TWI596764B - 具有週期性摻雜碳之氮化鎵之高電子移動率電晶體 - Google Patents

具有週期性摻雜碳之氮化鎵之高電子移動率電晶體 Download PDF

Info

Publication number
TWI596764B
TWI596764B TW103142638A TW103142638A TWI596764B TW I596764 B TWI596764 B TW I596764B TW 103142638 A TW103142638 A TW 103142638A TW 103142638 A TW103142638 A TW 103142638A TW I596764 B TWI596764 B TW I596764B
Authority
TW
Taiwan
Prior art keywords
gallium nitride
layer
carbon
gan
layers
Prior art date
Application number
TW103142638A
Other languages
English (en)
Other versions
TW201614832A (en
Inventor
傑佛瑞 克瑞格 拉蒙
卡爾 金尼爾曼
Original Assignee
東芝股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝股份有限公司 filed Critical 東芝股份有限公司
Publication of TW201614832A publication Critical patent/TW201614832A/zh
Application granted granted Critical
Publication of TWI596764B publication Critical patent/TWI596764B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • H01L29/7785Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material with more than one donor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

具有週期性摻雜碳之氮化鎵之高電子移動率電晶體
本發明大體而言係關於高電子移動率電晶體,且特定言之係關於具有週期性摻雜碳之氮化鎵(GaN)層之高電子移動率電晶體。
高電子移動率電晶體(HEMT)係一種類型之場效電晶體(PET),其中形成有通道層與障壁層之間的異質接面,該障壁層之電子親和力小於該通道層之電子親和力。歸因於在通道-障壁層界面處之極化場的失配,二維電子氣(2DEG)形成於III-V族HEMT裝置的通道層中。2DEG具有在裝置操作期間促進高速切換之高電子移動率。在典型HEMT裝置中,可將負偏壓電壓施加至閘電極以耗盡2DEG且藉此關斷裝置。III-V族HEMT裝置係由週期表之第III欄中的材料(諸如,鋁(Al)、鎵(Ga)及銦(In))及週期表之第V欄中的材料(諸如,氮(N)、磷(P)及砷(As))製成之HEMT裝置。
圖1顯示HEMT裝置之先前技術結構之橫截面圖。圖1中所示之HEMT裝置100係自基板102開始,該基板可為矽(Si)、碳化矽(SiC)、藍寶石(Al2O3)或用於磊晶地生長III-V族材料之層的任何其他合適基板。對於除塊體氮化鎵(GaN)之外的基板而言,歸因於氮化鎵(GaN)與基板材料之間的不良晶格匹配,難以在基板102上磊晶地生長高品質之氮化鎵(GaN)半導體晶體層。因而,可將一任選之緩衝層104(亦已 知為長晶層)沈積於基板102上以提供其上可生長高品質氮化鎵(GaN)的表面。緩衝層104可為氮化鎵(GaN)、氮化鋁鎵(AlGaN)、氮化鋁(AlN)或用於生長氮化鎵(GaN)之任何其他合適材料。氮化鎵(GaN)之磊晶生長在緩衝層104上形成通道層106。可藉由任何已知之過程來形成通道層106,該過程包括金屬有機化學氣相沈積法(MOCVD)、分子束磊晶法(MBE)或任何其他合適之生長技術。
接下來,可藉由磊晶生長在通道層106上形成障壁層108(亦已知為電子供應層)。障壁層108可由氮化鋁鎵(AlxGa1-xN)、氮化銦鋁(InxAl1-xN)或適合於與基於氮化鎵(GaN)之通道層106形成異質接面的任何其他材料製成。形成於障壁層108上之電極112及114分別充當HEMT裝置100之源極及汲極。源電極112及汲電極114可為鈦(Ti)/矽(Si)/鎳(Ni)、鈦(Ti)/鋁(Al)/鎳(Ni)或與障壁層108形成歐姆接觸之任何其他合適材料。閘電極110亦形成於障壁層108上且位於源電極112與汲電極114之間。閘電極110包含與障壁層108形成非歐姆接觸(不展現線性I-V特性之接觸)之材料。
在前述HEMT裝置100之裝置操作期間,2DEG形成於位於通道層106與障壁層108之間的界面之通道層側上,從而允許電流在源電極112與汲電極114之間流動。可將負電壓(相對於基板102)施加至閘電極110以耗盡2DEG且切斷電流在源電極112與汲電極114之間的流動,從而關斷HEMT裝置100。
為了改良HEMT裝置100之電崩潰效能,可將碳(C)併入至基於氮化鎵(GaN)之通道層106中以增加氮化鎵(GaN)材料之電阻率。雖然碳(C)天然地以小濃度存在於基於氮化鎵(GaN)之通道層106中,但可藉由變更氮化鎵(GaN)通道層106之生長條件而將較大數量之碳(C)引入氮化鎵(GaN)材料中(亦已知為摻雜碳之氮化鎵(c-GaN))。具體言之,可藉由在低溫下、以高生長速率及以V族前驅體對III族前驅體之低比 率生長氮化鎵(GaN)通道層106來達成碳(C)之此注入。然而,促進碳(C)併入於氮化鎵(GaN)中之生長條件係直接與生長高品質之氮化鎵(GaN)所必要之生長條件(其包括高溫、低生長速率及V族前驅體對III族前驅體之高比率)相衝突。
由於摻雜碳之氮化鎵(c-GaN)具有低劣之晶體品質及形態,所以製造商不能夠使摻雜碳之氮化鎵(c-GaN)生長成厚層,從而限制了HEMT裝置100之電崩潰效能。存在於摻雜碳之氮化鎵(c-GaN)中的結構缺陷亦可歸因於摻雜碳之氮化鎵(c-GaN)材料的結構退化而導致不良的裝置效能及較低的每晶圓良率。此外,摻雜碳之氮化鎵(c-GaN)的厚層使得HEMT裝置100不適合於愈來愈多的終端應用(特別係鑒於對較小FET裝置之增長之需求)。
因此,對具有改良之電崩潰效能及改良之結構品質之較薄HEMT裝置之需求尚未得到滿足。
在一個實施例中,一種形成高電子移動率電晶體(HEMT)裝置之方法包括在基板上形成通道層堆疊,該通道層堆疊具有一或多個未摻雜之氮化鎵(GaN)層與一或多個摻雜碳之氮化鎵層(c-GaN)的複數個交替層。該方法進一步包括在通道層堆疊上形成一障壁層。在一個實施例中,障壁層為氮化鋁鎵(AlxGa1-xN)。
在另一實施例中,該方法視情況包括在基板與通道層堆疊之間形成一緩衝層。在一個實施例中,該方法進一步包括在障壁層上形成源電極、汲電極及閘電極,其中閘電極形成於源電極與汲電極之間。源電極及汲電極與障壁層形成歐姆連接,且閘電極與障壁層形成非歐姆連接。
在一個實施例中,藉由在抑制碳併入於氮化鎵中之生長條件中生長一或多個未摻雜之氮化鎵(GaN)層中之各層及在促進碳併入於氮 化鎵中之生長條件中生長一或多個摻雜碳之氮化鎵(c-GaN)層中之各層來形成通道層堆疊。在一個實施例中,一或多個未摻雜之氮化鎵(GaN)層中之各層係以小於5E18原子/cm3之碳濃度而生長,且一或多個摻雜碳之氮化鎵(c-GaN)層中之各層係以大於5E18原子/cm3之碳濃度而生長。
在一個實施例中,一或多個未摻雜之氮化鎵(GaN)層中之各層係以低生長速率及以V族前驅體對III族前驅體之高比率生長,且一或多個摻雜碳之氮化鎵(c-GaN)層中之各層係以高生長速率及以V族前驅體對III族前驅體之低比率生長。在一個實施例中,一或多個未摻雜之氮化鎵(GaN)層中之各層係以大於0.1μm/小時且小於5μm/小時之速率生長,且一或多個摻雜碳之氮化鎵(c-GaN)層中之各層係以大於5μm/小時且小於10μm/小時之速率生長。在一個實施例中,一或多個摻雜碳之氮化鎵(c-GaN)層中之各層係以比一或多個未摻雜之氮化鎵(GaN)層中之各層大大約15至20倍之速率生長。
在一個實施例中,一或多個未摻雜之氮化鎵(GaN)層中之各層係使用V族前驅體對III族前驅體之大於100:1且小於10000:1的比率生長,且一或多個摻雜碳之氮化鎵(c-GaN)層中之各層係使用V族前驅體對III族前驅體之大於10:1且小於200:1的比率生長。在一個實施例中,一或多個未摻雜之氮化鎵(GaN)層及一或多個摻雜碳之氮化鎵(c-GaN)層係在大於750C且小於1000C之溫度下及在大於35托耳且小於700托耳之壓力下生長。
在一個實施例中,一或多個未摻雜之氮化鎵(GaN)層中之各層經生長至大於1nm且小於200nm之厚度,且一或多個摻雜碳之氮化鎵(c-GaN)層中之各層經生長至大於1nm且小於500nm之厚度。在一個實施例中,一或多個摻雜碳之氮化鎵(c-GaN)層中之各層之厚度與一或多個未摻雜之氮化鎵(GaN)層中之各層之厚度的比率係大於1:3且小 於3:1。
在一個實施例中,高電子移動率電晶體(HEMT)裝置包括基板及通道層堆疊,該通道層堆疊具有形成於基板上的一或多個未摻雜之氮化鎵(GaN)層與一或多個摻雜碳之氮化鎵(c-GaN)層的複數個交替層。HEMT裝置進一步包括形成於通道層堆疊上之障壁層。在一個實施例中,障壁層為氮化鋁鎵(AlxGa1-xN)。在另一實施例中,HEMT裝置視情況包括形成於基板與通道層堆疊之間的緩衝層。在一個實施例中,HEMT裝置進一步包括形成於障壁層上之源電極、汲電極及閘電極,其中閘電極形成於源電極與汲電極之間。源電極及汲電極與障壁層形成歐姆連接,且閘電極與障壁層形成非歐姆連接。
在一個實施例中,一或多個未摻雜之氮化鎵(GaN)層中之各層具有小於1E18原子/cm3之碳濃度,且一或多個摻雜碳之氮化鎵(c-GaN)層中之各層具有大於1E18原子/cm3之碳濃度。在一個實施例中,一或多個未摻雜之氮化鎵(GaN)層中之各層的厚度係大於1nm且小於200nm,且一或多個摻雜碳之氮化鎵(c-GaN)層中之各層的厚度係大於1nm且小於500nm。在一個實施例中,一或多個摻雜碳之氮化鎵(c-GaN)層中之各層之厚度與一或多個未摻雜之氮化鎵(GaN)層中之各層之厚度的比率係大於1:3且小於3:1。
100‧‧‧HEMT裝置
102‧‧‧基板
104‧‧‧任選之緩衝層
106‧‧‧通道層
108‧‧‧障壁層
110‧‧‧閘電極
112‧‧‧源電極
114‧‧‧汲電極
200‧‧‧HEMT裝置
202‧‧‧基板
204‧‧‧緩衝層
206‧‧‧通道層堆疊
207‧‧‧未摻雜之氮化鎵(GaN)層
208‧‧‧障壁層
210‧‧‧閘電極
212‧‧‧源電極
214‧‧‧汲電極
220‧‧‧摻雜碳之氮化鎵(c-GaN)層
221‧‧‧未摻雜之氮化鎵(GaN)層
222‧‧‧摻雜碳之氮化鎵(c-GaN)層
223‧‧‧未摻雜之氮化鎵(GaN)層
224‧‧‧摻雜碳之氮化鎵(c-GaN)層
225‧‧‧未摻雜之氮化鎵(GaN)層
226‧‧‧摻雜碳之氮化鎵(c-GaN)層
300‧‧‧HEMT裝置
302‧‧‧基板
304‧‧‧緩衝層
306‧‧‧通道層堆疊
307‧‧‧未摻雜之氮化鎵(GaN)層
308‧‧‧障壁層
310‧‧‧閘電極
312‧‧‧源電極
314‧‧‧汲電極
320‧‧‧摻雜碳之氮化鎵(c-GaN)層
321‧‧‧未摻雜之氮化鎵(GaN)層
322‧‧‧摻雜碳之氮化鎵(c-GaN)層
323‧‧‧未摻雜之氮化鎵(GaN)層
324‧‧‧摻雜碳之氮化鎵(c-GaN)層
325‧‧‧未摻雜之氮化鎵(GaN)層
326‧‧‧摻雜碳之氮化鎵(c-GaN)層
401‧‧‧未摻雜之氮化鎵(GaN)層
402‧‧‧摻雜碳之氮化鎵(c-GaN)層
406‧‧‧通道層堆疊
510‧‧‧垂直崩潰電壓
620‧‧‧垂直崩潰電壓
710‧‧‧橫向崩潰電壓
711‧‧‧橫向崩潰電壓
712‧‧‧橫向崩潰電壓
713‧‧‧橫向崩潰電壓
820‧‧‧橫向崩潰電壓
圖1顯示HEMT裝置之先前技術結構之橫截面圖。
圖2A顯示根據本發明之一個實施例之HEMT裝置的橫截面圖,該HEMT裝置具有未摻雜之氮化鎵與摻雜碳之氮化鎵的交替層。
圖2B顯示根據本發明之另一實施例之HEMT裝置的橫截面圖,該HEMT裝置具有未摻雜之氮化鎵與摻雜碳之氮化鎵的交替層。
圖3A至圖3H顯示根據本發明之一個實施例之用於生產HEMT裝置之製造步驟的橫截面圖,該HEMT裝置具有未摻雜之氮化鎵與摻雜 碳之氮化鎵的交替層。
圖4顯示根據本發明之一個實施例之HEMT裝置之碳濃度的曲線,該HEMT裝置具有未摻雜之氮化鎵與摻雜碳之氮化鎵的交替層。
圖5顯示根據先前技術之複數個HEMT裝置之垂直崩潰電壓的曲線。
圖6顯示根據本發明之一個實施例之複數個HEMT裝置之垂直崩潰電壓的曲線,該複數個HEMT裝置具有未摻雜之氮化鎵與摻雜碳之氮化鎵的交替層。
圖7顯示根據先前技術之複數個HEMT裝置之橫向崩潰電壓的曲線。
圖8顯示根據本發明之一個實施例之複數個HEMT裝置之橫向崩潰電壓的曲線,該複數個HEMT裝置具有未摻雜之氮化鎵與摻雜碳之氮化鎵的交替層。
圖2A顯示根據本發明之一個實施例之HEMT裝置的橫截面圖,該HEMT裝置具有未摻雜之氮化鎵與摻雜碳之氮化鎵的交替層。在圖2中,HEMT裝置200係自基板202開始。基板202可為矽(Si)、碳化矽(SiC)、藍寶石(Al2O3)、塊體氮化鎵(GaN)或用於磊晶地生長氮化鎵(GaN)之層的任何其他合適基板。在一個實施例(未圖示)中,基板202係塊體氮化鎵(GaN),且未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(GaN)的複數個交替層直接地磊晶生長於基板202之頂部上。
在另一實施例中,基板202係除塊體氮化鎵(GaN)之外的用於生長氮化鎵(GaN)層之任何合適材料。在此實施例中,緩衝層204沈積於基板202之頂部上。緩衝層204可為氮化鎵(GaN)、氮化鋁鎵(AlGaN)、氮化鋁(AlN)或用於生長氮化鎵(GaN)之任何其他合適材料。
接著將通道層堆疊206形成於障壁層204之頂部上。在另一實施 例中,藉由生長摻雜碳之氮化鎵(c-GaN)之單一層及生長未摻雜之氮化鎵(GaN)之單一層來形成通道層堆疊206。在又一實施例中,藉由生長一或多個摻雜碳之氮化鎵(c-GaN)層與一或多個未摻雜之氮化鎵(GaN)層的複數個交替層來形成通道層堆疊206。
一般而言,在摻雜碳之氮化鎵(c-GaN)與未摻雜之氮化鎵(GaN)的交替層之數目與HEMT裝置200之電效能之間將存在折衷。如先前所論述,生長摻雜碳之氮化鎵(c-GaN)之厚層可歸因於摻雜碳之氮化鎵(c-GaN)之低劣晶體形態及結構品質而導致不良之裝置效能及裝置發生故障之可能性增加。因而,通道層堆疊206具有摻雜碳之氮化鎵(c-GaN)之單一層及未摻雜之氮化鎵(GaN)之單一層之HEMT裝置將比具有摻雜碳之氮化鎵(c-GaN)與未摻雜之氮化鎵(GaN)之多個交替層的HEMT裝置薄,但亦將歸因於通道層堆疊206中摻雜碳之氮化鎵(c-GaN)之減小的量而具有減小之電效能。
在一個實施例中,藉由磊晶地生長未摻雜之氮化鎵(GaN)層221、223及225與摻雜碳之氮化鎵(c-GaN)層220、222、224及226的交替層來形成通道層堆疊206。可藉由任何已知之過程來生長未摻雜之氮化鎵(GaN)221、223及225與摻雜碳之氮化鎵(c-GaN)層220、222、224及226的交替層,該過程包括金屬有機化學氣相沈積法(MOCVD)、分子束磊晶法(MBE)或任何其他合適之生長技術。
在一個實施例中,未摻雜之氮化鎵層221、223及225具有小於1E18原子/cm3之碳濃度,且摻雜碳之氮化鎵層220、222、224及226具有大於1E18原子/cm3之碳濃度。在一個實施例中,未摻雜之氮化鎵(GaN)層221、223及225中之各層具有大於1nm且小於200nm之厚度,且摻雜碳之氮化鎵(c-GaN)層220、222、224及226中之各層具有大於1nm且小於500nm之厚度。在一個實施例中,未摻雜之氮化鎵(GaN)層221、223及225中之各層之厚度與摻雜碳之氮化鎵(c-GaN)層220、 222、224及226中之各層之厚度的比率係大於1:3且小於3:1。
在一個實施例中,未摻雜之氮化鎵(GaN)之任選額外層207形成於通道層堆疊206之頂部上。未摻雜之氮化鎵(GaN)層207提供一高品質表面,在該高品質表面之頂部上形成障壁層208。未摻雜之氮化鎵(GaN)層207的厚度將取決於通道層堆疊206及摻雜碳之氮化鎵(c-GaN)220、222、224及226與未摻雜之氮化鎵(GaN)221、223及225之交替層的總厚度而變化,但應足夠大以補償下伏的摻雜碳之氮化鎵(c-GaN)層220、222、224及226之低劣晶體品質及形態。在一個實施例中,未摻雜之氮化鎵(GaN)層的厚度係在20nm與3μm之間。
在圖2B中所示之另一實施例中,通道層堆疊206之最上層係未摻雜之氮化鎵(GaN)層226且障壁層208直接形成於通道層堆疊206之頂部上。在此實施例中,未摻雜之氮化鎵(GaN)層226亦應足夠厚以補償下伏的摻雜碳之氮化鎵(c-GaN)層220、222及224之低劣晶體品質及形態。在一個實施例中,未摻雜之氮化鎵(GaN)層226的厚度係在20nm與3μm之間。在圖2A至圖2B兩者中,障壁層208可為氮化鋁鎵(AlxGa1-xN)、氮化銦鋁(InxAl1-xN)或適合於與基於氮化鎵(GaN)之通道層堆疊206形成異質接面的任何其他材料。
源電極212及汲電極214接著形成於障壁層208之頂部上且電耦接至障壁層208。閘電極210形成於源電極212與汲電極214之間。閘電極亦電耦接至障壁層208。源電極212及汲電極214與障壁層208形成歐姆接觸,且閘電極210與障壁層208形成非歐姆接觸(不展現線性I-V特性之接觸)。
在HEMT裝置200之裝置操作期間,2DEG形成於位於通道堆疊層206或任選之未摻雜之氮化鎵(GaN)層207與障壁層208之間的界面之通道堆疊層側上,從而允許電流在源電極212與汲電極214之間流動。藉由形成包含未摻雜之氮化鎵(GaN)221、223及225與摻雜碳之氮化鎵 (c-GaN)層220、222、224及226之交替層的通道層堆疊206,HEMT裝置200具有改良之電崩潰效能而無具有厚的摻雜碳之氮化鎵(c-GaN)通道層106之HEMT裝置100(如圖1中所描述)的低劣結構品質。
藉由形成未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c-GaN)的交替層,摻雜碳之氮化鎵(c-GaN)層之低劣晶體品質及形態本質上由高品質未摻雜之氮化鎵(GaN)層修復,從而避免與摻雜碳之氮化鎵(c-GaN)之單一層相關聯的不當結構降級,同時維持摻雜碳之氮化鎵(c-GaN)之所要電阻率特性。由於未摻雜之氮化鎵(GaN)之該等層補償了摻雜碳之氮化鎵(c-GaN)層之低劣晶體品質及形態,所以可使HEMT裝置200之總厚度比圖1中所示之先前技術HEMT裝置100薄,從而允許將HEMT裝置200用於愈來愈小的電子裝置(例如,用以將電力提供至膝上型電腦及其他行動電子裝置之愈來愈小的交流轉直流電力轉換器)中。高品質未摻雜之氮化鎵(GaN)之該等交替層允許將更多摻雜碳之氮化鎵(c-GaN)用於通道層堆疊中,如先前所解釋,此舉原本會在使用摻雜碳之氮化鎵(c-GaN)之單一厚層的情況下導致不可接受之退化,因此可在不使整個HEMT裝置200變得較厚的情況下改良HEMT裝置200之效能。另外,HEMT裝置200之改良的結構品質亦將導致改良之良率,且結果導致與先前技術HEMT裝置100相比的較低之每裝置總製造成本。
圖3A至圖3H顯示根據本發明之一個實施例之用於生產HEMT裝置之製造步驟的橫截面圖,該HEMT裝置具有未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c-GaN)的交替層。在圖3A中,HEMT裝置300之形成係藉由提供基板302而開始。基板302可為矽(Si)、碳化矽(SiC)、藍寶石(Al2O3)或用於磊晶地生長氮化鎵(GaN)之層的任何其他合適基板。在圖3B中,緩衝層304沈積於基板302之頂部上。緩衝層304可為氮化鎵(GaN)、氮化鋁鎵(AlGaN)、氮化鋁(AlN)或用於生長氮化鎵 (GaN)之任何其他合適材料。在一個實施例中,基板302係塊體氮化鎵(GaN),在該狀況下,圖3B中所示之形成緩衝層304之製造步驟係任選的。
在圖3C中,摻雜碳之氮化鎵(c-GaN)層320磊晶地生長於緩衝層304上或若如上文所描述未形成緩衝層304則生長於基板302上。藉由任何已知之過程及在促進碳(C)併入於氮化鎵(GaN)材料中之生長條件中生長摻雜碳之氮化鎵(c-GaN)層320,該過程包括金屬有機化學氣相沈積法(MOCVD)、分子束磊晶法(MBE)或任何其他合適之生長技術。促進碳(C)併入於氮化鎵(GaN)材料中之生長條件包括低溫、高生長速率及V族前驅體對III族前驅體之低比率。在圖3D中,未摻雜之氮化鎵(GaN)層321磊晶地生長於摻雜碳之氮化鎵(c-GaN)層320上。在抑制碳(C)併入於氮化鎵(GaN)材料中之生長條件中生長未摻雜之氮化鎵(GaN)層321。抑制碳(C)併入於氮化鎵(GaN)材料中之生長條件包括高溫、低生長速率及V族前驅體對III族前驅體之高比率。
在圖3E中,類似於摻雜碳之氮化鎵(c-GaN)層320及未摻雜之氮化鎵(GaN)層321,分別在促進碳(C)併入於氮化鎵材料中之生長條件中及在抑制碳(C)併入於氮化鎵材料中之生長條件中將摻雜碳之氮化鎵(c-GaN)322、324及326與未摻雜之氮化鎵(GaN)層323及325的交替層生長於未摻雜之氮化鎵(GaN)層321之頂部上以形成通道層堆疊306。在一個實施例中,以大於1E18原子/cm3之碳濃度來生長摻雜碳之氮化鎵(c-GaN)層320、322、324及326,且以小於1E18原子/cm3之碳濃度來生長未摻雜之氮化鎵(GaN)層321、323及325。
在一個實施例中,在恆定溫度及恆定壓力下生長摻雜碳之氮化鎵(c-GaN)320、322、324及326與未摻雜之氮化鎵(GaN)之層的交替層。溫度可大於750C及小於1000C,且壓力可大於35托耳及小於700托耳。在一個實施例中,當維持溫度及壓力時,使生長速率在用以生 長摻雜碳之氮化鎵(c-GaN)層320、322、324及326的高生長速率與用以生長未摻雜之氮化鎵(GaN)層321、323及325的低生長速率之間上下波動。
在另一實施例中,使V族前驅體對III族前驅體之比率在用以生長摻雜碳之氮化鎵(c-GaN)層320、322、324及326之V族前驅體對III族前驅體之低比率與用以生長未摻雜之氮化鎵(GaN)層321、323及325之V族前驅體對III族前驅體之高比率之間上下波動,而非使生長速率上下波動。在又一實施例中,使生長速率及V族前驅體對III族前驅體之比率兩者在用以生長摻雜碳之氮化鎵(c-GaN)層320、322、324及326之高生長速率及V族前驅體對III族前驅體之低比率與用以生長未摻雜之氮化鎵(GaN)層321、323及325之低生長速率及V族前驅體對III族前驅體之高比率之間上下波動。
用於生長摻雜碳之氮化鎵(c-GaN)層320、322、324及326的高生長速率係大於5μm/小時且小於10μm/小時,且V族前驅體對III族前驅體之低比率係大於10:1且小於200:1。用於生長未摻雜之氮化鎵(GaN)層321、323及325的低生長速率係大於0.1μm/小時且小於5μm/小時,且V族前驅體對III族前驅體之高比率係大於100:1且小於10000:1。在一個實施例中,用於生長摻雜碳之氮化鎵(c-GaN)層320、322、324及326的高生長速率比用於生長未摻雜之氮化鎵(GaN)層321、323及325之低生長速率大大約15倍至20倍。
在一個實施例中,未摻雜之氮化鎵(GaN)層321、323及325中之各層經生長至大於1nm且小於200nm之厚度,且摻雜碳之氮化鎵(c-GaN)層320、322、324及326中之各層經生長至大於1nm且小於500nm之厚度。在一個實施例中,未摻雜之氮化鎵(GaN)層321、323及325中之各層之厚度與摻雜碳之氮化鎵(c-GaN)層320、322、324及326中之各層之厚度的比率係大於1:3且小於3:1。
在另一實施例中,藉由生長摻雜碳之氮化鎵(c-GaN)之單一層及生長未摻雜之氮化鎵(GaN)之單一層來形成通道層堆疊306。在又一實施例中,藉由生長一或多個摻雜碳之氮化鎵(c-GaN)層與一或多個未摻雜之氮化鎵(GaN)層的複數個交替層來形成通道層堆疊306。
在圖3F中,未摻雜之氮化鎵(GaN)之另一層307磊晶地生長於通道層堆疊306之最上部的摻雜碳之氮化鎵(c-GaN)層326的頂部上。可在與未摻雜之氮化鎵(GaN)層321、323及325相同的條件或抑制碳(C)併入於氮化鎵(GaN)材料中之任何其他生長條件下生長未摻雜之氮化鎵(GaN)層307。未摻雜之氮化鎵(GaN)層307亦具有小於1E18原子/cm3之碳濃度及在20nm與3μm之間的厚度。
在另一實施例(未圖示)中,通道層堆疊306之最上層係未摻雜之氮化鎵(GaN)層。在此實施例中,圖3F中所示之製造步驟係不必要的,且未摻雜之氮化鎵(GaN)之額外層307未沈積於通道層堆疊306之頂部上。
在圖3G中,障壁層308形成於未摻雜之氮化鎵(GaN)層307或如上文所描述之通道層堆疊306之頂部上。可藉由MOCVD、MBE或任何其他合適之沈積技術來形成障壁層308。障壁層308可為氮化鋁鎵(AlxGa1-xN)、氮化銦鋁(InxAl1-xN)或適合於與基於氮化鎵(GaN)之通道層堆疊306形成異質接面的任何其他材料。
在圖3H中,使用已知之沈積、光微影及蝕刻過程,將源電極312及汲電極314形成於障壁層308之頂部上且電耦接至障壁層308。閘電極310形成於源電極312與汲電極314之間。閘電極亦電耦接至障壁層308。源電極312及汲電極314與障壁層308形成歐姆接觸,且閘電極310與障壁層308形成非歐姆接觸(不展現線性I-V特性之接觸)。
類似於圖2中所示之HEMT裝置200,藉由圖3A至圖3H中所描述之過程製造的HEMT裝置300將藉由形成通道層堆疊306(包含生長未摻 雜之氮化鎵(GaN)321、323及325與摻雜碳之氮化鎵(c-GaN)層320、322、324及326的交替層)而具有改良之電崩潰效能而不犧牲結構品質。HEMT裝置300之改良之結構品質亦將改良良率,且因此降低總製造成本。另外,可使HEMT裝置300比先前技術裝置薄,因為與圖1中所示之先前技術HEMT裝置100相比(其通常要求摻雜碳之氮化鎵(c-GaN)通道層106的厚度為幾μm),可相對薄地(在一些實施例中,每層薄到幾nm)生長未摻雜之氮化鎵(GaN)321、323及325與摻雜碳之氮化鎵(c-GaN)層320、322、324及326的交替層(包含通道層堆疊306)。
圖4顯示根據本發明之一個實施例之HEMT裝置之碳濃度的曲線,該HEMT裝置具有未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c-GaN)的交替層。根據本發明之一個實施例,藉由對未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c-GaN)的交替層(包含HEMT裝置之通道層堆疊406)進行次級離子質譜法(SIMS)分析來產生圖4中之曲線。如圖4中所示,摻雜碳之氮化鎵(c-GaN)層402係由SIMS曲線之峰(具有1E19原子/cm3之近似碳濃度)表示,且未摻雜之氮化鎵(GaN)層401係由SIMS曲線之谷(具有1E18原子/cm3之近似碳濃度)表示。圖4亦顯示摻雜碳之氮化鎵(c-GaN)層402與未摻雜之氮化鎵(GaN)層401之交替層的厚度約為30nm至50nm。雖然圖4中所示之HEMT裝置之通道層堆疊406的總厚度約為1.8μm,但在其他實施例中,通道層堆疊406可實質上較薄,具有摻雜碳之氮化鎵(c-GaN)與未摻雜之氮化鎵(GaN)的較少交替層或具有摻雜碳之氮化鎵(c-GaN)及未摻雜之氮化鎵(GaN)的較薄的個別層,或以上兩種情況。如先前所論述,在一些實施例中,摻雜碳之氮化鎵(c-GaN)之每一層的厚度可大於1nm且小於500nm,且未摻雜之氮化鎵(GaN)之每一層的厚度可大於1nm且小於200nm。
圖5顯示根據先前技術之複數個HEMT裝置(具有摻雜碳之氮化鎵(c-GaN)之單一厚層)之垂直崩潰電壓的曲線,且圖6顯示根據本發明 之一個實施例之複數個HEMT裝置(具有未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c-GaN)的交替層)之垂直崩潰電壓的曲線。在圖5與圖6兩者中,資料點p1至p20表示在單一晶圓上製造之不同HEMT裝置。如圖5中所示,在先前技術HEMT裝置p1至p20之電流(Ir)與垂直電壓(V)特性之間存在某種變化,且一般而言,先前技術HEMT裝置p1至p20展現約960V之垂直崩潰電壓510。相比之下,如圖6中所示,在複數個HEMT裝置p1至p20(具有未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c-GaN)的交替層)之電流(Ir)與垂直電壓(V)特性之間存在極小變化。另外,具有未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c-GaN)之交替層的HEMT裝置展現約1120V之垂直崩潰電壓620,比圖5中所示之先前技術HEMT裝置p1至p20之垂直崩潰電壓510提高160V。
如先前在圖2A至圖2B及圖3A至圖3H中所論述,裝置一致性及垂直崩潰電壓方面之改良可歸結於與具有摻雜碳之氮化鎵(c-GaN)之單一厚層的先前技術HEMT裝置相比,具有未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c-GaN)之交替層的HEMT裝置之改良之結構品質。
圖7顯示根據先前技術之複數個HEMT裝置之橫向崩潰電壓的曲線。圖8顯示根據本發明之一個實施例之複數個HEMT裝置之橫向崩潰電壓的曲線,該複數個HEMT裝置具有未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c-GaN)的交替層。再次,在圖7與圖8兩者中,資料點p1至p20表示在單一晶圓上製造之不同HEMT裝置。如圖7中所示,在先前技術HEMT裝置p1至p20之電流(Ir)與橫向電壓(V)特性之間存在實質變化,其中多個先前技術HEMT裝置展現極差的橫向崩潰電壓711、712及713。先前技術HEMT裝置p1至p20在最好情況下也僅展現約980V之橫向崩潰電壓710。
類似於圖6中所示之垂直崩潰電壓特性,在圖8中所示之複數個HEMT裝置p1至p20(具有未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c- GaN)的交替層)的電流(Ir)與橫向電壓(V)特性之間存在標稱變化。另外,具有未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c-GaN)之交替層的HEMT裝置展現約1280V之橫向崩潰電壓820,比圖7中所示之先前技術HEMT裝置p1至p20之最佳橫向崩潰電壓710提高了300V。再次,裝置一致性及橫向崩潰電壓方面之改良可歸結於具有未摻雜之氮化鎵(GaN)與摻雜碳之氮化鎵(c-GaN)之交替層的HEMT裝置之改良之結構品質。
電測試資料比較:
以上電測試資料圖表顯示以下兩者之電特性之間的直接比較:根據本發明之一個實施例之HEMT裝置,其具有摻雜碳之氮化鎵(c-GaN)與未摻雜之氮化鎵(GaN)的交替層;及先前技術HEMT裝置,其具有摻雜碳之氮化鎵(c-GaN)的單一厚層。根據本發明之一個實施例的HEMT裝置之摻雜碳之氮化鎵(c-GaN)與未摻雜之氮化鎵(GaN)之交替層的總厚度係3.0μm,且先前技術HEMT裝置之摻雜碳之氮化鎵(c-GaN)之單一厚層的總厚度亦係3.0μm。
雖然兩種裝置之通道層的厚度係類似的,但與先前技術HEMT裝置相比,具有摻雜碳之氮化鎵(c-GaN)與未摻雜之氮化鎵(GaN)之交替層的HEMT裝置展現優良之垂直崩潰電壓及橫向崩潰電壓而同時在600V及800V之操作電壓下實現減小之垂直漏電流。雖然具有摻雜碳之氮化鎵(c-GaN)與未摻雜之氮化鎵(GaN)之交替層的HEMT裝置之橫 向漏電流稍大於先前技術HEMT裝置,但垂直崩潰電壓、橫向崩潰電壓及垂直漏電流方面之改良使得非常值得付出橫向漏電流方面微小增加的代價。
雖然以上實施方式關於一類HEMT裝置來描述及說明本發明之實施例,但可將所揭示之技術應用於不同類型之電晶體裝置(例如,包括耗盡模式(D模式)HEMT裝置、增強模式(E模式)HEMT裝置及J-FET裝置)。
本發明之各種態樣之其他目標、優勢及實施例將為熟習本發明之領域的人所顯而易見且係在該描述及隨附諸圖之範疇內。舉例而言但不限制,與本發明一致地,可重新配置結構元件,或將方法步驟重新排序。類似地,可將根據本發明之原理及體現該等原理之方法及系統應用於其他實例,該等其他實例即使在此處未加以詳細描述但仍在本發明之範疇內。
401‧‧‧未摻雜之氮化鎵(GaN)層
402‧‧‧摻雜碳之氮化鎵(c-GaN)層
406‧‧‧通道層堆疊

Claims (29)

  1. 一種形成一高電子移動率電晶體裝置之方法,該方法包含:提供一基板;在該基板上形成一通道層堆疊,該通道層堆疊具有一或多個未摻雜之氮化鎵層與一或多個摻雜碳之氮化鎵層的複數個交替層;及在該通道層堆疊上形成一障壁層,其中該高電子移動率電晶體裝置具有在1000V與1280V之間的一橫向崩潰電壓或在1000V與1180V之間的一垂直崩潰電壓。
  2. 如請求項1之方法,其中形成該通道層堆疊包含:在第一生長條件中生長該一或多個未摻雜之氮化鎵層中之各層,使得抑制該氮化鎵中之碳併入,及在第二生長條件中生長該一或多個摻雜碳之氮化鎵層中之各層,使得促進該氮化鎵中之碳併入。
  3. 如請求項1之方法,其中形成該通道層堆疊包含:形成具有小於1E18原子/cm3之一碳濃度的該一或多個未摻雜之氮化鎵層中之各層;及形成具有大於1E18原子/cm3之一碳濃度的該一或多個摻雜碳之氮化鎵層中之各層。
  4. 如請求項2之方法,其中生長該一或多個未摻雜之氮化鎵層中之各層包含提供該等第一生長條件,該等第一生長條件包含一低生長速率及V族前驅體對III族前驅體之一高比率;及生長該一或多個摻雜碳之氮化鎵層中之各層包含提供一高生長速率及V族前驅體對III族前驅體之一低比率。
  5. 如請求項4之方法,其中用於生長該一或多個未摻雜之氮化鎵層中之各層的該低生長速率係大於0.1μm/小時且小於5μm/小時;及用於生長該一或多個摻雜碳之氮化鎵層中之各層的該高生長速率係大於5μm/小時且小於10μm/小時。
  6. 如請求項5之方法,其中用於生長該一或多個摻雜碳之氮化鎵層中之各層的該高生長速率係比用於生長該一或多個未摻雜之氮化鎵層中之各層的該低生長速率大大約15至20倍。
  7. 如請求項4之方法,其中用於生長該一或多個未摻雜之氮化鎵層中之各層的該高比率係大於100:1且小於10000:1,且用於生長該一或多個摻雜碳之氮化鎵層中之各層的該低比率係大於10:1且小於200:1。
  8. 如請求項4之方法,其中用於生長該一或多個未摻雜之氮化鎵層中之各層及該一或多個摻雜碳之氮化鎵層中之各層的該第一生長條件及該第二生長條件進一步包含一生長溫度及一生長壓力。
  9. 如請求項8之方法,其中用於生長該一或多個未摻雜之氮化鎵層中之各層及該一或多個摻雜碳之氮化鎵層中之各層的該生長溫度係大於750C且小於1000C,及其中用於生長該一或多個未摻雜之氮化鎵層中之各層及該一或多個摻雜碳之氮化鎵層中之各層的該生長壓力係大於35托耳且小於700托耳。
  10. 如請求項1之方法,其中形成該通道層堆疊包含:使該一或多個未摻雜之氮化鎵層中之各層生長至大於1nm且小於200nm之一厚度,及使該一或多個摻雜碳之氮化鎵層中之各層生長至大於1nm且 小於500nm之一厚度。
  11. 如請求項1之方法,其中形成該通道層堆疊包含生長該一或多個未摻雜之氮化鎵層中之各層及該等摻雜碳之氮化鎵層中之各層,使得該一或多個摻雜碳之氮化鎵層中之各層之該厚度與該一或多個未摻雜之氮化鎵層中之各層之該厚度的比率係大於1:3且小於3:1。
  12. 如請求項1之方法,其進一步包含:形成電耦接至該障壁層之一源電極;形成電耦接至該障壁層之一汲電極;及形成電耦接至該障壁層且位於該源電極與該汲電極之間的一閘電極,其中該源電極及該汲電極與該障壁層形成一歐姆連接,且該閘電極與該障壁層形成一非歐姆連接。
  13. 如請求項1之方法,其中該障壁層包含氮化鋁鎵。
  14. 如請求項1之方法,其進一步包含:在該基板與該通道層堆疊之間形成一緩衝層。
  15. 如請求項1之方法,其中該通道層堆疊之一最上層係一氮化鎵層。
  16. 如請求項1之方法,其中該通道層堆疊之一最下層係一氮化鎵層。
  17. 如請求項1之方法,其中該通道層堆疊之一最上層及一最下層兩者係氮化鎵層。
  18. 如請求項1之方法,其中該高電子移動率電晶體裝置具有在1000V與1280V之間的一橫向崩潰電壓及在1000V與1180V之間的一垂直崩潰電壓。
  19. 一種高電子移動率電晶體裝置,其包含: 一基板;位於該基板上之一通道層堆疊,該通道層堆疊具有一或多個未摻雜之氮化鎵層與一或多個摻雜碳之氮化鎵層的複數個交替層;及位於該通道層堆疊上之一障壁層,其中該高電子移動率電晶體裝置具有在1000V與1280V之間的一橫向崩潰電壓或在1000V與1180V之間的一垂直崩潰電壓。
  20. 如請求項19之高電子移動率電晶體裝置,其中該一或多個未摻雜之氮化鎵層中之各層具有小於1E18原子/cm3之一碳濃度,且該一或多個摻雜碳之氮化鎵層中之各層具有大於1E18原子/cm3之一碳濃度。
  21. 如請求項19之高電子移動率電晶體裝置,其中該一或多個未摻雜之氮化鎵層中之各層具有大於1nm且小於200nm之一厚度,且該一或多個摻雜碳之氮化鎵層中之各層具有大於1nm且小於500nm之一厚度。
  22. 如請求項19之高電子移動率電晶體裝置,其中該一或多個摻雜碳之氮化鎵層中之各層之該厚度與該一或多個未摻雜之氮化鎵層中之各層之該厚度的比率係大於1:3且小於3:1。
  23. 如請求項19之高電子移動率電晶體裝置,其進一步包含:電耦接至該障壁層之一源電極;電耦接至該障壁層之一汲電極;及電耦接至該障壁層且位於該源電極與該汲電極之間的一閘電極,其中該源電極及該汲電極與該障壁層形成一歐姆連接,且該閘電極與該障壁層形成一非歐姆連接。
  24. 如請求項19之高電子移動率電晶體裝置,其中該障壁層包含氮 化鋁鎵。
  25. 如請求項19之高電子移動率電晶體裝置,其進一步包含:位於該基板與該通道層堆疊之間的一緩衝層。
  26. 如請求項19之高電子移動率電晶體裝置,其中該通道層堆疊之一最上層係一氮化鎵層。
  27. 如請求項19之高電子移動率電晶體裝置,其中該通道層堆疊之一最下層係一氮化鎵層。
  28. 如請求項19之高電子移動率電晶體裝置,其中該通道層堆疊之一最上層及一最下層兩者係氮化鎵層。
  29. 如請求項19之高電子移動率電晶體裝置,其中該高電子移動率電晶體裝置具有在1000V與1280V之間的一橫向崩潰電壓及在1000V與1180V之間的一垂直崩潰電壓。
TW103142638A 2014-10-02 2014-12-08 具有週期性摻雜碳之氮化鎵之高電子移動率電晶體 TWI596764B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/505,304 US9608103B2 (en) 2014-10-02 2014-10-02 High electron mobility transistor with periodically carbon doped gallium nitride

Publications (2)

Publication Number Publication Date
TW201614832A TW201614832A (en) 2016-04-16
TWI596764B true TWI596764B (zh) 2017-08-21

Family

ID=55633390

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103142638A TWI596764B (zh) 2014-10-02 2014-12-08 具有週期性摻雜碳之氮化鎵之高電子移動率電晶體

Country Status (4)

Country Link
US (1) US9608103B2 (zh)
JP (1) JP6152124B2 (zh)
CN (1) CN106158946A (zh)
TW (1) TWI596764B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11335799B2 (en) * 2015-03-26 2022-05-17 Chih-Shu Huang Group-III nitride semiconductor device and method for fabricating the same
JP6582736B2 (ja) * 2015-08-25 2019-10-02 富士電機株式会社 窒化物半導体装置の製造方法
CN106653839A (zh) * 2016-09-27 2017-05-10 华南理工大学 具有调制碳掺杂氮化镓高阻层的hemt结构及其制备方法
CN106783950B (zh) * 2016-12-19 2024-02-13 英诺赛科(珠海)科技有限公司 氮化镓半导体器件及其制备方法
CN108428741B (zh) * 2017-02-14 2021-12-14 英诺赛科(珠海)科技有限公司 氮化镓半导体器件及其制作方法
US10211297B2 (en) * 2017-05-03 2019-02-19 Globalwafers Co., Ltd. Semiconductor heterostructures and methods for forming same
EP3486939B1 (en) 2017-11-20 2020-04-01 IMEC vzw Method for forming a semiconductor structure for a gallium nitride channel device
CN111146282B (zh) * 2018-11-06 2023-03-28 世界先进积体电路股份有限公司 高电子迁移率晶体管装置及其制造方法
WO2020155096A1 (zh) 2019-02-01 2020-08-06 苏州晶湛半导体有限公司 一种半导体结构及其制造方法
WO2020161791A1 (ja) * 2019-02-05 2020-08-13 三菱電機株式会社 半導体装置および半導体装置の製造方法
CN115050817B (zh) * 2022-08-15 2022-11-18 江西兆驰半导体有限公司 一种晶体管及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080099767A1 (en) * 2006-09-13 2008-05-01 Rohm Co., Ltd. Gan related compound semiconductor element and process for producing the same and device having the same
US20090189190A1 (en) * 2005-05-26 2009-07-30 Sumitomo Electric Industries, Ltd. High Electron Mobility Transistor, Field-Effect Transistor, Epitaxial Substrate, Method of Manufacturing Epitaxial Substrate, and Method of Manufacturing Group III Nitride Transistor
US20110241088A1 (en) * 2009-03-31 2011-10-06 Furukawa Electric Co., Ltd. Field effect transistor, method of manufacturing field effect transistor, and method of forming groove
US20120248577A1 (en) * 2011-04-04 2012-10-04 Epowersoft Inc. Controlled Doping in III-V Materials
US20130020581A1 (en) * 2011-07-19 2013-01-24 Sharp Kabushiki Kaisha Epitaxial wafer including nitride-based semiconductor layers
US20130099283A1 (en) * 2011-10-21 2013-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. III-V Multi-Channel FinFETs
US20140209920A1 (en) * 2013-01-31 2014-07-31 Taiwan Semiconductor Manufacturing Co., Ltd. High Electron Mobility Transistor Structure
US20140264455A1 (en) * 2013-03-15 2014-09-18 Transphorm Inc. Carbon doping semiconductor devices

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8399911B2 (en) 2006-06-07 2013-03-19 Imec Enhancement mode field effect device and the method of production thereof
JP5224311B2 (ja) 2007-01-05 2013-07-03 古河電気工業株式会社 半導体電子デバイス
JP2009081406A (ja) 2007-09-27 2009-04-16 Showa Denko Kk Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP5167081B2 (ja) 2008-11-13 2013-03-21 パナソニック株式会社 窒化物半導体デバイス
JP2010123725A (ja) 2008-11-19 2010-06-03 Sanken Electric Co Ltd 化合物半導体基板及び該化合物半導体基板を用いた半導体装置
JP4519196B2 (ja) 2008-11-27 2010-08-04 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
JP4677499B2 (ja) * 2008-12-15 2011-04-27 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
EP2432005A4 (en) * 2009-05-11 2015-05-27 Dowa Electronics Materials Co EPITACTICAL SUBSTRATE FOR ELECTRONIC EQUIPMENT AND METHOD FOR THE PRODUCTION THEREOF
JP5188545B2 (ja) * 2009-09-14 2013-04-24 コバレントマテリアル株式会社 化合物半導体基板
JP2011166067A (ja) * 2010-02-15 2011-08-25 Panasonic Corp 窒化物半導体装置
JP2012009630A (ja) * 2010-06-24 2012-01-12 Panasonic Corp 窒化物半導体装置及び窒化物半導体装置の製造方法
JP5810293B2 (ja) 2010-11-19 2015-11-11 パナソニックIpマネジメント株式会社 窒化物半導体装置
JP5788296B2 (ja) 2011-02-22 2015-09-30 コバレントマテリアル株式会社 窒化物半導体基板及びその製造方法
KR101175183B1 (ko) * 2011-08-08 2012-08-17 일진머티리얼즈 주식회사 전류 확산 효과가 우수한 질화물 반도체 발광소자 및 그 제조 방법
JP5546514B2 (ja) * 2011-09-20 2014-07-09 古河電気工業株式会社 窒化物半導体素子及び製造方法
KR101262726B1 (ko) * 2011-12-30 2013-05-09 일진엘이디(주) 탄소 도핑된 p형 질화물층을 포함하는 질화물계 발광소자 제조 방법
WO2013137476A1 (ja) 2012-03-16 2013-09-19 次世代パワーデバイス技術研究組合 半導体積層基板、半導体素子、およびその製造方法
JP5656930B2 (ja) * 2012-07-05 2015-01-21 古河電気工業株式会社 窒化物系化合物半導体素子
JP6151487B2 (ja) 2012-07-10 2017-06-21 富士通株式会社 化合物半導体装置及びその製造方法
KR20140013247A (ko) * 2012-07-23 2014-02-05 삼성전자주식회사 질화물계 반도체 소자 및 그의 제조 방법
TWI489626B (zh) 2012-08-24 2015-06-21 Visual Photonics Epitaxy Co Ltd Bipolar high electron mobility transistor
JP6119165B2 (ja) 2012-09-28 2017-04-26 富士通株式会社 半導体装置
TWI506788B (zh) * 2012-12-25 2015-11-01 Huga Optotech Inc 場效電晶體
JP5787417B2 (ja) 2013-05-14 2015-09-30 コバレントマテリアル株式会社 窒化物半導体基板
US9245991B2 (en) * 2013-08-12 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device, high electron mobility transistor (HEMT) and method of manufacturing
US20150137179A1 (en) * 2013-11-19 2015-05-21 Huga Optotech Inc. Power device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090189190A1 (en) * 2005-05-26 2009-07-30 Sumitomo Electric Industries, Ltd. High Electron Mobility Transistor, Field-Effect Transistor, Epitaxial Substrate, Method of Manufacturing Epitaxial Substrate, and Method of Manufacturing Group III Nitride Transistor
US20080099767A1 (en) * 2006-09-13 2008-05-01 Rohm Co., Ltd. Gan related compound semiconductor element and process for producing the same and device having the same
US20110241088A1 (en) * 2009-03-31 2011-10-06 Furukawa Electric Co., Ltd. Field effect transistor, method of manufacturing field effect transistor, and method of forming groove
US20120248577A1 (en) * 2011-04-04 2012-10-04 Epowersoft Inc. Controlled Doping in III-V Materials
US20130020581A1 (en) * 2011-07-19 2013-01-24 Sharp Kabushiki Kaisha Epitaxial wafer including nitride-based semiconductor layers
US20130099283A1 (en) * 2011-10-21 2013-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. III-V Multi-Channel FinFETs
US20140209920A1 (en) * 2013-01-31 2014-07-31 Taiwan Semiconductor Manufacturing Co., Ltd. High Electron Mobility Transistor Structure
US20140264455A1 (en) * 2013-03-15 2014-09-18 Transphorm Inc. Carbon doping semiconductor devices

Also Published As

Publication number Publication date
US9608103B2 (en) 2017-03-28
TW201614832A (en) 2016-04-16
JP6152124B2 (ja) 2017-06-21
US20160099345A1 (en) 2016-04-07
CN106158946A (zh) 2016-11-23
JP2016076681A (ja) 2016-05-12

Similar Documents

Publication Publication Date Title
TWI596764B (zh) 具有週期性摻雜碳之氮化鎵之高電子移動率電晶體
US10026814B2 (en) P-doping of group-III-nitride buffer layer structure on a heterosubstrate
US8569800B2 (en) Field effect transistor
US9184258B2 (en) GaN based semiconductor device and method of manufacturing the same
JP5634681B2 (ja) 半導体素子
US8426893B2 (en) Epitaxial substrate for electronic device and method of producing the same
JP5787417B2 (ja) 窒化物半導体基板
US8791504B2 (en) Substrate breakdown voltage improvement for group III-nitride on a silicon substrate
US8648389B2 (en) Semiconductor device with spacer layer between carrier traveling layer and carrier supplying layer
US9735240B2 (en) High electron mobility transistor (HEMT)
US7626217B2 (en) Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices
JP5546514B2 (ja) 窒化物半導体素子及び製造方法
JP2016004948A (ja) 半導体装置
JP2011166067A (ja) 窒化物半導体装置
CN111406306B (zh) 半导体装置的制造方法、半导体装置
EP4154322A1 (en) Depletion mode high electron mobility field effect transistor (hemt) semiconductor device having beryllium doped schottky contact layers
JP6089122B2 (ja) 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置
US20210193820A1 (en) Semiconductor structure and forming method thereof
US11973137B2 (en) Stacked buffer in transistors
US20160211358A1 (en) Semiconductor device
US20230352599A1 (en) Semiconductor device
US20240170564A1 (en) Epitaxial structure
JP6784201B2 (ja) Mis型半導体装置とその製造方法
KR102080744B1 (ko) 질화물 반도체 소자 및 그 제조 방법
JP2013135056A (ja) Mis型半導体装置の製造方法