TWI512794B - 藉由雷射能量輻射一半導體材料表面的方法與設備 - Google Patents

藉由雷射能量輻射一半導體材料表面的方法與設備 Download PDF

Info

Publication number
TWI512794B
TWI512794B TW099110779A TW99110779A TWI512794B TW I512794 B TWI512794 B TW I512794B TW 099110779 A TW099110779 A TW 099110779A TW 99110779 A TW99110779 A TW 99110779A TW I512794 B TWI512794 B TW I512794B
Authority
TW
Taiwan
Prior art keywords
size
beam spot
laser
semiconductor material
region
Prior art date
Application number
TW099110779A
Other languages
English (en)
Other versions
TW201042710A (en
Inventor
Julien Venturini
Cyril Dutems
Marc Bucchia
Bruno Godard
Original Assignee
Laser Systems & Solutions Of Europ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Systems & Solutions Of Europ filed Critical Laser Systems & Solutions Of Europ
Publication of TW201042710A publication Critical patent/TW201042710A/zh
Application granted granted Critical
Publication of TWI512794B publication Critical patent/TWI512794B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02354Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light using a coherent radiation, e.g. a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • H01L23/5258Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive the change of state resulting from the use of an external beam, e.g. laser beam or ion beam

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Laser Beam Processing (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

藉由雷射能量輻射一半導體材料表面的方法與設備
本發明係關於一種藉由一雷射輻射一半導體材料表面的方法。本發明進一步係關於一種用於輻射一半導體材料表面的雷射設備。
熟知半導體材料表面之雷射輻射係用於諸多應用,諸如非晶矽之熱退火以獲得再結晶、及摻雜物活化。此項技術藉由實現一極快速熱處理及較淺之加熱區域深度而提供明顯優於習知加熱製程之優點。
用於半導體應用之習知雷射輻射製程的一般性問題是,由於熱製程所需要的高能量密度及傳統可用雷射源的低輸出能量而致使雷射點尺寸遠小於晶粒(亦稱為晶片或裝置)尺寸。因此,雷射點必須橫越或掃描晶粒以覆蓋整個晶粒,此導致若干缺點。
如Current及Borland(Technologies New Metrology for Annealing of USJ and Thin Films,16th IEEE International Conference on Advanced Thermal Processing of Semiconductors-RTP2008)所描述且如圖1及圖2所繪示,第一缺點在於:若雷射點(b)掃描或橫越晶粒(a),則連續雷射點將在晶粒之某些部分(c)重疊,此導致摻雜物活化速率或深度之不均勻性及表面品質之不均勻性。
另一缺點在於:若在相同表面區域上需要多個雷射脈衝,則雷射點以極高重疊性掃描或橫越該表面,以使經處理表面區域之各個點上的多個雷射脈衝平均化,此導致有限生產速率及週期不均勻性(所謂的莫爾圖案(moir-pattern))。
另一個一般性問題在於:用於不同應用類型之晶粒通常具有不同尺寸,且另外在一些應用中,僅需輻射晶粒之若干部分。熟練人員應熟知,為了能夠以有限重疊性處理不同晶粒尺寸或晶粒之若干部分,光束點係藉由各種不同尺寸之遮罩予以塑形。因此,由於每次需要另一尺寸時必須改變及調諧遮罩,故製造靈活性嚴重受限且停工時間可能相當長。
為試圖克服上述缺點,WO 01/61407(Hawryluk等人)描述一種使用一可變孔隙光闌來界定曝光場尺寸之雷射輻射設備。
然而,一明顯缺點在於:根據Hawryluk等人,獲得滿意均勻性所需之雷射光源需為具有多於1000個空間模式的一固態雷射,其並非當前可購得之雷射源。
設定光束點尺寸之另一實例係US 2006/0176920,其中Park等人描述一種包括強度圖案調節單元之雷射輻射設備,該等強度圖案調節單元具有一通孔、一半通孔及一阻斷區域以藉由調節一帶狀雷射光束之長度而可變地調節其強度。
考慮到上述雷射輻射製程之缺點,明顯需要根據本發明之雷射輻射方法及設備,其作為一第一目的可提供處理半導體材料層以在晶粒內及晶圓內獲得可接受均勻性,同時保持可接受之生產速率及製造靈活性的能力。
本發明可使重疊效應及衰減區域減少,此作為第二目的。
本發明可提供在材料層表面上產生具有靈活影像形狀之一光束的能力,此作為另一目的。
本發明可提供在較低溫度下輻射且使雷射能量最大化地轉換為熱的能力,此作為另一目的。
本發明藉由使雷射光束點尺寸可變地匹配於選定區域尺寸而滿足上述目的。
本發明係關於一種輻射半導體材料之方法,其包括:
- 選擇一半導體材料層表面之一區域,該區域具有一區域尺寸;利用具有一光束點尺寸之一準分子雷射來輻射該半導體材料層表面之該區域;
- 及調整該光束點尺寸;
該方法之特徵為調整該光束點尺寸包括使該光束點尺寸可變地匹配於該選定區域尺寸。
本發明進一步係關於一種用於輻射半導體材料之設備,其包括:
- 一準分子雷射,其係用於輻射一半導體材料層表面之一選定區域,該雷射具有一雷射光束點尺寸且該選定區域具有一區域尺寸;
- 及一用於調整該雷射光束點尺寸之構件;
該設備之特徵為該用於調整該雷射光束點尺寸之構件係經調適以使該雷射光束點尺寸可變地匹配於該選定區域尺寸。
熟習此項技術者應瞭解根據本發明下文所描述之實施例僅為闡釋性,而並非限制本發明之預期範疇。亦可考慮其他實施例。
根據本發明之一第一實施例,提供一種輻射半導體材料之方法,其包括:
- 選擇一半導體材料層表面之一區域,該區域具有一區域尺寸;
- 利用具有一光束點尺寸之一準分子雷射來輻射該半導體材料層表面之該區域;
- 及調整該光束點尺寸;
該方法之特徵為調整該光束點尺寸包括使該光束點尺寸可變地匹配於該選定區域尺寸。
藉由使該光束點尺寸可變地匹配於該選定區域尺寸,該方法可因減少重疊效應及衰減區域而在晶粒內及晶圓內提供可接受之均勻性。此外,該方法可藉由在該材料層表面上產生具有靈活形狀及尺寸之一光束點的能力而提供可接受之生產速率及製造靈活性。
半導體材料層可為適於半導體應用之任何材料,諸如(但不限於)未摻雜矽、摻雜矽、植入矽、結晶矽、非晶矽、矽鍺、氮化鍺、III-V化合物半導體(諸如氮化鎵、碳化矽)及類似物。
在根據本發明之一實施例中,可藉由改變其影像形成於材料層表面上之一可變孔隙的尺寸及形狀而匹配光束點尺寸。實際上,此孔隙為一孔或一開口,雷射光束從中穿過且該孔或該開口界定光束點在選定區域上之形狀及尺寸。藉由機械地改變此可變孔隙,可使光束點尺寸及/或形狀匹配於選定區域尺寸及/或形狀。如圖5所繪示,此可變孔隙可配備有其位置可經可變地調整之葉片。
視所需之光束點精確度而定,可能需要精細調整孔隙以校正不精確度並且使點尺寸與選定區域精確地匹配。可藉由使用一相機來視覺化材料層表面上之光束點,量測點尺寸及調整孔隙之開口尺寸及形狀來執行此精細調整。在一孔隙配備有葉片之情況下,可精細地調諧葉片位置以達到具有所期望精確度之目標點尺寸。
在根據本發明或與一可變孔隙組合之一替代性實施例中,可藉由具有可變影像放大倍數之一光學系統而匹配光束點尺寸。此光學系統經調適以利用可變放大倍數而在晶圓上產生孔隙之影像。
進一步根據本發明,該方法可包括相對於選定區域沿XYZ方向對準光束點。
在本發明之一較佳實施例中且如圖3所繪示,選定區域可為至少一整個晶粒。可藉由一雷射脈衝來處理該整個晶粒。此外,該晶粒可接收多個雷射脈衝,完全覆蓋整個晶粒。另外亦如圖3所繪示,選定區域可覆蓋多個晶粒。圖4顯示輻射一或多個整個晶粒可明顯有助於增加晶粒上之均勻輻射能量分佈(e),且有助於減少重疊效應(c),導致製程均勻性增加。
根據本發明之一方法可進一步包括在使光束點尺寸匹配於選定區域尺寸之前均勻化雷射光束。均勻化雷射光束將明顯有助於增加製程均勻性。
進一步根據本發明,提供一種用於輻射半導體材料之設備,其包括:
- 一準分子雷射,其係用於輻射一半導體層表面之一選定區域,該雷射具有一雷射光束點尺寸且該選定區域具有一區域尺寸;
- 及一用於調整該雷射光束點尺寸之構件;
該設備之特徵為該用於調整該雷射光束點尺寸之構件係經調適以使該雷射光束點尺寸可變地匹配於該選定區域尺寸。
該準分子雷射可為其波長、能量及脈衝持續時間經調適用於製程之任何準分子雷射,較佳為氯化氙準分子雷射。
該準分子雷射之波長可在190奈米至480奈米之範圍內且較佳為308奈米,因為在該等波長處矽能量吸收高。
雷射能量可在5焦耳至25焦耳之範圍內。為達成該等能量,使雷射放電體積最佳化為通常10釐米(內部電極間距)×7釐米至10釐米(放電寬度)×100釐米至200釐米(放電長度)。
脈衝持續時間對應於用於減少摻雜物擴散之快速加熱與用於減少缺陷形成之相對緩慢冷卻之間的最佳時間,且可在100奈秒至1000奈秒之範圍內,較佳為在100奈秒至300奈秒之範圍內。
在一較佳實施例中,準分子雷射可經調適以產生大於80平方釐米(較佳為100平方釐米)之一大面積輸出光束。
在另一較佳實施例中,準分子雷射可經調適以產生具有1焦耳每平方釐米與10焦耳每平方釐米之間的能量密度之一雷射光束。
根據本發明,用於匹配雷射光束點尺寸之構件可包括一可變孔隙。該可變孔隙不僅可界定光束點尺寸及/或形狀,亦可透過藉由一高解析度成像系統使此孔隙成像而明顯有助於獲得清晰影像邊緣(圖4,f),藉此減少衰減區域及重疊效應。
替代地,根據本發明,用於匹配雷射光束點尺寸之構件包括具有可變影像放大倍數之一光學系統。在如圖6所示之此光學系統中,可藉由一延遲線而調整一第一透鏡或一第一群組透鏡(物鏡,第1群組)與一第二透鏡或第二群組透鏡(物鏡,第2群組)之間的距離,從而調整該系統之放大倍數(通常為自4倍至8倍)。
具有可變影像放大倍數之光學系統可與一可變孔隙組合或不組合地使用。
在本發明之一實施例中,選定區域上之光束點尺寸可調整成自1平方釐米至4.5平方釐米的矩形形狀。
根據本發明之一設備可進一步包括用於沿XYZ方向對準光束點與選定區域之構件。
較佳地,焦點深度應儘可能長且較佳為大於100微米,以便無需極精確、複雜及昂貴地沿焦點調整位置。
雷射光束入射於選定區域上之角度相對於與半導體材料層正交之平面可成一角度(通常為5°),以避免離開表面之反射光被射回光學系統中。
根據本發明之一設備可進一步包括定位於用於調整雷射光束點尺寸之構件之前的一光束均化器。
根據本發明之一設備可進一步包括一圖案辨識系統。此圖案辨識系統可包括一相機,該相機係機械地連結至用於固持半導體材料之一平台且定位於材料層表面上方。在一特定實施例中,來自該相機之影像可經處理以定位在半導體材料上經蝕刻之若干(通常為3個)對準標記。該等對準標記可提供該半導體材料在該設備座標系統中的精確位置。
根據本發明之設備可用於製得半導體材料或裝置,諸如(但不限於)CMOS影像感測器及3D記憶體。
關於CMOS影像感測器,本發明之方法及設備對於背面照明CMOS影像感測器極為有用,其中將光收集於裝置背面上,而在正面上執行讀出/電荷收集。背面照明需要以極好均勻性之活化速率及深度來活化背面摻雜物。此外,活化製程必須維持極高表面品質以在整個感測器上維持影像品質。藉由使用本發明之方法及設備,可藉由一個脈衝輻射一或多個整個感測器之背面,藉此避免重複性地掃描或橫越且達成所需之感測器均勻性。
根據本發明之一方法的實例
步驟0:載入晶圓及相對於光束點粗略地定位晶圓
步驟1:選擇輻射參數:
基於下列選擇輻射參數
- 特定晶圓基板上所需之能量密度(例如,2焦耳每平方釐米)
- 晶圓上之處理區域的尺寸(XW×YW)(例如,18毫米×12毫米)
- 晶圓上待輻射之晶粒相對於一參考位置之座標((Xi,Yi),i=1至N,其中N為待輻射晶粒之數量)。
步驟2:調整系統放大倍數:
- 計算光學系統之放大倍數(G),其將在晶圓上產生最接近於晶圓上所期望尺寸(XW×YW)之一點尺寸,同時使孔隙葉片處於其完全打開位置(Xopen=96毫米,Yopen=76毫米)。在此實例中,G=Xopen/XW=96/18=5.33。
- 將延遲線位置調整為一預設定位置(由先前校準決定),其對應於所期望之放大倍率,導致晶圓上之一點尺寸為96/5.33×72/5.33=18毫米×13.5毫米。亦需要精細地調整物鏡群組之焦點。
步驟3:調整遮罩尺寸:
- 調整孔隙葉片位置以達成所需光束尺寸。在此實例中,打開位置中留有兩個垂直葉片(調整X)且調整兩個水平葉片以達到Y=12毫米,導致晶圓上之一點尺寸為標稱18毫米×12毫米。
- 精細地調諧孔隙葉片位置。
步驟4:相對於待處理之晶圓來定位雷射點
- 一圖案辨識步驟將相對於晶圓平台座標系統而將3個對準標記之精確位置定位於晶圓上
- 移動晶圓平台以使待處理之第一晶粒的位置疊合雷射點位置。
步驟5:輻射
- 該雷射以所需能量密度輻射第一晶粒。輻射能量係藉由調整雷射充電電壓及使用光束路徑中之可變衰減器而加以控制。
- 將晶圓平台移動至下一晶粒位置(Xi,Yi)。
- 重複輻射及移動晶圓平台直至輻射所有待處理之晶粒為止。
a...晶粒
b...雷射點
c...雷射點重疊之部分
e...晶粒上之均勻輻射能量分佈
f...清晰影像邊緣
圖1繪示一先前技術方法。
圖2繪示另一先前技術方法。
圖3繪示根據本發明之一方法。
圖4繪示根據本發明之一整個晶粒上方的一較佳輻射能量分佈。
圖5繪示一可變孔隙。
圖6繪示具有可變影像放大倍數之一光學系統。
a...晶粒
b...雷射點

Claims (12)

  1. 一種輻射半導體材料之方法,其包括:選擇一半導體材料層表面之一區域,該區域具有一區域尺寸;利用具有一光束點尺寸之一準分子雷射來輻射該半導體材料層表面之該區域;及藉由該光束點尺寸可變地匹配於選定的該區域尺寸而調整該光束點尺寸;該方法之特徵為藉由改變其影像形成於該半導體材料層表面上之一可變孔隙的尺寸及形狀而匹配該光束點尺寸。
  2. 如請求項1之方法,其中匹配該光束點尺寸包括以可變影像放大倍數來產生該可變孔隙之該影像在該半導體材料層表面上。
  3. 如請求項1或2之方法,其進一步包括沿XYZ方向使一光束點與選定的該區域對準。
  4. 如請求項1或2之方法,其中選定的該區域為至少一整個晶粒。
  5. 如請求項1或2之方法,其進一步包括在使該光束點尺寸匹配於選定的該區域尺寸之前均勻化一雷射光束。
  6. 一種用於輻射半導體材料之設備,其包括:一準分子雷射,其係用於輻射一半導體材料層表面之一選定區域,該準分子雷射具有一雷射光束點尺寸且該選定區域具有一區域尺寸;及 一用於調整該雷射光束點尺寸之構件,其包括用於可變地匹配該雷射光束點尺寸於選定的該區域尺寸之構件;該設備之特徵為用於可變地匹配該雷射光束點尺寸於選定的該區域尺寸之該構件包括一可變孔隙及用於形成該可變孔隙之一影像於該半導體材料層表面上之一高解析度成像系統。
  7. 如請求項6之設備,其中該準分子雷射係經調適以產生具有1焦耳每平方釐米與10焦耳每平方釐米之間的一能量密度之一雷射光束。
  8. 如請求項6或7之設備,其中該用於匹配該雷射光束點尺寸之構件包括具有可變影像放大倍數之一光學系統。
  9. 如請求項6或7之設備,其進一步包括用於沿XYZ方向對準一光束點與該選定區域之構件。
  10. 如請求項6或7之設備,其中該光束點尺寸匹配至少一整個晶粒。
  11. 如請求項6或7之設備,其進一步包括定位於該用於調整該雷射光束點尺寸之構件之前的一光束均化器。
  12. 一種如請求項6至11中之任一項之設備用於製造半導體材料的用途。
TW099110779A 2009-04-07 2010-04-07 藉由雷射能量輻射一半導體材料表面的方法與設備 TWI512794B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09305290A EP2239084A1 (en) 2009-04-07 2009-04-07 Method of and apparatus for irradiating a semiconductor material surface by laser energy

Publications (2)

Publication Number Publication Date
TW201042710A TW201042710A (en) 2010-12-01
TWI512794B true TWI512794B (zh) 2015-12-11

Family

ID=41057788

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099110779A TWI512794B (zh) 2009-04-07 2010-04-07 藉由雷射能量輻射一半導體材料表面的方法與設備

Country Status (8)

Country Link
US (1) US9700959B2 (zh)
EP (2) EP2239084A1 (zh)
JP (2) JP2012522646A (zh)
KR (1) KR20120004514A (zh)
CN (1) CN102413986A (zh)
SG (2) SG10201401316UA (zh)
TW (1) TWI512794B (zh)
WO (1) WO2010115763A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466963A (zh) * 2010-11-12 2012-05-23 北京京东方光电科技有限公司 一种掩膜版及一种掩膜曝光的方法
US9496432B2 (en) 2011-11-23 2016-11-15 Imec Method for forming metal silicide layers
EP2770544A1 (en) 2013-02-21 2014-08-27 Excico Group Method for forming metal silicide layers
EP2804218A1 (en) * 2013-05-15 2014-11-19 Excico Group NV Method for forming metal silicide layers
WO2016014173A1 (en) * 2014-07-21 2016-01-28 Applied Materials, Inc. Scanned pulse anneal apparatus and methods
CN107092166B (zh) * 2016-02-18 2019-01-29 上海微电子装备(集团)股份有限公司 曝光系统、曝光装置及曝光方法
EP3514821B1 (en) * 2018-01-18 2020-05-27 Laser Systems & Solutions of Europe Method of laser irradiation of a patterned semiconductor device
CN108681214B (zh) * 2018-05-21 2019-08-13 中国科学院上海光学精密机械研究所 通过改变扩束比例实现跨尺度光刻或多分辨率成像的方法
JP7307001B2 (ja) * 2019-06-17 2023-07-11 東レエンジニアリング株式会社 レーザ加工装置および方法、チップ転写装置および方法
US11929334B2 (en) * 2020-03-17 2024-03-12 STATS ChipPAC Pte. Ltd. Die-beam alignment for laser-assisted bonding
US11909091B2 (en) 2020-05-19 2024-02-20 Kymeta Corporation Expansion compensation structure for an antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW457553B (en) * 1999-01-08 2001-10-01 Sony Corp Process for producing thin film semiconductor device and laser irradiation apparatus
TW461113B (en) * 1999-04-19 2001-10-21 Sony Corp Process of crystallizing semiconductor thin film and laser irradiation system

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152069A (ja) * 1984-12-26 1986-07-10 Hitachi Ltd 半導体装置の製造方法
EP0251280A3 (en) * 1986-06-30 1989-11-23 Nec Corporation Method of gettering semiconductor wafers with a laser beam
JPH03253035A (ja) * 1990-03-02 1991-11-12 Nec Corp 半導体ウェハーの裏面歪場形成装置
JPH04356393A (ja) * 1991-05-31 1992-12-10 Hitachi Ltd レーザ加工光学系及びレーザ加工方法
JPH0536840A (ja) * 1991-07-29 1993-02-12 Hitachi Ltd Lsi配線の修正方法及びその装置
JP3326654B2 (ja) * 1994-05-02 2002-09-24 ソニー株式会社 表示用半導体チップの製造方法
US6559465B1 (en) * 1996-08-02 2003-05-06 Canon Kabushiki Kaisha Surface position detecting method having a detection timing determination
US5868950A (en) * 1996-11-08 1999-02-09 W. L. Gore & Associates, Inc. Method to correct astigmatism of fourth yag to enable formation of sub 25 micron micro-vias using masking techniques
JP2000091604A (ja) * 1998-09-10 2000-03-31 Showa Denko Kk 多結晶半導体膜、光電変換素子及びこれらの製造法
JP2000208769A (ja) * 1999-01-08 2000-07-28 Sony Corp 薄膜半導体装置の製造方法及びレ―ザ照射装置
JP2001044133A (ja) * 1999-08-02 2001-02-16 Sharp Corp レーザ照射方法及び半導体装置の製造方法
JP4701467B2 (ja) * 1999-09-22 2011-06-15 ソニー株式会社 多結晶膜の製造方法および半導体装置の製造方法
US6366308B1 (en) 2000-02-16 2002-04-02 Ultratech Stepper, Inc. Laser thermal processing apparatus and method
JP2002231619A (ja) * 2000-11-29 2002-08-16 Nikon Corp 照明光学装置および該照明光学装置を備えた露光装置
JP4744700B2 (ja) * 2001-01-29 2011-08-10 株式会社日立製作所 薄膜半導体装置及び薄膜半導体装置を含む画像表示装置
US6809023B2 (en) * 2001-04-06 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device having uniform crystal grains in a crystalline semiconductor film
JP3903761B2 (ja) * 2001-10-10 2007-04-11 株式会社日立製作所 レ−ザアニ−ル方法およびレ−ザアニ−ル装置
TWI289896B (en) * 2001-11-09 2007-11-11 Semiconductor Energy Lab Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
JP2003197526A (ja) * 2001-12-28 2003-07-11 Seiko Epson Corp 半導体装置の製造方法、半導体装置、表示装置、および電子機器
KR100525443B1 (ko) * 2003-12-24 2005-11-02 엘지.필립스 엘시디 주식회사 결정화 장비 및 이를 이용한 결정화 방법
JP2005259981A (ja) * 2004-03-11 2005-09-22 Advanced Lcd Technologies Development Center Co Ltd 結晶化方法及び結晶化装置
JP2005294630A (ja) * 2004-04-01 2005-10-20 Seiko Epson Corp 半導体装置、電気光学装置、集積回路及び電子機器
US8525075B2 (en) * 2004-05-06 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
JP2005340466A (ja) * 2004-05-26 2005-12-08 Seiko Epson Corp 半導体装置、電気光学装置、集積回路及び電子機器
US7923306B2 (en) * 2004-06-18 2011-04-12 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots
KR101097915B1 (ko) 2005-02-07 2011-12-23 삼성전자주식회사 레이저 장치 및 이를 이용한 박막트랜지스터의 제조방법
JP4713185B2 (ja) * 2005-03-11 2011-06-29 株式会社日立ハイテクノロジーズ 異物欠陥検査方法及びその装置
US7209216B2 (en) * 2005-03-25 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing dynamic correction for magnification and position in maskless lithography
US7433568B2 (en) * 2005-03-31 2008-10-07 Semiconductor Energy Laboratory Co., Ltd. Optical element and light irradiation apparatus
JP5019767B2 (ja) * 2005-03-31 2012-09-05 株式会社半導体エネルギー研究所 光学素子および光照射装置
US7811911B2 (en) * 2006-11-07 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8148663B2 (en) * 2007-07-31 2012-04-03 Applied Materials, Inc. Apparatus and method of improving beam shaping and beam homogenization
US7800081B2 (en) * 2007-11-08 2010-09-21 Applied Materials, Inc. Pulse train annealing method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW457553B (en) * 1999-01-08 2001-10-01 Sony Corp Process for producing thin film semiconductor device and laser irradiation apparatus
TW461113B (en) * 1999-04-19 2001-10-21 Sony Corp Process of crystallizing semiconductor thin film and laser irradiation system

Also Published As

Publication number Publication date
TW201042710A (en) 2010-12-01
SG10201401316UA (en) 2014-07-30
CN102413986A (zh) 2012-04-11
EP2239084A1 (en) 2010-10-13
EP2416920A1 (en) 2012-02-15
JP2012522646A (ja) 2012-09-27
KR20120004514A (ko) 2012-01-12
JP2016006882A (ja) 2016-01-14
WO2010115763A1 (en) 2010-10-14
SG175029A1 (en) 2011-11-28
US20120171876A1 (en) 2012-07-05
US9700959B2 (en) 2017-07-11
EP2416920B1 (en) 2023-11-15
JP6312636B2 (ja) 2018-04-18

Similar Documents

Publication Publication Date Title
TWI512794B (zh) 藉由雷射能量輻射一半導體材料表面的方法與設備
JP5789011B2 (ja) 薄膜の直線走査連続横方向凝固
EP3399543B1 (en) Laser annealing device and annealing method therefor
KR101167324B1 (ko) 레이저 박막 폴리실리콘 어닐링 광학 시스템
KR101115077B1 (ko) 레이저 박막 폴리실리콘 어닐링 시스템
TWI331803B (en) A single-shot semiconductor processing system and method having various irradiation patterns
US9245757B2 (en) Laser annealing treatment apparatus and laser annealing treatment method
TWI546147B (zh) 用於照射半導體材料之裝置及其用途
JP2019507493A5 (zh)
JP2006074041A (ja) レーザ放射を均質化する装置及び方法、並びにこのような装置及び方法を使用するレーザシステム
JP5613211B2 (ja) ラインビームとして成形されたレーザと基板上に堆積された膜との間の相互作用を実現するためのシステム及び方法
US7157677B2 (en) Method of picking up sectional image of laser light
JP2004172424A (ja) 結晶の周期性構造の形成方法及びその装置並びに結晶の周期性構造
TW201001555A (en) Laser anneal method and laser anneal device
JP2006093662A (ja) レ−ザ光の断面像の撮像方法及び方法