-22 ルネサスエレクトロニクス株式会社 半導体装置、電流検出方法および負荷駆動システム
US10090751B1 (en) 2018-02-21 2018-10-02 Ixys, Llc Gate driver for switching converter having body diode power loss minimization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721192B1 (en) * 2003-03-24 2004-04-13 System General Corp. PWM controller regulating output voltage and output current in primary side
US20080084196A1 (en) * 2006-10-04 2008-04-10 Microsemi Corporation Method and apparatus to compensate for supply voltage variations in a pwm-based voltage regulator
TW201117530A (en) * 2009-11-11 2011-05-16 Richtek Technology Corp Fixed-frequency control circuit and method for pulse width modulation
US20110241641A1 (en) * 2010-04-06 2011-10-06 Chih-Ning Chen Current Mode Buck Converter with Fixed PWM/PFM Boundary
US20150207399A1 (en) * 2014-01-20 2015-07-23 Immense Advance Technology Corp. Pwm controller capable of controlling output current ripple via a resistor, and led driver circuit using same
TW201944710A (zh) * 2018-04-20 2019-11-16 力智電子股份有限公司 脈寬調變控制電路及導通時間信號產生方法

Also Published As

Publication number Publication date
US11658650B1 (en) 2023-05-23
CN116505769A (zh) 2023-07-28
TW202332199A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US10503189B1 (en) Voltage regulator and dynamic bleeder current circuit
US20180292854A1 (en) Voltage regulator
JP2597941B2 (ja) 基準回路及び出力電流の制御方法
US8040165B2 (en) Semiconductor integrated circuit
JP2012070333A (ja) レベルシフト回路及びそれを用いたスイッチングレギュレータ
KR101018950B1 (ko) 정전압 출력 회로
TWI774467B (zh) 放大器電路及在放大器電路中降低輸出電壓過衝的方法
JP2019527981A (ja) 選択可能な電流リミッタ回路
JPS6137709B2 (zh)
CN110543204A (zh) 半导体集成电路、音频输出装置、电子设备及保护方法
TWI788245B (zh) 脈波寬度調變控制器及其控制方法
US9312848B2 (en) Glitch suppression in an amplifier
US20050218983A1 (en) Differential amplifier
TW201822462A (zh) 源極隨耦器
JP2017184122A (ja) 差動増幅器
JP6216171B2 (ja) 電源回路
TWI493564B (zh) 基極驅動電流感測放大器及其操作方法
JP2001177380A (ja) 比較回路及びこれを用いた発振回路
JP4087540B2 (ja) プッシュプル型増幅回路
JP6594765B2 (ja) ソフトスタート回路及びこれを備えた電源装置
US11621711B2 (en) Low area and high speed termination detection circuit with voltage clamping
US7486140B2 (en) Differential amplifier
US11726511B2 (en) Constant voltage circuit that causes different operation currents depending on operation modes
TWI717303B (zh) 具遲滯功能之比較電路與比較模組
JPH11338563A (ja) バッファ装置