TWI628294B - Rare earth thin film magnet, method for producing the same, and target for forming rare earth thin film magnet - Google Patents
Rare earth thin film magnet, method for producing the same, and target for forming rare earth thin film magnet Download PDFInfo
- Publication number
- TWI628294B TWI628294B TW104108594A TW104108594A TWI628294B TW I628294 B TWI628294 B TW I628294B TW 104108594 A TW104108594 A TW 104108594A TW 104108594 A TW104108594 A TW 104108594A TW I628294 B TWI628294 B TW I628294B
- Authority
- TW
- Taiwan
- Prior art keywords
- rare earth
- phase
- film
- thin film
- magnet
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0045—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/003—Making ferrous alloys making amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/02—Amorphous alloys with iron as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/126—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/14—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/18—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/20—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
- H01F41/205—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation by laser ablation, e.g. pulsed laser deposition [PLD]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Thermal Sciences (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biomedical Technology (AREA)
- Inorganic Chemistry (AREA)
- Thin Magnetic Films (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本發明係一種稀土類薄膜磁鐵,以Nd、Fe、B為必須成分,其特徵在於:由α-Fe相與Nd2Fe14B相三維地交替排列之組織構成,各相之平均晶粒粒徑為10~30nm。本發明之課題在於提供一種量產性、再現性優異,具有良好之磁特性之稀土類薄膜磁鐵及其製造方法以及用以製作該薄膜之靶。
Description
本發明係關於一種藉由脈衝雷射沈積法(PLD法)而形成之稀土類薄膜磁鐵及其製造方法以及用以製作稀土類薄膜磁鐵之靶。
近年來,隨著電子機器之輕薄短小化,不斷推進具有優異之磁特性的稀土類磁鐵之小型化、高性能化。其中,釹-鐵-硼(Nd-Fe-B)系磁鐵於現有之磁鐵中具有最高之最大能積,故而期待應用於MEMS(Micro Electro Mechanical Systems,微機電系統)或energy harvesting(環境發電)等能量領域、醫療機器領域等。
已知此種稀土類磁鐵之薄膜係使用濺鍍法(專利文獻1、非專利文獻1)或脈衝雷射沈積法(專利文獻2、非專利文獻2)等PVD(Physical Vapor Deposition,物理氣相沈積)法(非專利文獻3)而製作。例如,於專利文獻2中有如下記載:藉由使用脈衝YAG雷射之雷射剝蝕法,而獲得於靶與膜之間具有優異組成轉印性,又,成膜速度比濺鍍法快達1位數以上之以Nd2Fe14B相為主的Nd-Fe-B系薄膜。
有報告稱利用此種方法而製作之稀土類薄膜之磁鐵的保磁力取約1000kA/m之值,剩餘磁化取0.6T之值,最大能積(BH)max取60
kJ/m3之值(非專利文獻4)。然而,該等數值中,剩餘磁化以及最大能積尚不可謂能夠實用化之磁特性,例如不足以驅動小型馬達,故而強烈要求磁特性之進一步改善。
作為薄膜特性之改善方法之一,將α-Fe軟磁性相與
Nd2Fe14B硬磁性相複合化而成的奈米複合材料結構化為有效。該結構之薄膜磁鐵藉由使分別具有數nm~數十nm大小之晶粒之軟磁性相與硬磁性相於薄膜之組織內共存而使兩相之磁特性交換耦合,而阻礙軟磁性相於低磁場中之磁化反轉,可宛如硬磁性相單相般動作。
作為奈米複合材料膜之種類,存在α-Fe軟磁性相與
Nd2Fe14B硬磁性相二維地交替積層而多層化之稱為積層型奈米複合材料膜者,以及使α-Fe軟磁性相與Nd2Fe14B硬磁性相三維地無規地分散於膜內之稱為分散型奈米複合材料膜者2種。關於前者,揭示有利用脈衝雷射沈積法將Nd2Fe14B/α-Fe週期性地積層800層而成膜厚度約10μm之多層膜,又,藉此達成最大能積90kJ/m3(非專利文獻5)。
然而,利用此種方法而製作之奈米複合材料膜係脈衝雷射沈
積特有之微滴會沈積於膜表面而產生凹凸,故而隨著積層數變多而軟磁性相與硬磁性相之界面的組成變化之急遽性逐漸降低,其結果,有薄膜之磁特性劣化之顧慮。
關於後者,於非專利文獻6中記載有藉由磁控濺鍍法而進行
Nd2Fe14B/α-Fe之分散型奈米複合材料膜之成膜,及熱處理(非專利文獻6)。然而,利用該方法而製作之分散型奈米複合材料膜尚未能獲得充分之磁特性。
專利文獻1:日本特開2012-207274號公報
專利文獻2:日本特開2009-091613號公報
非專利文獻1:N. M. Dempsey, A. Walther, F. May, D. Givord, K. Khlopkov O. Gutfeisch: Appl. Phys. Lett. 90 (2007) 092509-1-092509-3.
非專利文獻2:H. Fukunaga, T. Kamikawatoko, M. Nakano, T. Yanai F. Yamashita: J. Appl. Phys. 109 (2011) 07A758-1-07A758-3.
非專利文獻3:G. Rieger, J. Wecker, W. Rodewalt, W. Scatter, Fe. - W. Bach, T. Duda and W. Unterberg: J. Appl. Phys. 87 (2000) 5329-5331.
非專利文獻4:M. Nakano, S. Sato, F. Yamashita, T. Honda, J. Yamasaki, K. Ishiyama, M. Itakura, J. Fidler, T. Yanai, H. Fukunaga: IEEE Trans. Magn. 43 (2007) 2672-2676.
非專利文獻5:H. Fukunaga, H. Nakayama, T. Kamikawamoto, T. Yanai, M. Nakano, F. Yamashita, S. Ohta, M. Itakura, M. Nishida: J. Phys. Conf. Ser. 266 (2011) 012027-1-012027-5.
非專利文獻6:石曾根,野村,加藤,宮崎,本河:日本應用磁學會刊24(2000)423-426.
本發明之課題在於提供一種具有良好之磁特性,量產性、再
現性優異,具有α-Fe相與Nd2Fe14B相三維地交替排列之奈米複合材料結構的稀土類薄膜磁鐵及其製造方法以及用以製作稀土類薄膜磁鐵之靶。
為了解決上述課題,本發明人等進行銳意研究,結果獲得如下見解:藉由將利用脈衝雷射沈積法之成膜中所使用之靶的組成及脈衝雷射強度密度最佳化,可由以單相構成之1個靶成膜具有α-Fe相與Nd2Fe14B相三維地交替排列而成的奈米複合材料結構之稀土類薄膜。本發明中所謂之奈米複合材料結構,係指磁化高之軟磁性相即α-Fe相與表現保磁力之硬磁性相即Nd2Fe14B相以數十nm等級之平均晶粒粒徑三維地交替排列而成之結構。將其結構之示意圖示於圖1。
基於此種見解,本發明提供以下手段。
1)一種稀土類薄膜磁鐵,以Nd、Fe、B為必須成分,其特徵在於:由α-Fe相與Nd2Fe14B相三維地交替排列之組織構成,各相之平均晶粒粒徑為10~30nm。
2)如上述1)之稀土類薄膜磁鐵,其膜厚為5μm以上,最大能積(BH)max為90kJ/m3以上,130kJ/m3以下。
3)一種稀土類薄膜磁鐵形成用靶,其特徵在於:由NdxFe14B(其中,X為滿足1.8~2.7之數)構成。
4)如上述3)之稀土類薄膜磁鐵形成用靶,其用以藉由脈衝雷射沈積法形成稀土類薄膜磁鐵,該稀土類薄膜磁鐵以Nd、Fe、B為必須成分,由α-Fe相與Nd2Fe14B相三維地交替排列之組織構成,各相之平均晶粒粒徑為10~30nm。
5)一種稀土類薄膜磁鐵之製造方法,其特徵在於由如下步驟構成:使用上述3)或4)之靶藉由脈衝雷射沈積法形成稀土類薄膜的步驟;對成膜而得之稀土類薄膜進行熱處理而使其結晶化的步驟;以及使結晶化之稀土類薄膜磁化而製作稀土類薄膜磁鐵的步驟。
6)如上述5)之稀土類薄膜磁鐵之製造方法,其中於形成稀土類薄膜之步驟中,將脈衝雷射強度密度設為1~1000J/cm2。
7)如上述5)或6)之稀土類薄膜磁鐵之製造方法,其中於使稀土類薄膜結晶化之步驟中,以7~9kW、時間1~5秒之條件進行熱處理。
本發明可藉由脈衝雷射沈積法而製作α-Fe相與Nd2Fe14B相三維地交替排列之奈米複合材料結構之稀土類薄膜磁鐵。而且,所獲得之稀土類薄膜磁鐵具有表現出良好磁特性之優異效果。又,本發明可由以單相構成之1個靶穩定地成膜上述奈米複合材料結構之稀土類薄膜磁鐵,故而就製造成本方面而言具有可提高生產性之優異效果。
圖1係表示本發明之稀土類薄膜磁鐵之組織之示意圖。
圖2係實施例1之稀土類薄膜磁鐵之M-H特性圖。
圖3係實施例1之熱處理前後之稀土類薄膜磁鐵之X射線繞射圖。
圖4係實施例1之熱處理後之組織的TEM明場像與所對應之SAD(Selected area diffraction,選區繞射)圖形。
圖5係實施例1之稀土類薄膜磁鐵中的α-Fe晶粒與Nd2Fe14B晶粒之
分佈圖。
圖6係實施例2之稀土類薄膜磁鐵之M-H特性圖。
圖7係實施例3之稀土類薄膜磁鐵之M-H特性圖。
本發明之稀土類薄膜磁鐵之特徵在於:含有Nd(釹)、Fe(鐵)、及B(硼)作為必須成分,具有如圖1所示般α-Fe相(圖1中為黑色部分)與Nd2Fe14B相(圖1中為灰色部分)三維地交替排列之組織的奈米複合材料結構,α-Fe相及Nd2Fe14B相之平均晶粒粒徑為10~30nm。
關於α-Fe相,如果假定為孤立粒子,那麼若未達10nm則接近超順磁性狀態。另一方面,若平均晶粒粒徑超過30nm,則與Nd2Fe14B相之交換耦合降低,並且發揮磁化反轉之釘紮效應(pinning effect)之作用的軟磁性相α-Fe晶粒彼此之晶界減少,或α-Fe晶粒與Nd2Fe14B晶粒之晶界之存在比率減少,故而保磁力降低。因此,將α-Fe相之平均晶粒粒徑設為上述數值範圍。
又,Nd2Fe14B相之單磁區晶粒尺寸為240nm左右,故而以單磁區晶粒尺寸以下為前提,並且如上所述相鄰之α-Fe相之平均晶粒粒徑為10~30nm,因此,於Nd2Fe14B相為240nm以上之大小之平均晶粒粒徑時,發生不與α-Fe相對齊而交換耦合降低。因此,將Nd2Fe14B相之平均晶粒粒徑設為上述數值範圍。
各相之平均晶粒粒徑藉由如下方式求出:藉由脈衝雷射沈積法而製作α-Fe相與Nd2Fe14B非晶相,其後,藉由熱處理而使Nd2Fe14B非
晶相結晶化,並對結晶化所獲得之組織利用穿透式電子顯微鏡(TEM:Transmission Electron Microscope)進行觀察,將藉由該TEM觀察而獲得之條紋狀組織的暗場像之短晶軸方向之軸長設為短軸徑而獲取分佈,並將該短軸徑之長度作為算術平均粒徑(個數平均粒徑)。
本發明之稀土類薄膜磁鐵之特徵在於:膜厚為5μm以上,
最大能積(BH)max為90kJ/m3以上。將膜厚設為5μm以上之原因在於:(1)應用於較小之電子器件時需要於某一程度之區域產生磁場,(2)若面內方向長度與面垂直方向之長度(膜厚)之尺寸比變高,則因退磁場之影響,而難以將充分之磁場自膜表面提取至垂直方向之外部。已知理想之尺寸比(縱橫比)為1:1左右。於本發明中,藉由在此種薄膜磁鐵中具備微細之奈米複合材料結構,可實現最大能積(BH)max為90kJ/m3以上。
本發明之稀土類薄膜磁鐵形成用靶之特徵在於:其由
NdXFe14B(其中,X為滿足1.8~2.7之數)構成。若上述X未達1.8,則雖然剩餘磁化值經常顯示超過1.0T之較高值,但Nd2Fe14B相之體積率減少,故而與α-Fe相之交換耦合降低,保磁力降低至未達200kA/m。另一方面,若上述X超過2.7,則Fe相之體積率減少,並且剩餘之非磁性成分即Nd殘留,而發生剩餘磁化降低,或交換耦合性劣化之問題。因此,將上述X設為上述數值範圍。
本發明之稀土類薄膜磁鐵例如能夠以如下方式而製作。
將Nd2.4Fe14B組成之靶安裝至脈衝雷射沈積裝置。繼而,對腔室內排氣至真空度成為10-5Pa之後,通過聚光透鏡對上述靶照射雷射。雷射可使用Nd:YAG雷射(振盪波長:355nm、重複頻率30Hz)。雷射之強度密度設
為1~1000J/cm2。若雷射強度密度未達1J/cm2,則當雷射照射至靶時,會產生大量液滴,而發生密度之降低,甚至磁特性之劣化。另一方面,若雷射強度密度超過1000J/cm2,則會明顯發生因雷射照射而引起之靶之蝕刻,而產生剝蝕現象停止等欠佳之現象。
於以如上方式經雷射照射之靶表面發生化學反應與熔融反
應,而產生稱為羽流之電漿。其到達至對向之基板上,藉此,可形成由α-Fe相與Nd-Fe-B系非晶相三維地分散且交替地排列之奈米複合材料結構構成的薄膜。於基板可使用熔點高之Ta、Ti、W、Mo、Zr、Nb。其中,吸氧效果高之Ta或Ti為有效,並且Si基板或石英玻璃基板等中可將上述元素用作緩衝層。進而,亦可利用有鑒於應用在毫米尺寸馬達的Fe、Co、Ni以及其等之合金等磁導率高之金屬基板。
以此方式成膜之薄膜成為於Nd-Fe-B系非晶母相中三維
地分散排列有α-Fe微晶粒之狀態。因此,成膜後需要以輸出7~9kW、時間1~5秒之條件實施熱處理,而使Nd-Fe-B系非晶母相結晶化。此處,於輸出未達7kW,且時間未達1秒之熱處理中,膜中之Nd-Fe-B系非晶相之結晶化變得困難或非晶相較多地殘留。另一方面,於輸出超過9kW,且時間超過5秒之熱處理中,(1)膜中之Nd2Fe14B晶粒變得粗大,進而α-Fe晶粒亦粗大化,或(2)顯現Nd2Fe14B相或α-Fe相以外之異相,故而磁特性劣化。因此,熱處理條件成為輸出為7~9kW、時間為1~5秒之範圍。其後,例如可藉由以磁場7T對該薄膜實施脈衝磁化(pulse magnetizing),而製作稀土類薄膜磁鐵。再者,於本發明中,磁化之方法並無特別限制,可使用公知之磁化方法。藉此,可製造本發明之由α-Fe相
與Nd2Fe14B相之奈米複合材料結構構成之稀土類薄膜磁鐵。
實施例
以下,基於實施例及比較例進行說明。再者,本實施例僅為一例,並不受該例任何限制。即,本發明僅受申請專利範圍限制,包括本發明所包含之實施例以外之各種變形。
(實施例1)
將純度為99.9%(3N)、相對密度為99%之Nd2.4Fe14B靶安裝至脈衝雷射沈積裝置,將腔室內排氣至真空。繼而,於確認達到10-5Pa之真空度後,對以約6.5rpm經旋轉之靶照射重複頻率30Hz之Nd:YAG雷射(振盪波長:355nm),剝蝕靶物質,於Ta基板上使由條紋狀之α-Fe結晶相與Nd-Fe-B系非晶母相構成之複合材料膜以厚度10μm以上成膜。此時,藉由將靶與基板之距離設為10mm,將雷射強度設為4W,使雷射束通過聚光透鏡而聚光於靶表面,而將靶表面之雷射強度密度設為10J/cm2左右。繼而,以輸出8kW進行約2秒鐘脈衝退火處理(熱處理溫度500~800℃左右),而使Nd-Fe-B系非晶相結晶化。其後,利用磁場7T實施脈衝磁化,而製作稀土類薄膜磁鐵。再者,於膜厚評價使用測微計,於組成分析使用EDX(Energy Dispersive X-ray spectroscopy,X射線能量色散譜)。
使用VSM(Vibrating Sample Magnetometer,振動樣品磁強計),對以此方式製作之稀土類薄膜磁鐵評價磁特性。圖2表示實施例1之稀土類薄膜磁鐵之M-H特性。如圖2所示,剩餘磁化為1.04T,保磁力為426kA/m,(BH)max為108kJ/m3,可獲得良好之結果。繼而,將熱處理前後之稀土類薄膜之X射線繞射圖示於圖3。如圖3所示,雖然成膜後之
α-Fe相結晶化,但Nd2Fe14B相成為非晶相。又,確認藉由熱處理而使Nd2Fe14B相結晶化。繼而,使用TEM對熱處理後之稀土類薄膜進行組織觀察。將其結果示於圖4。於圖4之右圖中,顯示白對比與黑對比之部分為α-Fe晶粒,顯示灰對比之母相部分為Nd2Fe12B晶粒。根據該TEM圖像確認,其具有α-Fe晶粒與Nd2Fe12B晶粒島狀地三維交替排列之奈米複合材料結構。圖5係表示α-Fe晶粒與Nd2Fe12B晶粒之分佈。測定結果為前者之N數為1044個,後者之N數為339個。根據該圖可知,α-Fe相之平均晶粒粒徑為約17nm,Nd2Fe12B相之平均晶粒粒徑為約14nm。
(實施例2)
將純度為99.9%(3N)、相對密度為99%之Nd1.8Fe14B靶安裝至脈衝雷射沈積裝置,將腔室內排氣至真空。繼而,於確認達到10-5Pa之真空度後,對以約6.5rpm經旋轉之靶照射重複頻率30Hz之Nd:YAG雷射(振盪波長:355nm),剝蝕靶物質,於Ta基板上使Nd-Fe-B系非晶膜以厚度10μm以上成膜。此時,藉由將靶與基板之距離設為10mm,將雷射強度設為4W,使雷射束通過聚光透鏡聚光於靶表面,而將靶表面之雷射強度密度設為10J/cm2。繼而,以輸出8kW進行約2秒鐘脈衝退火處理(熱處理溫度500~800℃左右),而使Nd-Fe-B系非晶相結晶化。其後,利用磁場7T實施脈衝磁化,而製作稀土類薄膜磁鐵。再者,於膜厚評價使用測微計,於組成分析使用EDX。
使用VSM,對以此方式製作之稀土類薄膜磁鐵評價磁特性。圖6表示實施例2之稀土類薄膜磁鐵之M-H特性。如圖6所示,剩餘磁化為0.99T左右,保磁力為386kA/m,(BH)max為91kJ/m3,可獲得良好之結果。繼
而,使用TEM對熱處理後之稀土類薄膜進行組織觀察。使用與實施例1相同之方法測定晶粒粒徑,其結果,α-Fe相之平均晶粒粒徑為約16nm,Nd2Fe14B相之平均晶粒粒徑為約14nm。
(實施例3)
將純度為99.9%(3N)、相對密度為99%之Nd2.6Fe14B靶安裝至脈衝雷射沈積裝置,將腔室內排氣至真空。繼而,於確認達到10-5Pa之真空度後,對以約6.5rpm經旋轉之靶照射重複頻率30Hz之Nd:YAG雷射(振盪波長:355nm),剝蝕靶物質,於Ta基板上使Nd-Fe-B系非晶膜以厚度10μm以上成膜。此時,藉由將靶與基板之距離設為10mm,將雷射強度設為4W,使雷射束通過聚光透鏡聚光於靶表面,而將靶表面之雷射強度密度設為10J/cm2。繼而,以輸出8kW進行約2秒鐘脈衝退火處理(熱處理溫度500~800℃左右),而使Nd-Fe-B系非晶相結晶化。其後,以磁場7T實施脈衝磁化,而製作稀土類薄膜磁鐵。再者,於膜厚評價使用測微計,於組成分析使用EDX。
使用VSM,對以此方式製作之稀土類薄膜磁鐵評價磁特性。圖7表示實施例3之稀土類薄膜磁鐵之M-H特性。如圖7所示,剩餘磁化為1.05T左右,保磁力為446kA/m,(BH)max為128kJ/m3,可獲得良好之結果。繼而,使用TEM對熱處理後之稀土類薄膜進行組織觀察。使用與實施例1相同之方法測定晶粒粒徑,其結果,α-Fe相之平均晶粒粒徑為約18nm,Nd2Fe14B相之平均晶粒粒徑為約15nm。
(比較例1)
將純度為99.9%(3N)、相對密度為99%之Nd1.4Fe14B靶安裝至脈衝雷射
沈積裝置,將腔室內排氣至真空。繼而,於確認達到10-5Pa之真空度後,對以約6.5rpm經旋轉之靶照射重複頻率30Hz之Nd:YAG雷射(振盪波長:355nm),剝蝕靶物質,於Ta基板上使Nd-Fe-B系非晶膜以厚度10μm以上成膜。此時,藉由將靶與基板之距離設為10mm,將雷射強度設為4W,使雷射束通過聚光透鏡聚光於靶表面,而將靶表面之雷射強度密度設為1J/cm2。繼而,以輸出8kW進行約2秒鐘脈衝退火處理(熱處理溫度500~800℃左右),而使Nd-Fe-B系非晶相結晶化。其後,以磁場7T實施脈衝磁化,而製作稀土類薄膜磁鐵。再者,於膜厚評價使用測微計,於組成分析使用EDX。
使用VSM對以此方式製作之稀土類薄膜磁鐵評價磁特性。其結果,剩餘磁化為0.8T左右,保磁力為300kA/m,(BH)max最大為60kJ/m3,與實施例相比結果較差。繼而,使用TEM對熱處理後之稀土類薄膜進行組織觀察。其結果,確認α-Fe相與Nd2Fe14B相以於超過數10nm~100nm之範圍內分散之狀態而存在。此外,亦確認:與實施例1相比,自靶釋出之液滴明顯變多,而發生表面平滑性及密度之劣化等。
(比較例2)
將純度為99.9%(3N)、相對密度為99%之組合有Nd2.6Fe14B與α-Fe之1個靶安裝至脈衝雷射沈積裝置,將腔室內排氣至真空。繼而,於確認達到10-5Pa之真空度後,對以約6.5rpm經旋轉之靶照射重複頻率30Hz之Nd:YAG雷射(振盪波長:355nm),剝蝕靶物質,於Ta基板上使由α-Fe相與Nd-Fe-B系非晶相構成之複合材料膜以厚度10μm以上成膜。此時,藉由將靶與基板之距離設為10mm,將雷射強度設為4W,使雷射束通
過聚光透鏡聚光於靶表面,而將靶表面之雷射強度密度設為1J/cm2左右。
繼而,以輸出8kW進行約2秒鐘脈衝退火處理(熱處理溫度500~800℃左右),而使Nd-Fe-B系非晶相結晶化。其後,以磁場7T實施脈衝磁化,而製作稀土類薄膜磁鐵。再者,於膜厚評價使用測微計,於組成分析使用EDX。
使用VSM,對以此方式製作之稀土類薄膜磁鐵評價磁特性。其結果,剩餘磁化為0.9T,保磁力為400kA/m,(BH)max為100kJ/m3,雖然與實施例1相比為相同程度,但確認其矩形性與實施例1相比明顯較差。此外,亦確認:與實施例相比,自靶釋出之液滴明顯多,而發生表面平滑性及密度之劣化等。
本發明之利用脈衝雷射沈積法製作之α-Fe相與Nd2Fe14B相三維地交替排列之奈米複合材料結構的稀土類薄膜磁鐵具有良好之磁特性,故而對MEMS(Micro Electro Mechanical Systems)、energy harvesting(環境發電)等能量領域、醫療機器領域等中應用之磁器件有用。
Claims (6)
- 一種稀土類薄膜磁鐵,以Nd、Fe、B為必須成分,其特徵在於:由α-Fe相與Nd2Fe14B相三維地交替排列之組織構成,各相之平均晶粒粒徑為10~30nm。
- 如申請專利範圍第1項之稀土類薄膜磁鐵,其膜厚為5μm以上,最大能積(BH)max為90kJ/m3以上,130kJ/m3以下。
- 一種稀土類薄膜磁鐵形成用靶,其由NdxFe14B(其中,X為滿足1.8~2.7之數)構成,用以藉由脈衝雷射沈積(pulse laser deposition)法形成稀土類薄膜磁鐵,該稀土類薄膜磁鐵以Nd、Fe、B為必須成分,由α-Fe相與Nd2Fe14B相三維地交替排列之組織構成,各相之平均晶粒粒徑為10~30nm。
- 一種稀土類薄膜磁鐵之製造方法,其由如下步驟構成:使用申請專利範圍第3項之靶,藉由脈衝雷射沈積法形成稀土類薄膜的步驟;對成膜之稀土類薄膜進行熱處理而使其結晶化的步驟;以及使結晶化之稀土類薄膜磁化而製作稀土類薄膜磁鐵的步驟。
- 如申請專利範圍第4項之稀土類薄膜磁鐵之製造方法,其中於形成稀土類薄膜之步驟中,將脈衝雷射強度密度設為1~1000J/cm2。
- 如申請專利範圍第4或5項之稀土類薄膜磁鐵之製造方法,其中於使稀土類薄膜結晶化之步驟中,以7~9kW、時間1~5秒之條件進行熱處理。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP2014-115719 | 2014-06-04 | ||
JP2014115719A JP5861246B2 (ja) | 2014-06-04 | 2014-06-04 | 希土類薄膜磁石及びその製造方法並びに希土類薄膜磁石形成用ターゲット |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201546295A TW201546295A (zh) | 2015-12-16 |
TWI628294B true TWI628294B (zh) | 2018-07-01 |
Family
ID=54766470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104108594A TWI628294B (zh) | 2014-06-04 | 2015-03-18 | Rare earth thin film magnet, method for producing the same, and target for forming rare earth thin film magnet |
Country Status (5)
Country | Link |
---|---|
US (1) | US11250976B2 (zh) |
JP (1) | JP5861246B2 (zh) |
KR (1) | KR101862959B1 (zh) |
TW (1) | TWI628294B (zh) |
WO (1) | WO2015186389A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10597771B2 (en) | 2014-10-27 | 2020-03-24 | Jx Nippon Mining & Metals Corporation | Rare earth thin-film magnet and method for producing same |
JP6395969B2 (ja) * | 2016-03-07 | 2018-09-26 | Jx金属株式会社 | 希土類薄膜磁石及びその製造方法 |
KR101982998B1 (ko) * | 2016-04-15 | 2019-05-27 | 제이엑스금속주식회사 | 희토류 박막 자석 및 그 제조 방법 |
JP6208405B1 (ja) * | 2016-04-15 | 2017-10-04 | Jx金属株式会社 | 希土類薄膜磁石及びその製造方法 |
KR102016615B1 (ko) * | 2017-09-14 | 2019-08-30 | (주)코미코 | 내플라즈마 특성이 향상된 플라즈마 에칭 장치용 부재 및 그 제조 방법 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3915446A1 (de) * | 1989-05-12 | 1990-11-15 | Krupp Widia Gmbh | Ndfeb-magnet und verfahren zur oberflaechenpassivierung von ndfeb-magneten |
JP2957421B2 (ja) * | 1994-09-09 | 1999-10-04 | 三菱電機株式会社 | 薄膜磁石およびその製造方法ならびに円筒形強磁性薄膜 |
KR100285352B1 (ko) | 1998-12-24 | 2001-04-02 | 신현준 | 철붕소화합물/니오디뮴철붕소/철붕소화합물 박막구조의 초미세립 영구자석박막의 제조방법 |
JP4988713B2 (ja) | 2006-03-20 | 2012-08-01 | 並木精密宝石株式会社 | 薄膜希土類磁石及びその製造方法 |
JP4984070B2 (ja) | 2007-10-05 | 2012-07-25 | 国立大学法人 長崎大学 | 成膜方法及び成膜装置 |
US9242295B2 (en) * | 2007-12-21 | 2016-01-26 | The Univeristy Of Texas At Arlington | Bulk nanocomposite magnets and methods of making bulk nanocomposite magnets |
JP5769059B2 (ja) | 2011-03-30 | 2015-08-26 | 日立金属株式会社 | 永久磁石薄膜用スパッタリングターゲット及びその製造方法 |
JP6042602B2 (ja) * | 2011-08-17 | 2016-12-14 | ミネベア株式会社 | α−Fe/R2TM14B系ナノコンポジット磁石の製造方法 |
CN104321838B (zh) | 2012-02-23 | 2018-04-06 | 吉坤日矿日石金属株式会社 | 钕基稀土类永久磁铁及其制造方法 |
JP5877517B2 (ja) | 2013-01-28 | 2016-03-08 | Jx金属株式会社 | 希土類磁石用スパッタリングターゲット及びその製造方法 |
CN105164765A (zh) * | 2014-03-20 | 2015-12-16 | 株式会社东芝 | 永磁体、电动机及发电机 |
US10597771B2 (en) | 2014-10-27 | 2020-03-24 | Jx Nippon Mining & Metals Corporation | Rare earth thin-film magnet and method for producing same |
-
2014
- 2014-06-04 JP JP2014115719A patent/JP5861246B2/ja active Active
-
2015
- 2015-03-03 KR KR1020167018416A patent/KR101862959B1/ko active IP Right Grant
- 2015-03-03 WO PCT/JP2015/056139 patent/WO2015186389A1/ja active Application Filing
- 2015-03-03 US US15/112,458 patent/US11250976B2/en active Active
- 2015-03-18 TW TW104108594A patent/TWI628294B/zh active
Non-Patent Citations (2)
Title |
---|
1.H. Fukunaga,"Effect of laser beam parameters on magnetic properties of Nd–Fe–B thick-film magnets fabricated by pulsed laser deposition", Journal of Applied Physics ,Vol.109,13 April 2011,page 07A758-1~07A758-3 * |
1.H. Fukunaga,"Effect of laser beam parameters on magnetic properties of Nd–Fe–B thick-film magnets fabricated by pulsed laser deposition", Journal of Applied Physics ,Vol.109,13 April 2011,page 07A758-1~07A758-3。 |
Also Published As
Publication number | Publication date |
---|---|
JP5861246B2 (ja) | 2016-02-16 |
US11250976B2 (en) | 2022-02-15 |
JP2015230944A (ja) | 2015-12-21 |
TW201546295A (zh) | 2015-12-16 |
US20160343482A1 (en) | 2016-11-24 |
KR20160096683A (ko) | 2016-08-16 |
KR101862959B1 (ko) | 2018-05-30 |
WO2015186389A1 (ja) | 2015-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI628294B (zh) | Rare earth thin film magnet, method for producing the same, and target for forming rare earth thin film magnet | |
Walther et al. | Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems | |
JP4988713B2 (ja) | 薄膜希土類磁石及びその製造方法 | |
Nakano et al. | Nd–Fe–B Film Magnets With Thickness Above 100${\mu}\text {m} $ Deposited on Si Substrates | |
JP6178521B2 (ja) | 希土類薄膜磁石及びその製造方法 | |
CN105989983B (zh) | 永久磁铁 | |
WO2002015206A1 (fr) | Aimant permanent en terre rare et son procede de fabrication | |
TWI700711B (zh) | 稀土類薄膜磁石及其製造方法 | |
WO2016104117A1 (ja) | 希土類薄膜磁石及びその製造方法 | |
Ishimaru et al. | Microstructure analysis of high coercivity PLD-Made Nd-Fe-B thick-film improved by Tb-coating-diffusion treatment | |
JP6395969B2 (ja) | 希土類薄膜磁石及びその製造方法 | |
JP2012109490A (ja) | 希土類永久磁石薄膜の製造方法 | |
JP2018207054A (ja) | 希土類薄膜磁石及びその製造方法 | |
Yamaguchi et al. | Nd-Fe-B thick-film magnets on Si substrates with Al-O underlayers | |
Yamashita et al. | Effects of laser spot size on the microstructure and magnetic properties of PLD fabricated Fe-Co films | |
JP6208405B1 (ja) | 希土類薄膜磁石及びその製造方法 | |
Borza et al. | Single step nanocrystallization of FeCuNbSiB/CoPt (Cu) soft/hard magnetic multilayer microwires | |
JP6734578B2 (ja) | 硬質磁性材料 | |
Peng et al. | High-frequency magnetic characteristics of Fe-Co-based nanocrystalline alloy films | |
Yamashita et al. | PLD-Fabricated Isotropic Pr–Fe–B Film Magnets Deposited on Glass Substrates | |
Liu et al. | Orientation and magnetic properties of the thick multilayered [NdFeBx/Tby] n films | |
Nakano et al. | Nd–Fe–B Thick-Film Magnets Prepared by High Laser Energy Density | |
JP6776984B2 (ja) | 永久磁石薄膜 | |
Nakano et al. | Nanocomposite Nd-Fe-B/\(\boldsymbol {\alpha}\)-Fe Thick-Film Magnets Prepared by Vacuum Arc Deposition |