CN102413986A - 用激光能照射半导体材料表面的方法和设备 - Google Patents

用激光能照射半导体材料表面的方法和设备 Download PDF

Info

Publication number
CN102413986A
CN102413986A CN2010800182279A CN201080018227A CN102413986A CN 102413986 A CN102413986 A CN 102413986A CN 2010800182279 A CN2010800182279 A CN 2010800182279A CN 201080018227 A CN201080018227 A CN 201080018227A CN 102413986 A CN102413986 A CN 102413986A
Authority
CN
China
Prior art keywords
spot size
size
zone
laser
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800182279A
Other languages
English (en)
Inventor
茱利安·温特维尼
布鲁诺·戈达德
西里尔·迪唐
马克·布基亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EXCICO FRANCE
Original Assignee
EXCICO FRANCE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EXCICO FRANCE filed Critical EXCICO FRANCE
Publication of CN102413986A publication Critical patent/CN102413986A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02354Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light using a coherent radiation, e.g. a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • H01L23/5258Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive the change of state resulting from the use of an external beam, e.g. laser beam or ion beam

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Laser Beam Processing (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明涉及照射半导体材料的方法,其包括:选择半导体材料层表面的区域(a),此区域(a)具有区域尺寸;用具有束光斑尺寸(b)的准分子激光器照射半导体材料层表面的区域(a);并且调节此束光斑尺寸(b);其中调节束光斑尺寸(b)包括使束光斑尺寸(b)可变地匹配选择区域的尺寸(a)。本发明还涉及照射半导体材料的设备,包括:准分子激光器,用于照射半导体层表面的选择区域(a);此激光器具有针对具有区域尺寸的选择区域(a)的激光束光斑尺寸(b);和用于调节激光束光斑尺寸的装置;其中用于调节激光束光斑尺寸(b)的装置适用于使激光束光斑尺寸(b)可变地匹配选择区域的尺寸(a)。

Description

用激光能照射半导体材料表面的方法和设备
发明领域
本发明涉及用激光器照射半导体材料表面的方法。本发明还涉及用于照射半导体材料表面的激光设备。
发明背景
半导体材料表面的激光照射因为其应用而众所周知,所述应用例如非晶硅的加温退火使其再次结晶,和掺杂剂激活。与传统的加热过程相比,此技术通过实现非常快速的加热处理和加热区域的浅深度,而具有显著的优势。
对于半导体应用的传统激光照射过程的普遍问题是,由于热处理所需的高能量密度和传统地可得到的激光源的低输出能量,因而激光斑点的尺寸远小于模具的尺寸,此模具也被称为芯片或者器件。结果是,为了覆盖整个模具,激光斑点必须跨过或者扫描此模具,这导致了很多劣势。
正如Current和Borland (Technologies New Metrology for Annealing ofUSJ and Thin Films,16th IEEE International Conference on Advanced ThermalProcessing of Semiconductors-RTP2008)所描述的和图1、图2所图示的,第一个劣势在于,如果激光斑点(b)扫描或者跨过模具(a),则连续的激光斑点将会在此模具的一些部分(c)上交叠,导致在掺杂剂激活率或深度的不均匀和在表面质量的不均匀。
另一个劣势是,如果在相同的表面区域上需要多个激光脉冲,则为了平均在处理表面区域的每一个点上的多个激光脉冲,这些激光点以非常高的交叠性扫描或者跨过表面,造成有限的生产率和周期性的不均匀性,通常所说的波纹模式(moiré-patterns)。
另一个普遍问题是,不同类型应用的模具通常具有不同的尺寸,此外在一些应用中,只有部分模具必须被照射。技术人员普遍知晓,为了能够用有限的交叠性处理不同模具尺寸的模具和模具的不同部分,束光斑借助于多种具有不同尺寸的遮光板(mask)来被定形。由于因此所导致的在每次需要其他尺寸时遮光板必须被改变和调整,使得制造的灵活性受到了严重的限制并且停机时间可能会是显著的。
在为了克服上述缺陷所做的尝试中,WO 01/61407(Hawryluk等人)描述了一种激光照射设备,其运用可变的孔阑来限定暴露区域的尺寸。
然而,根据Hawryluk等人的观点,一个明显的缺陷是,所需要的用以得到满意的均匀性的激光光源需要是具有多于1000个空间模的固状激光器,这不是当前商业上可以得到的激光源。
另外一个制定束光斑尺寸的例子是US 2006/0176920,其中Park等人描述了一种包括强度模式调整单元的激光照射设备,该强度模式调整单元具有通过区域、半通过区域和阻断区域,以通过调整激光束的长度来变化地调整带状激光束的强度。
考虑到上述激光照射过程的缺陷,对根据本发明的激光照射方法和设备有一个明确地需求,作为第一个目标,本发明可以提供处理半导体材料层以在模具内和在晶片内得到可接受的均匀性的能力,同时保持可接受的生产率和制造灵活性。
作为第二个目标,本发明可以提供交叠效应和衰减区的减少。
作为另外一个目标,本发明可以提供在材料层表面上产生具有可变图像形状的束的能力。
作为另外一个目标,本发明可以提供使激光能向热能的转换达到最大化和在低温下照射的能力。
本发明通过使激光束的光斑尺寸可变地匹配选择区域的尺寸,来实现上述目标。
发明概述
本发明涉及一种照射半导体材料的方法,其包括:
-选择半导体材料层表面的区域,此区域具有区域尺寸;用具有束光斑尺寸的准分子激光器照射半导体材料层表面的区域;
-并且调节束光斑尺寸;
其特征在于,调节束光斑尺寸包括使束光斑尺寸可变地匹配选择区域的尺寸。
本发明还涉及一种照射半导体材料的设备,其包括:
-准分子激光器,用于照射半导体层表面的选择区域,此激光器具有针对具有区域尺寸的选择区域的激光束光斑尺寸;
-和调节激光束光斑尺寸的装置;
其特征在于,调节激光束光斑尺寸的装置适用于使激光束光斑尺寸可变地匹配选择区域的尺寸。
附图简述
图1图示了一种现有技术方法。
图2图示了另外一种现有技术方法。
图3图示了根据本发明的一种方法。
图4图示了根据本发明的在完整的模具上方的一种优选的照射能量分布。
图5图示了可变孔。
图6图示了具有可变图像放大倍率的光学系统。
发明详述
本领域技术人员会理解,下述实施方案仅是根据本发明的例证性实施方案,并且不限制本发明所设定的范围。其他的实施方案也可以被考虑。
根据本发明的第一种实施方案,提出了一种照射半导体材料的方法,其包括:
-选择半导体材料层表面的区域,该区域具有区域尺寸;
-用具有束光斑尺寸的准分子激光器照射半导体材料层表面的此区域;
-并且调节束光斑的尺寸;
其特征在于,调节束光斑尺寸包括使束光斑尺寸可变地匹配选择区域的尺寸。
通过束光斑尺寸可变地匹配选择区域的尺寸,使此方法由于交叠效应和衰减区的减少而可以提供能接受的在模具和晶片内的均匀性。而且,通过在材料层表面上产生具有可变形状和尺寸的束光斑的能力,此方法可以提供能接受的生产率和制造灵活性。
此半导体材料层可以是任何适合半导体应用的材料,所述应用例如但不局限于:非掺杂硅,掺杂硅,注入硅,晶体硅,非晶硅,锗硅,氮化锗,以及III-V化合物半导体例如氮化镓、碳化硅和其他类似物。
在根据本发明的一种实施方案中,使束光斑尺寸匹配可以通过改变被成像在材料层表面上的可变孔的尺寸和形状来实现。本质上,这种孔是这样的洞或者开口,该洞或者开口被激光束穿过并且限定了在选择区域上的束光斑的形状和尺寸。通过机械地改变此可变孔,束光斑的尺寸和/或者形状可以匹配于选择区域的尺寸和/或者形状。这种可变孔可以配备有位置能够被不同地调节的叶片,如图5所图示。
依据所需的束光斑精确度,可能需要对孔微调,以校正不精确性和使光斑尺寸与选择区域准确地匹配。此微调可以通过用相机观察材料层表面上的束光斑、测量光斑尺寸以及调节孔的开口尺寸和形状来实现。如果孔配备有叶片,这些叶片的位置可以被微整,以达到具有所需精确度的目标光斑尺寸。
在根据本发明或者与可变孔相结合的替代性实施方案中,匹配束光斑尺寸可以通过具有可变图像放大倍率的光学系统来实现。这种光学系统适用于在晶片上产生孔的可变放大倍率的图像。
而且根据本发明,此方法可以包括将束光斑与选择区域在XYZ方向上对齐。
在本发明的且如图3所图示的优选实施方案中,选择区域可以是至少一个完整的模具。该完整的模具可以由一个激光脉冲处理。此模具也可以接收全部都覆盖住整个模具的多个激光脉冲。进一步如图3所图示,选择区域可以覆盖多个模具。图4中表明,照射一个或者多个完整的模具可以显著地有助于提高在模具(e)上方的均匀照射能量分布和有助于减小交叠效应(c),从而提高了过程的均匀性。
根据本发明的方法还可以包括在使束光斑尺寸匹配于选择区域的尺寸之前使激光束均匀。使激光束均匀会明显地有助于提高过程的均匀性。
根据本发明,还提供一种照射半导体材料的设备,其包括:
-准分子激光器,用来照射半导体层表面的选择区域,此激光器具有针对具有区域尺寸的选择区域的激光束光斑尺寸;
-和用来调节激光束光斑尺寸的装置;
其特征在于,用于调节激光束光斑尺寸的装置适应于使激光束光斑尺寸可变地匹配于选择区域的尺寸。
此准分子激光器可以是任何其波长、能量和脉冲宽度与过程相适合的准分子激光器,优选氯化氙准分子激光器。
由于硅在下述这些波长处的高能量吸收,此准分子激光器的波长可以在190nm到480nm的范围内,且优选308nm。
激光能可以在5焦耳到25焦耳范围内。为了获得这些能量,激光放电体积被最优化为典型地10cm(电极间距离)x7到10cm(放电宽度)x100到200cm(放电长度)。
脉冲宽度与在用于减少掺杂剂扩散的快速加热和用于减少缺陷形成的相对地慢速冷却之间的最适宜情况相符,并且可以在100ns到1000ns的范围内,优选在100ns和300ns之间。
在优选的实施方案中,此准分子激光器可以适应于产生大于80cm2、优选100cm2的大区域的输出束。
在另一个优选的实施方案中,此准分子激光器可以适应于产生能量密度在1J/cm2和10J/cm2之间的激光束。
根据本发明,用于使激光束光斑尺寸匹配的装置可以包括可变孔。此可变孔不但可以限定束光斑尺寸和/或者形状,而且还可以通过该孔借助于高分辨率成像系统的成像来显著地帮助获得清晰的图像边缘(图4,f),从而减小了衰减区和交叠效应。
替代地根据本发明,用于使激光束光斑尺寸匹配的装置包括具有可变图像放大倍率的光学系统。在这种如图6所图示的光学系统中,第一透镜或者第一组透镜(物镜,第一组)和第二透镜或者第二组透镜(物镜,第二组)之间的距离可以由延迟线来调节,以调节此系统的放大倍率(一般地从4X到8X)。
该具有可变图像放大倍率的光学系统可以与或者不与可变孔组合地使用。
在本发明的实施方案中,选择区域上的束光斑尺寸可以在1到4,5cm2的长方形形状内调节。
根据本发明的设备,还可以包括用于将束光斑与选择区域在XYZ方向上对齐的装置。
优选地,为了避免对于沿着焦距的非常精确、复杂和昂贵的位置调节的需要,焦距的深度可以尽可能的长,并且优选多于100微米。
为了避免表面的反射光射回光学系统,在选择区域上的激光束的入射角可以相对于与半导体材料层正交的平面成一角度(通常5°)。
根据本发明的设备,还可以包括被定位在用于调节激光束光斑尺寸的装置之前的光束均匀器。
根据本发明的设备还可以包括模式识别系统。这种模式识别系统可以包括相机,该相机与用于保持住半导体材料的平台机械地相连,并且被位于材料层表面上方。在具体的实施方案中,来自相机的图像可以被处理成用以定位多个(通常3个)已经被蚀刻在半导体材料上的对齐记号。此对齐记号提供了半导体材料在设备坐标系中的精确位置。
根据本发明的设备可以被用于制造半导体材料或器件,例如但不局限于CMOS图像传感器和3D存储器。
关于CMOS图像传感器,本发明的方法和设备对于背面被照亮的CMOS图像传感器可能是非常有用的,其中在器件的背面上采集光,同时在前面进行读出/电荷采集。背面照亮需要背面掺杂剂以良好均匀性的激活率和深度来激活。而且,此激活过程必须保持非常高的表面质量,以保持整个传感器上方的图像的质量。通过使用本发明的方法和设备,使得用一个脉冲来照射一个或者多个完整传感器的背面可以成为可能,从而避免了交叠地扫描或者步进,并且获得了所需的传感器均匀性。
根据本发明的方法的实施例
步骤0:晶片相对于束光斑的加载和粗略定位
步骤1:照射参数的选择:
照射参数的选择依据
-具体的晶片衬底所要求的能量密度(例如,2J/cm2)
-晶片上处理区域(XWxYW)的尺度(例如,18x12mm)
-在晶片上待被照射的模具相对于参考位置的坐标((Xi,Yi)从i=1到N,N是待被照射的模具的数量)。
步骤2:系统放大倍率的调节:
-光学系统的放大倍率(G)的计算完成,这会在晶片上在最靠近晶片上的所需要尺度处(XWxYW)产生光斑尺寸,同时使孔叶片处于其完全打开的位置(Xopen=96mm,Yopen=76mm)。在该实例中,G=Xopen/XW=96/18=5,33。
-延迟线的位置被调节至对应于所需要放大倍率的(由预先校准确定的)预调位置,使得在96/5,33x72/5,33=18x13,5mm的晶片上产生光斑尺寸。可能还需要对物镜组的焦距微调。
步骤3:遮光板尺度的调节:
-调节孔叶片的位置来获得所需的束的尺寸。在此例子中,使两个垂直叶片(调节X)处于打开位置,并且两个水平叶片被调节到Y=12mm,使得晶片上的光斑尺寸额定地为18x12mm。
-孔叶片位置的微调整。
步骤4:相对于待被处理晶片的激光光斑定位:
-模式识别步骤将相对于晶片平台坐标系统在晶片上定位3个对齐标记的精确位置。
-晶片平台被移动,以使激光光斑的位置与待被处理的第一模具的位置交叠。
步骤5:照射:
-激光用所需的能量密度照射第一模具。通过调节激光的充电电压和在束路径上运用可变衰减器来控制照射的能量。
-晶片平台被移动到下一个模具的位置(Xi,Yi)
-重复照射和移动晶片平台,直到所有待处理的模具都被照射。

Claims (14)

1.一种照射半导体材料的方法,包括:
-选择半导体材料层表面的区域,所述区域具有区域尺寸;
-用具有束光斑尺寸的准分子激光器照射所述半导体材料层表面的所述区域;
-并且调节所述束光斑尺寸;
其特征在于,调节所述束光斑尺寸包括使所述束光斑尺寸可变地匹配所选择的区域的尺寸。
2.根据权利要求1所述的方法,其中使所述束光斑尺寸匹配是通过改变被成像在所述材料层表面上的可变孔的尺寸和形状来完成的。
3.根据权利要求1所述的方法,其中使所述束光斑尺寸匹配是通过改变具有可变图像放大倍率的光学系统的放大倍率来完成的。
4.根据权利要求1或3所述的方法,还包括将所述束光斑与所选择的区域在XYZ方向上对齐。
5.根据权利要求1到4所述的方法,其中所选择的区域是至少一个完整的模具。
6.根据权利要求1或5所述的方法,还包括在使所述束光斑尺寸匹配所选择的区域的尺寸之前使激光束均匀。
7.一种照射半导体材料的设备,包括:
-准分子激光器,其用于照射半导体材料层表面的选择区域,所述激光器具有针对具有区域尺寸的所述选择区域的激光束光斑尺寸;
-和用于调节所述激光束光斑尺寸的装置;
其特征在于,用于调节所述激光束光斑尺寸的所述装置适用于使所述激光束光斑尺寸可变地匹配所述选择区域的尺寸。
8.根据权利要求7所述的设备,其中所述准分子激光器适用于产生具有在1J/cm2到10J/cm2之间的能量密度的激光束。
9.根据权利要求7到8所述的设备,其中用于使所述激光束光斑尺寸匹配的所述装置包括成像在所述材料层表面上的可变孔。
10.根据权利要求7到9所述的设备,其中用于使所述激光束光斑尺寸匹配的所述装置包括具有可变图像放大倍率的光学系统。
11.根据权利要求7到10所述的设备,还包括用于使所述光斑与所述选择区域在XYZ方向上的对齐的装置。
12.根据权利要求7到11所述的设备,其中所述光斑尺寸匹配至少一个完整的模具。
13.根据权利要求7到12所述的设备,还包括被定位在用于调节所述激光束光斑尺寸的所述装置之前的光束均匀器。
14.根据权利要求7-13所述的设备用于制备半导体材料的用途。
CN2010800182279A 2009-04-07 2010-03-29 用激光能照射半导体材料表面的方法和设备 Pending CN102413986A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09305290.0 2009-04-07
EP09305290A EP2239084A1 (en) 2009-04-07 2009-04-07 Method of and apparatus for irradiating a semiconductor material surface by laser energy
PCT/EP2010/054135 WO2010115763A1 (en) 2009-04-07 2010-03-29 Method and apparatus for irradiating a semiconductor material surface by laser energy

Publications (1)

Publication Number Publication Date
CN102413986A true CN102413986A (zh) 2012-04-11

Family

ID=41057788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800182279A Pending CN102413986A (zh) 2009-04-07 2010-03-29 用激光能照射半导体材料表面的方法和设备

Country Status (8)

Country Link
US (1) US9700959B2 (zh)
EP (2) EP2239084A1 (zh)
JP (2) JP2012522646A (zh)
KR (1) KR20120004514A (zh)
CN (1) CN102413986A (zh)
SG (2) SG175029A1 (zh)
TW (1) TWI512794B (zh)
WO (1) WO2010115763A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578991A (zh) * 2014-07-21 2018-01-12 应用材料公司 扫描脉冲退火装置及方法
CN108681214A (zh) * 2018-05-21 2018-10-19 中国科学院上海光学精密机械研究所 通过改变扩束比例实现跨尺度光刻或多分辨率成像的方法
US11909091B2 (en) 2020-05-19 2024-02-20 Kymeta Corporation Expansion compensation structure for an antenna

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466963A (zh) * 2010-11-12 2012-05-23 北京京东方光电科技有限公司 一种掩膜版及一种掩膜曝光的方法
CN104603954B (zh) 2011-11-23 2017-10-13 艾柯西柯集团股份有限公司 用于形成金属硅化物层的方法
EP2770544A1 (en) 2013-02-21 2014-08-27 Excico Group Method for forming metal silicide layers
EP2804218A1 (en) * 2013-05-15 2014-11-19 Excico Group NV Method for forming metal silicide layers
CN107092166B (zh) * 2016-02-18 2019-01-29 上海微电子装备(集团)股份有限公司 曝光系统、曝光装置及曝光方法
EP3514821B1 (en) * 2018-01-18 2020-05-27 Laser Systems & Solutions of Europe Method of laser irradiation of a patterned semiconductor device
JP7307001B2 (ja) * 2019-06-17 2023-07-11 東レエンジニアリング株式会社 レーザ加工装置および方法、チップ転写装置および方法
US11929334B2 (en) * 2020-03-17 2024-03-12 STATS ChipPAC Pte. Ltd. Die-beam alignment for laser-assisted bonding

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010000243A1 (en) * 1999-01-08 2001-04-12 Yukiyasu Sugano Process for producing thin film semiconductor device and laser irradiation apparatus
US6388386B1 (en) * 1999-04-19 2002-05-14 Sony Corporation Process of crystallizing semiconductor thin film and laser irradiation
US20020197829A1 (en) * 1999-09-22 2002-12-26 Takashi Noguchi Method of manufacturing polycrystalline film and semiconductor device
CN1441467A (zh) * 2001-11-09 2003-09-10 株式会社半导体能源研究所 激光辐照装置、激光辐照方法和制作半导体器件的方法
US20050142050A1 (en) * 2003-12-24 2005-06-30 Lg. Philips Lcd Co., Ltd. Sequential lateral solidification device and method of crystallizing silicon using the same
CN101023510A (zh) * 2004-06-18 2007-08-22 电子科学工业公司 使用多激光束光斑的半导体结构处理

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152069A (ja) * 1984-12-26 1986-07-10 Hitachi Ltd 半導体装置の製造方法
EP0251280A3 (en) * 1986-06-30 1989-11-23 Nec Corporation Method of gettering semiconductor wafers with a laser beam
JPH03253035A (ja) * 1990-03-02 1991-11-12 Nec Corp 半導体ウェハーの裏面歪場形成装置
JPH04356393A (ja) * 1991-05-31 1992-12-10 Hitachi Ltd レーザ加工光学系及びレーザ加工方法
JPH0536840A (ja) * 1991-07-29 1993-02-12 Hitachi Ltd Lsi配線の修正方法及びその装置
JP3326654B2 (ja) * 1994-05-02 2002-09-24 ソニー株式会社 表示用半導体チップの製造方法
US6559465B1 (en) * 1996-08-02 2003-05-06 Canon Kabushiki Kaisha Surface position detecting method having a detection timing determination
US5868950A (en) * 1996-11-08 1999-02-09 W. L. Gore & Associates, Inc. Method to correct astigmatism of fourth yag to enable formation of sub 25 micron micro-vias using masking techniques
JP2000091604A (ja) * 1998-09-10 2000-03-31 Showa Denko Kk 多結晶半導体膜、光電変換素子及びこれらの製造法
JP2000208769A (ja) * 1999-01-08 2000-07-28 Sony Corp 薄膜半導体装置の製造方法及びレ―ザ照射装置
JP2001044133A (ja) * 1999-08-02 2001-02-16 Sharp Corp レーザ照射方法及び半導体装置の製造方法
US6366308B1 (en) 2000-02-16 2002-04-02 Ultratech Stepper, Inc. Laser thermal processing apparatus and method
JP2002231619A (ja) * 2000-11-29 2002-08-16 Nikon Corp 照明光学装置および該照明光学装置を備えた露光装置
JP4744700B2 (ja) * 2001-01-29 2011-08-10 株式会社日立製作所 薄膜半導体装置及び薄膜半導体装置を含む画像表示装置
US6809023B2 (en) * 2001-04-06 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device having uniform crystal grains in a crystalline semiconductor film
JP3903761B2 (ja) * 2001-10-10 2007-04-11 株式会社日立製作所 レ−ザアニ−ル方法およびレ−ザアニ−ル装置
JP2003197526A (ja) * 2001-12-28 2003-07-11 Seiko Epson Corp 半導体装置の製造方法、半導体装置、表示装置、および電子機器
JP2005259981A (ja) * 2004-03-11 2005-09-22 Advanced Lcd Technologies Development Center Co Ltd 結晶化方法及び結晶化装置
JP2005294630A (ja) * 2004-04-01 2005-10-20 Seiko Epson Corp 半導体装置、電気光学装置、集積回路及び電子機器
US8525075B2 (en) * 2004-05-06 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
JP2005340466A (ja) * 2004-05-26 2005-12-08 Seiko Epson Corp 半導体装置、電気光学装置、集積回路及び電子機器
KR101097915B1 (ko) 2005-02-07 2011-12-23 삼성전자주식회사 레이저 장치 및 이를 이용한 박막트랜지스터의 제조방법
JP4713185B2 (ja) * 2005-03-11 2011-06-29 株式会社日立ハイテクノロジーズ 異物欠陥検査方法及びその装置
US7209216B2 (en) * 2005-03-25 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing dynamic correction for magnification and position in maskless lithography
US7433568B2 (en) * 2005-03-31 2008-10-07 Semiconductor Energy Laboratory Co., Ltd. Optical element and light irradiation apparatus
JP5019767B2 (ja) * 2005-03-31 2012-09-05 株式会社半導体エネルギー研究所 光学素子および光照射装置
JP5252877B2 (ja) * 2006-11-07 2013-07-31 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8148663B2 (en) * 2007-07-31 2012-04-03 Applied Materials, Inc. Apparatus and method of improving beam shaping and beam homogenization
US7800081B2 (en) * 2007-11-08 2010-09-21 Applied Materials, Inc. Pulse train annealing method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010000243A1 (en) * 1999-01-08 2001-04-12 Yukiyasu Sugano Process for producing thin film semiconductor device and laser irradiation apparatus
US6388386B1 (en) * 1999-04-19 2002-05-14 Sony Corporation Process of crystallizing semiconductor thin film and laser irradiation
US20020197829A1 (en) * 1999-09-22 2002-12-26 Takashi Noguchi Method of manufacturing polycrystalline film and semiconductor device
CN1441467A (zh) * 2001-11-09 2003-09-10 株式会社半导体能源研究所 激光辐照装置、激光辐照方法和制作半导体器件的方法
US20050142050A1 (en) * 2003-12-24 2005-06-30 Lg. Philips Lcd Co., Ltd. Sequential lateral solidification device and method of crystallizing silicon using the same
CN101023510A (zh) * 2004-06-18 2007-08-22 电子科学工业公司 使用多激光束光斑的半导体结构处理

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578991A (zh) * 2014-07-21 2018-01-12 应用材料公司 扫描脉冲退火装置及方法
CN108681214A (zh) * 2018-05-21 2018-10-19 中国科学院上海光学精密机械研究所 通过改变扩束比例实现跨尺度光刻或多分辨率成像的方法
US11909091B2 (en) 2020-05-19 2024-02-20 Kymeta Corporation Expansion compensation structure for an antenna

Also Published As

Publication number Publication date
TWI512794B (zh) 2015-12-11
EP2416920A1 (en) 2012-02-15
SG175029A1 (en) 2011-11-28
JP2012522646A (ja) 2012-09-27
EP2416920B1 (en) 2023-11-15
EP2239084A1 (en) 2010-10-13
JP2016006882A (ja) 2016-01-14
SG10201401316UA (en) 2014-07-30
JP6312636B2 (ja) 2018-04-18
US9700959B2 (en) 2017-07-11
TW201042710A (en) 2010-12-01
KR20120004514A (ko) 2012-01-12
US20120171876A1 (en) 2012-07-05
WO2010115763A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
CN102413986A (zh) 用激光能照射半导体材料表面的方法和设备
KR102080613B1 (ko) 레이저 어닐링 장치 및 그 어닐링 방법
US7674999B2 (en) Fast axis beam profile shaping by collimation lenslets for high power laser diode based annealing system
KR101167324B1 (ko) 레이저 박막 폴리실리콘 어닐링 광학 시스템
KR101115077B1 (ko) 레이저 박막 폴리실리콘 어닐링 시스템
JP2019507493A5 (zh)
US9779945B2 (en) Method and apparatus for irradiating a semiconductor material surface by laser energy
JP2002176007A (ja) レーザ処理装置のレーザパワーの測定方法と測定装置
WO2008024211A2 (en) Fast axis beam profile shaping

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: LASER SYSTEM SOLUTIONS EUROPE COMPANY

Free format text: FORMER OWNER: EXCICO FRANCE COMPANY

Effective date: 20150413

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150413

Address after: French Gennevilliers

Applicant after: EXCICO FRANCE

Address before: French Gennevilliers

Applicant before: Excico France

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120411