TWI435943B - 薄膜金屬氮氧化半導體 - Google Patents

薄膜金屬氮氧化半導體 Download PDF

Info

Publication number
TWI435943B
TWI435943B TW098108079A TW98108079A TWI435943B TW I435943 B TWI435943 B TW I435943B TW 098108079 A TW098108079 A TW 098108079A TW 98108079 A TW98108079 A TW 98108079A TW I435943 B TWI435943 B TW I435943B
Authority
TW
Taiwan
Prior art keywords
nitrogen
oxygen
semiconductor layer
containing gas
flow rate
Prior art date
Application number
TW098108079A
Other languages
English (en)
Other versions
TW200951235A (en
Inventor
Yan Ye
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200951235A publication Critical patent/TW200951235A/zh
Application granted granted Critical
Publication of TWI435943B publication Critical patent/TWI435943B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0063Reactive sputtering characterised by means for introducing or removing gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

薄膜金屬氮氧化半導體
本發明之實施例一般相關於半導體材料和用以沉積半導體材料之方法。
半導體層的電子遷移率對於一裝置的速度以驅動經過該裝置的電流有很大的影響。在相同的電壓下,較高的電子遷移率,有較快的裝置速度,和較高的源-汲電流。近年來,非晶矽和多晶矽一直作為半導體材料的選擇,其可用於薄膜電晶體(TFTs)、驅動液晶顯示器(LCD)之背板、有機發光二極體(OLED)顯示器、量子點顯示器、和製造太陽能電池面板。非晶矽可能具有的電子遷移率高達約1cm2 /V-s。低溫多晶矽可能具有的電子遷移率高於50cm2 /V-s,但需要一種複雜的製程步驟,例如,雷射退火,以達成電子遷移率。因此,製造具有高於cm2 /V-s之電子遷移率的多晶矽的成本非常高,不適合大面積基板的應用。
在一場效電晶體(FET)中,半導體材料源極和汲極電極間產生通道。若沒有供應給柵電極一電壓,就沒有電流能通過源-汲電極,即便在源汲極電極間有一電壓。當電壓被供應至柵電極,在半導體層內的移動電子將聚集在非常接近柵介電層和半導體層間的界面之區域。半導體層變可導電,而在源-汲極電極間可以一低電壓輕易地通過源-汲電極。半導體材料的高遷移率表示在半導體中的移動電子對於由柵電極所產生的電場更為敏感,並且該半導體通道變得更加導電。半導體材料決定了可能通過半導體通道的電流,其中該半導體通道係被施加至該閘和源端的電壓所影響。若半導體材料有較大的遷移率,則只需要較小的電壓即可跨越FET產生所需的電流。
非晶矽可以被氫鈍化,以在TFT中達成理想的遷移率。可在高達攝氏350度的溫度中藉由化學氣相沉積(CVD)沉積非晶矽。在由設備本身所產生的柵電極電壓和相對較高的溫度下,用來使非晶矽達到理想的遷移率的氫鈍化製程可能不穩定,例如,一TFT閾值電壓會隨著時間而改變。
因此,在本領域中需要一種穩定的半導體材料,其不僅是在具有高製程溫度的玻璃基板,且在塑膠基板及其他彈性基板,都具有足夠高的遷移率。
本發明一般相關於一半導體薄膜和沉積該半導體薄膜之方法。該半導體薄膜包括氧、氮、與選自由下列所組成的群組之一或多元素:鋅、鎘、鎵、銦和錫。此外,半導體薄膜可摻質。可施加一電偏壓至一濺射靶材來沉積該半導體薄膜,該濺射靶材包括選自由下列所組成群組之一或多元素:鋅、鎘、鎵、銦、錫、並導入一含氮氣體和一含氧氣體。該濺射靶材可以被摻質。該半導體薄膜具有比非晶矽大的遷移率。退火後,該半導體薄膜具有的遷移率大於多晶矽。
在一實施例中,一種濺射方法包含下列步驟:使一含氧氣體、惰性氣體、及一含氮氣體流至一處理室;施加一電偏壓到濺射靶材,其包括選自由下列金屬所組成群組之一或多金屬:鎵、鎘、銦、和錫;以及在一基板上沉積一半導體層,該半導體層包含該一或多金屬、氧、和氮。
在另一實施例中,一種半導體材料包括:氮、氧、和選自由下列組成之群組之一或多元素:鎵、鎘、銦、和錫。在另一實施例中,一種半導體材料包括:氧、氮、和具有一填滿s軌道和一填滿d軌道之一或多元素。
在另一實施例中,一種半導體層沉積方法,包括下列步驟:將下列導入一處理室:一含氧前驅物、一含氮前驅物、以及選自由下列組成之群組之至少一前驅物:一鎵前驅物、一鎘前驅物、一錫前驅物、以及一銦前驅物;以及在置於該處理室的一基板上沉積一半導體層,該半導體層包括:氧、氮、和選自由下列組成之群組之至少一元素:鎵、鎘、錫、和銦。
在另一實施例中,一種半導體層沉積方法,包括下列步驟:使一含氧氣體及一含氮氣體流至一處理室;施加一電偏壓到一濺射靶材,其包括具有一填滿s軌道和一填滿d軌道之一或多元素;以及在一基板上沉積一半導體層,該半導體層包含該一或多元素、氧、和氮。
本發明一般相關於一半導體薄膜和沉積該半導體薄膜之方法。該半導體薄膜包括氧、氮、與選自由下列所組成的群組之一或多元素:鋅、鎘、鎵、銦和錫。此外,該半導體薄膜可被摻質。可施加一電偏壓至一濺射靶材來沉積該半導體薄膜,該濺射靶材包括選自由下列所組成群組之一或多元素:鋅、鎘、鎵、銦、錫、並導入一含氮氣體和一含氧氣體。該濺射靶材可以被摻質。該半導體薄膜具有比非晶矽大的遷移率。退火後,該半導體薄膜具有的遷移率大於多晶矽。
本文揭示一種反應濺射方法,其可實施於一物理氣相沉積處理室以處理大面積基板,例如,一4300物理氣相沉積處理室,其可從應用材料公司(加利福尼亞州聖克拉拉市)之分公司AKT取得。然而,因為依據本方法所生產的半導體薄膜可藉由薄膜結構和組成來決定,請注意,反應濺射方法可用於其他的系統配置,包括:經配置以處理一大面積圓型基板的系統;以及其他設備商所生產的系統,包括:捲軸式處理平台。亦可明白,雖然本發明在下文中揭示為藉由物理氣相沉積來進行沉積,亦可使其他方法來沉積本發明之薄膜,包括可以用來沉積本發明之化學氣相沉積(CVD)、原子層沉積(ALD)、或旋轉製程。
圖1是一截面示意圖,其繪示依據本發明之一實施例的一PVD處理室100。處理室100可藉由一真空泵114抽真空。在處理室100中,一基板102可置於一靶材104的對面。該基板可置於處理室100內的一基座106。該基座106可藉由驅動器112升高和降低,如箭頭“A”所示。該基座106可提高以提高基板102至處理位置,並降低以使基板102自處理室100移除。當基座106在較低位置時,舉升梢108提高基板102至基座106之上。接地帶110可使基座106在處理過程中接地。在處理過程中可提升該基座106,以利於均勻沉積。基座106的溫度可被保持在室溫至攝氏400度的範圍內。在一實施例中,基座106的溫度可被保持在約攝氏25度和約攝氏250度。
靶材104可能包括一或多靶材104。在一實施例中,靶材104可能包括一大面積濺射靶材104。在另一實施例中,靶材可能包括104多個貼片。在又一實施例中,靶材104可能包括多個靶材條。在另一實施例中,靶材104可能包括一或多圓筒形且可旋轉的靶材。靶材104可藉由一接合層(未顯示)接合至一背板116。一或多磁控管118可被置於背板116之後。該磁控管118可以直線運動或以二維路線來掃描整個背板116。處理室的牆可藉由一黑暗空間遮板120和處理室遮板122來遮蔽。
為了利於在整個基板102上提供均勻的濺射沉積,一陽極124可放在靶材104和基板102之間。在一實施例中,陽極124可珠擊經電弧熔射塗層的不銹鋼。在一實施例中,陽極124的一端可藉由一支架130安裝在處理室牆壁。陽極124提供一相反於靶材104之電荷,以將荷電離子吸引至靶材104,而非通常是接地的處理室牆壁。藉由在靶材104和基板102之間提供陽極124,電漿可能會更均勻,這可利於沉積。為了減少剝落,可通過一或多陽極124一冷卻液。藉由減少陽極124擴張和收縮的次數,可減少來自陽極124之材料的剝落。對於較小的基板,及因此較小的製程處理室,不一定要是處理室牆之跨越處理空間的陽極124可充分提供一接地的路徑和一均勻電漿分佈。
對於反應濺射,它可能有利於對處理室100提供一反應氣體。一或多氣體引入管126也可以跨越處理室100而介於靶材104和基板102之間。對於較小的基板及因此較小的處理室,跨越處理空間且不一定需要均勻分佈氣體之氣體引入管126可經由傳統氣體分配裝置。氣體引入管126可從氣體面板132引入濺射氣體。氣體引入管126可藉由一或多耦接器128耦接陽極124。耦接器128可由導熱材料製成,以使氣體引入管126能進行傳導冷卻。此外,耦接器128可導電,以使氣體引入管126接地且作為陽極來作用。
反應濺射製程可能包括:在一濺射處理室中,將一金屬濺射靶材置於基板對面。金屬濺射靶材可包括選自由下列所組成的群組之一或多元素:鋅、鎵、銦、錫、和鎘。在一實施例中,濺射靶材可能包括具有一填滿s軌道和一填滿d軌道之一或多元素。在另一實施例中,該濺射靶材可能包括具有一填滿f軌道之一或多元素。在另一實施例中,該濺射靶材可能包括一或多二價元素。在另一實施例中,該濺射靶材可能包括一或多三價元素。在另一實施例中,該濺射靶材可能包括一或多四價元素。
濺射靶材亦可包括一摻質。可使用之適合的摻質包括鋁、錫、鎵、鈣、矽、鈦、銅、鍺、銦、鎳、錳、鉻、釩、鎂、Six Ny 、Alx Oy 和SiC。在一實施例中,摻質包括鋁。在一實施例中,摻質包括錫。另一方面,基板可能包括塑塑、紙、聚合物、玻璃、不銹鋼、以及它們的組合。當基板是塑塑時,反應濺射可能會發生在溫度低於攝氏180度。可以沉積的半導體薄膜的例子包括:ZnOx Ny :Al,ZnOx Ny :Sn,SnOx Ny :Al,InOx Ny :Al,InOx Ny :Sn,CdOx Ny :Al,CdOx Ny :Sn,GaOx Ny :Al,GaOx Ny :Sn,ZnSnOx Ny :Al ZnInOx Ny :Al,ZnInOx Ny :Sn,ZnCdOx Ny :Al,ZnCdOx Ny :Sn,ZnGaOx Ny :Al,ZnGaOx Ny :Sn,SnInOx Ny :Al,SnCdOx Ny :Al,SnGaOx Ny :Al,InCdOxNy:Al,InCdOx Ny :Sn,InGaOx Ny :Al,InGaOx Ny:Sn,CdGaOxNy :Al,CdGaOx Ny :Sn,ZnSnInOx Ny :Al,ZnSnCdOxNy :Al,ZnSnGaOx Ny :Al,ZnInCdOx Ny :Al,ZnInCdOx Ny :Sn,ZnInGaOx Ny :Al,ZnInGaOx Ny :Sn,ZnCdGaOx Ny :Al,ZnCdGaOx Ny :Sn,SnInCdOx Ny :Al,SnInGaOx Ny :Al,SnCdGaOx Ny :Al,InCdGaOx Ny :Al,InCdGaOx Ny :Sn,ZnSnInCdOx Ny :Al,ZnSnInGaOx Ny :Al,ZnInCdGaOx Ny :Al,ZnInCdGaOx Ny :Sn,and SnInCdGaOx Ny :Al。
在濺射製程期間,氬氣、含氮氣體、和含氧氣體可提供給處理室,用於反應濺射的金屬靶材。額外的添加劑,如B2H6、二氧化碳、一氧化碳、甲烷、以及它們的組合也可以在濺射期間提供給處理室。在一實施例中,含氮氣體包含N2 。在另一實施例中,含氮氣體包括:一氧化二氮、氨、或其組合。在一實施例中,含氧氣體包含O2 。在另一實施例中,含氧氣體包含N2 O。含氮氣體的氮和含氧氣體的氧與濺射靶材的金屬在基板上反應形成半導體材料,包括:金屬、氧、氮、和選擇性地一摻質。在一實施例中,含氮氣體和含氧氣體是不同氣體。在另一實施例中,含氮氣體和含氧氣體包含相同氣體。
沉積薄膜是一種半導體薄膜。可以沉積半導體薄膜的例子包括:ZnOx Ny ,SnOx Ny ,InOx Ny ,CdOx Ny ,GaOx Ny ,ZnSnOx Ny ,ZnInOx Ny ,ZnCdOx Ny ,ZnGaOx Ny ,SnInOx Ny ,SnCdOx Ny ,SnGaOx Ny ,InCdOx Ny ,InGaOx Ny ,CdGaOx Ny ,ZnSnInOx Ny ,ZnSnCdOx Ny ,ZnSnGaOx Ny ,ZnInCdOx Ny ,ZnInGaOx Ny ,ZnCdGaOx Ny ,SnInCdOx Ny ,SnInGaOx Ny ,SnCdGaOx Ny ,InCdGaOx Ny ,ZnSnInCdOx Ny ,ZnSnInGaOx Ny ,ZnInCdGaOx Ny ,和SnInCdGaOx Ny .上述半導體薄膜之各者可能被一摻質所摻質。
半導體薄膜可以包括一個氮化合物。在一實施例中,半導體薄膜包含金屬氮氧化合物以及金屬氮化合物。在另一實施例中,半導體薄膜可包括一金屬氮氧化合物、一金屬氮化物、及一金屬氧化物。在另一實施例中,半導體薄膜可包括一金屬氮氧化合物和一金屬氧化物。在另一實施例中,半導體薄膜可包括一金屬氮化合物和一金屬氧化物。
含氮氣體與含氧氣體的比例可能影響半導體薄膜的遷移率、載子濃度和電阻率。表一顯示氮流率對在氬氣和氮氣的氣體環境中濺射之一錫靶的遷移率、電阻率、和載子濃度之影響。一般而言,表一顯示當氮流率增加時,遷移率也增加。氬和氧流率可維持不變。在表一,氬流率是60sccm,而氧流率是5sccm。較高的基板溫度同時也增加了遷移率。載子濃度與遷移率呈弱相關。沉積薄膜是一種n型半導體材料,其可作為一電載子,及因此載子濃度呈現為負數。
含氧氣體也影響半導體薄膜的遷移率、載子濃度和電阻率。表二顯示氧流率對在氬氣、氮氣、和氧氣的氣體環境中濺射之一錫靶的遷移率、電阻率、和載子濃度之影響。氬流率可維持不變。在表二中,氬氣流率為60sccm。一般而言,表二繪示較高的氮氣氧氣比的遷移率可能高於非晶矽的遷移率。此外,氮對氧的比例愈高,則有較低的載子濃度。在一200sccm氮氣流率的情況下,當氧流率增加,則遷移率增加,而後氧流率較高,而遷移率減少。在一實施例中,溫度為攝氏150度時,遷移率可能介於約400cm2 /V-s和約10cm2 /V-s之間。遷移率的增加與載子濃度不相關。因此,遷移率的改善可能是由於較少的載子散射。如果不使用氮添加劑,遷移率可能非常的低。在這種情況下,當氧氣流量增加,則載子濃度大幅下降。當錫靶材的基板溫度較高時,則有較佳的遷移率。在一實施例中,壓力可能會介於約5mTorr至約20mTorr之間。
摻質的量還可能影響到沉積薄膜的遷移率。然而,不論靶材摻質與否,當氮氣流量增加,一般而言遷移率仍然會增加。表三顯示摻質對遷移率、載子濃度、和電阻率的效應。摻質是以重量百分比顯示。對於每個沉積薄膜,氬流率可能相同。在表三中,氬氣流率為120sccm。摻質的載子濃度可能低於沒有摻質的狀況。因此,摻質可用於調整載子濃度。
表四顯示含氧體對半導體薄膜的遷移率、載子濃度和電阻率的影響。一般來說,在氮氣流量固定時,當氧氣流量增加,薄膜的遷移率將增加,但當氧氣流量進一步增加時,則薄膜的遷移率將下降。對於每個沉積薄膜,氬流率可能相同。在表三中,氬氣流率為120sccm。在一實施例中,一旦含氮氣體比含氧氣體之比例小於約10:1,則薄膜的遷移率將減少。當氧氣流率增加,遷移率的增加並不相關於載子濃度的增加。當使用摻質,遷移率和載子濃度可能會降低。因此,可藉由調整摻質的量,來調整載子濃度和遷移率。
表五顯示施加的功率密度對半導體薄膜的遷移率、載子濃度和電阻率的影響。一般來說,功率密度不會大幅度影響遷移率,但較高的功率密度會產生較高的載子濃度和電阻率。在一實施例中,施加於濺射靶材的功率密度可介於約0.3W/cm2 和1.0W/cm2 之間。
表六顯示使用N2 O作為含氧氣體,對沉積半導體薄膜的影響。該N2 O氣體作為含氧氣體,以提高半導體薄膜的遷移率,以及達成一相當低的載子濃度。
表六
表七顯示半導體薄膜的化學分析,其包含:錫、氧、氮,和利用X射線光電子能譜(XPS)顯示含氧氣體的影響。施加400W直流偏壓至一濺射靶材,藉由濺射一錫靶材360秒後沉積得到薄膜1。以60sccm的流率將氬氣引入製程處理室,以200sccm的流率將氮氣引入,及以5sccm的流率將氧氣引入。沉積發生在攝氏250度的溫度。薄膜1具有:碳含量22.5原子百分比、氮含量19.4原子百分比、氧含量29.4原子百分比、氟含量0.7原子百分比、和錫含量28.1原子百分比。即使不是全部,絕大多數的碳可能來自外界的碳(即,暴露於大氣中的樣品表面所吸附的碳化合物)。施加400W直流偏壓至一濺射靶材,藉由濺射一錫靶材360秒後沉積得到薄膜2。以60sccm的流率將氬氣引入製程處理室,以200sccm的流率將氮氣引入,及以20sccm的流率將氧氣引入。沉積發生在攝氏250度的溫度。薄膜2具有:碳含量17.3原子百分比、氮含量4.5原子百分比、氧含量49.9原子百分比、氟含量0.6原子百分比、和錫含量27.7原子百分比。即使不是全部,絕大多數的碳可能來自外界的碳(即,暴露於大氣中的樣品表面所吸附的碳化合物)。如表七,當氧流率增加(和因此,氧對氮的比例增加),則氮含量增加,錫氧化物含量亦增加。然而,錫氮化合物含量和氮氧化矽含量減少。在表七中,R等於氧氣或氮氣。
表八顯示一些藉由濺射所沉積的半導體薄膜的結果。半導體薄膜包含鋅、錫、氧、氮。從具有鋅含量70原子百分比和錫含量30原子百分比的濺射靶材,濺射沉積半導體薄膜。沉積發生在攝氏250度的溫度,施加於濺射靶材的功率為400W。在氬氣流量為60sccm和氧氣流量為20sccm下360秒沉積發生。這些數據顯示,當氮流量增加(和因此,氮對氧的比例增加),半導體薄膜的遷移率增加。
圖2A是一示意圖,其繪示氮氣流量對具有錫、氧、氮之半導體薄膜之通過率的影響。氮氣使得光學吸收邊緣移向一短波長或一較大帶隙。增加的氮流率可能導致薄膜在可視範圍更加透明。
圖2B是一示意圖,其繪示氧氣流量對具有錫、氧、氮之半導體薄膜之通過率的影響。氧氣流率愈大,則更多吸收邊緣移動到較短波長或較大帶隙。在較高的溫度下,吸收邊將移向較短波長。
圖3A和3B之XRD圖繪示一半導體薄膜之膜結構,其包含:錫、氮和氧。當氮對氧的比例增加,薄膜結構從金屬錫晶體結構變成非晶結構。圖3A顯示攝氏250度沉積的結果。圖3B顯示攝氏150度沉積的結果。
雖然藉由濺射可能含有雜質的金屬靶材來沉積半導體薄膜之方式來敘述,應明白亦可利用其他沉積方法。在一實施例中,濺射靶材可能含有金屬、氧、和氮和,以及以一射頻電流進行偏壓。在另一實施例中,前驅物氣體可被引入一製程處理室,以藉由化學氣相沉積或ALD沉積半導體薄膜。在另一實施例中,液體前驅物可被引入一製程處理室,或者一反應物可被引入,以藉由旋轉、溶膠凝膠、或電鍍過程來沉積半導體薄膜。
半導體薄膜可用於各種裝置,如TFTs,有機發光二極體,和太陽能面板等等。可將半導體薄膜沉積至任何數目的基板,如矽晶圓、玻璃基板、鹼石灰玻璃基板、塑膠基板,基板等。基板可包括任何形狀或大小,例如,200毫米晶圓、300毫米晶圓、400毫米晶圓、平板基板、多邊形基板、捲軸式基板等。半導體薄膜可以是非結晶。在一實施例中,半導體薄膜可以是結晶的。半導體薄膜也可在沉積後退火。
當含氮氣體比含氧氣體的流量比約為10:1到50:1,則其產生的半導體薄膜具有之遷移率大於非晶矽20倍的遷移率,和多晶矽2倍的遷移率。在一實施例中,含氮氣體比含氧氣體流量比可以介於約5:1至約10:1。對沉積的半導體薄膜進行退火可增加薄膜遷移率至超過90cm2 /V-s。退火可發生在溫度約攝氏400度之一氮氣環境。在高溫下,例如,大約攝氏600度,半導體薄膜可從一個n型半導體薄膜轉換為p型。半導體薄膜是穩定的,且經過一段時間其上可發展一自然鈍化層。鈍化層可擴展成小於25埃的深度。
沉積的半導體薄膜可能具有一帶隙,其介於約3.1eV至約1.2eV,相當於大約400nm到1000nm的波長。由於具有較低的帶隙,該半導體薄膜可用於光電裝置。帶隙可以藉由改變製程參數調整,如氮對氧的流量比、功率密度、壓力、退火、和沉積溫度。藉由相對於氮氣增加氧氣供應量,可增加帶隙。半導體薄膜內的帶隙能量可分級以對整個薄膜的帶隙進行微調。例如,在半導體層的表面附近可能需要具有較高的帶隙能量,則藉由調整整個半導體層的厚度來調整帶隙能量。藉由控制氧氣流量相對於氮氣和氬氣流量之比例,可控制帶隙分佈。
包括氧、氮、與選自由下列組成的群組之一或多元素之半導體薄膜可能會更穩定和有相較於非晶矽和多晶矽來得高的遷移率:鋅、銦、鎵、鎘、和錫。因此,該半導體薄膜可取代矽作為電子裝置之主要半導體材料。
當以上文敘述本發明實施例時,亦可採取其他和進一步的實施例而不偏離其基本範疇,而其範疇係由后附申請專利範圍所決定。
100...處理室
102...基板
104...靶材
106...基座
108...舉升梢
110...接地帶
112...驅動器
114...真空泵
116...背板
118...磁控管
120...黑暗空間遮板
122...處理室遮板
124...陽極
126...氣體引入管
128...耦接器
130...支架
132...氣體面板
簡介如上之本發明上述之特徵可藉由下文之實施方式進一步了解,可能需參考實施例,其部分係藉由附圖所繪示。然而需指出的是,附圖僅說明本發明之典型實施例,因此不應視為限制本發明之範圍,而應含括其他均等之實施例。
圖1是一濺射處理室之截面視圖,依據本發明之一實施例,該濺射處理室可用於沉積半導體薄膜。
圖2A是一示意圖,其繪示氮氣流量對具有錫、氧、氮之半導體薄膜之通過率的影響。
圖2B是一示意圖,其繪示氧氣流量對具有錫、氧、氮之半導體薄膜之通過率的影響。
圖3A和3B之XRD圖繪示一半導體薄膜之膜結構,其包含:錫、氮和氧。
100...處理室
102...基板
104...靶材
106...基座
108...舉升梢
110...接地帶
112...驅動器
114...真空泵
116...背板
118...磁控管
120...黑暗空間遮板
122...處理室遮板
124...陽極
126...氣體引入管
128...耦接器
130...支架
132...氣體面板

Claims (11)

  1. 一種濺射方法,包含下列步驟:使一含氧氣體、惰性氣體及一含氮氣體流至一處理室;施加一直流(DC)電偏壓到一濺射靶材,該濺射靶材包括一摻質及一或更多金屬,該一或更多金屬選自由下列所組成的群組:鋅、鎵、鎘、銦和錫;在一基板上沉積一半導體層,該半導體層包含該一或更多金屬、該摻質、氧和氮;於該半導體層沉積期間,增加該含氮氣體之流率對於該含氧氣體之流率的比例,以增加該半導體層之電子遷移率,使得該半導體層之電子遷移率大於非晶矽之遷移率與多晶矽之遷移率,其中該含氮氣體之流率對於該含氧氣體之流率的比例高於10:1;以及以高於約攝氏250度之一溫度,對該沉積的半導體層進行退火處理。
  2. 如申請專利範圍第1項所述之方法,其中該半導體層包括二或更多金屬,該二或更多金屬選自由下列組成之群組:鋅、鎵、鎘、銦和錫。
  3. 如申請專利範圍第1項所述之方法,其中該摻質是選自由下列所組成之群組:鋁、錫、鎵、鈣、矽、鈦、銅、鍺、銦、鎳、鉻、釩、鎂以及它們的組合。
  4. 如申請專利範圍第1項所述之方法,其中該半導體層之至少一部分包括:一氮氧化合物和一氮化合物。
  5. 如申請專利範圍第1項所述之方法,其中該半導體層是非晶態或具有一奈米結晶結構。
  6. 如申請專利範圍第1項所述之方法,其中該含氮氣體和該含氧氣體是不同氣體。
  7. 一種濺射方法,包含下列步驟:使一含氧氣體、一惰性氣體及一含氮氣體流至一處理室;施加一直流(DC)電偏壓到一濺射靶材,該濺射靶材包括一摻質及一或更多金屬,該一或更多金屬選自由下列所組成的群組:鋅、鎵、鎘、銦和錫;在一基板上沉積一半導體層,該半導體層包含該一或更多金屬、該摻質、氧和氮;於該半導體層沉積期間,增加該含氮氣體之流率對於該含氧氣體之流率的比例,以增加該半導體層之電子遷移率,其中該含氮氣體之流率對於該含氧氣體之流率的比例高於約10:1;以及以高於約攝氏250度之一溫度,對該沉積的半導體層進行退火處理,其中該半導體層具有一大於90cm2 /V-s的電子遷移率。
  8. 如申請專利範圍第7項所述之方法,其中該半導體 層包括二或更多金屬,該二或更多金屬選自由下列組成之群組:鋅、鎵、鎘、銦和錫。
  9. 如申請專利範圍第7項所述之方法,其中該摻質是選自由下列所組成之群組:鋁、錫、鎵、鈣、矽、鈦、銅、鍺、銦、鎳、鉻、釩、鎂以及它們的組合。
  10. 如申請專利範圍第7項所述之方法,其中該半導體層之至少一部分包括:一氮氧化合物和一氮化合物。
  11. 如申請專利範圍第7項所述之方法,其中該半導體層是非晶態或具有一奈米結晶結構。
TW098108079A 2008-03-14 2009-03-12 薄膜金屬氮氧化半導體 TWI435943B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/049,017 US8980066B2 (en) 2008-03-14 2008-03-14 Thin film metal oxynitride semiconductors

Publications (2)

Publication Number Publication Date
TW200951235A TW200951235A (en) 2009-12-16
TWI435943B true TWI435943B (zh) 2014-05-01

Family

ID=41063496

Family Applications (2)

Application Number Title Priority Date Filing Date
TW098108079A TWI435943B (zh) 2008-03-14 2009-03-12 薄膜金屬氮氧化半導體
TW103112326A TWI519659B (zh) 2008-03-14 2009-03-12 薄膜金屬氮氧化半導體

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW103112326A TWI519659B (zh) 2008-03-14 2009-03-12 薄膜金屬氮氧化半導體

Country Status (3)

Country Link
US (1) US8980066B2 (zh)
TW (2) TWI435943B (zh)
WO (1) WO2009114362A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101150142B1 (ko) * 2006-04-06 2012-06-11 어플라이드 머티어리얼스, 인코포레이티드 대형 기판 상에 아연 산화물 투명 전도성 산화물의 반응성 스퍼터링
US7927713B2 (en) * 2007-04-27 2011-04-19 Applied Materials, Inc. Thin film semiconductor material produced through reactive sputtering of zinc target using nitrogen gases
WO2009018509A1 (en) 2007-08-02 2009-02-05 Applied Materials, Inc. Thin film transistors using thin film semiconductor materials
US8980066B2 (en) 2008-03-14 2015-03-17 Applied Materials, Inc. Thin film metal oxynitride semiconductors
US8143093B2 (en) * 2008-03-20 2012-03-27 Applied Materials, Inc. Process to make metal oxide thin film transistor array with etch stopping layer
US8258511B2 (en) 2008-07-02 2012-09-04 Applied Materials, Inc. Thin film transistors using multiple active channel layers
JP5489859B2 (ja) * 2009-05-21 2014-05-14 株式会社半導体エネルギー研究所 導電膜及び導電膜の作製方法
JP2011014884A (ja) * 2009-06-05 2011-01-20 Semiconductor Energy Lab Co Ltd 光電変換装置
JP5889791B2 (ja) 2009-09-24 2016-03-22 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated ソース・ドレイン金属エッチングのためのウェットプロセスを用いた金属酸化物又は金属酸窒化物tftの製造方法
US8840763B2 (en) * 2009-09-28 2014-09-23 Applied Materials, Inc. Methods for stable process in a reactive sputtering process using zinc or doped zinc target
US9850576B2 (en) * 2010-02-15 2017-12-26 Applied Materials, Inc. Anti-arc zero field plate
EP2543438B1 (en) * 2010-03-04 2017-05-03 Panasonic Intellectual Property Management Co., Ltd. Optical semiconductor, optical semiconductor electrode using same, photoelectrochemical cell, and energy system
PT2571515T (pt) * 2010-05-17 2017-03-02 Icahn School Med Mount Sinai Processos e ensaios para tratar indivíduos com eliminação, mutação ou expressão reduzida de shank3
EP2803078A1 (en) 2012-01-12 2014-11-19 First Solar, Inc Method and system of providing dopant concentration control in different layers of a semiconductor device
EP2738815B1 (en) * 2012-11-30 2016-02-10 Samsung Electronics Co., Ltd Semiconductor materials, transistors including the same, and electronic devices including transistors
CN103500710B (zh) * 2013-10-11 2015-11-25 京东方科技集团股份有限公司 一种薄膜晶体管制作方法、薄膜晶体管及显示设备
US10991579B2 (en) 2018-05-02 2021-04-27 Applied Materials, Inc. Methods of making and using tin oxide film with smooth surface morphologies from sputtering target including tin and dopant
JP7183917B2 (ja) * 2019-03-29 2022-12-06 株式会社デンソー スパッタリング装置と半導体装置の製造方法

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331737A (en) * 1978-04-01 1982-05-25 Zaidan Hojin Handotai Kenkyu Shinkokai Oxynitride film and its manufacturing method
ZA849070B (en) 1983-12-07 1985-07-31 Energy Conversion Devices Inc Semiconducting multilayered structures and systems and methods for synthesizing the structures and devices incorporating the structures
FR2579754B1 (fr) * 1985-04-02 1987-07-31 Centre Nat Rech Scient Nitrures et oxynitrures utiles comme detecteurs selectifs de gaz reducteurs dans l'atmosphere, et dispositif de detection les contenant
US4769291A (en) * 1987-02-02 1988-09-06 The Boc Group, Inc. Transparent coatings by reactive sputtering
US4816082A (en) * 1987-08-19 1989-03-28 Energy Conversion Devices, Inc. Thin film solar cell including a spatially modulated intrinsic layer
FR2638527B1 (fr) * 1988-11-02 1991-02-01 Centre Nat Rech Scient Nitrure et oxynitrures de gallium utiles comme detecteurs selectifs de gaz reducteurs dans l'atmosphere, procede pour leur preparation, et dispositif de detection les contenant
JPH02240637A (ja) 1989-03-15 1990-09-25 Matsushita Electric Ind Co Ltd 液晶画像表示装置の製造方法
CA2034118A1 (en) * 1990-02-09 1991-08-10 Nang Tri Tran Solid state radiation detector
JP2999280B2 (ja) * 1991-02-22 2000-01-17 キヤノン株式会社 光起電力素子
JP3255942B2 (ja) 1991-06-19 2002-02-12 株式会社半導体エネルギー研究所 逆スタガ薄膜トランジスタの作製方法
JP2994812B2 (ja) * 1991-09-26 1999-12-27 キヤノン株式会社 太陽電池
US5346601A (en) * 1993-05-11 1994-09-13 Andrew Barada Sputter coating collimator with integral reactive gas distribution
TW273067B (zh) * 1993-10-04 1996-03-21 Tokyo Electron Co Ltd
JPH07131030A (ja) * 1993-11-05 1995-05-19 Sony Corp 表示用薄膜半導体装置及びその製造方法
JP3272532B2 (ja) * 1993-12-27 2002-04-08 富士通株式会社 半導体装置の製造方法
JP3571785B2 (ja) * 1993-12-28 2004-09-29 キヤノン株式会社 堆積膜形成方法及び堆積膜形成装置
US5620523A (en) * 1994-04-11 1997-04-15 Canon Sales Co., Inc. Apparatus for forming film
US5522934A (en) * 1994-04-26 1996-06-04 Tokyo Electron Limited Plasma processing apparatus using vertical gas inlets one on top of another
US5668663A (en) * 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
US5700699A (en) * 1995-03-16 1997-12-23 Lg Electronics Inc. Method for fabricating a polycrystal silicon thin film transistor
JP3306258B2 (ja) * 1995-03-27 2002-07-24 三洋電機株式会社 半導体装置の製造方法
JP3169337B2 (ja) * 1995-05-30 2001-05-21 キヤノン株式会社 光起電力素子及びその製造方法
US6969635B2 (en) * 2000-12-07 2005-11-29 Reflectivity, Inc. Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US5716480A (en) * 1995-07-13 1998-02-10 Canon Kabushiki Kaisha Photovoltaic device and method of manufacturing the same
JP3625598B2 (ja) * 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
US6153013A (en) * 1996-02-16 2000-11-28 Canon Kabushiki Kaisha Deposited-film-forming apparatus
KR100251070B1 (ko) * 1996-08-28 2000-04-15 미다라이 후지오 광기전력 소자
US6159763A (en) * 1996-09-12 2000-12-12 Canon Kabushiki Kaisha Method and device for forming semiconductor thin film, and method and device for forming photovoltaic element
US5993594A (en) * 1996-09-30 1999-11-30 Lam Research Corporation Particle controlling method and apparatus for a plasma processing chamber
US6432203B1 (en) * 1997-03-17 2002-08-13 Applied Komatsu Technology, Inc. Heated and cooled vacuum chamber shield
US6238527B1 (en) * 1997-10-08 2001-05-29 Canon Kabushiki Kaisha Thin film forming apparatus and method of forming thin film of compound by using the same
JP4208281B2 (ja) * 1998-02-26 2009-01-14 キヤノン株式会社 積層型光起電力素子
WO1999063600A1 (en) * 1998-06-01 1999-12-09 Kaneka Corporation Silicon-base thin-film photoelectric device
US7235810B1 (en) * 1998-12-03 2007-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US20020084455A1 (en) * 1999-03-30 2002-07-04 Jeffery T. Cheung Transparent and conductive zinc oxide film with low growth temperature
KR100590925B1 (ko) 1999-07-30 2006-06-19 비오이 하이디스 테크놀로지 주식회사 박막트랜지스터-액정표시장치의 제조방법
US6228236B1 (en) * 1999-10-22 2001-05-08 Applied Materials, Inc. Sputter magnetron having two rotation diameters
WO2001033643A1 (en) * 1999-10-29 2001-05-10 Ohio University BAND GAP ENGINEERING OF AMORPHOUS Al-Ga-N ALLOYS
WO2002043466A2 (en) * 2000-11-30 2002-06-06 North Carolina State University Non-thermionic sputter material transport device, methods of use, and materials produced thereby
KR100491141B1 (ko) 2001-03-02 2005-05-24 삼성에스디아이 주식회사 박막 트랜지스터 및 그의 제조방법과 이를 이용한 액티브매트릭스형 표시소자 및 그의 제조방법
US6943359B2 (en) * 2001-03-13 2005-09-13 University Of Utah Structured organic materials and devices using low-energy particle beams
US6740938B2 (en) * 2001-04-16 2004-05-25 Semiconductor Energy Laboratory Co., Ltd. Transistor provided with first and second gate electrodes with channel region therebetween
JP4560245B2 (ja) * 2001-06-29 2010-10-13 キヤノン株式会社 光起電力素子
US20030049464A1 (en) * 2001-09-04 2003-03-13 Afg Industries, Inc. Double silver low-emissivity and solar control coatings
US7339187B2 (en) * 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
US7189992B2 (en) * 2002-05-21 2007-03-13 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures having a transparent channel
JP2004363560A (ja) * 2003-05-09 2004-12-24 Seiko Epson Corp 基板、デバイス、デバイス製造方法、アクティブマトリクス基板の製造方法及び電気光学装置並びに電子機器
EP1624494A4 (en) * 2003-05-13 2007-10-10 Asahi Glass Co Ltd TRANSPARENT CONDUCTIVE SUBSTRATE FOR SOLAR BATTERY AND PROCESS FOR PRODUCING THE SAME
TWI222753B (en) * 2003-05-20 2004-10-21 Au Optronics Corp Method for forming a thin film transistor of an organic light emitting display
JP4344270B2 (ja) * 2003-05-30 2009-10-14 セイコーエプソン株式会社 液晶表示装置の製造方法
US20050017244A1 (en) * 2003-07-25 2005-01-27 Randy Hoffman Semiconductor device
TWI224868B (en) * 2003-10-07 2004-12-01 Ind Tech Res Inst Method of forming poly-silicon thin film transistor
US7026713B2 (en) * 2003-12-17 2006-04-11 Hewlett-Packard Development Company, L.P. Transistor device having a delafossite material
SG143940A1 (en) * 2003-12-19 2008-07-29 Agency Science Tech & Res Process for depositing composite coating on a surface
US7297977B2 (en) * 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7145174B2 (en) * 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7122398B1 (en) * 2004-03-25 2006-10-17 Nanosolar, Inc. Manufacturing of optoelectronic devices
US7989387B2 (en) 2004-04-27 2011-08-02 Toyota Jidosha Kabushiki Kaisha Process for producing metal oxide particle and exhaust gas purifying catalyst
US7158208B2 (en) * 2004-06-30 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR100721555B1 (ko) * 2004-08-13 2007-05-23 삼성에스디아이 주식회사 박막트랜지스터 및 그 제조 방법
US7378286B2 (en) * 2004-08-20 2008-05-27 Sharp Laboratories Of America, Inc. Semiconductive metal oxide thin film ferroelectric memory transistor
US7622338B2 (en) * 2004-08-31 2009-11-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN1293606C (zh) 2004-09-30 2007-01-03 浙江大学 两步法生长N-Al共掺杂p型ZnO晶体薄膜的方法
US7382421B2 (en) * 2004-10-12 2008-06-03 Hewlett-Packard Development Company, L.P. Thin film transistor with a passivation layer
BRPI0517568B8 (pt) * 2004-11-10 2022-03-03 Canon Kk Transistor de efeito de campo
JP2006144053A (ja) * 2004-11-17 2006-06-08 Bridgestone Corp NドープZnO膜の成膜方法。
US7309895B2 (en) * 2005-01-25 2007-12-18 Hewlett-Packard Development Company, L.P. Semiconductor device
US7381586B2 (en) * 2005-06-16 2008-06-03 Industrial Technology Research Institute Methods for manufacturing thin film transistors that include selectively forming an active channel layer from a solution
US7691666B2 (en) * 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
EP1898202A4 (en) * 2005-06-17 2014-07-30 Beckman Coulter Inc STIRRER AND ANALYZER
US7628896B2 (en) * 2005-07-05 2009-12-08 Guardian Industries Corp. Coated article with transparent conductive oxide film doped to adjust Fermi level, and method of making same
US7829471B2 (en) * 2005-07-29 2010-11-09 Applied Materials, Inc. Cluster tool and method for process integration in manufacturing of a photomask
US20070030569A1 (en) * 2005-08-04 2007-02-08 Guardian Industries Corp. Broad band antireflection coating and method of making same
JP4968660B2 (ja) * 2005-08-24 2012-07-04 スタンレー電気株式会社 ZnO系化合物半導体結晶の製造方法、及び、ZnO系化合物半導体基板
EP3614442A3 (en) * 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
US20070068571A1 (en) * 2005-09-29 2007-03-29 Terra Solar Global Shunt Passivation Method for Amorphous Silicon Thin Film Photovoltaic Modules
KR100785038B1 (ko) * 2006-04-17 2007-12-12 삼성전자주식회사 비정질 ZnO계 TFT
JP2007294709A (ja) * 2006-04-26 2007-11-08 Epson Imaging Devices Corp 電気光学装置、電子機器、および電気光学装置の製造方法
JP4946156B2 (ja) * 2006-05-01 2012-06-06 富士ゼロックス株式会社 半導体膜及びその製造方法、並びに、該半導体膜を用いた受光素子、電子写真用感光体、プロセスカートリッジ、画像形成装置
US20090023959A1 (en) * 2006-06-16 2009-01-22 D Amore Michael B Process for making dibutyl ethers from dry 1-butanol
KR101340514B1 (ko) * 2007-01-24 2013-12-12 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR100851215B1 (ko) * 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR100982395B1 (ko) * 2007-04-25 2010-09-14 주식회사 엘지화학 박막 트랜지스터 및 이의 제조방법
US7927713B2 (en) * 2007-04-27 2011-04-19 Applied Materials, Inc. Thin film semiconductor material produced through reactive sputtering of zinc target using nitrogen gases
JP5215589B2 (ja) * 2007-05-11 2013-06-19 キヤノン株式会社 絶縁ゲート型トランジスタ及び表示装置
US20080308411A1 (en) * 2007-05-25 2008-12-18 Energy Photovoltaics, Inc. Method and process for deposition of textured zinc oxide thin films
JP5241143B2 (ja) * 2007-05-30 2013-07-17 キヤノン株式会社 電界効果型トランジスタ
US8372250B2 (en) * 2007-07-23 2013-02-12 National Science And Technology Development Agency Gas-timing method for depositing oxynitride films by reactive R.F. magnetron sputtering
WO2009018509A1 (en) * 2007-08-02 2009-02-05 Applied Materials, Inc. Thin film transistors using thin film semiconductor materials
US20090212287A1 (en) * 2007-10-30 2009-08-27 Ignis Innovation Inc. Thin film transistor and method for forming the same
US8980066B2 (en) 2008-03-14 2015-03-17 Applied Materials, Inc. Thin film metal oxynitride semiconductors
US8143093B2 (en) * 2008-03-20 2012-03-27 Applied Materials, Inc. Process to make metal oxide thin film transistor array with etch stopping layer
US7879698B2 (en) * 2008-03-24 2011-02-01 Applied Materials, Inc. Integrated process system and process sequence for production of thin film transistor arrays using doped or compounded metal oxide semiconductor
US8258511B2 (en) 2008-07-02 2012-09-04 Applied Materials, Inc. Thin film transistors using multiple active channel layers
EP2184783B1 (en) * 2008-11-07 2012-10-03 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and method for manufacturing the same
US8436350B2 (en) * 2009-01-30 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device using an oxide semiconductor with a plurality of metal clusters
TWI489628B (zh) * 2009-04-02 2015-06-21 Semiconductor Energy Lab 半導體裝置和其製造方法

Also Published As

Publication number Publication date
WO2009114362A1 (en) 2009-09-17
TWI519659B (zh) 2016-02-01
US8980066B2 (en) 2015-03-17
TW201428115A (zh) 2014-07-16
TW200951235A (en) 2009-12-16
US20090233424A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
TWI435943B (zh) 薄膜金屬氮氧化半導體
US10629581B2 (en) Thin film semiconductor material produced through reactive sputtering of zinc target using nitrogen gases
TWI434420B (zh) 使用薄膜半導體材料的薄膜式電晶體
US8840763B2 (en) Methods for stable process in a reactive sputtering process using zinc or doped zinc target
Takenaka et al. Effects of Working Pressure on the Physical Properties of a-InGaZnO x Films Formed Using Inductively Coupled Plasma-Enhanced Reactive Sputtering Deposition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees