TWI426614B - 混合的光伏特電池及相關聯之方法 - Google Patents

混合的光伏特電池及相關聯之方法 Download PDF

Info

Publication number
TWI426614B
TWI426614B TW097115453A TW97115453A TWI426614B TW I426614 B TWI426614 B TW I426614B TW 097115453 A TW097115453 A TW 097115453A TW 97115453 A TW97115453 A TW 97115453A TW I426614 B TWI426614 B TW I426614B
Authority
TW
Taiwan
Prior art keywords
nanorods
nanocrystals
blocking agent
battery
polymer
Prior art date
Application number
TW097115453A
Other languages
English (en)
Other versions
TW200901488A (en
Inventor
James Harris
Nigel Pickett
Original Assignee
Nanoco Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoco Technologies Ltd filed Critical Nanoco Technologies Ltd
Publication of TW200901488A publication Critical patent/TW200901488A/zh
Application granted granted Critical
Publication of TWI426614B publication Critical patent/TWI426614B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/125Deposition of organic active material using liquid deposition, e.g. spin coating using electrolytic deposition e.g. in-situ electropolymerisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

混合的光伏特電池及相關聯之方法
本發明係關於太陽能電池及其製造,且尤其係關於奈米棒-奈米晶體-聚合物混合太陽能電池。
本申請案主張2007年4月25日申請之美國臨時申請案第60/926,103號之優先權及權益,其全部揭示內容係以引用的方式併入本文中。
為自電磁輻射產生有用之電流,光伏特(PV)電池須吸收入射輻射以使得電子由價帶躍遷至傳導帶(在價帶中留下電洞),且須能夠使電子與電洞分離且將該等電荷載流子在其再結合之前傳遞至其相應電極上。
已基於不同材料使用許多不同策略不同程度地成功認識到該等基本性能具有商業上令人滿意之效率。代表性裝置包括結晶無機太陽能電池(例如矽、鍺、GaAs)、奈米晶體染料敏化太陽能電池、半導體-聚合物太陽能電池、奈米粒子太陽能電池,及近年來併有且組合來自其他策略之上述組件之複合太陽能電池。
1.無機光伏特電池
矽為目前為止製造無機光伏特電池之最常用材料。該等電池依賴於矽吸收光且因此產生隨後在p-n接面處分離之受激電子-電洞對之能力。由p-n接面建立之電場由於電子及電洞穿過材料之方式而促進該分離:電子移動至較低能級而電洞移動至較高能級。
p-n接面之形成通常包括在惰性氣氛中高溫處理以形成非撓性且昂貴的極純結晶矽晶圓。由於矽為間接半導體,故通常需要相對較厚之層以達成良好吸收度,此進一步增加材料成本。最純(且昂貴)矽光伏特電池之效率為約20%;較廉價非晶形矽電池之效率為約5-10%。
當今商業PV系統可將5%至15%之太陽光能量轉化為電能。該等系統高度可靠且通常能持續20年或更長。藉由較低廉、較低溫度技術製造太陽能電池之可能性極具吸引力。因此,奈米晶體染料敏化太陽能電池(DSSC)、半導體-聚合物太陽能電池及奈米粒子太陽能電池受到廣泛關注。
2.聚合物光伏特電池
半導體聚合物可用於製造有機光伏特電池。該等聚合物之特性可藉由將組份單體官能化而加以調整。因此可獲得具有合適帶隙、吸收特徵及物理特性之多種聚合物。為達成電子-電洞對之分離,有機光伏特電池依賴於供體-受體異質接面。在聚合物中,激發態電子及電洞結合在一起,且以稱為激子之準粒子形式同時傳輸。其保持在一起直至其遇到使其分離之異質接面。不幸地,激子之生命極短暫,且僅能在再結合之前傳輸約10 nm。因此,所吸收之距離異質接面大於該擴散長度之任何光子將被浪費。與矽相比,聚合物之電荷遷移率通常較低(0.5-0.1 cm2 V-1 s-1 ),而矽高得多(1500 cm2 V-1 s-1 )。現有技術之聚合物光伏特電池具有1-2%之效率。儘管該等效率較低,然而該等材料 具有產生廉價撓性太陽能電池之保證。
3.奈米粒子光伏特電池
無機奈米粒子(或奈米晶體)已用於製備膠狀、薄膜PV電池,其展示聚合物光伏特電池之一些優點,同時保持無機光伏特電池之許多優點。舉例而言,該等電池可含有包含供體奈米粒子層及受體奈米粒子層之雙層結構,其中該等兩個層展現極少混雜,且二者均有助於所量測之光電流。由該等裝置展現之強光導效應表明該等材料具有大量經捕獲之載流子,且與p-n帶模型相比由供體-受體分子模型描述較佳。與塊狀半導體之帶隙能量相比增加之帶隙能量使可用載流子之數目最小化,且不同相中之供體與受體粒子之空間分離捕獲激子從而其須在供體-受體異質接面處分裂。不存在帶彎曲,故激子之分裂較困難。
應強調,將供體與受體奈米粒子簡單地摻合在一起將不形成產生光電壓之薄膜。電極對一粒子或另一粒子之選擇性缺乏意謂該等電極可接觸供體與受體物質兩者。該等物質可採用奈米棒而非奈米球之形式,因為具有高縱橫比之奈米棒有助於分散載流子。激子沿奈米棒之長度迅速傳遞增加使激子在供體受體異質接面處分裂之機會。
(例如)CdSe棒之溶液處理(Solution processing)可達成直徑內5%及長度內10%之尺寸分布,且縱橫比為20且長度為100 nm。可溶液處理獲得之大體控制使得可藉由改變奈米棒長度及帶隙能量來優化電池。
4.聚合物-奈米晶體複合光伏特電池
已證明將奈米材料與聚合物薄膜組合可產生良好能量轉化效率,同時提供製造之低溫解決方法。在一方法中,奈米材料係用於傳導電荷而聚合物用作吸收材料,或者奈米材料充當發色團,亦即光吸收體,且半導體聚合物係用作空穴導體。在前者之情況下,寬帶隙半導體(例如TiO2 )接受來自發色聚合物半導體之傳導帶的受激電子;且在後者之情況下,光吸收半導體奈米晶體吸收光子且將所得負電荷傳遞至透明初級電極,而半導體聚合物將電洞傳遞至對立電極。在兩種類型之電池中,奈米晶體與聚合物之間的異質接面分離奈米晶體或聚合物中所產生之激子。電子係轉移至奈米晶體之傳導帶且電洞保留在聚合物之價帶中,或電子保留在奈米晶體之傳導帶中,且電洞轉移至聚合物之價帶中。
4.1寬帶隙奈米晶體/光吸收聚合物
聚合物-奈米晶體電池中之活性層具有兩種組件:光吸收體及奈米粒子電子載流子。通常,光吸收體為p型聚合導體,例如聚(伸苯基伸乙烯基)或聚(3-己基噻吩),且奈米粒子電子載流子為寬帶隙半導體,諸如ZnO或TiO2 。在該配置中,聚合物用來吸收光,將電子傳遞至電子受體/載流子,且將電洞運載至初級電極。電子受體接受電子且將電子傳遞至金屬後部接點。
相分離之形態至關重要。舉例而言,各層僅具有一組件之雙層結構產生具有不良效能之電池。原因為光吸收聚合物之激發態之壽命通常短於激子至界面的傳遞速率,且因 此整個聚合物中所形成之大多數激子從未到達使電子與電洞分離之界面,導致光電流損失。形成塊狀異質接面之形態傾向於展示較高效率。若吸收體與電子受體在整個活性層中緊密接觸,則較短激子路徑長度將產生增加之電子傳遞及較高效率。由具有該配置之電池獲得之最佳效率為約2%。
該技術展示希望,但仍有需克服之障礙。一問題為入射輻射之不完全吸收。吸收光極強且稱為聚合染料之聚合物具有大消光係數(>100,000 M-1 cm-1 ),但由於低激子遷移率,故薄膜通常需薄於100 nm,此顯著地造成不完全吸收。該效應可藉助於供體與受體物質之交叉陣列結構來對抗。
4.2寬帶隙奈米晶體/光吸收奈米晶體/電洞傳遞聚合物
一與光吸收聚合物策略有關之問題為由於典型聚合物之窄吸收頻寬而使可用太陽能之利用不足。會浪費約40%的光(自約600 nm外至近IR)。替代性配置係在於使用奈米晶體作為光吸收體及電子載流子,且使用聚合物作為光吸收體及空穴載流子。CdSe奈米棒及四角錐體(tetrapod)/聚合物系統已顯示達1.7%之能量轉化效率。該等系統之優點在於奈米晶體之吸收可經由奈米晶體之尺寸加以調整,且因此可製造吸收基本上全部入射輻射之系統。
不幸地,難以使無機奈米晶體分散至單體溶液中。兩相傾向凝聚且最小化形成使電荷能夠分離之異質接面所需之電接點。使奈米晶體分散於聚合物相中為受到廣泛關注之 領域。
通常,分散奈米晶體所用之策略在於將奈米晶體以具有有機尾部之封端劑官能化,此增強在進行聚合之溶劑中之溶解度。用於此目的之封端劑通常具有對奈米晶體具有強親和力之頭部基團:例如胺、羧酸酯、膦、硫醇、氧化膦及膦酸,均強烈結合。封端劑之有機尾部應與聚合物可溶之溶劑相容。長烴鏈通常提供高溶解度,但其為非傳導性的;因此,有必要平衡最佳溶解度與傳導性。
用於複合研究之最通用聚合物為PDFC、P3Ht及MEH-PPV(其中PDFC係指{聚[9,9-二己基茀基-2,7-二基)-交替-共-(9-乙基-3,6-咔唑)]}-,P3Ht係指聚(3-己基噻吩),且MEH-PPV係指聚(2-甲氧基-5-(2'-乙基-己氧基)-1,4-伸苯基伸乙烯基))。該等聚合物中之每一者具有供官能化用之位點,使得可操作價帶/傳導帶能量以達成電荷轉移至奈米晶體或自奈米晶體電荷轉移之最優條件。已表明封端劑亦可充當有機受體相;例如已證明以膦酸基團官能化之P3HT可分離CdSe奈米晶體。
5.染料敏化太陽能電池
DSSC併有已以透明傳導氧化物塗佈之基板(其充當初級電極)。對立電極亦可以透明傳導氧化物塗佈,但亦可為耐蝕金屬,諸如以極薄鉑層塗佈之鈦。將寬帶隙半導體(諸如TiO2 )多孔層沈積於初級電極之傳導表面上。隨後以在可見光譜區中具有強吸收之染料塗佈該多孔層。為使效率最優,染料濃度應限於染料分子單層。因此,需要極大 的表面面積來容納足夠染料以吸收全部入射光。因此,使用奈米晶體(例如TiO2 )製造高度多孔薄膜。將含有氧化還原電對(通常I /I3 )之電解質吸收至二氧化鈦層中。為完成該電池,使帶有初級電極及敏化二氧化鈦層之基板與對立電極面對面接觸。
典型染料為基於無機釕之染料,儘管有機染料受到愈來愈多之關注。染料吸收可見光,且激發態將電子注入TiO2 傳導帶中。在可出現反電子傳遞之前,經氧化之染料由溶解狀態中之氧化還原活性物質(通常I /I3 )還原,使染料再生。經氧化之氧化還原活性物質擴散至對立電極,在此處其被還原,結束循環且接通電路。在使得所注入之電子在對立電極處還原經氧化之氧化還原活性物質之前,可進行使所注入電子穿過外部載荷之工作。
可製造展現達10%能量轉化效率之廉價DSSC裝置。對於該技術而言存在許多問題有待解決以改良效能及穩定性,包括以固態或較高沸點電解質替代最佳效能液體電解質;改良光譜重疊;使用具有較低氧化還原電位之氧化還原介體;及降低由於穿過奈米粒子TiO2 層之不良電子傳導所致之再結合損失。
6.混合電池
混合電池組合塗佈且燒結於透明半導體氧化物上之染料敏化二氧化鈦與將電子運載至經氧化之染料的p型聚合物。由於僅一種聚合物替代多組份電解質,故可便利地且可再現地製造該等電池。然而基於釕染料敏化奈米棒之 DSSC傾向於展現低效率,因為較低表面面積不能容納足夠的染料來吸收全部入射光。至今發現的最有效之染料僅具有約~20,000 M-1 cm-1 之消光係數,且因此需要較大表面面積來結合足夠的染料以獲得最大吸光率。
本發明之態樣提供包含半導體奈米棒-奈米晶體-聚合物混合層之光伏特(PV)電池,以及製造其之方法。在本發明之PV電池中,奈米晶體充當光吸收材料與受激電子-電洞對(亦即激子)分裂之異質接面兩者。奈米棒充當電子載流子且與電池陽極電連接,且聚合物充當空穴載流子且與電池陰極電連接。
本發明之一優點在於使用小粒子奈米晶體作為光吸收體與異質接面。與(例如)習知聚合物PV電池相比,激子產生及分裂之所得時空接近性使得再結合損失明顯降低,且因此使得光子轉化為電之效率較高。本發明之實施例提供機械可撓性及低成本製造方法之其他優勢。
因此,在第一態樣中,本發明提供一種光伏特電池,其含有兩個電極,及該等電極之間的複數個對準型半導體奈米棒,該等奈米棒由複數個光敏奈米晶體圍繞且與之結合,及圍繞該等奈米棒且與該等奈米晶體結合之半導體聚合物。該等奈米晶體充當將電子引導至奈米棒且將電洞引導至聚合物中之異質接面,或反之亦然。奈米棒係與第一電極電連接,且藉由與第二電極結合之聚合物薄層與第二電極電絕緣。在各種實施例中,聚合物為電洞傳遞聚合 物,且因此,奈米晶體將電洞引導至聚合物中且將電子引導至奈米棒中。在各種實施例中,奈米晶體與奈米棒藉由可為(例如)巰基乙酸之雙官能封端劑結合。舉例而言,可使奈米棒在第一電極上生長,且另一電極可隨後以確保奈米棒與第二電極絕緣之方式沈積於奈米棒-奈米晶體-聚合物層上。
有利之奈米棒具有至少3之縱橫比(亦即粒子最長尺寸與最短尺寸之比率),且其最短尺寸不大於100 nm。較佳奈米棒為單晶。本發明之合適奈米棒材料包括(但不限於)寬帶隙半導體,諸如ZnO、SnO及TiO2 ,其中ZnO為較佳材料。
本發明之合適奈米晶體包括直徑不大於20 nm,形狀通常可(但不必)為球形之半導體、單晶或多晶奈米粒子。合適奈米晶體材料包括(但不限於)CuInSe2 、CuInS2 、CuIn1-x Gax Se2 (其中0x1)、GaAs、InAs、InP、PbS、PbSe、PbTe、GaSb、InSb、CdTe及CdSe。具有至少100,000 M-1 cm-1 之消光係數的奈米晶體較佳。在各種實施例中,奈米晶體之最大空間尺寸不大於奈米晶體中在吸收光之後所產生的激子的平均擴散距離。
合適聚合物材料包括(但不限於)聚(3-己基噻吩),聚伸苯基伸乙烯基(PPV)及其衍生物,及聚茀(PFO)及其衍生物。在各種實施例中,聚合物與奈米晶體結合但不與奈米棒結合。
在第二態樣中,本發明提供製造具有異質接面之半導體 結構之方法;該結構可用於光伏特電池中。該方法之實施例包括:提供複數個奈米棒及複數個以第一封端劑封端之光敏奈米晶體;將奈米棒或奈米晶體曝露於第二雙官能封端劑;隨後將奈米晶體與奈米棒組合以使奈米晶體經由雙官能封端劑與奈米棒結合;將已結合之奈米棒及奈米晶體與具有結合基團之官能化單體組合,該結合基團具有(i)對奈米晶體比對第一封端劑強之親和力,及(ii)對奈米棒比對雙官能封端劑弱之親和力,以使該單體較佳置換第一封端劑且與奈米晶體結合;及使單體聚合。雙官能封端劑可首先與奈米棒結合,且隨後與奈米晶體結合,從而取代一些第一封端劑。或者,雙官能封端劑可首先與奈米晶體結合(從而取代一些第一封端劑),且隨後以其游離末端與奈米棒結合。在各種實施例中,第一封端劑含有硫醇、硒醇、胺、膦、氧化膦及/或芳族雜環官能基。合適封端劑之非限制性實例為辛硫醇。
上述討論將因以下實施方式結合隨附圖式更易於理解。
1.奈米棒-奈米晶體-聚合物混合結構
在基於聚合物之光伏特電池中,激子在再結合之前平均傳輸約10 nm;因此,需要分離激子,亦即使其儘快遇到異質接面。此需要在本發明之實施例中得以滿足,其中奈米晶體(量子點)充當電洞傳遞聚合物與寬帶隙半導體電子受體之間的橋,由此構成異質接面,且同時充當光吸收體,亦即激子產生之位置。本發明之奈米晶體之直徑約等 於或小於激子之擴散距離。因此,奈米晶體中所產生之激子通常在其平均擴散距離內遇到奈米晶體與電子受體或與電洞傳遞聚合物之界面,而與其遷移之方向無關。因此,激子極有效地分裂,且奈米晶體內之再結合很少發生。電子進入寬帶隙半導體,且電洞進入聚合物。
圖1A 中說明本發明之PV電池100 之結構。在兩個電極(陽極101 及陰極103 )之間,排列有構成電子受體之複數個對準型寬帶隙半導體奈米棒106 。如圖1A 之細節中所示,該等奈米棒106 各自由光敏奈米晶體109 圍繞。該等敏化奈米棒又由電洞傳遞聚合物112 圍繞,該聚合物112 填充該等電極101103 之間的剩餘空間。聚合物112 亦在陰極103 下方形成一薄層,該薄層使陰極103 與敏化奈米棒106 電絕緣。
圖1B 展示在本發明之較佳實施例中該等三個組件如何互相連接。奈米晶體109 與奈米棒106 藉助於雙官能結合分子115 結合。在各種實施例中,雙官能封端劑115 具有硫醇及羧酸酯部分。硫醇基較佳與奈米晶體109 結合,且羧酸酯基較佳與(金屬氧化物)奈米棒106 結合。插入鏈應足夠短以使電荷自奈米晶體109 至奈米棒106 之傳遞不受阻礙。代表性雙官能封端劑115 為巰基乙酸。電洞傳遞聚合物112 與奈米晶體109 直接結合,但較佳不與奈米棒106 結合。
奈米棒、雙官能分子、奈米晶體及聚合物之系統之代表性非限制性實例包含以巰基乙酸封端之ZnO奈米棒、CuInSe2 量子點及聚(3-己基噻吩)。
1.1奈米晶體109
在特定應用中用於奈米晶體之半導體材料係取決於價帶及傳導帶能級之適合性。傳導帶應具有足夠能量以能夠將電子有效地注入奈米棒中,而價帶應具有足夠低之能量以將電洞注入聚合物價帶中。後者之限制條件通常易滿足,因為具有高於奈米晶體之能量價帶的合適聚合物容易鑑別。受限於以上限制條件,奈米晶體之帶隙應足夠小以允許吸收大量太陽光譜。合適奈米晶體材料包括基於銅-銦-二硒化物之材料及其變體,例如CuInS2 、CuInSe2 或CuIn1-x Gax Se2 (其中0x1)以及CdSe、GaAs、InAs及InP。
可使用(例如)美國專利第6,379,635號及同在申請中之美國專利申請案第11/579,050號及第11/588,880號中所述之技術合成奈米晶體,該等專利之全部內容係以引用的方式併入本文中。
在美國臨時申請案第60/991,510號中揭示使用硒醇化合物生產具有任何適宜化學計量之CIGS奈米晶體之方法,該專利之全部內容係以引用的方式併入本文中。該方法之實施例包括使至少第一部分之奈米晶體前驅物組合物(包含Al、Ga及/或In中之至少一者及Cu、Ag、Zn及/或Cd中之至少一者之來源)分散於溶劑(例如長鏈烴溶劑)中;將溶劑加熱至第一溫度達一適當時間長度;在溶劑中添加硒醇化合物且將溶劑加熱;在反應混合物中添加第二部分之奈米晶體前驅物組合物;經適當時間長度將混合物加熱至高於第一溫度之第二溫度;及保持該溫度達10小時。粒子形成之 後,通常使粒子之表面原子與封端劑配位,該封端劑可包含該方法中所用之硒醇化合物。若使用揮發性硒醇化合物,則該封端劑可以加熱去除以產生能以其他配位配位體封端且進一步加工之"裸露"奈米晶體。實例1及實例2提供關於該方法之實施更多細節:
實例1 :將乙酸銅(I)(1 mmol)及乙酸銦(III)(1 mmol)添加至清潔且乾燥之RB燒瓶中。添加十八烯ODE(5 mL),將反應混合物在100℃下在真空中加熱30分鐘。將燒瓶以氮氣回填,且使溫度升至140℃。注入1-辛烷硒醇且將溫度降至120℃。將所得橙色懸浮液在攪拌下加熱且當溫度達至140℃時獲得透明橙色/紅色溶液。保持該溫度達30分鐘,隨後逐滴添加1 M硒化三辛基膦TOPSe(2 mL,2 mmol),且將溶液在160℃下加熱。監控PL直至其達到所需波長,之後,將其冷卻且將所得油狀物以甲醇/丙酮(2:1)洗滌4-5次且最終藉由以丙酮沈澱分離。
實例2(大規模生產) :藉由在氮氣下將Se粉末(10.9,138 mmol)溶解於TOP(60 mL)中來製備TOPSe之儲備溶液。在乾燥、脫氣之ODE中添加乙酸銅(I)(7.89 g,64.4 mmol)及乙酸銦(III)(20.0 g,68.5 mmol)。將反應容器排空且在140℃下加熱10分鐘,以N2 回填且冷卻至室溫。添加1-辛烷硒醇(200 mL)以產生亮橙色懸浮液。使燒瓶之溫度升至140℃且將乙酸在120℃下自反應物蒸餾出。達到140℃之後,經1小時逐滴添加TOPSe溶液。3小時之後,使溫度升至160℃。藉由自反應物週期性取出等分試樣且量測UV/可 見光及光致發光光譜監控反應進展。7小時之後,將反應物冷卻至室溫且將所得黑色油狀物以甲醇洗滌。持續甲醇洗滌直至有可能藉由添加丙酮自油狀物沈澱精細黑色物質。將黑色沈澱物藉由離心分離,以丙酮洗滌且在真空下乾燥。產量:31.97 g。
出於優化奈米晶體之組成、尺寸及電荷(charge)之目的,其可由習知技術表徵,該等習知技術包括(但不限於)XRD、UV/Vis/近紅外光譜測定法、SEM、TEM、EDAX、光致發光光譜測定法及元素分析。
本發明之一些實施例使用具有至少100,000 M-1 cm-1 之消光係數的奈米晶體。在該等高吸光係數下,需要較少奈米晶體來達成相同總體吸收。因此,基於該等奈米晶體之本發明之實施例可受益於吸收增加而不會由於再結合增強而發生效率損失。
1.2奈米棒106
可藉由直接化學合成,使用諸如氧化三辛基膦(TOPO)之配位體與用於形狀控制之例如十八烷基膦酸之各種膦酸的合適組合生產奈米棒。此外,可使用諸如對金屬箔進行電化學蝕刻或基板接種繼而使奈米棒在化學浴槽中沿垂直於基板之方向生長之技術,使不同類型之金屬氧化物以有序奈米棒陣列生長。參見(例如)D.C.Olson等人,J.Phys.Chem.C,2007,111,16640-16645;及J.Yang等人,Crystal Growth & Design,2007,12/2562,該等文獻之全部揭示內容係以引用的方式併入本文中。
在本發明之較佳實施例中,奈米棒具有超過3之高縱橫比,且達200 nm長。較佳奈米棒材料為ZnO。可能合適之其他材料包括SnO、TiO2 及其他金屬氧化物。
如先前所提及,小尺寸之奈米晶體極大地減少粒子內之再結合。為進一步減少再結合損失,本發明之較佳實施例使用單晶奈米棒。儘管在基於奈米多孔粒子之薄膜中,諸如DSSC電池中所用之薄膜,電子緩慢滲過薄膜,使得與電解質之再結合能夠發生,但電子經由單晶奈米棒傳遞極快,此限制奈米棒之電子與奈米晶體或聚合物中之電洞再結合。
在較佳實施例中且如以下更詳細地討論,將奈米棒以雙官能封端劑層塗佈,該封端劑使量子點與奈米棒密切結合,由此防止半導體聚合物接近奈米棒,此甚至進一步減少奈米棒-聚合物再結合損失。
1.3聚合物112
聚合物112應具有使得電洞可有效地自奈米晶體價帶傳遞至聚合物價帶之價帶能量。合適聚合物包括聚(3-己基噻吩),聚伸苯基伸乙烯基(PPV)及其衍生物,及聚茀(PFO)及其衍生物。由於有機材料中之高電洞遷移率,該等聚合物為有效的電洞傳遞聚合物。
2.製造奈米棒-奈米粒子-聚合物混合結構之方法
本發明之混合半導體結構可使用諸如印刷、浸塗或化學浴槽沈積之低成本沈積技術製造。對於製造之重要考慮因素為控制將各零件結合在一起之位置。舉例而言,使聚合 物與奈米棒結合最可能由於再結合導致效率之大體損失。在較佳實施例中,使奈米晶體與奈米棒及半導體聚合物兩者結合以作為異質接面來提高最佳效能,且聚合物不與奈米棒直接結合。該結構可以合適封端劑在適當處理步驟中達成。
圖2A2B 說明執行本發明之實施例的代表性製程順序200A200B 。該等順序中之一些步驟及其所得之結構在圖3 中在微觀層面上進一步加以說明。在第一步驟202 中,使奈米棒在陽極基板上生長,例如藉由將晶種印刷在基板上,且隨後使奈米棒經由化學浴槽垂直於基板生長。在該結構中,奈米棒固有地與基板電接觸。在後續步驟中,將奈米晶體及單體引入所得對準型奈米棒之薄膜中。
在步驟204 中,提供以微弱地與奈米晶體結合之官能基之(第一)封端劑封端之奈米晶體。合適官能基包括硫醇、硒醇、胺、膦、氧化膦及芳族雜環。通常,將奈米晶體溶解於非極性有機溶劑中。封端劑用來控制奈米晶體與奈米棒及聚合物之結合;該鍵結為可逆的且封端劑可隨後與其他配位體交換。適合用於CuInSe2 奈米晶體之封端劑之實例為辛硫醇或吡啶。
在步驟206208 中,將奈米棒藉由奈米晶體塗佈,由此經由雙官能封端劑115 (例如巰基乙酸)建立奈米棒與奈米晶體之間的鍵結,該雙官能封端劑115 具有對於奈米棒與奈米晶體兩者之強結合基團。此可以不同方式完成。在一些實施例中,如圖2A圖3 中所說明,將奈米棒以雙官能封 端劑封端(步驟206A ),例如藉由將具有奈米棒之基板浸漬於雙官能封端劑之溶液中。舉例而言,封端劑可與奈米棒經由羧酸酯官能基結合。隨後將已封端奈米晶體302 引入已封端奈米棒300 之薄膜中(步驟208A ),例如藉由將經沖洗之具有奈米棒300 之基板浸漬於奈米晶體溶液中。在該階段中,奈米晶體之一部分弱封端劑經雙官能封端劑之較強結合基團(例如巰基乙酸之硫醇官能基)置換,此產生奈米晶體敏化奈米棒304
在替代性實施例中,如圖2B 中所說明,將已封端奈米晶體於非極性有機溶劑中之溶液添加至雙官能封端劑於與該非極性溶劑不可混溶之極性有機溶劑中之溶液中,且搖動該溶液以確保充分混合(步驟206B )。奈米晶體經歷配位體交換且自非極性有機相轉移至極性有機相中。隨後,將表面上具有對準型奈米棒之基板浸漬於奈米晶體溶液中或者以其他方式曝露於奈米晶體(步驟208B ),由此使奈米棒經由封端劑之羧酸官能基結合奈米晶體。該實施例同樣產生奈米晶體敏化奈米棒304
將單體以結合基團官能化(步驟210 ),該結合基團具有對奈米晶體比對(第一)奈米晶體封端劑強之親和力,但具有對奈米棒比對雙官能封端劑弱之親和力。此外,單體上之結合基團對奈米晶體之親和力較佳弱於雙官能封端劑對奈米晶體之親和力。單體官能基不應干擾聚合反應。具有合適差別結合親和力之結合基團可直接由熟習此項技術者在不進行不當實驗的情況下基於封端劑及其取代基之特性 (例如其是否為單齒配位基或多齒配位基或存在吸電子基團等)及奈米晶體之尺寸鑑別。隨後使官能化單體與奈米晶體敏化奈米棒組合(步驟212 ),其中其與奈米晶體(而非奈米棒)結合,較佳置換奈米晶體上之弱封端劑,但保持奈米棒-奈米晶體鍵結完整,產生結構306 。後續聚合步驟214 產生奈米棒-奈米晶體-聚合物半導體結構308
最終,可將金屬陰極(例如Al)沈積於該結構上(步驟216 ),例如藉由濺鍍或金屬蒸鍍,以使奈米棒形成沈積於兩個對立電極之間的一系列對準型棒。陰極下方之聚合物層應足夠厚以使陰極與奈米棒電絕緣。
儘管本發明已參考特定細節進行描述,但並非意欲應將該等細節視為對本發明之範疇的限制,除非且在一定程度上該等細節包括於隨附申請專利範圍中。
100‧‧‧PV電池
101‧‧‧陽極
103‧‧‧陰極
106‧‧‧奈米棒
109‧‧‧奈米晶體
112‧‧‧聚合物
115‧‧‧雙官能結合分子/雙官能封端劑
300‧‧‧已封端奈米棒
302‧‧‧已封端奈米晶體
304‧‧‧奈米晶體敏化奈米棒
306‧‧‧結構
308‧‧‧奈米棒-奈米晶體-聚合物半導體結構
圖1A圖示性描繪本發明之奈米棒-奈米晶體-聚合物混合太陽能電池之一實施例。
圖1B為圖1A之混合半導體層之三個主要組件及其互連之放大示意圖。
圖2A為詳述根據一實施例製造圖1A中所述結構之方法的流程圖。
圖2B為詳述根據一替代性實施例製造圖1A中所述結構之方法的流程圖。
圖3在微觀層面上說明圖2中所示方法之一些步驟及所得產品。
100‧‧‧PV電池
101‧‧‧陽極
103‧‧‧陰極
106‧‧‧奈米棒
109‧‧‧奈米晶體
112‧‧‧聚合物

Claims (21)

  1. 一種光伏特電池,其包含:a.第一及第二電極;b.安置於該等電極之間的複數個對準型半導體奈米棒,各奈米棒與該第一電極電連接且與該第二電極電絕緣;c.圍繞該等奈米棒且與之結合的複數個光敏半導體奈米晶體;及d.圍繞該等奈米棒且與該等奈米晶體結合且與至少該第二電極結合之半導體聚合物,由此該等奈米晶體充當將第一電荷載流子引導至該等奈米棒且將第二電荷載流子引導至該聚合物中之異質接面。
  2. 如請求項1之電池,其中(i)該聚合物為電洞傳遞聚合物,(ii)該第一電荷載流子為電子,且(iii)該第二電荷載流子為電洞。
  3. 如請求項2之電池,其中該聚合物為聚(3-己基噻吩),聚伸苯基伸乙烯基或其衍生物,或聚茀或其衍生物。
  4. 如請求項1之電池,其中該等奈米棒為寬帶隙半導體。
  5. 如請求項4之電池,其中該等奈米棒包含ZnO、SnO及/或TiO2 中之至少一者。
  6. 如請求項1之電池,其中該等奈米棒為單晶奈米棒。
  7. 如請求項1之電池,其中該等奈米棒具有至少3之縱橫比。
  8. 如請求項1之電池,其中該等奈米棒係藉由雙官能封端 劑與該奈米晶體結合。
  9. 如請求項8之電池,其中該封端劑為巰基乙酸。
  10. 如請求項1之電池,其中奈米晶體吸收光使得產生激子,該奈米晶體具有不大於該激子之平均擴散距離之最大空間尺寸。
  11. 如請求項1之電池,其中該等奈米晶體包含CuInSe2 、CuInS2 、CuIn1-x Gax Se2 、GaAs、InAs、InP、PbS、PbSe、PbTe、GaSb、InSb、CdTe及CdSe中之至少一者,其中0x1。
  12. 如請求項1之電池,其中該等奈米晶體具有至少100,000M-1 cm-1 之消光係數。
  13. 如請求項1之電池,其中該半導體聚合物與該等奈米晶體結合但不與該等奈米棒結合。
  14. 一種製造包含異質接面且適用於光伏特電池之半導體結構之方法,該方法包含以下步驟:a.提供複數個奈米棒及以第一封端劑封端之複數個光敏半導體奈米晶體;b.使該等奈米棒或該等奈米晶體曝露於第二雙官能封端劑;c.此後使該等奈米晶體與該等奈米棒組合,由此該等奈米晶體與該等奈米棒經由該雙官能封端劑結合;d.將該等已結合之奈米棒及奈米晶體與具有結合基團之官能化單體組合,該結合基團(i)對該等奈米晶體展現比對該第一封端劑強之親和力,且(ii)對該等奈米棒展現 比對該雙官能封端劑弱之親和力,由此該單體較佳置換該第一封端劑以與該等奈米晶體結合但不與該等奈米棒結合;及e.聚合該單體。
  15. 如請求項14之方法,其進一步包含將該等奈米棒安置於該第一電極與該第二電極之間的步驟,該等奈米棒各具有一端與該第一電極電接觸,且在另一端與該第二電極經由薄聚合物層電絕緣。
  16. 如請求項14之方法,其在步驟(a)之前進一步包含使複數個奈米棒在提供該第一電極之基板上生長之步驟。
  17. 如請求項16之方法,其在步驟(e)之後進一步包含沈積該第二電極之步驟,該第二電極與該等奈米棒經由薄聚合物層電絕緣。
  18. 如請求項14之方法,其中步驟(a)包括提供以第一封端劑封端之奈米晶體,其中該第一封端劑含有至少一選自由硫醇、硒醇、胺、膦、氧化膦或芳族雜環組成之群的結合官能基。
  19. 如請求項18之方法,其中該第一封端劑為辛硫醇。
  20. 如請求項14之方法,其中步驟(b)包含以該第二封端劑將該等奈米棒封端,該第一封端劑具有對該等奈米晶體比對該第二封端劑弱之親和力,由此該第二封端劑較佳置換該第一封端劑以與該奈米晶體結合。
  21. 如請求項14之方法,其中步驟(b)包含使該等奈米晶體曝露於該第二封端劑中,該第二封端劑置換該等奈米晶體 上之一些而非全部該第一封端劑,由此在步驟(c)中,該第二封端劑之游離末端與該等奈米棒結合。
TW097115453A 2007-04-25 2008-04-25 混合的光伏特電池及相關聯之方法 TWI426614B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US92610307P 2007-04-25 2007-04-25
US12/108,976 US20080264479A1 (en) 2007-04-25 2008-04-24 Hybrid Photovoltaic Cells and Related Methods

Publications (2)

Publication Number Publication Date
TW200901488A TW200901488A (en) 2009-01-01
TWI426614B true TWI426614B (zh) 2014-02-11

Family

ID=39672081

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097115453A TWI426614B (zh) 2007-04-25 2008-04-25 混合的光伏特電池及相關聯之方法

Country Status (10)

Country Link
US (3) US20080264479A1 (zh)
EP (1) EP2140511A1 (zh)
JP (1) JP2010525597A (zh)
KR (1) KR20100016587A (zh)
CN (1) CN101689609B (zh)
AU (1) AU2008243976A1 (zh)
CA (1) CA2685033A1 (zh)
IL (1) IL201712A (zh)
TW (1) TWI426614B (zh)
WO (1) WO2008132455A1 (zh)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588828B2 (en) * 2004-04-30 2009-09-15 Nanoco Technologies Limited Preparation of nanoparticle materials
GB0409877D0 (en) * 2004-04-30 2004-06-09 Univ Manchester Preparation of nanoparticle materials
GB2429838B (en) * 2005-08-12 2011-03-09 Nanoco Technologies Ltd Nanoparticles
GB0522027D0 (en) * 2005-10-28 2005-12-07 Nanoco Technologies Ltd Controlled preparation of nanoparticle materials
US8354294B2 (en) * 2006-01-24 2013-01-15 De Rochemont L Pierre Liquid chemical deposition apparatus and process and products therefrom
GB0606845D0 (en) 2006-04-05 2006-05-17 Nanoco Technologies Ltd Labelled beads
US8563348B2 (en) * 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
US20080264479A1 (en) 2007-04-25 2008-10-30 Nanoco Technologies Limited Hybrid Photovoltaic Cells and Related Methods
US7759150B2 (en) * 2007-05-22 2010-07-20 Sharp Laboratories Of America, Inc. Nanorod sensor with single-plane electrodes
US20110139233A1 (en) * 2009-12-11 2011-06-16 Honeywell International Inc. Quantum dot solar cell
US20100275985A1 (en) * 2009-04-30 2010-11-04 Honeywell International Inc. Electron collector and its application in photovoltaics
US20110174364A1 (en) * 2007-06-26 2011-07-21 Honeywell International Inc. nanostructured solar cell
ATE513890T1 (de) * 2007-09-28 2011-07-15 Nanoco Technologies Ltd Kern-hülle-nanopartikel und herstellungsverfahren dafür
US8784701B2 (en) 2007-11-30 2014-07-22 Nanoco Technologies Ltd. Preparation of nanoparticle material
US8089063B2 (en) * 2007-12-19 2012-01-03 Honeywell International Inc. Quantum dot solar cell with electron rich anchor group
US8106388B2 (en) * 2007-12-19 2012-01-31 Honeywell International Inc. Quantum dot solar cell with rigid bridge molecule
US8710354B2 (en) * 2007-12-19 2014-04-29 Honeywell International Inc. Solar cell with hyperpolarizable absorber
US8067763B2 (en) * 2007-12-19 2011-11-29 Honeywell International Inc. Quantum dot solar cell with conjugated bridge molecule
EP2250212A1 (en) * 2008-02-25 2010-11-17 Nanoco Technologies Limited Semiconductor nanoparticle capping agents
US8288649B2 (en) * 2008-02-26 2012-10-16 Honeywell International Inc. Quantum dot solar cell
US8299355B2 (en) * 2008-04-22 2012-10-30 Honeywell International Inc. Quantum dot solar cell
US8373063B2 (en) * 2008-04-22 2013-02-12 Honeywell International Inc. Quantum dot solar cell
US8283561B2 (en) * 2008-05-13 2012-10-09 Honeywell International Inc. Quantum dot solar cell
US8350144B2 (en) * 2008-05-23 2013-01-08 Swaminathan Ramesh Hybrid photovoltaic cell module
US20100006148A1 (en) * 2008-07-08 2010-01-14 Honeywell International Inc. Solar cell with porous insulating layer
US8148632B2 (en) * 2008-07-15 2012-04-03 Honeywell International Inc. Quantum dot solar cell
US20100012168A1 (en) * 2008-07-18 2010-01-21 Honeywell International Quantum dot solar cell
GB0813273D0 (en) * 2008-07-19 2008-08-27 Nanoco Technologies Ltd Method for producing aqueous compatible nanoparticles
GB0814458D0 (en) * 2008-08-07 2008-09-10 Nanoco Technologies Ltd Surface functionalised nanoparticles
US8455757B2 (en) 2008-08-20 2013-06-04 Honeywell International Inc. Solar cell with electron inhibiting layer
EP2172986B1 (en) * 2008-08-27 2013-08-21 Honeywell International Inc. Solar cell having hybrid hetero junction structure
US20100101636A1 (en) * 2008-10-23 2010-04-29 Honeywell International Inc. Solar cell having supplementary light-absorbing material and related system and method
GB0820101D0 (en) * 2008-11-04 2008-12-10 Nanoco Technologies Ltd Surface functionalised nanoparticles
GB0821122D0 (en) * 2008-11-19 2008-12-24 Nanoco Technologies Ltd Semiconductor nanoparticle - based light emitting devices and associated materials and methods
KR100988206B1 (ko) * 2008-12-12 2010-10-18 한양대학교 산학협력단 탄소 나노튜브 복합재료를 이용한 태양 전지 및 그 제조방법
US8227687B2 (en) * 2009-02-04 2012-07-24 Honeywell International Inc. Quantum dot solar cell
US8227686B2 (en) * 2009-02-04 2012-07-24 Honeywell International Inc. Quantum dot solar cell
KR101010856B1 (ko) * 2009-03-02 2011-01-26 고려대학교 산학협력단 광전자 소자 및 그 제조 방법
US20100258163A1 (en) * 2009-04-14 2010-10-14 Honeywell International Inc. Thin-film photovoltaics
US20100294367A1 (en) * 2009-05-19 2010-11-25 Honeywell International Inc. Solar cell with enhanced efficiency
WO2010144487A2 (en) * 2009-06-09 2010-12-16 Sdsu Research Foundation Organic photovoltaic cell and light emitting diode with an array of 3-dimensionally fabricated electrodes
US8426728B2 (en) * 2009-06-12 2013-04-23 Honeywell International Inc. Quantum dot solar cells
US20110247693A1 (en) * 2009-06-22 2011-10-13 Richard Brotzman Composite photovoltaic materials
US20100326499A1 (en) * 2009-06-30 2010-12-30 Honeywell International Inc. Solar cell with enhanced efficiency
US8308973B2 (en) * 2009-07-27 2012-11-13 Rohm And Haas Electronic Materials Llc Dichalcogenide selenium ink and methods of making and using same
GB0916699D0 (en) 2009-09-23 2009-11-04 Nanoco Technologies Ltd Semiconductor nanoparticle-based materials
GB0916700D0 (en) * 2009-09-23 2009-11-04 Nanoco Technologies Ltd Semiconductor nanoparticle-based materials
US20110079275A1 (en) * 2009-10-02 2011-04-07 South Dakota State University Semiconductor nanoparticle/nanofiber composite electrodes
US20110108102A1 (en) * 2009-11-06 2011-05-12 Honeywell International Inc. Solar cell with enhanced efficiency
US20110139248A1 (en) * 2009-12-11 2011-06-16 Honeywell International Inc. Quantum dot solar cells and methods for manufacturing solar cells
US8372678B2 (en) * 2009-12-21 2013-02-12 Honeywell International Inc. Counter electrode for solar cell
GB201005601D0 (en) 2010-04-01 2010-05-19 Nanoco Technologies Ltd Ecapsulated nanoparticles
KR101894056B1 (ko) * 2010-04-23 2018-10-04 픽셀리전트 테크놀로지스 엘엘씨 나노결정의 합성, 캐핑 및 분산
DE102011077706A1 (de) * 2010-06-17 2011-12-22 Nextgen Solar, Llc Photovoltaische kompositmaterialien
CN101969102B (zh) * 2010-08-09 2012-05-23 吉林大学 全水相纳米晶/导电聚合物杂化太阳能电池的制备方法
EP3190083B1 (en) 2010-10-27 2020-08-26 Pixelligent Technologies, LLC Synthesis, capping and dispersion of nanocrystals
KR101995309B1 (ko) * 2010-11-05 2019-07-02 이섬 리서치 디벨러프먼트 컴파니 오브 더 히브루 유니버시티 오브 예루살렘 엘티디. 편광 조명 시스템
KR101208272B1 (ko) * 2011-02-24 2012-12-10 한양대학교 산학협력단 양면 구조를 가지는 태양전지 및 이의 제조방법
KR101304491B1 (ko) * 2011-07-18 2013-09-05 광주과학기술원 나노구조체 어레이 기판, 그 제조방법 및 이를 이용한 염료감응 태양전지
US9359689B2 (en) * 2011-10-26 2016-06-07 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
CN102779943A (zh) * 2012-06-20 2012-11-14 浙江大学 一种高效率的有机无机杂化太阳能电池及其制备方法
CN102856499B (zh) * 2012-08-17 2015-10-21 许昌学院 一种SnO2与P3HT杂化异质结薄膜太阳能电池的制备方法
US8927964B2 (en) * 2012-11-20 2015-01-06 Nokia Corporation Photodetection
ITUD20130030A1 (it) * 2013-03-01 2014-09-02 Sumeet Kumar Nanomateriali compositi ibridi
KR101479157B1 (ko) * 2013-03-15 2015-02-25 김일구 나노구조의 양자점 유기 벌크 이종접합 수광소자
WO2014140900A2 (en) 2013-03-15 2014-09-18 Nanoco Technologies, Ltd. Cu2xsny4 nanoparticles
US9123638B2 (en) * 2013-03-15 2015-09-01 Rohm And Haas Electronic Materials, Llc Multi-heterojunction nanoparticles, methods of manufacture thereof and articles comprising the same
CN103219418B (zh) * 2013-03-26 2016-07-27 华中科技大学 一种具有纳米异质复合结构的紫外光探测器及其制备方法
DE102013221758B4 (de) * 2013-10-25 2019-05-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtungen zur aussendung und/oder zum empfang elektromagnetischer strahlung und verfahren zur bereitstellung derselben
JP6455915B2 (ja) * 2014-08-29 2019-01-23 国立大学法人電気通信大学 太陽電池
RU2577174C1 (ru) * 2014-12-18 2016-03-10 Общество с ограниченной ответственностью "Энергоэкотех" Покрытие для фотовольтаической ячейки и способ его изготовления
CN106328750B (zh) * 2016-10-25 2017-12-01 合肥工业大学 一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法
KR20180077733A (ko) 2016-12-29 2018-07-09 엘에스산전 주식회사 태양전지 모듈용 보호 유리 및 그 제조방법
CN108806990B (zh) * 2018-06-12 2020-02-14 湖北文理学院 基于Ⅱ型CdSe/CdTe量子阱的高效光阳极及其制备方法
WO2020099284A1 (en) 2018-11-14 2020-05-22 Merck Patent Gmbh Nanoparticle
CN113828298B (zh) * 2021-09-09 2023-08-22 四川轻化工大学 一种提高ZnO表面光电压的方法
CN116283287B (zh) * 2023-03-20 2024-04-05 西北工业大学 一种量子片锚固的钒酸铋薄膜、制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050098204A1 (en) * 2003-05-21 2005-05-12 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769838A (en) 1953-11-20 1956-11-06 Ciba Pharm Prod Inc Polyglycol ether acid anilides
US3524771A (en) 1969-04-03 1970-08-18 Zenith Radio Corp Semiconductor devices
US4609689A (en) * 1984-04-27 1986-09-02 Becton, Dickinson And Company Method of preparing fluorescently labeled microbeads
US6696585B1 (en) * 1993-04-13 2004-02-24 Southwest Research Institute Functionalized nanoparticles
GB9518910D0 (en) 1995-09-15 1995-11-15 Imperial College Process
US6322901B1 (en) * 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US6607829B1 (en) 1997-11-13 2003-08-19 Massachusetts Institute Of Technology Tellurium-containing nanocrystalline materials
AUPP051497A0 (en) 1997-11-24 1997-12-18 University Of Melbourne, The Antimicrobial peptides
US6699723B1 (en) 1997-11-25 2004-03-02 The Regents Of The University Of California Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US5990479A (en) 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6501091B1 (en) 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
US20030148024A1 (en) 2001-10-05 2003-08-07 Kodas Toivo T. Low viscosity precursor compositons and methods for the depositon of conductive electronic features
US6326144B1 (en) 1998-09-18 2001-12-04 Massachusetts Institute Of Technology Biological applications of quantum dots
US6426513B1 (en) 1998-09-18 2002-07-30 Massachusetts Institute Of Technology Water-soluble thiol-capped nanocrystals
EP1113986A2 (en) 1998-09-18 2001-07-11 Massachusetts Institute Of Technology Inventory control
EP0990903B1 (en) 1998-09-18 2003-03-12 Massachusetts Institute Of Technology Biological applications of semiconductor nanocrystals
US6221602B1 (en) 1998-11-10 2001-04-24 Bio-Pixels Ltd. Functionalized nanocrystals and their use in labeling for strand synthesis or sequence determination
US6333110B1 (en) 1998-11-10 2001-12-25 Bio-Pixels Ltd. Functionalized nanocrystals as visual tissue-specific imaging agents, and methods for fluorescence imaging
US6261779B1 (en) 1998-11-10 2001-07-17 Bio-Pixels Ltd. Nanocrystals having polynucleotide strands and their use to form dendrimers in a signal amplification system
US6114038A (en) * 1998-11-10 2000-09-05 Biocrystal Ltd. Functionalized nanocrystals and their use in detection systems
WO2000046839A2 (en) * 1999-02-05 2000-08-10 University Of Maryland, Baltimore LUMINESCENCE SPECTRAL PROPERTIES OF CdS NANOPARTICLES
US6919119B2 (en) * 2000-05-30 2005-07-19 The Penn State Research Foundation Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films
AU2001276867A1 (en) 2000-07-11 2002-01-21 Sri International Encoding methods using up-converting phosphors for high-throughput screening of catalysts
EP1176646A1 (en) * 2000-07-28 2002-01-30 Ecole Polytechnique Féderale de Lausanne (EPFL) Solid state heterojunction and solid state sensitized photovoltaic cell
WO2002024623A2 (en) 2000-09-22 2002-03-28 Glaxo Group Limited Novel alkanoic acid derivatives
JP2004510678A (ja) 2000-10-04 2004-04-08 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ アーカンソー コロイドナノ結晶の合成
US6918946B2 (en) * 2001-07-02 2005-07-19 Board Of Regents, The University Of Texas System Applications of light-emitting nanoparticles
US8618595B2 (en) * 2001-07-02 2013-12-31 Merck Patent Gmbh Applications of light-emitting nanoparticles
US6846565B2 (en) * 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
CN1394599A (zh) 2001-07-06 2003-02-05 中国科学院上海原子核研究所 药用硫化锑纳米胶粒的制备方法
WO2003092043A2 (en) * 2001-07-20 2003-11-06 Quantum Dot Corporation Luminescent nanoparticles and methods for their preparation
DE60235306D1 (de) 2001-07-30 2010-03-25 Univ Arkansas Verfahren zur herstellung von kolloidale nanokrist
US6794265B2 (en) 2001-08-02 2004-09-21 Ultradots, Inc. Methods of forming quantum dots of Group IV semiconductor materials
US20030106488A1 (en) * 2001-12-10 2003-06-12 Wen-Chiang Huang Manufacturing method for semiconductor quantum particles
US20040007169A1 (en) 2002-01-28 2004-01-15 Mitsubishi Chemical Corporation Semiconductor nanoparticles and thin film containing the same
JP3683265B2 (ja) * 2002-05-28 2005-08-17 松下電器産業株式会社 ナノ粒子の製造方法及び該製造方法によって製造されたナノ粒子
US7291782B2 (en) * 2002-06-22 2007-11-06 Nanosolar, Inc. Optoelectronic device and fabrication method
US7253017B1 (en) * 2002-06-22 2007-08-07 Nanosolar, Inc. Molding technique for fabrication of optoelectronic devices
US7594982B1 (en) * 2002-06-22 2009-09-29 Nanosolar, Inc. Nanostructured transparent conducting electrode
US6946597B2 (en) * 2002-06-22 2005-09-20 Nanosular, Inc. Photovoltaic devices fabricated by growth from porous template
AU2003251890A1 (en) 2002-07-15 2004-02-02 Advanced Research And Technology Institute, Inc. Rapid low-temperature synthesis of quantum dots
US7390568B2 (en) 2002-08-13 2008-06-24 Massachusetts Institute Of Technology Semiconductor nanocrystal heterostructures having specific charge carrier confinement
WO2004065362A2 (en) 2002-08-16 2004-08-05 University Of Massachusetts Pyridine and related ligand compounds, functionalized nanoparticulate composites and methods of preparation
EP1537187B1 (en) 2002-09-05 2012-08-15 Nanosys, Inc. Organic species that facilitate charge transfer to or from nanostructures
TW546859B (en) 2002-09-20 2003-08-11 Formosa Epitaxy Inc Structure and manufacturing method of GaN light emitting diode
JP3703479B2 (ja) 2002-09-20 2005-10-05 松下電器産業株式会社 ナノ粒子の製造方法及び該製造方法によって製造されたナノ粒子
US6992202B1 (en) 2002-10-31 2006-01-31 Ohio Aerospace Institute Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same
US6969897B2 (en) * 2002-12-10 2005-11-29 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
US7056471B1 (en) 2002-12-16 2006-06-06 Agency For Science Technology & Research Ternary and quarternary nanocrystals, processes for their production and uses thereof
JP2004243507A (ja) 2002-12-19 2004-09-02 Hitachi Software Eng Co Ltd 半導体ナノ粒子及びその製造方法
US7767260B2 (en) 2003-01-22 2010-08-03 The Board Of Trustees Of The University Of Arkansas Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
US6936761B2 (en) * 2003-03-29 2005-08-30 Nanosolar, Inc. Transparent electrode, optoelectronic apparatus and devices
JP4181435B2 (ja) 2003-03-31 2008-11-12 日油株式会社 ポリエチレングリコール修飾半導体微粒子、その製造法及び生物学的診断用材料
US7511217B1 (en) * 2003-04-19 2009-03-31 Nanosolar, Inc. Inter facial architecture for nanostructured optoelectronic devices
US7645934B1 (en) * 2003-04-29 2010-01-12 Nanosolar, Inc. Nanostructured layer and fabrication methods
US7462774B2 (en) * 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
CN1312479C (zh) 2003-08-08 2007-04-25 清华大学 一种纳米荧光磁粒及其制备方法
WO2005021150A2 (en) 2003-09-01 2005-03-10 The University Of Manchester Labelled polymeric materials
JP2005139389A (ja) 2003-11-10 2005-06-02 Sumitomo Osaka Cement Co Ltd 半導体超微粒子
US6987071B1 (en) * 2003-11-21 2006-01-17 Nanosolar, Inc. Solvent vapor infiltration of organic materials into nanostructures
US7645397B2 (en) 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
WO2005067524A2 (en) 2004-01-15 2005-07-28 Nanosys, Inc. Nanocrystal doped matrixes
WO2006001848A2 (en) 2004-02-12 2006-01-05 Advanced Research And Technology Institute, Inc. Quantum dots as high-sensitivity optical sensors and biocompatible imaging probes, compositions thereof, and related methods
US7663057B2 (en) * 2004-02-19 2010-02-16 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
US7605328B2 (en) 2004-02-19 2009-10-20 Nanosolar, Inc. Photovoltaic thin-film cell produced from metallic blend using high-temperature printing
US7227066B1 (en) * 2004-04-21 2007-06-05 Nanosolar, Inc. Polycrystalline optoelectronic devices based on templating technique
CA2505655C (en) 2004-04-28 2013-07-09 Warren Chan Stable, water-soluble quantum dot, method of preparation and conjugates thereof
US7588828B2 (en) * 2004-04-30 2009-09-15 Nanoco Technologies Limited Preparation of nanoparticle materials
GB0409877D0 (en) 2004-04-30 2004-06-09 Univ Manchester Preparation of nanoparticle materials
US20080044340A1 (en) 2004-06-10 2008-02-21 Ohio University Method for Producing Highly Monodisperse Quantum Dots
US20070045777A1 (en) 2004-07-08 2007-03-01 Jennifer Gillies Micronized semiconductor nanocrystal complexes and methods of making and using same
US7229690B2 (en) 2004-07-26 2007-06-12 Massachusetts Institute Of Technology Microspheres including nanoparticles
WO2006022325A1 (ja) 2004-08-26 2006-03-02 Nippon Shinyaku Co., Ltd. ガラクトース誘導体、薬物担体及び医薬組成物
CN1327953C (zh) * 2004-08-30 2007-07-25 中国科学院上海硅酸盐研究所 硒化镉改性的纳米氧化钛光催化剂及制备方法
US7615169B2 (en) 2004-09-20 2009-11-10 The Regents Of The University Of California Method for synthesis of colloidal nanoparticles
US7772487B1 (en) * 2004-10-16 2010-08-10 Nanosolar, Inc. Photovoltaic cell with enhanced energy transfer
US7261940B2 (en) 2004-12-03 2007-08-28 Los Alamos National Security, Llc Multifunctional nanocrystals
JP4928775B2 (ja) 2005-01-06 2012-05-09 株式会社日立ソリューションズ 半導体ナノ粒子表面修飾方法
CN101128737B (zh) 2005-01-17 2012-11-28 新加坡科技研究局 新的水溶性纳米晶体及其制备方法
TWI389897B (zh) 2005-02-22 2013-03-21 Chugai Pharmaceutical Co Ltd 1- (2H) -isoquinolinone derivatives
CN101208605A (zh) 2005-05-04 2008-06-25 新加坡科技研究局 含有低分子量涂布剂的新型水溶性纳米晶及其制备方法
ATE520156T1 (de) 2005-06-15 2011-08-15 Yissum Res Dev Co Iii-v-halbleiterkern-heteroshell-nanokristalle, verfahren zu ihrer herstellung und ihre verwendungen
KR100666477B1 (ko) * 2005-06-16 2007-01-11 한국과학기술연구원 산화티타늄 나노로드 및 그의 제조방법
EP1908126A4 (en) 2005-07-13 2010-08-18 Evident Technologies Inc SEMICONDUCTOR NANOCRYSTALLINE COMPLEX ELECTROLUMINESCENT DIODE
GB2429838B (en) 2005-08-12 2011-03-09 Nanoco Technologies Ltd Nanoparticles
WO2007120175A2 (en) * 2005-08-24 2007-10-25 The Trustees Of Boston College Apparatus and methods for solar energy conversion using nanoscale cometal structures
EP1760800B1 (en) 2005-09-02 2017-01-04 OSRAM OLED GmbH Radiation emitting device and method of manufacturing the same
GB0522027D0 (en) * 2005-10-28 2005-12-07 Nanoco Technologies Ltd Controlled preparation of nanoparticle materials
KR100745744B1 (ko) 2005-11-11 2007-08-02 삼성전기주식회사 나노 입자 코팅 방법
KR20080097462A (ko) * 2006-02-16 2008-11-05 솔렉슨트 코포레이션 나노입자 감응형 나노구조형 태양 전지
KR100745745B1 (ko) 2006-02-21 2007-08-02 삼성전기주식회사 나노복합재료 및 그 제조방법
GB0606845D0 (en) * 2006-04-05 2006-05-17 Nanoco Technologies Ltd Labelled beads
US20080112877A1 (en) 2006-11-14 2008-05-15 Toyota Engineering & Manufacturing North America, Inc. Metal telluride nanocrystals and synthesis thereof
KR101290251B1 (ko) 2006-08-21 2013-07-30 삼성전자주식회사 복합 발광 재료 및 그를 포함하는 발광 소자
US7893348B2 (en) * 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
US7754329B2 (en) 2006-11-06 2010-07-13 Evident Technologies, Inc. Water-stable semiconductor nanocrystal complexes and methods of making same
US20080135089A1 (en) * 2006-11-15 2008-06-12 General Electric Company Graded hybrid amorphous silicon nanowire solar cells
US20080110486A1 (en) * 2006-11-15 2008-05-15 General Electric Company Amorphous-crystalline tandem nanostructured solar cells
US8003883B2 (en) * 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices
US20080190483A1 (en) 2007-02-13 2008-08-14 Carpenter R Douglas Composition and method of preparing nanoscale thin film photovoltaic materials
US8563348B2 (en) * 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
US20080264479A1 (en) 2007-04-25 2008-10-30 Nanoco Technologies Limited Hybrid Photovoltaic Cells and Related Methods
GB0714865D0 (en) 2007-07-31 2007-09-12 Nanoco Technologies Ltd Nanoparticles
US8784701B2 (en) 2007-11-30 2014-07-22 Nanoco Technologies Ltd. Preparation of nanoparticle material
EP2250212A1 (en) 2008-02-25 2010-11-17 Nanoco Technologies Limited Semiconductor nanoparticle capping agents
GB0813273D0 (en) 2008-07-19 2008-08-27 Nanoco Technologies Ltd Method for producing aqueous compatible nanoparticles
GB0814458D0 (en) 2008-08-07 2008-09-10 Nanoco Technologies Ltd Surface functionalised nanoparticles
GB0820101D0 (en) 2008-11-04 2008-12-10 Nanoco Technologies Ltd Surface functionalised nanoparticles
GB0821122D0 (en) 2008-11-19 2008-12-24 Nanoco Technologies Ltd Semiconductor nanoparticle - based light emitting devices and associated materials and methods
GB0901857D0 (en) 2009-02-05 2009-03-11 Nanoco Technologies Ltd Encapsulated nanoparticles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050098204A1 (en) * 2003-05-21 2005-05-12 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHEN et al: "Photoacoustic and photoelectrochemical characterization of '^&rn^CdSe-sensItIzed TiO2 electrodes composed of nanotubes and nanowires"^&rn^THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH,^&rn^vol. -499, no. 1-2, (2006-03-21) *

Also Published As

Publication number Publication date
IL201712A (en) 2013-10-31
US20120028406A1 (en) 2012-02-02
US8394663B2 (en) 2013-03-12
TW200901488A (en) 2009-01-01
US20080264479A1 (en) 2008-10-30
IL201712A0 (en) 2010-05-31
CN101689609A (zh) 2010-03-31
KR20100016587A (ko) 2010-02-12
US20130153012A1 (en) 2013-06-20
CA2685033A1 (en) 2008-11-06
WO2008132455A1 (en) 2008-11-06
JP2010525597A (ja) 2010-07-22
AU2008243976A1 (en) 2008-11-06
EP2140511A1 (en) 2010-01-06
CN101689609B (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
TWI426614B (zh) 混合的光伏特電池及相關聯之方法
Gonzalez-Valls et al. Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review
Emin et al. Colloidal quantum dot solar cells
Moulé et al. Hybrid solar cells: basic principles and the role of ligands
Wang et al. Carbon nanotube-based heterostructures for solar energy applications
US7545051B2 (en) Nanowire array and nanowire solar cells and methods for forming the same
Bouclé et al. Hybrid polymer–metal oxide thin films for photovoltaic applications
Xu et al. Conjugated polymer–inorganic semiconductor hybrid solar cells
Antohe et al. A critical review of photovoltaic cells based on organic monomeric and polymeric thin film heterojunctions
US8753916B2 (en) Semiconductor-nanocrystal/conjugated polymer thin films
Han et al. Trilaminar ZnO/ZnS/Sb 2 S 3 nanotube arrays for efficient inorganic–organic hybrid solar cells
US8742253B1 (en) Device configurations for CIS based solar cells
JP2009137832A (ja) 半導体‐ナノ結晶/複合ポリマー薄膜の製造方法
Lin et al. Current status and challenges of solar cells based on semiconductor nanocrystals
WO2018186542A1 (ko) 정공수송재료 및 이를 포함하는 광전 소자
JP2009541974A (ja) 無機半導体粒子含有層を製造する方法並びに該層を含んでなる構成要素
Ahmad An affordable green energy source—Evolving through current developments of organic, dye sensitized, and perovskite solar cells
JP2009541975A (ja) 光活性層を製造する方法及び該層を含んでなる構成要素
Arya et al. Organic–Inorganic Hybrid Solar Cells
Hepp et al. Ultra-lightweight space power from hybrid thin-film solar cells
Arici Inorganic nanoparticles for photovoltaic applications
Kedarnath et al. Quantum dots for type III photovoltaics
Geethu et al. Inorganic Nanomaterials in Organic Solar Cells: A Renewable Energy Application
Weickert Nanostructured Interfaces in Hybrid Solar Cells
Pazhanivel et al. Hot Electrons Role in Biomolecule‐based Quantum Dot Hybrid Solar Cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees