TWI526689B - 探針卡總成 - Google Patents

探針卡總成 Download PDF

Info

Publication number
TWI526689B
TWI526689B TW099130847A TW99130847A TWI526689B TW I526689 B TWI526689 B TW I526689B TW 099130847 A TW099130847 A TW 099130847A TW 99130847 A TW99130847 A TW 99130847A TW I526689 B TWI526689 B TW I526689B
Authority
TW
Taiwan
Prior art keywords
column
carbon nanotube
substrate
growth
post
Prior art date
Application number
TW099130847A
Other languages
English (en)
Other versions
TW201113529A (en
Inventor
班哲明N 艾瑞吉
崔蘭特 方
蓋頓L 馬修
歐尼克 亞格里歐谷
Original Assignee
佛姆費克特股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛姆費克特股份有限公司 filed Critical 佛姆費克特股份有限公司
Publication of TW201113529A publication Critical patent/TW201113529A/zh
Application granted granted Critical
Publication of TWI526689B publication Critical patent/TWI526689B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

探針卡總成
本發明係有關於奈米碳管柱及其製造方法及將奈米碳管柱使用為探針之方法。
發明背景
電子裝置上的導電彈簧探針可與端子或其他此種第二電子裝置的輸入及/或輸出元件為暫時性、以壓力為基礎的電氣連接。例如,可以對著第二電子裝置的端子施壓電子裝置上的此種探針以在探針與端子之間(因此電子裝置與第二電子裝置之間)建立暫時的電氣連接。本發明的實施例係針對作為彈簧探針的奈米碳管柱,以及製作與使用包括奈米碳管柱之彈簧探針的方法。
發明概要
於一些實施例中,成長奈米碳管柱的製程可包含變化製程的至少一參數以變化柱的至少一機械特性。例如,包含碳源及催化劑的成長溶液被引入攜帶氣體以產生成長氣體,及成長氣體可被引入含有基材的室中,該基材具有成長表面,如此包括多數成束奈米碳管的奈米碳管柱利用碳源成長於成長表面上。當奈米碳管柱成長於成長表面上時,與引入成長溶液或將成長氣體引入室中相關的至少一參數可以變化以產生奈米碳管柱之變化的機械特性。
於一些實施例中,奈米糊劑可耦合奈米碳管柱至佈線基材的端子。例如,包括導電奈米顆粒的奈米糊劑可被置於佈線基材的端子上,且奈米碳管柱的第一端點可被置於奈米糊劑中。奈米糊劑然後可燒結,其可將至少一些奈米顆粒熔接在一起及至端子與奈米碳管柱的第一端點,其可物理地及電氣地耦合奈米碳管柱至端子。
於一些實施例中,探針卡總成可以多數奈米碳管柱製作。例如,可得到成長基材上的多數奈米碳管柱。奈米碳管柱可排列成對應受測電子裝置之端子的圖案。奈米碳管柱的端點可包括多數成束的奈米碳管,它們的至少一些可以互相纏繞。導電金屬可沉積於各奈米碳管柱的至少一些奈米碳管上,及奈米碳管柱可從成長基材轉送至探針基材的端子。探針基材可機械及電氣地耦合至包含電氣介面的佈線基材,該電氣介面至控制電子裝置測試的測試器,及奈米碳管柱可經由探針基材及佈線基材電氣連接至電氣介面。
於一些實施例中,探針卡總成可包括佈線基材及探針基材。佈線基材可包括至用以控制受測電子裝置測試之測試器的電氣介面。探針基材可包括多數探針排列成對應受測電子裝置之端子的圖案,且各個探針可包括奈米碳管柱,其可包括燒結至探針基材端子的成束奈米碳管。探針基材可機械地耦合至佈線基材,及探針可經由探針基材及佈線基材電氣連接至電氣介面。
圖式簡單說明
第1圖顯示依據本發明的一些實施例之製作具包括奈米碳管柱之探針之接觸裝置的製程的例子。
第2A圖顯示依據本發明的一些實施例之實施第1圖製程以製作接觸裝置的例子。
第2B圖顯示組合後之第2A圖的接觸裝置。
第2C圖顯示依據本發明的一些實施例之奈米碳管柱的照片。
第3圖顯示依據本發明的一些實施例之用以成長奈米碳管柱之成長系統的例子。
第4A圖顯示依據本發明的一些實施例之奈米碳管柱的例子,當變化一個以上之第3圖的系統參數以得到沿著奈米碳管柱之一個以上軟性區域時,同時成長奈米碳管柱。
第4B圖顯示依據本發明的一些實施例之具有軟性區域之奈米碳管柱之照片的例子。
第4C圖顯示依據本發明的一些實施例之奈米碳管柱之軟性區域回應施加於奈米碳管柱端點上之力量而壓縮的例子。
第5A圖顯示依據本發明的一些實施例之當變化一個以上之第3圖的系統參數使得柱硬度沿著柱變化時,奈米碳管柱成長的例子。
第5B圖顯示依據本發明的一些實施例之當成長參數隨著柱成長而增加時之圖形的例子。
第6圖顯示依據本發明的一些實施例之當變化一個以上之第3圖的系統參數使得柱硬度沿著柱之多個區域變化時,奈米碳管柱成長的例子。
第7圖顯示依據本發明的一些實施例之當變化一個以上之第3圖的系統參數使得奈米碳管柱包括具不同硬度之多數區域時,奈米碳管柱成長的例子。
第8圖顯示依據本發明的一些實施例之用於金屬化奈米碳管柱之系統的例子。
第9圖顯示依據本發明的一些實施例之用於金屬化奈米碳管柱之製程的例子。
第10A圖顯示依據本發明的一些實施例之金屬化奈米碳管柱的外部份。
第10B圖顯示一部分奈米碳管柱的照片,其被縱切以顯示金屬沉積於柱的外部份。
第11圖顯示依據本發明的一些實施例之奈米碳管柱從成長基材轉送至佈線基材之製程的例子。
第12圖顯示依據本發明的一些實施例之第11圖中沉積步驟的例子。
第13圖顯示依據本發明的一些實施例之第11圖置放及燒結步驟的例子。
第14圖顯示依據本發明的一些實施例之第11圖釋放步驟的例子。
第15圖顯示依據本發明的一些實施例之將奈米碳管柱從成長基材轉送至佈線基材之製程的另一例子。
第16圖顯示依據本發明的一些實施例之第15圖沉積焊料步驟的例子。
第17圖顯示依據本發明的一些實施例之第15圖金屬化步驟的例子。
第18圖顯示依據本發明的一些實施例之第15圖金屬化步驟的另一例子。
第19圖顯示依據本發明的一些實施例之第15圖之置放、重新流動及釋放步驟的例子。
第20圖顯示依據本發明的一些實施例之金屬塗層沉積於奈米碳管柱上的例子。
第21A圖顯示依據本發明的一些實施例之處理奈米碳管柱以在柱端點形成接觸尖端的例子。
第21B圖顯示依據本發明的一些實施例之奈米碳管柱之端點的照片,其顯示在柱端點之尖端構造的例子。
第22圖顯示依據本發明的一些實施例之金屬化第21A圖之至少部分奈米碳管柱之外部分的例子。
第23A圖顯示依據本發明的一些實施例之沉積金屬於奈米碳管柱之接觸尖端上的例子。
第23B圖顯示金屬已經沉積於其上之奈米碳管柱端點的照片。
第24圖顯示依據本發明的一些實施例之轉送形成於基材上之接觸尖端結構至奈米碳管柱端點的例子。
第25A及25B圖顯示依據本發明的一些實施例之使用奈米糊劑在柱端點形成接觸尖端的另一例子。
第26圖顯示依據本發明的一些實施例之具有包括奈米碳管柱之探針之探針卡總成的例子。
第27圖顯示依據本發明的一些實施例之用於測試半導體芯片之測試系統的例子,其中可使用第26圖之探針卡總成。
第28圖顯示依據本發明的一些實施例之具有包括奈米碳管柱之探針之測試插座的例子。
第29圖顯示依據本發明的一些實施例之以包括奈米碳管柱之探針電氣連接的電子裝置。
例示實施例之詳細說明
本說明書描述本發明的例示實施例及應用。然而,本發明不限於這些例示實施例及應用,也不限於例示實施例及應用的運作方式或此處所描述者。更且,圖式可顯示簡化或部分圖案,而且為清晰之故,圖式中元件尺寸可放大或是不成比例。此外,此處所用的術語"在…上"、"附接"或"耦合至",一物件(例如材料、層、基材等等)可以"在另一物件上" "附接至另一物件"或"耦合至另一物件",不論該一物件是否直接地"在另一物件上" "附接至另一物件"或"耦合至另一物件",或者在該一物件與另一物件之間具有一個以上的其他介入物件。而且,方向(例如在…之上、在…之下、頂、底、側、上、下、在下方、在上方、上面、下面、水平、垂直、"x" "y" "z"等等),若存在的話係相對的,而且僅作為例子及為了便於說明與討論而提供,因此不應視為限制。此外,若是參考列舉元件(例如元件a、b、c),則此種參考將會包含任一列舉元件本身,除了所有列舉元件以外的任何組合,及/或所有列舉元件的組合。
第1圖顯示電子設備之製程100的例子,該電子設備包含具有探針的接觸裝置,各探針包括依據本發明一些實施例的奈米碳管柱。此處所使用的奈米碳管柱包括一群大致上垂直對齊的成束奈米碳管,雖然在群中的一些奈米碳管會混雜或糾結地重疊,或是一個以上的地方接觸一個以上其他奈米碳管。而且,於一些實施例中,並非所有柱中的奈米碳管必須延伸至整個柱長。例如,參見第2C圖,其顯示包括個別奈米碳管216之奈米碳管柱214之一例的照片,一些奈米碳管被標示。
第2A圖顯示實施第1圖製程100的例子,其中具有探針240的電子設備234中,各探針包括依據本發明一些實施例製作的奈米碳管柱214。第圖2B顯示組合的電子設備234。第3-24圖顯示第1圖製程100之一個以上步驟的例子。然而,在討論第3-24圖例子之前,以下提供對於製程100的瀏覽。
如第1圖所示,在步驟102可獲得奈米碳管柱。於一些實施例中,該柱可以類似第2A圖所示的柱214。如所述者,各柱214可包括多數成束的奈米碳管216。雖然三個此種奈米碳管216顯示於第2A圖中的各柱214中,但是各柱214可包含更多(例如數十、數百或數千)之個別的奈米碳管216。雖然三個奈米碳管柱214顯示於第2A圖,第1圖製程100的步驟102可以得到更多或更少的奈米碳管216。奈米碳管柱214可從成長基材224上之成長材料226表面222上成長,如大致顯示於第2A圖者。因為成 長材料226在成長基材224上,所以可以說奈米碳管柱214成長在成長基材224上,即使奈米碳管柱214直接成長在表面222上。柱214成長的例子將討論於以下的第3圖中。
於一些實施例中,步驟102可得到對應端子圖案之圖案的柱214,柱214將被轉送至該端子。例如,在第2A圖的例子中,步驟102可得到的柱214呈一圖案而耦合至成長基材224,該圖案對應佈線基材202端子212的圖案,柱214將被轉送至該佈線基材202的端子212。更且,該圖案可對應電子裝置的端子,包含端子214的探針240將用於接觸該電子裝置的端子。例如,如同以下討論第25及26圖時將會見到的,步驟102得到的柱214呈對應DUT2618(例如受測的電子裝置)之端子2616的圖案,柱214將被用以接觸DUT2618以測試DUT2618。
再次參考第1圖,柱214在步驟104中被金屬化。此處所使用的金屬化一柱214包括沉積金屬於至少一些包括柱214之奈米碳管216的至少一部分上(例如一些、幾乎全部或全部)。於一些實施例中,金屬材料232(例如金、銀、銅或其他導電金屬)可被沉積於各柱214內,在柱214內部之至少一些奈米碳管216上。於一些實施例中,金屬材料232可主要沉積在各柱214的外部(例如在柱214外部上的至少一些奈米碳管216上)。於一些實施例中,金屬材料232可沉積在各柱214的外部及內部上。沉積金屬232於柱214內部的例子將參考第8及9圖討論於下,而沉積金 屬232於柱214外部的例子將參考第10A及10B圖討論於下。此處所使用的柱214內金屬化(或沉積金屬材料232)意指金屬化(或沉積金屬材料232)於柱214內部之至少一些奈米碳管216的至少一部分上,而金屬化(或沉積金屬材料232)於柱214外部意指金屬化(或沉積金屬材料232)於柱214外部之至少一些奈米碳管216的至少一部分上(例如一些、幾乎所有或所有)。
在第1圖的步驟106中,金屬化的奈米碳管柱214可被轉送(例如藉由耦合或安裝)至佈線基材202的導電端子212,如第圖2A所示。如上所述,第圖2A所示的柱214可成長於成長基材224之成長材料226的表面222上;由於成長過程的結果,柱214的端點220因此可被起始地耦合至表面222e。如第2A及2B圖所示,柱214的端點218可以耦合件230耦合至佈線基材202的端子212,而且柱214的端點220可與成長材料226的表面222分離(例如藉由機械或化學方式)。將柱214從成長基材224轉送至佈線基材202的例子將參考第11-19圖討論於下。不管端點218或端點220都可被當作第一端點,而另一端點218或端點220可被當作第二相對的端點。
佈線基材202可為任何包括端子212的基材。例如,佈線基材202可為印刷電路板、陶瓷基材或適於支持端子212的其他此種基材。佈線基材202單獨或是與其他組件聯合都足以提供足夠的機械支持,以使用柱214來有效完成以壓力為基礎之與電子裝置(未顯示)的電氣連接。於一 些實施例中,佈線基材202可認為是堅硬而不撓曲。如第2A圖所示,端子212可以佈線基材202中及/或上的電氣連接件210(例如導電貫穿孔及/或痕跡)電氣連接至其他端子208。如第2B圖所示,佈線基材202第一側邊204上的端子208與佈線基材202第二側邊206上的端子212可具有不同的間距。如第2B圖所示,端子208的間距可較端子212的間距為大。
在第1圖的步驟108中,接觸尖端228(其可為導電的)可備置在奈米碳管柱214的端點220,如第2A圖所示。例如,接觸尖端228可形成在或耦合至柱214的端點220,如第2A及2B圖所示。於柱214之端點220備置接觸尖端228的例子將參考第21A-25圖討論於下。於一些實施例中,並未包含接觸尖端228。
在第1圖的步驟110中,柱214於步驟106被轉送至的佈線基材202可耦合至一個以上額外元件以製作電子設備,其中柱214可為電氣探針。第2A及2B圖顯示其中佈線基材202耦合至電子組件236以形成電子設備234的例子。雖然第2B圖顯示將佈線基材202耦合至電子組件236的一種方式,其他的耦合方式也是可以考慮的。電子設備234的導電接觸探針240可包括柱214,如第2B圖所示。例子將參考第26圖討論於下。
在已經大致瀏覽第1圖製程100之後,實施製程100之各個步驟的例子現將參考第3-24圖討論於下。
如上所述者,藉由使柱214成長於成長基材224上之 成長材料226的表面222,奈米碳管柱214可由第1圖的步驟102獲得。第3圖顯示一種奈米碳管柱214可以成長於其中的成長系統300。雖然為了討論的方便及簡易,以下討論的成長系統300係關於使柱214成長於成長基材224之成長材料226的表面222上,但是成長系統300並不限於此,相反地,其可用於在其他成長基材上成長其他奈米碳管柱。
如第3圖所示,成長系統300可包括一室306,成長基材224可被放置於該室中(開始時沒有柱214長成)。如顯示者,可提供溫度控制裝置302(例如加熱器及/或冷卻裝置)以控制室306的溫度(Tf)。如亦顯示者,可備置一個以上通入管308,316以進入室306內,且可備置一個以上的出口管312以至室306外部。(雖然顯示兩通入管308,316及一出口管312,夠多或更少的通入管及/或更多出口管312可另外地被提供)。於一些實施例中,通入管316的端點314可被置放於室306內,其位置為離溫度控制裝置302的邊緣304達一長度L,如第3圖所示。
提供注入裝置322(例如針管或幫浦)以將成長溶液326引入靠近蒸發器318之入口或蒸發器318內的攜帶氣體324中,蒸發器318可蒸發成長溶液326以增強其與攜帶氣體324的混合。成長溶液326及攜帶氣體324的混合物320可從蒸發器318通過通入管316而進入室306中,如圖所示。成長溶液326及攜帶氣體324的混合物可被作成長氣體320。如亦顯示者,於一些實施例中,可以經由另 一通入管308提供另一攜帶氣體310進入室306中。其他攜帶氣體310可與攜帶氣體324相同或不同。可提供一個以上幫浦(未顯示)以使用幫浦來輸送氣體324及310。
成長系統300可以下述方式使用。開始時,可製備成長基材224。成長基材224可為當柱214成長時適合支持柱214的任何結構。合適之成長基材224的非限制性例子包含半導體晶圓、陶瓷基材,包括有機材料的基材、包括無機材料的基材或其等的任何組合。成長材料226可沉積於基材224上,沉積的位置為想要讓奈米碳管柱214成長的地方。成長材料226的各個沉積可被圖案化成奈米碳管柱214所要的橫截面形狀。成長材料226可以任何合適的方式圖案化。例如,成長材料226可沉積於基材224上為成長材料226所欲的圖案。或者,成長材料226可沉積於基材224上,然後部分成長材料226可選擇性移除,留下成所要圖案之成長材料226於基材224上。再或者,成長材料226可沉積於基材224上,然後部分成長材料226被選擇性覆蓋,而在基材224上留下以所要圖案暴露的成長材料226。又再或者,成長材料226可沉積在基材224上,然後部分成長材料226可被覆蓋,再然後部分的覆蓋可被選擇性移除,留下以所要圖案暴露之在基材224上的成長材料226。
成長材料226的圖案-或更特定地,成長表面222的圖案-可對應於柱的所要圖案。如上所述,柱214可在第1圖製程100的步驟102獲得,其呈對應端子圖案的圖案, 柱214將要被轉送至該端子。例如,在第2A圖所示例子中,成長表面222的圖案-及因此將成長於表面222上之柱214的圖案-可對應於柱214將被轉送至之佈線基材202的端子212(參見第2圖)。如上所述,該圖案可對應電子裝置的端子,包括端子214之探針240將用以接觸該電子裝置端子。例如,如以下討論第25及26圖時將會見到的,成長表面226的圖案-及因此將會成長於表面226上之柱214的圖案-可對應於DUT2618(例如受測的電子裝置)的端子2616,所以柱214將被用於接觸以測試DUT2618。前述為呈一圖案之柱214(例如成長)可以獲得之方式的例子,該圖案對應電子裝置的端子(柱214將被轉送至該端子)及/或該圖案對應電子裝置的端子(柱214將接觸該端子),例如,以建立與電子裝置的電氣連接來測試電子裝置。
成長材料226可為具有表面222的任何材料,其包括或可被形成以包括當暴露於成長溶液326時奈米碳管可以成長於其上的材料。例如,成長材料226可包括矽,且成長材料226的表面222可包括氧化物膜。於一些實施例中,成長基材224或至少成長基材224的一上表面可包括具有類似成長表面222之成長表面的類似成長材料226的成長材料,於此案例中,成長材料226不需要被沉積於成長基材224上。在此種案例中,成長基材224可為成長材料226。在成長基材224已經製備之後,成長基材224(無柱214)可被置入室306中,如第3圖所示。
使用溫度控制裝置302讓室306達到所要的溫度Tf。成長溶液326可被引入攜帶氣體324,而且通過蒸發器318及通入管316進入室306成為成長氣體。蒸發器318可設定至所要的溫度Te(例如足以蒸發成長溶液326的溫度)。當將成長溶液326引入攜帶氣體324時,攜帶氣體324可以流速Q1提供,而且成長溶液326可以幫浦速率ζ提供。攜帶氣體310也可通過通入管308而提供進入室306中,且攜帶氣體310可以流速Q2提供。
成長溶液326的材料可為任何適於在成長材料226之表面222上成長奈米碳管的材料。於一些實施例中,成長溶液326可包括碳源及催化劑。催化劑為任何可以讓碳源中的碳與成長材料226的表面222反應以從表面222上成長奈米碳管216的材料。適合催化劑的非限制性例子為鐵金屬有機材料(例如二茂鐵)。適合催化劑的其他例子包含鎳或鈷有機金屬材料、氧化鋯、二茂鐵醋酸、二茂鐵乙腈、二茂鐵甲醛、二茂鐵羧酸、二茂鐵二甲醛及二茂鐵二羧酸。碳源可為提供碳以在成長材料226的表面222上成長為奈米碳管的任何材料。適合碳源的非限制性例子為液態碳氫化物源(例如二甲苯),芳香族碳氫化物(例如苯、甲苯、二甲苯、苯乙烯、乙苯及所有烷化苯、環戊二烯),乙烯及甲烷。若催化劑或碳源為氣體,則系統300可以修改以容納氣體的催化劑或碳源。
攜帶氣體324材料可為任何適合攜帶成長溶液326進入室306內的氣體。於一些實施例中,攜帶氣體324可包 括載體、支持氣體及空氣。適合載體的非限制性例子包含氬氣或氮氣,適合支持氣體的非限制性例子包含氫氣(H2)及水蒸氣。攜帶氣體310可與攜帶氣體324相同或相異。前述材料只是例子而已,其他的材料可包括成長溶液326及攜帶氣體310及324。
包括成長溶液326及攜帶氣體310及324之材料的濃度,室306及蒸發器318分別的溫度Tf及Te,成長溶液326的幫浦速率ζ,攜帶氣體324及310的流速Q1及Q2,從溫度控制裝置302邊緣304計算之通入管316端點314的長度L,奈米碳管從成長材料226表面222成長所需的時間"t",以及其他參數可依需要選擇以在成長材料226表面222上成長奈米碳管。舉例而言(並非限制),就前述而言以下為適合的數值:攜帶氣體310組成:H2/氬比例:0至0.5;攜帶氣體324組成:H2/氬比例:0至0.5;空氣:0-20標準立方公分/分鐘(sccm);成長溶液326濃度:二甲苯中二茂鐵濃度:0.0004-0.05克/毫升;室306的溫度Tf:700-850℃;蒸發器318的溫度Te:105-250℃;成長溶液326的幫浦速率ζ:2-18毫升/小時(ml/h);攜帶氣體324的流速Q1:50-500sccm; 攜帶氣體310的流速Q2:0-200sccm;奈米碳管成長的時間"t":1-180分鐘;從溫度控制裝置302邊緣304至通入管316端點314的長度"L":8-26公分。
所有前述的參數以及其他參數會影響從成長材料226的表面222成長之奈米碳管柱214的機械特性。此種機械特性的例子可包含柱214之大致上可重複的彈性範圍(下稱"彈性範圍")及硬度(例如彈簧常數"k",其依據虎克定律(Hooke's law)為-F*d,其中d為施力F時所移動的距離,*為乘號)。當奈米碳管柱214成長時,上述的參數可以維持實質上一致以獲得具有實質上一致機械特性(沿著柱214端點220至端點218之柱214長度)的柱214。或者,當成長柱214時,一個以上的這些參數可以變化以改變一個以上之柱的前述機械特性及/或其他機械特性(沿著端點220至端點218的柱214長度)。
藉由例子而非限制,當成長柱214之時,同時變化列於下述第1表的參數(討論於上)可直接地或反向地影響柱214的機械特性,其中:"直接"意指當所有其他參數保持不變時,增加參數的數值造成機械特性數值的增加,且減少參數的數值造成機械特性數值的減少;及"非直接"意指當所有其他參數保持不變時,增加參數的數值造成機械特性數值的減少,且減少參數的數值造成機械特性數值的增加。
第4A圖顯示當變化一個以上之影響柱214硬度的上述參數時,成長於第3圖系統300之奈米碳管柱214的例子。如第4A圖所示,柱214包含硬性區域402a、402b及402c與軟性區域404a及404b。雖然顯示者為三個硬性區域402a、402b及402c與兩個軟性區域404a及404b,更多或更少的硬性區域及/或更多或更少的軟性區域可擇一地沿著214的長度形成。此處所使用的軟性區域404a及404b為硬度比硬性區域402a、402b及402c的硬度為低的區域。類似地,硬性區域402a、402b及402c為硬度大於軟性區域404a及404b的區域。
第4A圖所顯示的柱214的成長可藉由以下方式達成:在第一狀態下以上面所討論的參數起始地成長硬性區域402c;然後當軟性區域404b成長時,改變一個以上的參數至第二狀態(例如增加攜帶氣體324的流速Q1;及/或 增加成長溶液326的幫浦速率ζ;及/或減少二茂鐵在成長溶液326中的濃度,如果於第3圖的系統300中提供一機制以變化成長溶液326中之催化劑濃度的話(例如多個輸入埠,催化劑及碳源經由該等輸入埠可分離地引入注入裝置322中))以降低柱214的硬度;然後當硬性區域402b成長時讓一個以上的參數變回至它們的起始數值;然後當軟性區域404a成長時改變一個以上的參數至第二狀態;及然後當硬性區域402a成長時使一個以上的參數改變至它們的起始狀態。注意的是,奈米碳管216,及因此該柱214,首先從頂端218成長。亦即,端點218首先形成在成長材料226的表面222上,且柱214成長於端點218的下方。因此,例如,第4A圖所示的柱214以下述方式成長:硬性區域402c首先從表面222成長;軟性區域404b然後從表面222成長於硬性區域402c下方;硬性區域402b然後從表面222成長於軟性區域404b下方;軟性區域404a然後從表面222成長於硬性區域402b下方;及硬性區域402a然後從表面222成長於軟性區域404a下方。藉由適當地掌握一個以上影響柱214硬度之參數改變的時間點,可以選擇硬性區域402a、402b及402c與軟性區域404a及404b的大小及位置。例如,硬性區域402a、402b及402c與軟性區域404a及404b可以沿著從端點220至端點218的柱214長度而落在預定的位置上。
第4B圖顯示在基材224上具有交替之硬性區域462及軟性區域464之奈米碳管柱214a例子的照片。如第4B圖可以見到的,軟性區域464可呈現暗環。硬性區域462可為第4A圖之硬性區域402a、402b及402c的例子,及軟性區域464可為第4A圖之軟性區域404a及404b的例子。當然可以有比第4B圖更多或更少的硬性區域462及/或更多或更少的軟性區域464。
第4C圖顯示在柱被轉送至佈線基材202(如上所述)之後第4A圖的柱214。如第4C圖所示,施加力量F至柱的端點220可造成軟性區域404a及404b被壓彎。這可能是因為軟性區域404a及404b比不上硬性區域402a、402b及402c堅硬。因此藉由沿著柱214的長度選擇地形成一個以上的軟性區域404a及/或404b,柱214在端點220對於力量F的反應─及柱214的機械性質(例如柱214的硬度、彈性範圍及/或其他機械特性)─可被修改以符合需求。
在第4A圖所示的例子中,影響柱214硬度的一個以上的參數被描述為在兩種狀態之間變化,如此硬性區域402a、402b及402c具有實質上相同的硬度,而且軟性區域404a及404b具有實質上相同的硬度(其較硬性區域402a、402b及402c的硬度為低)。然而,此只是一個例子而已,許多的變化仍然可能。第5-7圖顯示此等變化的非限制性例子。
在第5A圖中,一個以上影響硬度的參數可開始於最初數值並依著柱214的成長逐漸地變化以增加或減少(如所欲的)從端點220至端點218之柱214的硬度。柱214因此可具有沿著從端點220至端點218之柱214的長度增加或是減少的硬度梯度G。例如,為了成長具有硬度梯度G(從端點220至端點218增加硬度)的柱214,當柱214成長時一個以上的下列參數可以如下地改變:逐漸地增加攜帶氣體324的流速Q1;及/或逐漸地加成長溶液326的幫浦速率ζ;及/或逐漸地減少二茂鐵在成長溶液326中的濃度,如果於第3圖的系統300中提供一機制以變化成長溶液326中之催化劑濃度的話(例如多個輸入埠,催化劑及碳源經由該等輸入埠可分離地引入注入裝置322中)。藉由選擇一個以上參數之起始數值(當柱成長時該等參數的變化會改變柱214的硬度),柱214在端點218之硬度數值可以達到一所要的值。藉由選擇一個以上參數的改變速率及最終數值(當柱成長時該等參數的變化會改變柱214的硬度),沿著柱214長度的硬度改變速率及柱硬度在端點220的數值可類似地達到所要的值。第5B圖顯示當柱214成長時流速Q1隨時間而增加的例子,這有力地指出流速Q1的增加為成長位置"z"(亦即,當柱214從表面222成長時,端點218的位置)的函數,如此造成沿著柱214長度增加的硬度梯度G,如第5A圖所示。
第6圖顯示第5A圖柱214的變化。第6圖的柱214包含兩個區域602及604。區域604具有硬度梯度G2,其從端點220增加至與區域602的接點606。區域602具有硬度梯度G1,其從接點606減少至柱214的端點218。例如,為了成長第6圖的柱214,一個以上的下列參數可如下地變化:當柱214從端點218成長至接點606時,攜帶氣體324的流速Q1及/或成長溶液326的幫浦速率ζ可逐漸地減少;且當柱214從接點606成長至端點220時,攜帶氣體324的流速Q1及/或成長溶液326的幫浦速率ζc可逐漸地減少。擇一地或是除此之外地,如果於第3圖的系統300中提供一機制以變化成長溶液326中之催化劑濃度的話(例如多個輸入埠,催化劑及碳源經由該等輸入埠可分離地引入注入裝置322中),則當柱從端點218成長至接點606時,二茂鐵在成長溶液326中的濃度可逐漸地增加,而且當柱214從接點606成長至端點220時,二茂鐵在成長溶液326中的濃度會逐漸地減少。雖然第6圖顯示的是各具有不同硬度梯度的兩個區域602及604,但是柱214可具有兩個以上的此種區域。
第7圖顯示第4A圖所示之柱214之變化的另一例子。第7圖的柱214包含區域702,704,706及708,其中至少三者具有不同的硬度值。事實上,各個區域702,704,706及708可具有不同的硬度。例如,第7圖所示之柱214可藉由以下方式而成長:以攜帶氣體324的流速Q1及/或成長溶液326的幫浦速率ζ及/或二茂鐵在成長溶液326的濃度(其具有使區域702產生所欲硬度的值)起始成長區域702;然後改變至少下述至少一者:攜帶氣體324的流速Q1及/或成長溶液326的幫浦速率ζ及/或二茂鐵在成長溶液326的濃度(如果於第3圖的系統300中提供一機制以變化成長溶液326中之催化劑濃度的話(例如多個輸入埠,催化劑及碳源經由該等輸入埠可分離地引入注入裝置322中))至產生區域704所要硬度(其可與區域702的硬度不同)的數值;然後改變下述至少一者:攜帶氣體324的流速Q1及/或成長溶液326的幫浦速率ζ及/或二茂鐵在成長溶液326的濃度(如果於第3圖的系統300中提供一機制以變化成長溶液326中之催化劑濃度的話(例如多個輸入埠,催化劑及碳源經由該等輸入埠可分離地引入注入裝置322中))至產生區域706所要硬度(其可與區域702及區域704的硬度不同)的數值;及然後改變下述至少一者:攜帶氣體324的流速Q1及/或成長溶液326的幫浦速率ζ及/或二茂鐵在成長溶液326的濃度(如果於第3圖的系統300中提供一機制以變化成長溶液326中之催化劑濃度的話(例如多個輸入埠,催化劑及碳源經由該等輸入埠可分離地引入注入裝置322中))至產生區域708所要硬度(其可與區域702、區域704及區域706的硬度不同)的數值。雖然四個不同區域702,704,706及708顯示於第7圖,但是可以具有更多或更少的此種區域,一些或全部的該等區域具有不同的硬度數值。
第4A及5-7圖所示的例子並非窮盡亦非限制;可以有許多變化。例如,雖然在第4A及5-7圖的例子中機械性質硬度係變化的,但是當變化上述第1表中影響其他機械性質之一個以上的參數而使柱214成長時,柱214的其他機械性質可以變化。例如,藉由變化一個以上影響彈性範圍的參數(例如攜帶氣體310中氬/H2的比例,二茂鐵在成長溶液326中的濃度,成長溶液326的幫浦速率ζ,或是溫度控制裝置302的邊緣304至通入管316的端點314的長度L),柱214的彈性範圍可以變化(而非柱214的硬度或除了柱214的硬度以外)。例如,第4A圖中的區域402a,402b及402c與區域404a及404b相比可具有不同的彈性範圍。類似地,第5A圖之柱214梯度G及/或第6圖之柱214的區域602及604的梯度G1及G2可具有變化的彈性範圍數值,而非改變硬度值或除了改變硬度值以外。相似地,第7圖之柱214的區域702,704,706及708可具有不同的彈性範圍數值,而非不同的硬度值或除了不同的硬度值以外。類似地,第8圖之柱214中的數個區域可具有不同的彈性範圍數值,而非不同的硬度值或除了不同的硬度值以外。
再度參考第1圖的製程100,藉由以上述第3-7圖中之一或多者成長柱214而可在102備置奈米碳管柱214。更且,可以使柱214成長為具有變化的機械特性,諸如變化的硬度值,如第4A及5-7圖的例子所示。或者,可以其他方式獲得柱214。例如,成長基材224可與已經從成長材料226成長的柱214一起獲得。
不論柱214係如何由步驟102獲得,奈米碳管柱214可在步驟104金屬化。或者,柱在步驟106被轉送之後,該柱214才被金屬化。不論柱214何時被金屬化,該柱214可被金屬化,例如,以增加導電性及/或柱214的電流攜帶能力。例如,柱214可被金屬化以增加導電性及/或柱214的電流攜帶能力,使得柱214足以被用以建立與受測的電 子裝置(例如半導體芯片)間之以壓力為基礎的電氣接觸。金屬化奈米碳管柱214可包含在柱214內部的至少一些奈米碳管216上沉積金屬232於柱214內部,及/或在柱214外部的至少一些奈米碳管216上於柱214的外部沉積金屬232。可以使用任何適合的沉積金屬232方法。例如,金屬232可以噴濺、化學蒸氣沉積、無電鍍覆、電鍍或其他類似的沉積方法沉積於柱214上。如上所述,沉積金屬於柱214上意指沉積金屬於形成柱214之至少一些奈米碳管216的至少一部分上。於一些實施例中,一些、幾乎所有或所有的奈米碳管216可被金屬化。
沉積金屬232於柱內之奈米碳管216上的方法在某些實施例中係有益的,但是本發明不限於此。第8圖顯示一金屬化系統800,第9圖顯示使用系統800以金屬化得自第1圖之步驟102之柱214的製程,其中金屬232可沉積於柱214內的奈米碳管216上。
如第8圖所示,金屬化系統800可包括室802及可以控制室802內溫度的溫度控制裝置804(例如加熱器及/或冷卻裝置)。溫度控制裝置804可包括感應加熱器,及該室可為非導電的。例如,室802可包括玻璃盤。可以提供一個以上的入口埠806及810(顯示兩個,但更多或更少均包含在內),材料(例如氣體808及812)經由該等入口埠可被引入室802中。系統800也可包含真空幫浦814,真空幫浦可將室802抽真空。
就第9圖之步驟902而言,經由一開始將成長基材 224放入室802中,如第8圖所示,第8圖的系統800可用於金屬化奈米碳管柱214。在第9圖之步驟904中,前驅氣體808可通過入口埠806被引入室802,如第8圖所示。前驅氣體808可包括要沉積於柱214內奈米碳管216上的金屬232。於一些實施例中,前驅氣體808可包括化學蒸氣沉積氣體(CVD)及金屬(例如金、銀、鉑、銅、鈀、鎢或類似金屬)。例如,前驅氣體808及金屬可包括以下任一可從Strem化學品公司(Newburyport,Massachusetts)購得的物質:二甲基(乙醯丙酮)金(III),二甲基(三氟乙醯丙酮)金(III),氯(三甲基膦)金,氯(三乙基膦)金,三甲基(三甲基膦)金或甲基(三甲基膦)金。前驅氣體808可在充分壓力下被引入室802內以使得前驅氣體808穿過柱214並因此進入柱214。進行此過程的一非限制性方式為如下所述:使用真空幫浦814將室802抽真空,及經由入口埠806在壓力下(介於稍大於大氣壓力至約十倍大氣壓力之間)將前驅氣體808引入。前面的壓力範圍只是例子而已,本發明並不限於此。除了感應加熱之外,也可以使用閃光燈的輻射加熱或者其他研發為半導體晶圓快速熱處理的技術。
在第9圖的步驟906中,室802可以沖洗氣體沖洗。例如,沖洗氣體812可經由入口埠810引入室802中,及藉由真空幫浦814從室802中移除。沖洗氣體812可為不致明顯地與柱214之奈米碳管216反應的氣體。適合沖洗氣體812的例子可包含氮氣(N2)。
沖洗氣體812可以引入室802內及以真空幫浦814從 室802內移除,移除的速率較前驅氣體808的擴散速率為小,以致於一些前驅氣體808依然留在柱214內環繞著奈米碳管216。亦即,沖洗氣體812可從室802外引入室802內來沖洗室內的前驅氣體808,同時在柱214內留下想要數量的前驅氣體808環繞著柱214內的奈米碳管216,及任意地,一些室802內的前驅氣體808圍繞著柱214的外部。藉著控制與前驅氣體808之擴散速率相較之沖洗氣體812引入及引出室802的速率以及步驟908的開始(下述),留在柱214內之前驅氣體808及留在室802內環繞著柱214(及因此環繞著柱214外部)的數量可受控制。如將會見到的,留在柱214內之前驅氣體808的數量可對應於將沉積於柱214內(亦即,沉積在柱214內之奈米碳管216上)之金屬232的數量,而且留在室802環繞著柱214外部之前驅氣體808的數量可對應於將沉積於柱214外部上(亦即,沉積於柱214外部之奈米碳管216上)之金屬232的數量。
在第9圖的步驟908中,溫度控制裝置804可以啟動以將奈米碳管柱214的溫度帶至一溫度,該溫度使得柱214內前驅氣體808中的金屬232沉積於柱214內的奈米碳管216上,而且柱214外前驅氣體808中的金屬232(若有的話)沉積於柱214外的奈米碳管216上。例如,柱214的溫度可被升至或高於破壞前驅氣體808的溫度,讓柱214內前驅氣體808中的金屬232結合至柱214內的奈米碳管216,而且讓柱214外前驅氣體808中的金屬232結合至 柱214外的奈米碳管216。此溫度依據前驅氣體808的種類而不同。於一些實施例中,該溫度可為攝氏200-800度。如上所述,將奈米碳管柱214溫度帶至讓前驅氣體808中之金屬232沉積至奈米碳管216上之溫度的時間點可影響金屬232沉積的地方。例如,如果奈米碳管柱214溫度達到前驅氣體808中之金屬232沉積於奈米碳管216是在所有或大部分前驅氣體808已經從室902中沖洗之後(因此,很少或沒有前驅氣體808環繞柱214外部留下),但是前驅氣體808依然留存於柱214內的溫度,則來自前驅氣體808的金屬232將僅實質上沉積於柱214內的奈米碳管216上。然而,如果奈米碳管柱214的溫度達到前驅氣體808中之金屬232沉積於奈米碳管216上係在前驅氣體808已經完全地從室902中沖洗之前(因此,仍有一些數量的前驅氣體808圍繞著柱214外部)的溫度,則來自前驅氣體808的金屬232將沉積於柱214內部及柱214外部兩者的奈米碳管216上。更且,沉積於柱214內奈米碳管216上之金屬232的數量相對於沉積於柱214外奈米碳管216上之金屬232的數量根據柱214內及柱214外之前驅氣體808的數量不同而不同,如上所述,其可藉由控制下述因子而控制:與前驅氣體808的擴散速率相較之將沖洗氣體812引入或引出該室802的速率,以及步驟908的時間點(亦即,柱214的溫度達到前驅氣體808中之金屬232開始沉積於奈米碳管216上的溫度的時間點)。如所述者,前述者可被控制且設定時間以控制沉積於柱214奈米碳管216上 及柱214外奈米碳管216上之金屬232的數量。
如所述者,溫度控制裝置804可以成應而且能感應地加熱柱214。或者,溫度控制裝置804可加熱室802的內部。當想要時,第9圖的步驟904-908可以重複。例如,步驟904-908可以重複直到所要厚度的金屬232已經沉積在柱214內及/或柱214外的奈米碳管216上。於一些實施例中,於開始重複步驟904-908期間,金屬232可主要沉積或只有沉積在柱214內的奈米碳管216上,其可避免金屬232沉積在柱外之奈米碳管216所造成之妨礙前驅氣體808流入柱214內的問題。第9圖之製程900的非限制性優點為數量可觀的金屬232沉積於柱214內的奈米碳管216上,而不是只沉積於或主要沉積於柱214外的奈米碳管216上。
雖然如此,金屬232仍可主要沉積在柱214外部或靠近柱214外部的奈米碳管216上。第10A圖顯示依據本發明的一些實施例的例子。如第10A圖所示,金屬232可大致沉積在柱214的外部(亦即,主要沉積在柱214外部或靠近柱214外部的奈米碳管216上)。第10B圖顯示奈米碳管柱214的照片,該奈米碳管柱已經被切開以顯示柱214的內部。金屬232的顏色較淡。如第10B圖所示,金屬232主要位於柱214的外部。顏色較深的柱214內部表示柱內部缺少金屬232。金屬232可以任何適合的方式沉積。例如,金屬232可噴濺沉積。於另一例子中,金屬232可以電鍍沉積。於再一例子中,也可使用原子層沉積(ALD)或金屬有機化學蒸氣沉積(MOCVD)。於一些實施例中,用以沉積金屬的各種技術可以組合使用(例如,可以ALD沉積種層,然後接著以電鍍形成較厚的沉積)。
顯示於第8、9、10A及10B圖之沉積金屬232的方法只是例子而已,各式各樣的變化也是可能的。例如,於一些實施例中,金屬232可如上第8及9圖所述的沉積在柱214的內部(亦即,在柱214內的奈米碳管216上),而其他金屬232可沉積在柱214的外部(亦即,在柱214外部的奈米碳管216上),如第10A圖所述。因此,不論在此處之特別圖式或在此處之任一圖式中,所顯示的金屬232係如何,金屬232均可主要沉積在柱214內的奈米碳管216上(如第8圖所示及如第8及9圖所討論者),可主要沉積在柱214外的奈米碳管216上(第10A及10B圖所示),或是同時沉積在柱214內及柱214外的奈米碳管上。
再次參考第1圖的製程100,於步驟104金屬化奈米碳管柱214之後,柱214可從成長基材224轉送至佈線基材202的端子212(參見第2A圖)。第11圖顯示製程1100的例子,其中柱214可使用燒結的奈米糊劑1202被轉送至佈線基材202的端子212上(此已參考第2A及2B圖討論於上),第12-14圖為顯示第11圖製程1100之操作的例子。第15圖顯示製程1500的另一例子,其中柱214使用焊料1602或類似的導電結合材料而轉送至佈線基材202,第16-19圖為顯示製程1500操作的例子。因此,第11圖的製程1100為第1圖之步驟106如何實施的例子,而第15圖的製程1500為第1圖之步驟106如何實施的另一例子。
參考第11圖的製程1100及第12-14圖,包括導電材料顆粒的奈米糊劑1202可沉積在佈線基材202的端子212上。奈米糊劑1202可包括在溶劑中的導電材料(例如金、銀、銅,或類似金屬)顆粒。這些顆粒可為奈米顆粒。於一些實施例中,奈米糊劑1202也可包含穿透佈線基材202之端子212表面,因此加速與端子212電氣連接之形成的尖銳顆粒。
奈米糊劑1202可以任何適合的方式沉積在端子212上。例如,如第12圖所示,於一些實施例中,奈米糊劑1202可經由列印頭1206(例如噴墨列印頭)而列印至端子212上。如第12圖所示之奈米糊劑1202的列印可以將奈米糊劑1202精確地以精細的間距(例如150微米以下)沉積於端子212上。或者,可使用其他方法(諸如網版印刷、遮罩等等)將奈米糊劑1202沉積於端子212上。
於第11圖的步驟1104中,奈米碳管柱214的端點218可以鄰接端子212上之奈米糊劑1202而設置,如第13圖所示。例如,柱214的端點218可被置於奈米糊劑1202中。於一些實施例中,端點218可對著端子212按壓。
於第11圖的步驟1106中,奈米糊劑1202可被燒結。例如,奈米糊劑1202可加熱至溫度(燒結溫度)並且持續一段時間使溶劑蒸發並且使奈米糊劑1202中的導電材料顆粒熔接至柱214之奈米碳管216及端子212。燒結溫度可小於奈米糊劑1202之導電顆粒材料的熔點。大致而言,奈米糊劑1202的導電顆粒越小,燒結奈米糊劑1202所需的溫度越低。奈米糊劑1202可以任何適合的方式(包括使用溫度控制裝置1302(例如加熱裝置))加熱。
於一些實施例中,燒結溫度可少於奈米糊劑1202中導電顆粒材料之熔點的一半。例如,於一些實施例中,導電顆粒可為金,且奈米糊劑1202可被加熱至燒結溫度約攝氏350度約兩分鐘。金的熔點為攝氏1064度。例如,於一些實施例中,導電顆粒可為銀,且奈米糊劑1202可被加熱至燒結溫度約攝氏200度約兩分鐘。銀的熔點為攝氏963度。不論奈米顆粒的材料及奈米糊劑1202被加熱的燒結溫度,燒結奈米糊劑1202會產生填角件(fillet)1402,如第14圖所示,其使得柱214的奈米碳管216物理地固定至及電氣地連接至佈線基材202的端子212。
於第11圖的步驟1108中,柱214可與成長基材224分離,成長基材224然後可以移開。可用任何合適的方式將柱214從成長基材224上分離,包括物理地拉開成長基材224使其與柱214分離,使用溶劑等等。
如上所述,第15圖顯示可用於實施第1圖步驟106之製程1500的另一例子。在第15圖的步驟1502中,焊料1602可沉積在佈線基材202的端子212上,如第16圖所示。如第16圖亦顯示者,洞1604可備置於焊料1602中。例如,焊料1602可端子212在沉積為大致上呈甜甜圈的形狀。或者,焊料1602不需要包含洞1604,但可包括沉積於端子212上的焊料塊。不論焊料1602的形狀如何,焊料1602可以任何合適的方式沉積。例如,焊料1602可經由遮罩而沉積。
於第15圖的步驟1504中,成長基材224上之奈米碳管柱214的端部1706可被金屬化或者塗覆有對焊料1602呈可濕性(wettable)的材料(亦即,焊料1602將會黏附於其上的材料)。第17圖顯示以金屬1702(例如銅)或對焊料1602呈可濕性之其他材料金屬化之柱214端部1706的例子。如第17圖所示,遮罩材料1704可繞著柱214沉積於成長基材224上。柱214的端部1706可延伸至遮罩材料1704外部。柱214的端部1706可少於從端點220至端點218的整個柱長。例如,於一些實施例中,端部1706可為少於5%、少於10%、少於15%、少於20%或少於25%之從端點220至端點218的柱214長。於其他實施例中,端部1706可為從端點220至端點218之柱214長的其他百分比。
金屬1702然後可沉積於遮罩材料1704上及柱214暴露的端部1706上,如第17圖所示。如可以見到的,遮罩材料1704遮住大部分的柱214,以防止金屬1702沉積至暴露端部1706以外之柱214的其他部分。遮罩材料1704以及遮罩材料1704上的金屬1702部分可被除去,留下柱214之端部1706上的金屬1702。於一些實施例中,柱214可被研磨或是平面化,同時被裝入遮罩材料1704中。遮罩材料1704可為適於沉積在成長基材22上且稍後從成長基材224上移除的任何材料。遮罩材料1704的非限制性例子包含光阻及崔里黏結(trelibond)。
第18圖顯示以金屬1802(例如銅、鎳、金、銀及/或前述的合金)或其他對焊料呈可濕性的材料金屬化柱214之端點的另一例子。於一些實施例中,各種金屬(例如銅、鎳、金、銀及/或前述的合金)的層狀結構可為金屬化的結果。在第18圖的例子中,噴濺設備1804可相對於柱214(例如相對於平行柱214長度的軸)以θ角設置,如顯示者。可選擇角度θ使得相鄰的柱214彼此遮住且噴濺至柱214上的金屬1802只有噴濺至柱214的端部1806上。如第18圖所示,柱214b部份地遮住噴濺設備1804,金屬1802因此未噴濺至相鄰柱214a之端部1806以外的其他部分。可以選擇角度θ使得柱214的端部1806少於從端點220至端點218的整個柱長。例如,於一些實施例中,端部1806可以少於5%、少於10%、少於15%、少於20%或少於25%之從端點220至端點218的柱214長。於其他實施例中,端部1806可以為從端點220至端點218之柱214長的其他百分比。於一些實施例中,為了金屬化成長基材224上之柱214的端部1806,噴濺設備1804可相對於成長基材224及柱的端點218移動,而且以不同角度及在不同位置設置。
不論金屬層(例如第17圖中的金屬1702或第18圖中的金屬1802)如何沉積在柱214的端點218上,在第15圖的步驟1506中,藉由將奈米碳管柱214之金屬化端點218置放於鄰近佈線基材202之端子212上的焊料1602,柱 214可被轉送至佈線基材202,如第19圖所示(不管該金屬如第17圖中沉積為金屬1702或如第18圖中沉積為金屬1802,在第19圖中標記1902代表在柱214之端點218的金屬。因此,第19圖中的金屬1902代表第17圖中柱214之端部1706上的金屬1702或第18圖中柱214之端部1806上的金屬1802)。例如,金屬化1902端點218可設置於焊料1602中的洞1604內(參見第16圖)。於一些實施例中,柱214之金屬化1902端點218可對著端子212按壓。
在步驟1508中,焊料1602可以加熱及重新流動,其可造成焊料1602的填角件1904,如第19圖所示。焊料填角件1904使得柱214物理地固定至及電氣地連接至佈線基材202的端子212。要注意的是,焊料1602不容易濕貼(wet)(黏附)至柱214,而是僅僅容易濕貼(wet)至在柱214之端點218上的金屬1902。
在第15圖之步驟1510中,柱214可從成長基材224上分離,成長基材224然後可被移除。可用任何合適的方式將柱214從成長基材224上分離,包括物理地拉開成長基材224使其與柱214分離,使用溶劑等等。
第20圖顯示一種依據本發明的一些實施例的任意性製程,其中金屬塗層2002可備置在柱214上。如第20圖所示,遮罩材料2004可沉積在柱214之間的佈線基材202上,如此柱214的一部分2006延伸於遮罩材料2004之外。如可以見到的,遮罩材料2004遮住金屬塗層2002(例如金、銀、銅或類似金屬)的沉積。因此,延伸於遮罩材料2004以外的柱214部分2006可對應於各柱214中想要沉積金屬塗層2002的部分。當想要時,佈線基材202上遮罩材料2004的高度可為延伸於遮罩材料2004外部之柱214部分2006的長度。於一些實施例中,遮罩材料2004可延伸至端子212使得金屬塗層2002也延伸至端子212。於一些實施例中,遮罩材料2004可延伸至焊料填角件1904使得金屬塗層2002也延伸至焊料填角件1904。無論如何,遮罩材料2004可為任何適合沉積於佈線基材202上且稍後從佈線基材202移除的材料。遮罩材料2004的非限制性例子包含光阻及崔里黏結(trelibond)。金屬塗層2002然後沉積於柱上,如第20圖所示。遮罩材料2004可防止金屬塗層2002沉積於柱2004之暴露部分2006以外的地方。金屬塗層2002可以任何適合的沉積方法(包括電鍍、無電鍍覆、噴濺等等)沉積。遮罩材料2004然後跟著積聚於遮罩材料2004上的任何金屬塗層2002一起移除。
再次參考第1圖的製程100,接觸尖端可備置在柱214的端點處。第21A,21B及22圖顯示將接觸尖端2102備置於柱214之端點220的例子,第24圖顯示在柱214之端點220備置接觸尖端2402的另一例子。第25A及25B圖顯示備置接觸尖端的再一例子。
如第21A圖所示,遮罩材料2106(例如像遮罩材料1704或2004)可沉積在佈線基材202上,且柱214之端點220可延伸於遮罩材料2106外部並因此可以暴露。該暴露的柱214端點220然後可被粗糙化以在柱214的端點220產生尖銳構造。例如,柱的端點220可進行電漿處理而在柱214的端點產生尖銳構造。第21B圖為奈米碳管214柱之端點220的照片,其中顯示此種尖銳構造2110的例子。遮罩材料2106可以保護被包入遮罩材料2106中之柱214的部分免於此種處理。
柱214之經粗糙化的端點220然後可藉由沉積導電金屬2104(例如金、銀、銅等等)於經粗糙化的端點220上而被金屬化。如第21A圖所示,遮罩材料2106可防止金屬2104沉積在佈線基材202上以及暴露端點220以外之柱214的其他地方。或者,如第22圖所示,遮罩材料2206(其可為部分移除的遮罩材料2106或是移除遮罩材料2106之後沉積於佈線基材202上的新遮罩材料)可以暴露更多之柱214部分,如此金屬2104的沉積不僅在柱端點220之處,而且在經由遮罩材料2206(其可像是遮罩材料2106)而暴露之柱的部分。無論如何,在以金屬2104金屬化之後,遮罩材料2106或2206可被移除。各柱中經金屬化、經粗糙化的端點220可以為接觸尖端2102,其可為第2A及2B圖中之接觸尖端228的例子。
第23A圖顯示以金屬2104金屬化柱214之端點220的另一例子,其中噴濺設備2304噴濺金屬2104至柱214的端部2306,此製程可以類似於第18圖所示的製程。於第23A圖的例子中,噴濺設備2304可相對於柱214(例如相對於與柱長度平行的軸)以角度θ設置。可以選擇角度θ使得相鄰的柱214遮住彼此,且噴濺於柱214上的金屬2104只噴濺在柱214的端部2306。如第23A圖所示,柱214b部分地遮住噴濺設備2304,金屬2104因此不會噴濺至相鄰柱214a中不是端部2306的部分。可以選擇角度θ使得柱214的端部2306少於從端點218至端點220之全部柱長。例如,於一些實施例中,端部2306可少於5%、少於10%、少於15%、少於20%或少於25%之從端點218至端點220的柱214的長度。於其他實施例中,端部2306可為從端點218至端點220之柱214的長度的其他百分比。於一些實施例中,為了金屬化佈線基材202上之柱214的端部2306,噴濺設備2304可相對於佈線基材202及柱214的端點220移動,而且以不同角度及在不同位置設置。第23B圖顯示含有只沉積於柱214端部2306之金屬2104的奈米碳管柱214的照片。於第23B圖中,比起柱214上金屬2104未沉積之部分,金屬2104的顏色較淡。
第24圖顯示在柱214之端點220備置接觸尖端的另一例子,因此,其代表第21A,21B,22,23A及23B圖所示之製程以外的另一製程。如顯示者,接觸尖端結構2402可備置在基材2406上。例如,在基材2406上可製作接觸尖端結構2402成為一圖案,該圖案對應於佈線基材202上之柱214端點220的圖案。接觸尖端結構2402可以耦合件2404結合至柱214之端點220,然後從基材2406分離。耦合件2404可為任何使尖端結構2402結合至柱214之端點220的適合材料。例如,耦合件2404可包括焊料或類似的結合材料。於另一例子中,耦合件2404可包括類似第14圖中填角件(fillet)1402之燒結的奈米糊劑(例如像奈米糊劑1202)。接觸尖端2402可為第2A及2B圖之接觸尖端228的另一例子。
第25A及25B圖顯示在柱214之端點220備置接觸尖端228的另一例子,因此代表第21A,21B,22,23A,23B及24圖所示之製程以外的另一製程。如第25A圖所示,包括導電材料顆粒的奈米糊劑2554可沉積於柱214的端點220。奈米糊劑2554可包括在溶劑中的導電材料(例如金、銀、銅或類似金屬)顆粒。顆粒可為奈米顆粒。於一些實施例中,奈米糊劑2554也可包含微顆粒及/或尖銳顆粒,其可為硬性材料(諸如釕或銠)。
奈米糊劑2554可以任何適合的方式沉積於柱214的端點220上。例如,如第25A圖所示,於一些實施例中,奈米糊劑2554可經由列印頭2552(例如噴墨列印頭)列印至柱214的端點220上。或者,奈米糊劑2554可以其他方法(諸如網版印刷、遮罩等等)沉積於柱214的端點220上。奈米糊劑2554然後可被固化。例如,可以溫度控制裝置2556(例如加熱器)加熱奈米糊劑2554至一溫度達足夠的時間以固化該奈米糊劑2554。於一些實施例中,奈米糊劑可被燒結。
如第25B圖所示,固化的奈米糊劑可在柱的端點220形成接觸尖端2558。奈米顆粒可在柱的端點220形成導電塗層。接觸尖端2558可為第2A及2B圖之接觸尖端228的再一例子。
再次參考第1圖的製程100,在步驟110中,佈線基材202可被耦合至一個以上的其他元件以形成電子設備。第26圖顯示佈線基材202耦合至其他電子元件以形成探針卡總成2500的例子,第27圖顯示測試系統2600的例子,其中探針卡總成2500可被用於接觸及測試該受測裝置(DUT)2618。
探針卡總成2500可包含硬化體構造2502及佈線板2508,佈線基材202可物理地及電氣地耦合至硬化體構造2502及佈線板,如第1圖步驟110的例子。如第26圖所示,耦合機制2504可物理地耦合佈線基材202至硬化體構造2502,其可為賦予探針卡總成2500堅硬性的堅硬構造(例如包含金屬或其他堅硬材料)。硬化體構造2502也可包含元件(未顯示)以耦合探針卡總成2500至第27圖測試系統2600之殼體2620的安裝表面2610。耦合機制2504可包括任何適於物理性耦合佈線基材202至硬化體構造2502的機制。例如,耦合機制2504可包括螺絲、螺栓、夾鉗等等。於一些實施例中,耦合機制2504可包括移動性機制(諸如差動性螺絲總成(未顯示)移動地耦合佈線基材202至硬化體構造2502)。
依然參考第26圖,至個別溝通通道(其往返於測試控制器(像第27圖中的測試控制器2602))的電氣介面2506(例如零插入力(ZIF)電氣連接器、波哥探針(pogo pin)墊或其他此種電器連接器)可被設置於佈線板2508上。電氣連接件2510(例如在佈線板2508上及/或中的導電貫穿孔及/或痕 跡)可經由佈線板2508提供來自電氣介面2506的電氣連接。佈線板2508可為半堅硬基材(諸如印刷電路板)或堅硬基材(諸如陶瓷佈線板)。
如第26圖所示,電氣連接件2512可經由佈線板2508使電氣連接件2510電氣連接至佈線基材202的端子208。電氣連接件2512可為任何電氣連接佈線板2508至端子208的適合連接件。例如,電氣連接件2512可為撓性電氣連接件,諸如撓性佈線或中介體(未顯示)。於另一例子中,電氣連接件2512可為焊料或其他類似導電結合材料。
耦合至佈線基材202之端子212的奈米碳管柱214可為彈簧探針240,而且接觸尖端228可以配置成對應於第27圖測試系統2600中受測之DUTs2618的圖案。縮寫"DUT"可意指"測試中的裝置",其可為任何電子裝置,包括但不限於半導體芯片(單一化的或成晶圓形式、封裝的或未封裝的)。如第26圖所示,探針卡總成2500經由端子212電氣連接各探針240至電氣介面2506,經由佈線基材202電氣連接一電氣連接件210至電氣介面2506,經由佈線板2508電氣連接端子208,一電氣連接件2512及一電氣連接件2510至電氣介面2506。
如所述者,第25圖的探針卡總成2500可用以測試電子裝置(諸如第27圖中的DUTs2618),第27圖顯示探針卡總成2500可使用於其中之測試系統2600的例子。如第27圖所示,測試系統2600可包含測試控制器2602,其可提供輸入訊號與DUTs2618,並可接收DUTs2618反應輸入 訊號而產生的回應訊號。術語"測試訊號"可大致上指稱測試控制器2602所產生之輸入訊號與DUTs2618所產生之回應訊號兩者或其中之一。探針卡總成2500可耦合至測試系統2600之殼體2620(例如探針器)的安裝表面2610。探針卡總成2500的探針240可與DUTs2618的端子2616形成以壓力為基礎的電氣連接,而且經由溝通連接件2604(例如共軸纜線、無線連結、光纖連結等等),測試頭2606中的電子裝置(未顯示),探針卡總成2500之測試頭2606及電氣介面2506間的連接器2608,與探針卡總成2500,測試訊號可通行於測試控制器2602及DUTs2618之間。如顯示者,探針卡總成2500可耦合至殼體2620的安裝表面2610,其可包含上面設有DUTs2618的可動式夾盤2624。
DUTs2518可以下述方式測試。探針卡總成2500可耦合至殼體2620的安裝表面2610,而且DUTs2618的端子2616可被帶至與探針卡總成2500的探針240接觸。這可藉由移動夾盤2624使得DUTs2618的端子2616對著探針卡總成2500的探針240施壓而達成。或者,探針卡總成2500可以移動,或夾盤2624及探針卡總成2500兩者可移動而有效完成端子2616及探針240之間的接觸。
當探針240及端子2616接觸之時,可以藉由通過探針卡總成2500而在測試控制器2602與DUTs2618之間提供測試訊號(如上所述,其可包含測試控制器2602所生之輸入訊號,與DUTs2618回應輸入訊號所生之回應訊號)而測試DUTs2618。測試控制器2602可分析回應訊號以決 定DUTs2618是否通過測試。例如,測試控制器2602可比較對於預期之回應訊號的回應訊號。若回應訊號符合預期的回應訊號,則測試控制器2602決定該等DUTs2618可通過測試。否則,測試控制器2602決定該等DUTs2618無法通過測試。在另一例子中,測試控制器2602決定該回應訊號是否位於可接受的範圍內,如果是肯定的話,則決定該等DUTs2618可通過測試。
第26圖的探針卡總成2500只是例子而已,如上關於第2A及2B圖所述,此處所討論的奈米碳管柱214可用於其他電子裝置。例如,奈米碳管柱214可用作測試插座(未顯示)中的接觸探針用來測試半導體芯片或其他電子探針裝置。第27圖的測試系統2600也只是例子而已,而且第26圖的探針卡總成2500可用於其他測試系統。在另外例子中,奈米碳管柱214可用於組合包括多數芯片及佈線基材的系統(例如,奈米碳管柱214可互連該等芯片並將芯片連接至佈線基材)。
包括奈米碳管的探針240不限於只使用於像第26及27圖所示的測試系統或探針卡總成中。
第28圖顯示包括奈米碳管的探針240可用於測試插座2800的非限制性例子,其中探針240以耦合件230耦合至測試基材2810的端子2812。第28圖顯示例示的測試插座2800,其可包括夾子2802、支撐架2806及具有端子2812的測試基材2810,探針240藉由耦合件230可耦合至端子2812。探針240可以耦合件230耦合至測試基材 2810的端子2812,該耦合方式與上述之探針240耦合至佈線基材202之端子212的方式相同或類似。
如第28圖所示,測試插座2800可用於測試電子裝置,諸如單一的半導體芯片2816(封裝的或未封裝的)。夾子2802可從支撐架2806上移除,讓芯片2816得以放置在支撐架2806上,如第28圖所示。支撐架2806可包括引導各芯片2816進入定位的斜狀壁2808,芯片2816的端子2804(例如凸塊)在該定位與探針240接觸。夾子2802然後夾住至支撐架2806上且對著探針240以足夠的力量施壓芯片2816的端子2804,以讓芯片2816之端子2804與探針240之間建立電氣連接。測試基材2810可包含從端子2812(及因此探針240)至用以控制芯片2816測試之測試控制器(未顯示)的電氣連接件(未顯示)。一旦芯片2816要受測試,夾子2802可從支撐架2806移開,且芯片2816可從插座2800移開。並不是測試插座或除了是測試插座之外,插座2800可以是芯片2816及基材2810為其一部分的電子系統。在這種案例中,測試基材2810可擇一地或另外地為電子系統之一部分的佈線基材。
測試插座2800只是例子而已,各種變化也是可能的。例如,雖然兩芯片2816顯示於第28圖,測試插座2800可以構型為持住更多或更少的芯片2816。於另一例子中,夾子2802及/或支撐架2806可以與第28圖中的形狀不同。
第29圖顯示包括奈米碳管之探針240可用於電氣連接兩電子裝置2902及2910的非限制性例子。如顯示者, 探針240可藉由耦合件230耦合至電子裝置2902。探針240可以耦合件230耦合至電子裝置2902的端子2904,該耦合方式與上述探針240耦合至佈線基材202之端子212的方式相同或類似。如第29圖亦顯示者,探針240可以連結材料2906(例如焊料)連結至電子裝置2910的端子2908。電子裝置2902因此可藉由探針240電氣連接至電子裝置2910。電子裝置2902及2910可為彼此電氣連接的任何電子裝置。例如,電子裝置2902及2910兩者可以為半導體芯片(分裝或未分裝)。於另一例子中,電子裝置2902或2910之一者可為此種半導體芯片,而另一電子裝置2902或2910可為印刷電路板。第29圖所示的構型只是例子而已,各種變化也是可能的。例如,電子裝置2902及2910的大小、形狀及位置可與第29圖顯示者不同。於另一例子中,可以有超過兩個電子裝置2902及2910。於再一例子中,電子裝置2902及2910之一者或兩者比三個端子2904及2908更多或更少的端子,而且具有比三個探針240更多或更少的探針。
雖然本發明的特別實施例及應用已經描述於此說明書中,但是這些實施例及應用僅為例示而已,許多的變化也是可能的。
100‧‧‧製程
102,104,106,108,110‧‧‧步驟
202‧‧‧佈線基材
204,206‧‧‧側邊
208‧‧‧端子
210‧‧‧電氣連接件
212‧‧‧端子
214,214a,214b‧‧‧(奈米碳管)柱
216‧‧‧奈米碳管
218‧‧‧端點
220‧‧‧端點
222‧‧‧(成長)表面
224‧‧‧(成長)基材
226‧‧‧成長材料
228‧‧‧接觸尖端
230‧‧‧耦合件
232‧‧‧金屬材料/金屬
234‧‧‧電子設備
236‧‧‧電子組件
240‧‧‧探針
300‧‧‧(成長)系統
302‧‧‧溫度控制裝置
304‧‧‧邊緣
306‧‧‧室
308‧‧‧通入管
310‧‧‧攜帶氣體
312‧‧‧出口管
314‧‧‧端點
316‧‧‧通入管
318‧‧‧蒸發器
320‧‧‧混合物/成長氣體
322‧‧‧注入裝置
324‧‧‧攜帶氣體
326‧‧‧成長溶液
402a,402b,402c‧‧‧硬性區域
404a,404b‧‧‧軟性區域
462‧‧‧硬性區域
464‧‧‧軟性區域
602,604‧‧‧區域
606‧‧‧接點
702,704,706,708‧‧‧區域
800‧‧‧(金屬化)系統
802‧‧‧室
804‧‧‧溫度控制裝置
806‧‧‧入口埠
808‧‧‧氣體
810‧‧‧入口埠
812‧‧‧氣體
814‧‧‧真空幫浦
900‧‧‧製程
902,904,906,908‧‧‧步驟
1100‧‧‧製程
1102,1104,1106,1108‧‧‧步驟
1202‧‧‧奈米糊劑
1206‧‧‧列印頭
1302‧‧‧溫度控制裝置
1402‧‧‧填角件
1500‧‧‧製程
1502,1504,1506,1508, 1510‧‧‧步驟
1602‧‧‧焊料
1604‧‧‧洞
1702‧‧‧金屬
1704‧‧‧遮罩材料
1706‧‧‧端部
1802‧‧‧金屬
1804‧‧‧噴濺設備
1806‧‧‧端部
1902‧‧‧金屬
1904‧‧‧填角件
2002‧‧‧金屬塗層
2004‧‧‧遮罩材料
2006‧‧‧柱的一部分
2102‧‧‧接觸尖端
2104‧‧‧導電金屬
2106‧‧‧遮罩材料
2110‧‧‧尖銳構造
2206‧‧‧遮罩材料
2304‧‧‧噴濺設備
2306‧‧‧端部
2402‧‧‧接觸尖端
2404‧‧‧耦合件
2406‧‧‧基材
2500‧‧‧探針卡總成
2502‧‧‧硬化體構造
2504‧‧‧耦合機制
2506‧‧‧電氣介面
2508‧‧‧佈線板
2510‧‧‧電氣連接件
2512‧‧‧電氣連接件
2552‧‧‧列印頭
2554‧‧‧奈米糊劑
2556‧‧‧溫度控制裝置
2558‧‧‧接觸尖端
2600‧‧‧測試系統
2602‧‧‧測試控制器
2604‧‧‧溝通連接件
2606‧‧‧測試頭
2608‧‧‧連接器
2610‧‧‧安裝表面
2616‧‧‧端子
2618‧‧‧DUT
2620‧‧‧殼體
2624‧‧‧夾盤
2800‧‧‧測試插座
2802‧‧‧夾子
2804‧‧‧端子
2806‧‧‧支撐架
2808‧‧‧斜狀壁
2810‧‧‧(測試)基材
2812‧‧‧端子
2816‧‧‧(半導體)芯片
2902‧‧‧電子裝置
2904‧‧‧端子
2906‧‧‧連結材料
2908‧‧‧端子
2910‧‧‧電子裝置
第1圖顯示依據本發明的一些實施例之製作具包括奈米碳管柱之探針之接觸裝置的製程的例子。
第2A圖顯示依據本發明的一些實施例之實施第1圖製程以製作接觸裝置的例子。
第2B圖顯示組合後之第2A圖的接觸裝置。
第2C圖顯示依據本發明的一些實施例之奈米碳管柱的照片。
第3圖顯示依據本發明的一些實施例之用以成長奈米碳管柱之成長系統的例子。
第4A圖顯示依據本發明的一些實施例之奈米碳管柱的例子,當變化一個以上之第3圖的系統參數以得到沿著奈米碳管柱之一個以上軟性區域時,同時成長奈米碳管柱。
第4B圖顯示依據本發明的一些實施例之具有軟性區域之奈米碳管柱之照片的例子。
第4C圖顯示依據本發明的一些實施例之奈米碳管柱之軟性區域回應施加於奈米碳管柱端點上之力量而壓縮的例子。
第5A圖顯示依據本發明的一些實施例之當變化一個以上之第3圖的系統參數使得柱硬度沿著柱變化時,奈米碳管柱成長的例子。
第5B圖顯示依據本發明的一些實施例之當成長參數隨著柱成長而增加時之圖形的例子。
第6圖顯示依據本發明的一些實施例之當變化一個以上之第3圖的系統參數使得柱硬度沿著柱之多個區域變化時,奈米碳管柱成長的例子。
第7圖顯示依據本發明的一些實施例之當變化一個以上之第3圖的系統參數使得奈米碳管柱包括具不同硬度之多數區域時,奈米碳管柱成長的例子。
第8圖顯示依據本發明的一些實施例之用於金屬化奈米碳管柱之系統的例子。
第9圖顯示依據本發明的一些實施例之用於金屬化奈米碳管柱之製程的例子。
第10A圖顯示依據本發明的一些實施例之金屬化奈米碳管柱的外部份。
第10B圖顯示一部分奈米碳管柱的照片,其被縱切以顯示金屬沉積於柱的外部份。
第11圖顯示依據本發明的一些實施例之奈米碳管柱從成長基材轉送至佈線基材之製程的例子。
第12圖顯示依據本發明的一些實施例之第11圖中沉積步驟的例子。
第13圖顯示依據本發明的一些實施例之第11圖置放及燒結步驟的例子。
第14圖顯示依據本發明的一些實施例之第11圖釋放步驟的例子。
第15圖顯示依據本發明的一些實施例之將奈米碳管柱從成長基材轉送至佈線基材之製程的另一例子。
第16圖顯示依據本發明的一些實施例之第15圖沉積焊料步驟的例子。
第17圖顯示依據本發明的一些實施例之第15圖金屬化步驟的例子。
第18圖顯示依據本發明的一些實施例之第15圖金屬化步驟的另一例子。
第19圖顯示依據本發明的一些實施例之第15圖之置放、重新流動及釋放步驟的例子。
第20圖顯示依據本發明的一些實施例之金屬塗層沉積於奈米碳管柱上的例子。
第21A圖顯示依據本發明的一些實施例之處理奈米碳管柱以在柱端點形成接觸尖端的例子。
第21B圖顯示依據本發明的一些實施例之奈米碳管柱之端點的照片,其顯示在柱端點之尖端構造的例子。
第22圖顯示依據本發明的一些實施例之金屬化第21A圖之至少部分奈米碳管柱之外部分的例子。
第23A圖顯示依據本發明的一些實施例之沉積金屬於奈米碳管柱之接觸尖端上的例子。
第23B圖顯示金屬已經沉積於其上之奈米碳管柱端點的照片。
第24圖顯示依據本發明的一些實施例之轉送形成於基材上之接觸尖端結構至奈米碳管柱端點的例子。
第25A及25B圖顯示依據本發明的一些實施例之使用奈米糊劑在柱端點形成接觸尖端的另一例子。
第26圖顯示依據本發明的一些實施例之具有包括奈米碳管柱之探針之探針卡總成的例子。
第27圖顯示依據本發明的一些實施例之用於測試半導體芯片之測試系統的例子,其中可使用第26圖之探針卡總成。
第28圖顯示依據本發明的一些實施例之具有包括奈米碳管柱之探針之測試插座的例子。
第29圖顯示依據本發明的一些實施例之以包括奈米碳管柱之探針電氣連接的電子裝置。
100‧‧‧製程
102,104,106,108,110‧‧‧步驟

Claims (7)

  1. 一種探針卡總成,包含:包含一電氣介面的一佈線基材,該電氣介面係供介接至一測試器,而該測試器用以控制一受測電子裝置之測試作用;及包含多數探針的一探針基材,該等多數探針以一對應至該受測電子裝置之數個端子的圖案配置,各個探針包含一奈米碳管柱,該奈米碳管柱包含一成束之奈米碳管,數個黏著材料接合件,各黏著材料接合件將該等奈米碳管柱中之一者結合至該探針基材之多個端子中之一者,各個黏著材料接合件包含有燒結奈米粒子之一質塊,而該質塊熔接至該等奈米碳管柱中之該一者及該等端子中之該一者,其中,該探針基材機械性地耦合至該佈線基材,而且該等探針經由該探針基材及該佈線基材電氣連接至該電氣介面。
  2. 如申請專利範圍第1項的探針卡總成,其中各個奈米碳管柱包含沿著該奈米碳管柱之長度的多數交替的硬性區域及軟性區域,各個軟性區域的硬度值少於各個硬性區域的硬度值。
  3. 如申請專利範圍第1項的探針卡總成,更包含積設於至少一些奈米碳管上的一導電金屬,而該等奈米碳管配置在各個奈米碳管柱的一外部,該金屬增強該奈米碳管柱 的導電性。
  4. 如申請專利範圍第1項的探針卡總成,更包含積設於至少一些奈米碳管上的一導電金屬,而該等奈米碳管配置在各個奈米碳管柱的內部,該金屬增強該奈米碳管柱的導電性。
  5. 如申請專利範圍第1項的探針卡總成,其中:該等奈米碳管柱的數個第一端點藉由該等黏著材料接合件結合至該探針基材的該等端子,及該等奈米碳管柱中相對於該等第一端點的數個第二端點包含數個接觸尖端。
  6. 如申請專利範圍第5項的探針卡總成,其中各個接觸尖端包含:在該奈米碳管柱之該第二端點處的尖銳化構造,及積設於該奈米碳管柱之該第二端點上的導電金屬。
  7. 如申請專利範圍第5項的探針卡總成,其中各個接觸尖端包含以一結合材料耦合至該奈米碳管柱之該第二端點的一接觸尖端構造。
TW099130847A 2009-09-14 2010-09-13 探針卡總成 TWI526689B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24220609P 2009-09-14 2009-09-14
US12/632,428 US8354855B2 (en) 2006-10-16 2009-12-07 Carbon nanotube columns and methods of making and using carbon nanotube columns as probes

Publications (2)

Publication Number Publication Date
TW201113529A TW201113529A (en) 2011-04-16
TWI526689B true TWI526689B (zh) 2016-03-21

Family

ID=43733080

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099130847A TWI526689B (zh) 2009-09-14 2010-09-13 探針卡總成

Country Status (5)

Country Link
US (1) US8354855B2 (zh)
JP (1) JP5796013B2 (zh)
KR (2) KR101889366B1 (zh)
TW (1) TWI526689B (zh)
WO (1) WO2011031759A2 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439731B2 (en) 2005-06-24 2008-10-21 Crafts Douglas E Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures
US8045859B2 (en) * 2008-05-02 2011-10-25 The United States Of America As Represented By The Secretary Of The Navy High-speed underwater data transmission system and method
EP2329502B1 (en) 2008-09-29 2014-09-17 Wentworth Laboratories, Inc. Methods of fabricating nanotube probes
US8272124B2 (en) * 2009-04-03 2012-09-25 Formfactor, Inc. Anchoring carbon nanotube columns
US20100252317A1 (en) * 2009-04-03 2010-10-07 Formfactor, Inc. Carbon nanotube contact structures for use with semiconductor dies and other electronic devices
US8872176B2 (en) 2010-10-06 2014-10-28 Formfactor, Inc. Elastic encapsulated carbon nanotube based electrical contacts
US9267968B2 (en) 2010-12-09 2016-02-23 Wentworth Laboratories, Inc. Probe card assemblies and probe pins including carbon nanotubes
US9505615B2 (en) 2011-07-27 2016-11-29 California Institute Of Technology Method for controlling microstructural arrangement of nominally-aligned arrays of carbon nanotubes
WO2013052176A2 (en) * 2011-07-27 2013-04-11 California Institute Of Technology Carbon nanotube foams with controllable mechanical properties
EP2763167B1 (en) 2011-09-26 2016-06-29 Fujitsu Limited Heat-dissipating material and method for producing same, and electronic device and method for producing same
JP5863168B2 (ja) * 2011-11-10 2016-02-16 株式会社日本マイクロニクス プローブカード及びその製造方法
US9616635B2 (en) 2012-04-20 2017-04-11 California Institute Of Technology Multilayer foam structures of nominally-aligned carbon nanotubes (CNTS)
US10266402B2 (en) * 2012-11-20 2019-04-23 Formfactor, Inc. Contactor devices with carbon nanotube probes embedded in a flexible film and processes of making such
US9523713B2 (en) * 2013-05-28 2016-12-20 Intel Corporation Interconnects including liquid metal
TWI539164B (zh) 2013-11-22 2016-06-21 財團法人工業技術研究院 塗佈探針及其製作方法
US10732201B2 (en) 2014-04-13 2020-08-04 Infineon Technologies Ag Test probe and method of manufacturing a test probe
WO2017156502A1 (en) 2016-03-10 2017-09-14 Carnegie Mellon University Integrated electronic device with flexible and stretchable substrate
US20200041543A1 (en) * 2017-03-21 2020-02-06 Nidec-Read Corporation Probe structure and method for producing probe structure
US20190011497A1 (en) * 2017-07-09 2019-01-10 Texas Instruments Incorporated Test Fixture with Sintered Connections Between Mother Board and Daughter Board
JP2019035698A (ja) * 2017-08-18 2019-03-07 日本電産リード株式会社 プローブ構造体、及びプローブ構造体の製造方法
KR102221162B1 (ko) * 2019-04-04 2021-02-26 연세대학교 산학협력단 금속 나노입자가 코팅된 탄소나노튜브 네트워크를 포함하는 접촉식 마이크로 소자 및 이의 제조 방법
US11774467B1 (en) 2020-09-01 2023-10-03 Microfabrica Inc. Method of in situ modulation of structural material properties and/or template shape

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69728410T2 (de) 1996-08-08 2005-05-04 William Marsh Rice University, Houston Makroskopisch manipulierbare, aus nanoröhrenanordnungen hergestellte vorrichtungen
JP3740295B2 (ja) 1997-10-30 2006-02-01 キヤノン株式会社 カーボンナノチューブデバイス、その製造方法及び電子放出素子
US6020747A (en) 1998-01-26 2000-02-01 Bahns; John T. Electrical contact probe
JP2002518280A (ja) 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク 整列した自立炭素ナノチューブおよびその合成
US6346189B1 (en) 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US6597090B1 (en) 1998-09-28 2003-07-22 Xidex Corporation Method for manufacturing carbon nanotubes as functional elements of MEMS devices
US6232706B1 (en) 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
KR100398276B1 (ko) 1998-12-03 2003-09-19 다이켄카가쿠 코교 가부시키가이샤 전자장치의 표면신호조작용 프로우브 및 그 제조방법
AUPQ065099A0 (en) 1999-05-28 1999-06-24 Commonwealth Scientific And Industrial Research Organisation Substrate-supported aligned carbon nanotube films
US6401526B1 (en) 1999-12-10 2002-06-11 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotubes and methods of fabrication thereof using a liquid phase catalyst precursor
DE10006964C2 (de) 2000-02-16 2002-01-31 Infineon Technologies Ag Elektronisches Bauelement mit einer leitenden Verbindung zwischen zwei leitenden Schichten und Verfahren zum Herstellen eines elektronischen Bauelements
AU2001261689A1 (en) 2000-05-16 2001-11-26 Rensselaer Polytechnic Institute Electrically conducting nanocomposite materials for biomedical applications
US6709566B2 (en) 2000-07-25 2004-03-23 The Regents Of The University Of California Method for shaping a nanotube and a nanotube shaped thereby
US6457350B1 (en) 2000-09-08 2002-10-01 Fei Company Carbon nanotube probe tip grown on a small probe
US7258901B1 (en) 2000-09-08 2007-08-21 Fei Company Directed growth of nanotubes on a catalyst
JP2002141633A (ja) * 2000-10-25 2002-05-17 Lucent Technol Inc 垂直にナノ相互接続された回路デバイスからなる製品及びその製造方法
JP2002179418A (ja) 2000-12-13 2002-06-26 Tohoku Techno Arch Co Ltd カーボン・ナノチューブ作成方法
JP3912583B2 (ja) 2001-03-14 2007-05-09 三菱瓦斯化学株式会社 配向性カーボンナノチューブ膜の製造方法
US6890506B1 (en) 2001-04-12 2005-05-10 Penn State Research Foundation Method of forming carbon fibers
US7160531B1 (en) 2001-05-08 2007-01-09 University Of Kentucky Research Foundation Process for the continuous production of aligned carbon nanotubes
DE10132787A1 (de) 2001-07-06 2003-01-30 Infineon Technologies Ag Katalysatormaterial, Kohlenstoffnanoröhren-Anordnung und Verfahren zum Herstellen einer Kohlenstoffnanoröhren-Anordnung
JP3768937B2 (ja) 2001-09-10 2006-04-19 キヤノン株式会社 電子放出素子、電子源及び画像表示装置の製造方法
AU2002357037A1 (en) 2001-11-30 2003-06-17 The Trustees Of Boston College Coated carbon nanotube array electrodes
EP1341184B1 (en) 2002-02-09 2005-09-14 Samsung Electronics Co., Ltd. Memory device utilizing carbon nanotubes and method of fabricating the memory device
AU2003210961A1 (en) 2002-02-11 2003-09-04 Rensselaer Polytechnic Institute Directed assembly of highly-organized carbon nanotube architectures
JP3860057B2 (ja) * 2002-03-20 2006-12-20 アンリツ株式会社 電気接点装置及び接触子
US20040208788A1 (en) 2003-04-15 2004-10-21 Colton Jonathan S. Polymer micro-cantilevers and their methods of manufacture
US6626684B1 (en) 2002-06-24 2003-09-30 Hewlett-Packard Development Company, L.P. Nanotube socket system and method
EP1578599A4 (en) 2002-08-01 2008-07-02 Oregon State METHOD FOR SYNTHETIZING NANOSTRUCTURES AT FIXED PLACES
JP2006501484A (ja) 2002-09-20 2006-01-12 ザ トラスティーズ オブ ボストン カレッジ ナノスケール磁気顕微鏡用のナノチューブカンチレバープローブ
JP3933035B2 (ja) 2002-11-06 2007-06-20 富士ゼロックス株式会社 カーボンナノチューブの製造装置および製造方法
WO2004046031A1 (en) 2002-11-18 2004-06-03 Rensselaer Polytechnic Institute Nanotube polymer composite and methods of making same
TWI220162B (en) 2002-11-29 2004-08-11 Ind Tech Res Inst Integrated compound nano probe card and method of making same
US6933222B2 (en) 2003-01-02 2005-08-23 Intel Corporation Microcircuit fabrication and interconnection
WO2004102582A1 (en) 2003-03-05 2004-11-25 University Of Florida Carbon nanotube-based probes, related devices and methods of forming the same
US7082683B2 (en) 2003-04-24 2006-08-01 Korea Institute Of Machinery & Materials Method for attaching rod-shaped nano structure to probe holder
TWI220163B (en) 2003-04-24 2004-08-11 Ind Tech Res Inst Manufacturing method of high-conductivity nanometer thin-film probe card
US7531267B2 (en) 2003-06-02 2009-05-12 Kh Chemicals Co., Ltd. Process for preparing carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder
US20050019245A1 (en) 2003-07-21 2005-01-27 Dmitri Koulikov Continuous production of carbon nanotubes and fullerenes
GB0318987D0 (en) 2003-08-13 2003-09-17 Univ Warwick Probe
JP2005083857A (ja) 2003-09-08 2005-03-31 Yoshikazu Nakayama ナノチューブプローブ及び製造方法
US7473411B2 (en) 2003-12-12 2009-01-06 Rensselaer Polytechnic Institute Carbon nanotube foam and method of making and using thereof
DE602004013641D1 (de) 2004-03-02 2008-06-19 Eth Zuerich Kraftsensor
US7250188B2 (en) 2004-03-31 2007-07-31 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defense Of Her Majesty's Canadian Government Depositing metal particles on carbon nanotubes
US20050233263A1 (en) 2004-04-20 2005-10-20 Applied Materials, Inc. Growth of carbon nanotubes at low temperature
US7251884B2 (en) 2004-04-26 2007-08-07 Formfactor, Inc. Method to build robust mechanical structures on substrate surfaces
US20050285116A1 (en) 2004-06-29 2005-12-29 Yongqian Wang Electronic assembly with carbon nanotube contact formations or interconnections
US20060028220A1 (en) 2004-07-21 2006-02-09 K&S Interconnect, Inc. Reinforced probes for testing semiconductor devices
JP4167212B2 (ja) 2004-10-05 2008-10-15 富士通株式会社 カーボンナノチューブ構造体、半導体装置、および半導体パッケージ
US7621044B2 (en) * 2004-10-22 2009-11-24 Formfactor, Inc. Method of manufacturing a resilient contact
JP2006125846A (ja) 2004-10-26 2006-05-18 Olympus Corp カンチレバー
CN100501413C (zh) 2005-01-22 2009-06-17 鸿富锦精密工业(深圳)有限公司 集成电路检测装置及其制备方法
US20060188721A1 (en) 2005-02-22 2006-08-24 Eastman Kodak Company Adhesive transfer method of carbon nanotube layer
US20060198956A1 (en) 2005-03-04 2006-09-07 Gyula Eres Chemical vapor deposition of long vertically aligned dense carbon nanotube arrays by external control of catalyst composition
US7439731B2 (en) 2005-06-24 2008-10-21 Crafts Douglas E Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures
US7538040B2 (en) 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers
DE102006039651A1 (de) 2005-08-31 2007-03-22 Hitachi Kenki Finetech Co., Ltd. Cantilever und Prüfvorrichtung
WO2007033188A2 (en) 2005-09-12 2007-03-22 University Of Dayton Substrate-enhanced electroless deposition (seed) of metal nanoparticles on carbon nanotubes
CN1964028B (zh) 2005-11-11 2010-08-18 鸿富锦精密工业(深圳)有限公司 散热器
US7727624B2 (en) 2005-11-22 2010-06-01 Rensselaer Polytechnic Institute Super-compressible carbon nanotube films and micro-bundles
US7625817B2 (en) 2005-12-30 2009-12-01 Intel Corporation Method of fabricating a carbon nanotube interconnect structures
US20070158768A1 (en) 2006-01-06 2007-07-12 Honeywell International, Inc. Electrical contacts formed of carbon nanotubes
KR101159074B1 (ko) 2006-01-14 2012-06-25 삼성전자주식회사 도전성 탄소나노튜브 팁, 이를 구비한 스캐닝 프로브마이크로스코프의 탐침 및 상기 도전성 탄소나노튜브 팁의제조 방법
JP4806762B2 (ja) 2006-03-03 2011-11-02 国立大学法人 名古屋工業大学 Spmカンチレバー
US20070235713A1 (en) 2006-04-03 2007-10-11 Motorola, Inc. Semiconductor device having carbon nanotube interconnects and method of fabrication
EP1845124A1 (en) 2006-04-14 2007-10-17 Arkema France Conductive carbon nanotube-polymer composite
WO2007139244A1 (en) 2006-05-30 2007-12-06 Korea Basic Science Institute A carbon nanotube of which surface is modified by transition metal coordination, and a method for modifying the same
US7731503B2 (en) 2006-08-21 2010-06-08 Formfactor, Inc. Carbon nanotube contact structures
US8130007B2 (en) 2006-10-16 2012-03-06 Formfactor, Inc. Probe card assembly with carbon nanotube probes having a spring mechanism therein
TWI360182B (en) 2007-10-05 2012-03-11 Ind Tech Res Inst Method for making a conductive film
US8149007B2 (en) 2007-10-13 2012-04-03 Formfactor, Inc. Carbon nanotube spring contact structures with mechanical and electrical components
JP5266491B2 (ja) * 2007-12-25 2013-08-21 ニッタ株式会社 カーボンナノチューブの製造方法
US20100252317A1 (en) 2009-04-03 2010-10-07 Formfactor, Inc. Carbon nanotube contact structures for use with semiconductor dies and other electronic devices
US8272124B2 (en) 2009-04-03 2012-09-25 Formfactor, Inc. Anchoring carbon nanotube columns
US8872176B2 (en) 2010-10-06 2014-10-28 Formfactor, Inc. Elastic encapsulated carbon nanotube based electrical contacts

Also Published As

Publication number Publication date
TW201113529A (en) 2011-04-16
JP5796013B2 (ja) 2015-10-21
KR20120082427A (ko) 2012-07-23
JP2013504509A (ja) 2013-02-07
WO2011031759A3 (en) 2011-08-25
US8354855B2 (en) 2013-01-15
US20100083489A1 (en) 2010-04-08
WO2011031759A2 (en) 2011-03-17
KR20180095099A (ko) 2018-08-24
KR101889366B1 (ko) 2018-08-17

Similar Documents

Publication Publication Date Title
TWI526689B (zh) 探針卡總成
US8149007B2 (en) Carbon nanotube spring contact structures with mechanical and electrical components
US6322713B1 (en) Nanoscale conductive connectors and method for making same
US8756802B2 (en) Carbon nanotube contact structures for use with semiconductor dies and other electronic devices
TWI429581B (zh) 奈米碳管接觸結構
US8093147B2 (en) Device structure of carbon fibers and manufacturing method thereof
US20050167816A1 (en) Method for making a socket to perform testing on integrated circuits
KR100968183B1 (ko) 금속화 엘라스토머 프로브 구조
US6835613B2 (en) Method of producing an integrated circuit with a carbon nanotube
TW200848742A (en) Structures and processes for fabrication of probe card assemblies with multi-layer interconnect
CN101495407A (zh) 高度密集且垂直排列的碳纳米管的辅助选择性生长
Hermann et al. Carbon nanotubes for nanoscale low temperature flip chip connections
TW201636617A (zh) 電測試插座以及用於電測試插座的導電粒子的製造方法
US20050108875A1 (en) Methods for making vertical electric feed through structures usable to form removable substrate tiles in a wafer test system
TWI613872B (zh) 製造接觸空間轉換器之方法及接觸空間轉換器
TW512431B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
KR101825095B1 (ko) 탄소막이 코팅된 반도체 검사 장치용 프로브 핀 및 그 제조방법
JP2010253730A (ja) 放熱材料、プリント基板およびプリント基板の製造方法
Shah et al. Towards cable-to-cable connectors for flexible thin-film superconducting transmission lines
Siah et al. Development of a CMOS-Compatible Carbon Nanotube Array Transfer Method. Micromachines 2021, 12, 95
RU2806062C2 (ru) Теплоотводящий элемент и способ его изготовления
JP2011029352A (ja) 回路基板、電子機器及びそれらの製造方法
Nick et al. Low temperature substrate transfer technique for 3D vertically aligned carbon nanotube architectures
TWI503552B (zh) 測試探針及其製造方法
JPS63285193A (ja) ダイヤモンド膜被覆基板の製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees