CN106328750B - 一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法 - Google Patents

一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法 Download PDF

Info

Publication number
CN106328750B
CN106328750B CN201610939990.4A CN201610939990A CN106328750B CN 106328750 B CN106328750 B CN 106328750B CN 201610939990 A CN201610939990 A CN 201610939990A CN 106328750 B CN106328750 B CN 106328750B
Authority
CN
China
Prior art keywords
chalcogen
compound
film electrode
metal film
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610939990.4A
Other languages
English (en)
Other versions
CN106328750A (zh
Inventor
吴春艳
王友义
彭伟
叶斌
罗林保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610939990.4A priority Critical patent/CN106328750B/zh
Publication of CN106328750A publication Critical patent/CN106328750A/zh
Application granted granted Critical
Publication of CN106328750B publication Critical patent/CN106328750B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法,其特征在于:是以上表面覆有绝缘层的硅基衬底为基底,在绝缘层上分散硫属亚铜化合物准一维纳米结构,在纳米结构的一端沉积第一金属薄膜电极,形成欧姆接触;在第一金属薄膜电极上覆盖一层光刻胶阻挡层;通过液相阳离子置换,将未被光刻胶阻挡层覆盖的准一维纳米结构表面置换成铟的硫属化合物,形成核壳结构异质结;去除光刻胶,再在铟的硫属化合物上方沉积第二金属薄膜电极,形成欧姆接触,即构成太阳能电池。本发明通过液相阳离子置换实现核壳结构异质结的形成,并将异质结的形成过程与太阳能电池的制备工艺相结合,工艺兼容性好,过程简单易行。

Description

一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其 制备方法
技术领域
本发明涉及一种径向异质结太阳能电池及其制备方法,具体地说是基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法。
背景技术
随着集成电路小型化、微型化发展,高性能、低功耗微纳器件的制备已成为研究热点。结晶良好的准一维纳米结构由于显著低于体相材料的制备成本和优于薄膜材料的电输运特性,在新型微纳器件领域受到了极大的关注。以纳米线太阳能电池为例,与体相太阳能电池及薄膜太阳能电池相比,纳米线太阳能电池有望在缩小器件尺寸的同时,显著减小材料成本与制造成本,获得相当的器件性能。
硫属亚铜化合物由于具有较大的少子扩散长度和较大的可见光区域吸收系数(103-105cm-1),是薄膜太阳能电池领域研究最早的吸收层材料之一。近年来,随着纳米制备技术的发展,基于其的纳米线太阳能电池也有了显著的进展。
印度理工学院德里分校的Varandani等将CuCl真空蒸镀到单根CdS纳米线上,通过其扩散与反应,实现了具有显著光伏特性的上下异质结结构CdS-CuxS纳米线的制备(Nanotechnology,2011,22,135701),首次制备了基于硫属亚铜化合物的纳米线太阳能电池。
此后,加州大学伯克利分校杨培东教授也以单根CdS纳米线为基础,以原子层沉积(ALD)的Al2O3为掩膜,通过CuCl溶液中的液相阳离子置换反应及氢氟酸缓冲液刻蚀去除Al2O3掩膜后,实现了CdS-Cu2S核壳结构径向异质结太阳能的制备,利用单晶的Cu2S壳层、良好的异质结界面接触以及核壳结构径向异质结较大的异质结界面、较短的载流子传输路径等特点,实现了转化效率达5.4%的单根CdS-Cu2S核壳结构纳米线太阳能电池的制备(Nature nanotechnology,2011,6,568)。
为避免重金属元素Cd的使用,本发明的发明人所在课题组尝试以液相合成的硫属亚铜化合物纳米线为基础,构建了CuS-ITO肖特基结太阳能电池(发明专利号:ZL201210053645.2)和以脉冲激光沉积(PLD)的In2S3薄膜为缓冲层的纳米线太阳能电池(发明专利申请号ZL 201610035612.3)。
以上纳米线太阳能电池的制备过程中,高运行成本、工艺复杂的高真空蒸镀设备如原子层沉积、脉冲激光沉积的使用,提升了纳米线太阳能电池的制备成本和工艺复杂度,阻碍了其进一步推广。
发明内容
在现有技术存在的基础之上,本发明旨在构建基于硫属亚铜化合物的核壳结构异质结太阳能电池,在纳米太阳能电池领域有着重要的意义,所要解决的技术问题是通过简单的液相阳离子置换反应,将核壳结构异质结的形成过程与太阳能电池制备工艺相结合,实现核壳结构异质结太阳能电池的制备。
本发明解决技术问题,采用如下技术方案:
本发明基于硫属亚铜化合物的核壳结构异质结太阳能电池,其特点在于:是以上表面覆有绝缘层的硅基衬底为基底,在所述绝缘层上分散硫属亚铜化合物准一维纳米结构,在所述硫属亚铜化合物准一维纳米结构的一端沉积第一金属薄膜电极,形成欧姆接触;通过紫外曝光技术,在第一金属薄膜电极上覆盖一层光刻胶阻挡层;通过液相阳离子置换,将未被光刻胶阻挡层覆盖的硫属亚铜化合物准一维纳米结构表面置换成铟的硫属化合物,形成以硫属亚铜化合物为核、以铟的硫属化合物为壳的核壳结构异质结;去除光刻胶阻挡层,通过紫外曝光和热蒸发技术,在铟的硫属化合物上方沉积第二金属薄膜电极,形成欧姆接触,第一金属薄膜电极与第二金属薄膜电极之间通过硫属亚铜化合物准一维纳米结构-核壳结构连通,即构成基于硫属亚铜化合物的核壳结构异质结太阳能电池。
其中:
所述硫属亚铜化合物准一维纳米结构的化学结构式为Cu2-xA,其中A为硫元素或硒元素,0≤x≤0.25;所述硫属亚铜化合物准一维纳米结构为纳米线、纳米棒、纳米管或纳米带;所述硫属亚铜化合物准一维纳米结构的轴向长度不小于10μm,径向长度为100-1000nm。
所述绝缘层为SiO2、Si3N4或HfO2;所述绝缘层的电阻率大于1×103Ω·cm、厚度为100-500nm。
所述第一金属薄膜电极为Au电极、Ti/Au复合电极、Cr/Au复合电极或Ni/Au复合电极;所述Au电极的厚度为30-100nm;所述Ti/Au复合电极、Cr/Au复合电极、Ni/Au复合电极分别是在厚度3-10nm的Ti、Cr、Ni上沉积有30-100nm厚的Au。
所述光刻胶阻挡层为正性光刻胶或负性光刻胶,其覆盖在第一金属薄膜电极上方,尺寸大于第一金属薄膜电极,两者外边缘间距为2-5μm。
所述铟的硫属化合物通过液相阳离子置换反应,在硫属亚铜化合物准一维纳米结构表面置换形成,厚度为硫属亚铜化合物准一维纳米结构径向长度的1/6-1/4。
所述第二金属薄膜电极为In电极、In/Au复合电极、Ag电极或Al电极;所述In电极、Ag电极或者Al电极的厚度为30-100nm;所述In/Au复合电极是在厚度为30-100nm的In上沉积有3-10nm厚的Au。
所述第二金属薄膜电极与所述第一金属薄膜电极之间的距离不小于8μm。
上述核壳结构异质结太阳能电池的制备方法,包括如下步骤:
(1)取上表面覆有绝缘层的硅基衬底作为基底,将硫属亚铜化合物准一维纳米结构分散在所述绝缘层上;
(2)通过一次紫外曝光光刻和薄膜沉积技术,在硫属亚铜化合物准一维纳米结构的一端沉积第一金属薄膜电极,硫属亚铜化合物准一维纳米结构与第一金属薄膜电极形成欧姆接触;
(3)通过二次定位紫外曝光光刻,在第一金属薄膜电极上覆盖一层光刻胶阻挡层;
(4)通过液相阳离子置换,将未被光刻胶阻挡层覆盖的硫属亚铜化合物准一维纳米结构表面置换成铟的硫属化合物,然后去除光刻胶阻挡层;
(5)通过三次定位紫外曝光光刻和薄膜沉积技术,在铟的硫属化合物上方沉积第二金属薄膜电极,铟的硫属化合物与第二金属薄膜电极形成欧姆接触,即获得基于硫属亚铜化合物的核壳结构异质结太阳能电池。
其中:步骤(4)液相阳离子置换在浓度为1.5mmol/L的In(NO3)3溶液中进行,用醋酸调节溶液pH至1.5-3.0,反应温度50℃,反应时间1-3h。
步骤(2)第一金属薄膜电极的沉积方式为电子束蒸发,真空室气压不高于6×10- 3Pa,蒸发速率为0.01-0.05nm/s;
若步骤(5)中的第二金属薄膜电极为In电极或In/Au复合电极,则:In的沉积方式为热蒸发,真空室气压不高于6×10-3Pa,蒸发速率为0.1-0.5nm/s;Au的沉积方式为电子束蒸发,真空室气压不高于6×10-3Pa,蒸发速率为0.01-0.05nm/s;
若步骤(5)中的第二金属薄膜电极为Ag电极或Al电极,则沉积方式为电子束蒸发,真空室气压不高于6×10-3Pa,蒸发速率为0.05-0.3nm/s。
与已有技术相比,本发明的有益效果体现在:
1、本发明异质结的形成过程通过光刻胶掩膜和液相阳离子置换反应来实现,避免了ALD、PLD等高真空设备的使用,并且可以通过液相置换条件的调节,实现壳层厚度、结晶性等的可控;
2、本发明将核壳结构异质结的形成过程与太阳能电池制备工艺相结合,与现有集成电路的硅工艺兼容性良好,可实现核壳结构异质结太阳能电池的简易制备,且有望应用于其它材料体系,具有显著的普适性。
附图说明
图1是本发明基于硫属亚铜化合物的核壳结构异质结太阳能电池的结构示意图;
图2是本发明基于硫属亚铜化合物的核壳结构异质结太阳能电池制备过程示意图;
图3是本发明实施例1中液相阳离子置换得到的单根Cu2-xSe-In2Se3核壳结构异质结的透射电子显微镜照片和元素分布图;
图4是本发明实施例1中Cu2-xSe-In2Se3核壳结构异质结太阳能电池的扫描电子显微镜照片;
图5是本发明实施例1中Cu2-xSe-In2Se3核壳结构异质结太阳能电池的光伏特性曲线,图中可以看出器件开路电压为0.22V,短路电流为1.07nA,填充因子为27%,转化效率约为2.8%;
图6是本发明实施例2中Cu2S-In2S3核壳结构异质结太阳能电池的光伏特性曲线,图中可以看出器件开路电压为0.12V,短路电流为1.29nA,填充因子为28.9%,转化效率约为2.0%;
图中标号:1为硅基衬底,2为绝缘层,3为硫属亚铜化合物准一维纳米结构,4为第一金属薄膜电极,5为光刻胶阻挡层,6为铟的硫属化合物,7为第二金属薄膜电极。
具体实施方式
下面结合附图详细描述本发明基于硫属亚铜化合物的核壳结构异质结太阳能电池的制备方法,非限定实施例如下。
实施例1:
本实施例的异质结太阳能电池是以上表面覆有绝缘层2的硅基衬底1为基底,在绝缘层2上分散硫属亚铜化合物准一维纳米结构3,在硫属亚铜化合物准一维纳米结构3的一端沉积第一金属薄膜电极4,形成欧姆接触;通过紫外曝光技术,在第一金属薄膜电极4上覆盖一层光刻胶阻挡层5;通过液相阳离子置换,将未被光刻胶阻挡层覆盖的硫属亚铜化合物准一维纳米结构表面置换成铟的硫属化合物6,形成以硫属亚铜化合物为核、以铟的硫属化合物为壳的核壳结构异质结;去除光刻胶阻挡层5,通过紫外曝光和热蒸发技术,在铟的硫属化合物上方沉积第二金属薄膜电极7,形成欧姆接触,第一金属薄膜电极与第二金属薄膜电极之间不直接接触,而是通过硫属亚铜化合物准一维纳米结构-核壳结构连通,即构成基于硫属亚铜化合物的核壳结构异质结太阳能电池,其结构如图1所示。
具体的,如图2所示,本实施例核壳结构异质结太阳能电池的制备方法如下:
如图2(a),将溶液法合成的Cu2-xSe纳米线超声分散在酒精溶液中,用滴管取少量溶液滴在清洁的带有300nm SiO2绝缘层的P型Si片上,使Cu2-xSe纳米线均匀分布在SiO2绝缘层上;待酒精挥发后,使用一次紫外曝光光刻技术和电子束蒸发技术在Cu2-xSe纳米线的一端制备厚度为50nm金电极,蒸镀时真空室气压为6×10-3Pa,蒸发速率为0.02nm/s;
然后,如图2(b),使用二次定位紫外曝光光刻技术,在第一金属薄膜电极上覆盖一层负性光刻胶阻挡层,尺寸略大于Au电极,两者外边缘间距离为5μm;
如图2(c),将上述器件浸泡在100mL In(NO3)3溶液中进行液相阳离子置换反应,溶液浓度为1.5mmol/L,用醋酸调节溶液pH至1.5,反应温度50℃,反应时间3h,将未被光刻胶阻挡层覆盖的Cu2-xSe纳米线外层置换为In2Se3薄膜,之后去除正性光刻胶阻挡层;
最后,如图2(d),通过三次定位紫外曝光光刻技术和热蒸发在In2Se3薄膜上制备厚度为50nm的In电极,蒸镀时真空室的气压为6×10-3Pa,蒸镀的速率为0.2nm/s。In电极边缘距离金电极边缘的最小间距为10μm。
本实施例液相阳离子置换条件下所得到的单根Cu2-xSe-In2Se3核壳结构径向异质结的透射电子显微镜照片和元素分布图如图3所示,可见置换前Cu2-xSe纳米线直径500nm左右,置换后所得In2Se3壳层厚度约120nm。
本实施例所制备的核壳结构异质结太阳能电池的扫描电子显微镜照片如图4所示。
本实施例所制备的核壳结构异质结太阳能电池在光强为30mW cm-2、波长532nm单色光照射下,呈现显著的光伏特性,如图5所示,其开路电压为0.22V,短路电流为1.07nA,填充因子为27%,转化效率约为2.8%。
实施例2
本实施例核壳结构异质结太阳能电池的制备方法与实施例1相同,区别仅在于本实施例中所用硫属亚铜化合物为Cu2S纳米线,通过液相阳离子置换法,构筑了Cu2S-In2S3核壳结构异质结太阳能电池。
本实施例所制备的核壳结构异质结太阳能电池在光强为30mW cm-2、波长532nm单色光照射下,呈现显著的光伏特性,如图5所示,其开路电压为0.12V,短路电流为1.29nA,填充因子为28.9%,转化效率约为2.0%。

Claims (7)

1.一种基于硫属亚铜化合物的核壳结构异质结太阳能电池,其特征在于:是以上表面覆有绝缘层(2)的硅基衬底(1)为基底,在所述绝缘层(2)上分散硫属亚铜化合物准一维纳米结构(3),在所述硫属亚铜化合物准一维纳米结构(3)的一端沉积第一金属薄膜电极(4),形成欧姆接触;通过紫外曝光技术,在第一金属薄膜电极(4)上覆盖一层光刻胶阻挡层(5);通过液相阳离子置换,将未被光刻胶阻挡层覆盖的硫属亚铜化合物准一维纳米结构表面置换成铟的硫属化合物(6),形成以硫属亚铜化合物为核、以铟的硫属化合物为壳的核壳结构异质结;去除光刻胶阻挡层(5),通过紫外曝光和热蒸发技术,在铟的硫属化合物上方沉积第二金属薄膜电极(7),形成欧姆接触,第一金属薄膜电极与第二金属薄膜电极之间通过硫属亚铜化合物准一维纳米结构-核壳结构连通,即构成基于硫属亚铜化合物的核壳结构异质结太阳能电池;
所述光刻胶阻挡层(5)为正性光刻胶或负性光刻胶,其覆盖在第一金属薄膜电极(4)上方,尺寸大于第一金属薄膜电极(4),两者外边缘间距为2-5μm;
所述铟的硫属化合物(6)通过液相阳离子置换反应,在硫属亚铜化合物准一维纳米结构(3)表面置换形成,厚度为硫属亚铜化合物准一维纳米结构(3)径向长度的1/6-1/4;
所述第二金属薄膜电极(7)与所述第一金属薄膜电极(4)之间的距离不小于8μm。
2.根据权利要求1所述的核壳结构异质结太阳能电池,其特征在于:所述硫属亚铜化合物准一维纳米结构(3)的化学结构式为Cu2-xA,其中A为硫元素或硒元素,0≤x≤0.25;
所述硫属亚铜化合物准一维纳米结构(3)为纳米线、纳米棒、纳米管或纳米带;
所述硫属亚铜化合物准一维纳米结构(3)的轴向长度不小于10μm,径向长度为100-1000nm。
3.根据权利要求1所述的核壳结构异质结太阳能电池,其特征在于:所述绝缘层(2)为SiO2、Si3N4或HfO2;所述绝缘层(2)的电阻率大于1×103Ω·cm、厚度为100-500nm。
4.根据权利要求1所述的核壳结构异质结太阳能电池,其特征在于:所述第一金属薄膜电极(4)为Au电极、Ti/Au复合电极、Cr/Au复合电极或Ni/Au复合电极;
所述Au电极的厚度为30-100nm;
所述Ti/Au复合电极、Cr/Au复合电极、Ni/Au复合电极分别是在厚度3-10nm的Ti、Cr、Ni上沉积有30-100nm厚的Au。
5.根据权利要求1所述的核壳结构异质结太阳能电池,其特征在于:所述第二金属薄膜电极(7)为In电极、In/Au复合电极、Ag电极或Al电极;所述In电极、Ag电极或者Al电极的厚度为30-100nm;所述In/Au复合电极是在厚度为30-100nm的In上沉积有3-10nm厚的Au。
6.一种权利要求1~5中任意一项所述核壳结构异质结太阳能电池的制备方法,其特征在于包括如下步骤:
(1)取上表面覆有绝缘层的硅基衬底作为基底,将硫属亚铜化合物准一维纳米结构分散在所述绝缘层上;
(2)通过一次紫外曝光光刻和薄膜沉积技术,在硫属亚铜化合物准一维纳米结构的一端沉积第一金属薄膜电极,硫属亚铜化合物准一维纳米结构与第一金属薄膜电极形成欧姆接触;
(3)通过二次定位紫外曝光光刻,在第一金属薄膜电极上覆盖一层光刻胶阻挡层;
(4)通过液相阳离子置换,将未被光刻胶阻挡层覆盖的硫属亚铜化合物准一维纳米结构表面置换成铟的硫属化合物,然后去除光刻胶阻挡层;
(5)通过三次定位紫外曝光光刻和薄膜沉积技术,在铟的硫属化合物上方沉积第二金属薄膜电极,铟的硫属化合物与第二金属薄膜电极形成欧姆接触,即获得基于硫属亚铜化合物的核壳结构异质结太阳能电池。
7.根据权利要求6所述的制备方法,其特征在于:步骤(4)液相阳离子置换在浓度为1.5mmol/L的In(NO3)3溶液中进行,用醋酸调节溶液pH至1.5-3.0,反应温度50℃,反应时间1-3h。
CN201610939990.4A 2016-10-25 2016-10-25 一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法 Expired - Fee Related CN106328750B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610939990.4A CN106328750B (zh) 2016-10-25 2016-10-25 一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610939990.4A CN106328750B (zh) 2016-10-25 2016-10-25 一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN106328750A CN106328750A (zh) 2017-01-11
CN106328750B true CN106328750B (zh) 2017-12-01

Family

ID=57818920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610939990.4A Expired - Fee Related CN106328750B (zh) 2016-10-25 2016-10-25 一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN106328750B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321294B (zh) * 2018-02-05 2021-08-17 合肥工业大学 一种存储机制可调的薄膜阻变存储器及其制备方法
CN108950504B (zh) * 2018-08-03 2020-08-14 江苏环奥金属材料科技有限公司 一种在n型砷化镓表面形成欧姆接触的合金靶材的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080264479A1 (en) * 2007-04-25 2008-10-30 Nanoco Technologies Limited Hybrid Photovoltaic Cells and Related Methods
CN102104079B (zh) * 2010-12-21 2012-05-23 中国科学院理化技术研究所 一维ZnO/ZnS核壳结构纳米阵列以及单晶ZnS纳米管阵列的制备方法
CN102270692B (zh) * 2011-02-01 2013-04-17 北京大学 石墨烯-硒化镉纳米带异质结、电池、组件及制备方法
CN102268706A (zh) * 2011-07-04 2011-12-07 济南大学 制备ZnO/Cu2O异质结材料及ZnO/Cu2O三维结构异质结太阳电池的方法
US9472686B2 (en) * 2013-08-02 2016-10-18 Northwestern University Gate-tunable P-N heterojunction diode, and fabrication method and application of same
CN105655423B (zh) * 2016-01-19 2017-04-05 合肥工业大学 一种基于硫属亚铜化合物的纳米异质结太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN106328750A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
CN105449014B (zh) 具有电镀的金属格栅的太阳能电池
TWI381536B (zh) 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法
CN102414788B (zh) 用纳米/微球光刻制造纳米/微线太阳能电池
US7847180B2 (en) Nanostructure and photovoltaic cell implementing same
TWI594444B (zh) 太陽能電池及背接觸式太陽能電池
US9136404B2 (en) Solar cell capable of recycling a substrate and method for manufacturing the same
Baek et al. Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes
US20100313951A1 (en) Carbon nanotube-based solar cells
Lee et al. Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator
KR20130084218A (ko) 나노구조체 및 이를 구현하는 광전지
CN101517740A (zh) 非平面太阳能电池的单片集成电路
TW201133974A (en) Method for improving the efficiency of a flexible organic solar cell
CN107134504A (zh) 一种纳米硅基石墨烯太阳能电池的制备方法
KR101027493B1 (ko) 와이어 어레이를 이용한 태양광 전지 및 그 제조 방법
US20110089402A1 (en) Composite Nanorod-Based Structures for Generating Electricity
CN104995741A (zh) 半导体纳米线的凹槽式接触
CN106328750B (zh) 一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法
KR20100138703A (ko) 기판의 재사용이 가능한 태양 전지 및 그 제조 방법
US20120070938A1 (en) Method of Fabricating Silicon Nanowire Solar Cell Device Having Upgraded Metallurgical Grade Silicon Substrate
Bian et al. Wafer-scale fabrication of silicon nanocones via controlling catalyst evolution in all-wet metal-assisted chemical etching
KR101100414B1 (ko) 태양전지 및 그 제조 방법
CN105655423B (zh) 一种基于硫属亚铜化合物的纳米异质结太阳能电池及其制备方法
CN104254925B (zh) 氧化锌凹凸结构的形成方法及利用其的太阳能电池的制造方法
Fan et al. Light-trapping characteristics of Ag nanoparticles for enhancing the energy conversion efficiency of hybrid solar cells
Dutta et al. Si nanowire solar cells: Principles, device types, future aspects, and challenges

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171201

Termination date: 20201025