TWI381536B - 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法 - Google Patents

微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法 Download PDF

Info

Publication number
TWI381536B
TWI381536B TW097133261A TW97133261A TWI381536B TW I381536 B TWI381536 B TW I381536B TW 097133261 A TW097133261 A TW 097133261A TW 97133261 A TW97133261 A TW 97133261A TW I381536 B TWI381536 B TW I381536B
Authority
TW
Taiwan
Prior art keywords
micro
solar cell
film solar
thin film
diode array
Prior art date
Application number
TW097133261A
Other languages
English (en)
Other versions
TW201010094A (en
Inventor
Ching Fuh Lin
Jiun Jie Chao
Shu Chia Shiu
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW097133261A priority Critical patent/TWI381536B/zh
Priority to US12/318,356 priority patent/US8258396B2/en
Publication of TW201010094A publication Critical patent/TW201010094A/zh
Priority to US13/295,205 priority patent/US8486749B2/en
Application granted granted Critical
Publication of TWI381536B publication Critical patent/TWI381536B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Description

微奈米結構PN二極體陣列薄膜太陽能電池及其製作方法
本發明係有關一種薄膜式太陽能電池,特別是指一種微奈米結構PN二極體陣列薄膜太陽能電池及其製作方法。
隨著石化燃料可能在本世紀末慢慢地被消耗殆盡,尋求替代性再生能源的呼聲即不曾停歇,包括風力、潮汐、生質能等等。在許多已投入發展的再生能源中,以太陽能的發展擁有相對廣大的市場接受度,目前全世界皆已大力投入太陽能發電技術的創新研發工作。根據2003年德國全球變遷諮詢委員會(German Advisory Council on Global Change)所做的預測,到2100年,太陽能預計約人類能源總需求的60%。而臺灣地處亞熱帶,陽光充足,日照量大,非常適合利用太陽能做為新能源。太陽能發電是利用光伏效應(photovoltaic effect;PV effect)將太陽光照射在材料上而轉換成可直接使用的電能。結晶矽太陽能電池已發展數十年,相關技術和半導體製程技術相容,已相當成熟,一般來說,單晶矽太陽能電池的轉換效率可達20%,但製造成本太高,造成未來在應用上的障礙。新型製程、結構、材料,節省原物料的使用、提高太陽光電電池轉換效率,落實價格低廉、降低生產成本是發展太陽能電池技術之目標。
因此,低成本的薄膜太陽能電池成為目前熱門的技術發展新趨勢,特別是它以超薄玻璃、不鏽鋼薄片或塑膠等重量輕、可撓性、耐撞擊的材料做為基板,取代傳統堅硬厚重的矽基板,進而開啟了太陽能電池應用的新契機。可撓性的太陽能面板不僅價格低廉而且具有更多樣性的用途,如可用於建築物整合型太陽光電系統(Building lntegrated Photovoltaics;BIPV)、消費性電子產品、紡織品如衣服、窗簾、遮陽棚、背包之類產品、汽車/船、攜帶式電源(手機、筆記型電腦)等。此外,可撓式基板可與捲軸連續式製程(roll-to-rol l manufacture)整合製作出低成本大面積的太陽能電池。
非晶矽太陽能電池(Amorphous Silicon Solar Cells)是發展最完整的薄膜式太陽能電池。其結構通常為p-i-n形式,p層跟n層主要作為建立內部電場,i層則由非晶矽構成。i層厚度通常只有0.2~0.5微米(μm)。其吸光頻率範圍約為1.1~1.7電子伏特(eV),不同於晶圓矽的1.1eV。i層不宜過厚,因為會使電子電洞再次復合的機率提高,但i層太薄,又會造成吸光不足。所以為了克服此問題,常採用多層結構堆疊方式設計,以兼顧吸光與其效率。非晶矽太陽能電池先天上最大的缺失在於照光使用後,短時間內性能的大幅衰退,也就是所謂的光衰退效應(Staebler-Wronski Effect;SWE),其幅度約15~35%。發生原因是因為材料中部份未飽和的矽原子,因光照射,而發生結構變化。前述多層結構堆疊方式,亦可成為彌補SWE效應的一種方式。非晶矽太陽能電池的製造方式是以電漿強化化學蒸鍍法(PECVD)製造矽薄膜。基板可以使用不銹鋼片、塑膠材料等。其製程採取Roll-to-roll的方式,但因蒸鍍速度緩慢,且高品質導電玻璃層價格高,以致其總製造成本僅略低於晶型太陽能電池。至於多層式堆疊方式,雖可提升電池效率,但同時也提高了電池成本。非晶矽太陽能電池最大的弱點在於其低光電轉化效率與穩定性不好。目前此類型太陽電池效率,實驗室僅及約13.5%,商業模組亦僅4~8%,遠遠不能和單晶矽或多晶矽太陽能電池相比。
多晶矽太陽能電池為現今商業太陽能市場的主流,其與單晶矽太陽能電池的產品市佔率約為90%。多晶矽的能隙寬約為1.12eV,能夠吸收的入射光譜大約在波長由350奈米(nm)到1100nm的範圍之間。雖然能吸收的光譜範圍很寬廣,但是多晶矽屬於非直接能隙的半導體材料,所以電子由價帶躍遷到導帶的過程,還需要提供額外的動能給予聲子(phonons),才能讓電子順利躍遷至導帶。由於多晶狀態是在晶粒之間的原子呈現週期性的排列,所以在切割多晶矽太陽能電池 時,難度比非晶矽與單晶矽太陽能電池高。
單晶矽太陽能電池的特性表現與多晶矽太陽能電池非常類似,而其因為結晶為單晶態,使得因遭受入射光子而損壞的情況比非晶矽太陽能電池優秀的多。在地球上使用的單晶矽太陽能電池,通常在光電轉換效率不衰退的情況下,可以使用20年之久。目前美國、德國與日本都有使用單晶矽太陽能電池的發電廠,更有許多國家嘗試開設單晶矽太陽能電池的實驗發電廠,可見單晶矽太陽能電池於光伏發電系統的重要性。但單晶矽製造成本太高,造成未來在應用上的障礙。
此外,不管是單晶矽或多晶矽太陽能電池,其需要的矽材料都很多,而提煉品質優良的矽材,本身就需要耗費相當能源,因此矽材本身的成本往往比製作太陽能電池的程序還高,因此如何減少材料的使用是一需要克服的問題。
鑒於以上的問題,本發明的主要目的在於提供一種微奈米結構PN二極體陣列薄膜太陽能電池及其製作方法,藉以大體上解決先前技術存在之缺失,因乃係由結晶良好的晶片蝕刻而得,故具有良好的晶體半導體優點,而當二極體陣列脫離原本之半導體基板後,半導體基板可再次使用,節省大量的半導體材料。
根據本發明所揭露之一種微奈米結構PN二極體陣列薄膜太陽能電池及其製作方法,係於主材料晶圓上以磊晶摻雜、或蝕刻的方式形成有微奈米半導體陣列,然後再將微奈米半導體陣列從主材料晶圓上移植下來,而後轉移至兩片相對應兩極之透明基板間,運用面為製作薄膜型太陽能電池,具有良好的晶體半導體優點,同時半導體基板可再次使用,節省大量的半導體材料。
本發明所揭露的微奈米結構PN二極體陣列薄膜太陽能電池,依序包含有第一透明基板、薄層n型半導體、微奈米半導體陣列、薄層p型半導體、以及第二透明基板。此薄膜太陽能電池之二極體陣列由 結晶良好的晶片蝕刻而得,具有良好的晶體半導體優點,而當二極體陣列脫離原本之半導體基板後,半導體基板可再次使用,節省大量的半導體材料。且突破很多無機半導體材料因材料易碎或高成本等特性而無法製成大面積元件的運用瓶頸,此薄膜太陽能電池提供了大面積、較低成本以及可撓之靈活性。
另一方面,亦可將數個不同類半導體結構薄膜式太陽能電池堆疊在一起,每一個太陽能電池使用的材料吸收對應其特定波段的太陽光,堆疊起來可以接近完整的太陽光光譜,使整體的太陽光得到最佳的使用。此做法不需要考慮長晶的晶格匹配,因此可比目前運用III-V族的串接式太陽能電池更方便,而能堆疊更多不同類半導體結構薄膜式太陽能電池,表現出其優異潛力。
另一方面,本發明所揭露之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,係先提供具有微奈米半導體陣列之主材料晶圓,再塗佈薄層n型半導體於第一透明基板上,接著,將微奈米半導體陣列接觸於第一透明基板之薄層n型半導體,藉由強烈雷射光照射使微奈米半導體陣列之頂端與薄層n型半導體熔接,再將微奈米半導體陣列脫離而移植於第一透明基板上。然後,塗佈薄層p型半導體於第二透明基板上,並將微奈米半導體陣列接觸於第二透明基板之薄層p型半導體,接續藉由強烈雷射光照射使微奈米半導體陣列之頂端與薄層p型半導體熔接,而形成一微奈米結構PN二極體陣列薄膜太陽能電池。
此半導體結構薄膜式太陽能電池突破很多無機半導體材料因材料易碎或高成本等特性而無法製成大面積元件的運用瓶頸,此薄膜太陽能電池之二極體陣列由結晶良好的晶片蝕刻而得,除具良好的晶體半導體優點外,當二極體陣列脫離原本之半導體基板後,半導體基板可再次使用,節省了大量的半導體材料,薄膜型態更提供了大面積以及可撓性的優點。此外,由於目前III-V族的串接式太陽能電池需要考慮 到長晶的晶格匹配問題,因此成本與技術要求性極高,在此,本發明以不同類的半導體結構薄膜式太陽能電池堆疊在一起,每一個太陽能電池使用的材料吸收對應其特定波段的太陽光,堆疊起來可以接近完整的太陽光光譜,使整體的太陽光得到做最佳的使用,表現出其低成本、高光電轉換的優異潛力。
為使對本發明的目的、特徵及其功能有進一步的了解,茲配合圖式詳細說明如下:
如第1A圖~第1H圖所示,為本發明之實施例所提供之微奈米半導體陣列的移植方法。
首先,提供具有微奈米半導體陣列11的主材料晶圓10,請參閱第1A圖與第1B圖,微奈米半導體陣列11可以是任意的半導體,如矽、鍺、砷化鎵、磷化銦、磷化鎵、銻化硒、…等等單元素、二元化合物或多元化合物半導體,微奈米半導體陣列11之縱截面寬度為1奈米(nm)至3000微米(μ m)、長度為50nm至50μ m,可配合微奈米半導體陣列11的材料吸收係數而有所調整。主材料晶圓10之材料可為砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(Ga P)、銻化鎵(GaSb)、碲化鋅(ZnTe)、鍺(Ge)、矽(Si)以及其它單元素、二元化合物或多元化合物半導體等等材料,其中包含可取得之各種運用於太陽能電池方面的磊晶片。
微奈米半導體陣列11可為在主材料晶圓10上經磊晶或摻雜方式得到不同的PN極性層,而後再經由蝕刻製成陣列結構;或是主材料晶圓10先經由蝕刻製成陣列結構後,再透過磊晶或摻雜方式於結構上製作不同的PN極性層;或者,也可透過高品質的長晶方式直接於基板成長出不同極性之奈米線、奈米柱、微米結構或次微米結構。蝕刻方式可為乾蝕刻、濕蝕刻、物理蝕刻、化學蝕刻或兩者蝕刻的組合方式,而蝕刻製程所需的遮罩製備,可包含微影技術之圖案化光阻做為 遮罩、旋轉塗佈奈米粒子做為遮罩、以及鍍上薄金屬再藉由快速熱退火方式使此薄金屬層形成奈米島狀表面形態,以此做為遮罩、多孔模板法(AAO)、電化學等各種化學沉積法所產生的模版做為遮罩等。
以磊晶方式來說,係先於主材料晶圓10上成長不同極性之磊晶層,即於n型之半導體上成長p型之磊晶層、或於p型之半導體上成長n型之磊晶層。而後利用蝕刻方式製備出奈米線、奈米柱、微米結構或次微米結構。而若是以摻雜方式,係在微奈米半導體陣列11上先鍍上旋塗玻璃(spin-on-glass;SOG)12、烤乾,然後稍微蝕刻,使上端之微奈米半導體陣列11露出,如第1C圖所示,之後再鍍上旋塗摻雜物(spin-on-dopant;SOD)、加熱,使上端之微奈米半導體陣列11得到與原來不同之掺雜。若原來之奈米半導體為n型之半導體,則鍍上之旋塗p型旋塗摻雜物(spin-on-dopant;SOD)13p加熱後,可使上端之微奈米半導體陣列11變為p型半導體,如第1C圖所示。若原來之奈米半導體為p型之半導體,則鍍上之n型旋塗摻雜物(Spin-on-dopant;SOD)13n加熱後,可使上端之微奈米半導體陣列11變為n型半導體,如第1D圖所示。當然,微奈米半導體陣列11除了可為上述方式之PN二極體陣列外,亦可為單獨之p型半導體或是n型半導體。而前述p型或n型旋塗摻雜物(spin-on-dopant;SOD)13p、13n皆會在形成p型半導體或是n型半導體之後予以移除。
接著,在暫時基板20上鍍上一層可固化接著材料21,如第1E圖所示,可固化接著材料21可由膠體或液態變為固體的材料,譬如為溶膠、凝膠、融熔態的金屬或是高分子、旋塗玻璃(spin-on glass;SOG)、蠟、聚甲基丙烯酸甲酯(polymethylmethacrylate;PMMA)或P3HT等有機材料等等,若暫時基板20為可耐高溫之材料,則也可選用融熔態的金屬等。然後將主材料晶圓10之微奈米半導體陣列11插入暫時基板20之可固化接著材料21中,如第1F圖,然後將暫時基 板20上的可固化接著材料21固化。其中暫時基板20可為半導體、導體(包含金屬)、絕緣體等能加上可由膠體或液態變為固體此類材料的任何基板。
接續將微奈米半導體陣列11脫離主材料晶圓10而使其移植到暫時基板20上,如第1G圖、第1H圖,微奈米半導體陣列11也可維持與暫時基板20的平面大約垂直的方向。而微奈米半導體陣列11與主材料晶圓10的脫離方式,可以用超音波振盪或輕輕敲斷,或是使用化學蝕刻,甚至微奈米半導體陣列11與可固化接著材料21具有良好的附著,則可直接將主材料晶圓10拿起便可分離微奈米半導體陣列11。另外,若是微奈米半導體陣列11較為堅硬,而採超音波振盪、或敲斷等方式較難將其脫離主材料晶圓10時,可於微奈米半導體陣列11和主材料晶圓10之間預先長一層選擇性蝕刻層14,如第2圖所示,而可利用各種化學蝕刻,譬如為濕蝕刻或乾蝕刻將此選擇性蝕刻層14蝕刻掉而不劇烈破壞微奈米半導體陣列11及主材料晶圓10。當然,也可以是上述所列方式的組合,來達到使微奈米半導體陣列11脫離主材料晶圓10。
如第3A圖~第3G圖所示,為本發明之實施例所提供之微奈米結構PN二極體陣列薄膜太陽能電池的製造方法。
假設微奈米半導體陣列11為n型之半導體或是n型端朝上之PN二極體陣列,其做法如下;首先,係於第一透明基板30上先鍍上一薄層n型半導體31,如第3A圖所示,薄層n型半導體31係為砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(GaP)、銻化鎵(GaSb)、碲化鋅(ZnTe)、鍺(Ge)、矽(Si)以及其它單元素、二元化合物、三元化合物、四元化合物半導體或其所構成的組合,同時,亦可為譬如2-苯基-5-(4-聯苯基)-1,3,4-噁二唑(PBD)、8-羥基喹啉鋁(Alq3)、苯基碳61丁酸甲酯(PCBM)、4,4' 二(2,2二苯乙烯基)1,1' 聯苯(DPVBi)、8-羥基喹啉鈹(Beq2)、雙(2-甲基-8-喹啉)4-聯苯氧基鋁(Balq)、噁二 唑(OXD)或2,5-雙(5-叔丁基-2-苯並噁唑)噻吩(BBOT)等有機半導體,且若是有機半導體材料為小分子型態,可藉由摻雜聚甲基丙烯酸甲酯(PMMA)或聚苯乙烯(polystyrene)之高分子材料,改善其成膜性。然後將具微奈米半導體陣列11之暫時基板20與其接合,使微奈米半導體陣列11與第一透明基板30之薄層n型半導體31接觸,請參閱第3B圖,之後以強烈雷射光70透過第一透明基板30照射薄層n型半導體31以及與之接觸的微奈米半導體陣列11,雷射光70強度要能熔化薄層n型半導體31以及與之接觸的微奈米半導體陣列11之頂端,但第一透明基板30仍未熔化,然後雷射光關掉,冷卻第一透明基板30和薄層n型半導體31,使薄層n型半導體31以及與之接觸的微奈米半導體陣列11頂端再度固化而熔接固定在一起,如第3C圖所示。
之後,以溶劑除去暫時基板20上已經固化之可固化接著材料21,所以微奈米半導體陣列11與暫時基板20脫離,如第3D圖所示,使微奈米半導體陣列11變成附著於第一透明基板30的薄層半導體,而第一透明基板30的n型薄層半導體31與微奈米半導體陣列11之n型端相接。另一方面,也可以採用黏力、應力、化學蝕刻、雷射消融等各種外力來使暫時基板20與微奈米半導體陣列11脫離。
接著,在第二透明基板40上先鍍上一薄層p型半導體41,薄層p型半導體41係為砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(GaP)、銻化鎵(Gasb)、碲化鋅(ZnTe)、鍺(Ge)、矽(Si)以及其它單元素、二元化合物、三元化合物、四元化合物半導體或其所構成的組合,同時,亦可為譬如聚3-己基噻吩(P3HT)、4-亞苯基亞乙烯基(MEH-PPV)、聚[2-甲氧基-5-(3',7'-乙烷辛基氧)-1,4-苯基乙烯基(MDMO-PPV)、聚3,4-二氧乙基噻吩(PEDOT)、聚9,9-二辛基聚芴(PFO)、N'-二苯基-N,N'-二(3-甲基苯基)-[1-1'-聯苯]-4,4'-二胺(TPD)或氮’兩-(苯基)-對二氨基聯苯(NPB)等有機半導體。請參閱第 3E圖,將已經有微奈米半導體陣列11之第一透明基板30與之接合,使微奈米半導體陣列11之p型端與第二透明基板40之薄層p型半導體41接觸,請參閱第3F圖,之後以強烈雷射光70透過第二透明基板40照射薄層p型半導體41以及與之接觸的微奈米半導體陣列11,雷射光70強度要能熔化薄層p型半導體41以及與之接觸之微奈米半導體陣列11之p型端,但第二透明基板40仍未熔化;然後再冷卻第二透明基板40和薄層p型半導體41,使薄層p型半導體41以及與之接觸的微奈米半導體陣列11之p型端再度固化,因此微奈米半導體陣列11與第二透明基板40之薄層p型半導體41固定在一起,請參閱第3G圖。
上述之微奈米半導體陣列也可為二PN接面或二個以上PN接面之二極體陣列,而該PN二極體陣列之最外層p型端連接於該薄層p型半導體結構,該PN二極體陣列之最外層n型端連接於該薄層n型半導體結構。而且也可在微奈米半導體陣列縫隙之間係填入透明不導電材料,譬如為SOG、PMMA、SiO2 、SiO2 奈米粒子、SiNx、SiNx奈米粒子、Al2 O3 或Al2 O3 奈米粒子等。
為了強化微奈米半導體陣列11之結構的強度,可以在進行上述動作前,在附著有微奈米半導體陣列11的第一透明基板30上,先把不導電的材料(如PMMA或polymide或SOG)填在微奈米半導體陣列11的縫隙之間,然後稍為蝕刻,使微奈米半導體陣列11露出一小部份,以便與第二透明基板40上的薄層p型半導體41進行融接,如第3F圖所示,其中可固化接著材料21置換為不導電材料。而第一透明基板30與第二透明基板40可為塑膠、玻璃、石英片、鍍有透明導電層之塑膠、玻璃、石英片,譬如為ITO PET、ITO glass、FTO glass、ITO quartz及FTO quartz等各種略為透光即可之可撓或不可撓之任何基板,第一透明基板30與第二透明基板40可為相同或不同的材料基板。除了上述以雷射加熱方式熔接外,亦可採用其他各式加熱方式熔 接,另一方面,除了先行接觸後加熱的熔接方式外,亦可先將第一透明基板30之薄層n型半導體31或第二透明基板40之薄層p型半導體41予以加熱為熔融狀態後,再與微奈米半導體陣列11接觸而直接熔接。
上述實施例,主要以微奈米半導體陣列11為n型之半導體或是n型端朝上之PN二極體陣列為例來配合圖式闡述,若是微奈米半導體陣列11為p型之半導體或是p型端朝上之PN二極體陣列,其整體製程也可依照上述方式同理推導,在此不重複累述。
請參閱第3G圖,藉由上述方式,即可完成微奈米結構PN二極體陣列薄膜太陽能電池,其結構上依序包含有第一透明基板30、薄層n型半導體31、微奈米半導體陣列11、薄層p型半導體41、以及第二透明基板40。因為此奈米或是微米或次微米等半導體結構可以由結晶良好的晶片透過蝕刻獲得,或透過高品質的磊晶方式得到,因此具有晶體半導體的優點,而當奈米結構,或是微米結構或次微米結構脫離原來之半導體基板後,原來之半導體基板可以再次使用,所以使用在此類奈米或是微米或次微米等半導體結構薄膜式太陽能電池的材料主要就是奈米或是微米或次微米等半導體結構層,因此不需要大量的半導體材料。若此奈米或是微米或次微米等半導體為矽,則此奈米或是微米或次微米等半導體結構薄膜式太陽能電池為矽太陽能電池,其效果可與一般的矽太陽能電池相當;若此奈米或是微米或次微米等半導體為砷化鎵,則此奈米半導體結構薄膜式太陽能電池為砷化鎵太陽能電池,其效果可與一般的砷化鎵太陽能電池相當;於其他類奈米或是微米或次微米等半導體可類推。
為了增加第一透明基板30之薄層n型半導體31與第二透明基板40之薄層p型半導體41之導電特性,可以在鍍上薄層半導體31、41之前,先形成金屬網狀電極結構32、42,請參閱第4圖,之後再鍍上一薄層半導體31、41並進行後續製作程序。而此金屬網狀電極結構 32、42之覆蓋面積與整體面積比要小,使穿透的太陽光不被金屬網狀電極結構32、42擋住太多,而減少光電轉換效率。
另一方面,本發明之另一實施例亦可將數個微奈米結構PN二極體陣列薄膜太陽能電池予以堆疊,請參閱第5圖,每一個微奈米結構PN二極體陣列薄膜太陽能電池使用的半導體吸收對應其特定波段的太陽光,所以堆疊起來後,可以接近完整的太陽光光譜,使整體的太陽光得到做最佳的使用,以進行光電轉換。因為此做法不需要考慮長晶的晶格匹配,因此可以比目前運用III-V族的串接式(Tandem)太陽能電池更方便,而能堆疊更多微奈米結構PN二極體陣列薄膜太陽能電池,使太陽光得到更好的使用,其未來的潛力極為優異。而在堆疊數個太陽能電池時,也要使網狀電極結構之金屬上下重疊,使上層的金屬不會遮住下層的非金屬網狀電極結構部份,讓太陽光可以順利穿透數個堆疊的太陽能電池。
在無機奈米線的製備方面,奈米或是微米或次微米等半導體結構可以由結晶良好的晶片透過蝕刻獲得,或透過高品質的磊晶方式得到。在蝕刻製程包含了純化學蝕刻、純物理蝕刻以及介於中間的反應式離子蝕刻。其中純化學蝕刻製程如濕式蝕刻和遙控電漿光阻剝除,而像氬離子轟擊就屬於純物理蝕刻。
以另一種方式分類,可分為乾蝕刻與濕蝕刻兩類。乾蝕刻為利用化學氣體,經由物理蝕刻、化學蝕刻或兩者蝕刻的組合方式來達到移除目的,如活性離子蝕刻(Reactive lon Etching,RIE)、高密度電漿(high-density plasma,HDP)蝕刻等。而溼蝕刻則利用選定的化學溶液來溶解必須蝕刻的材料,如電化學蝕刻、光輔助電化學蝕刻等。以矽基板來製作奈米線陣列為例,可藉由電化學之濕蝕刻製程方式製備,其選定的蝕刻液為硝酸銀與氫氟酸混合溶液。原理為硝酸銀溶液以無電極方式於矽晶圓上沉積銀離子,而後氫氟酸溶液將蝕刻矽晶圓上銀離子沉積處,此方法就具有大面積製作以及低成本的優勢。在蝕 刻時遮罩的選擇方面,除以微影技術將圖案化的光阻做為遮罩外,在此提出其他做法,一做法為利用二氧化矽奈米粒子或高分子奈米粒子膠體懸浮液,調整懸浮液之黏滯度,以旋轉塗佈方式於無機材料基板上鋪上一層單層(monolayer)之奈米粒子層做為蝕刻遮罩;另一種方式為於無機半導體基板上鍍上一層相當薄的金屬層,再藉由快速熱退火方式使此薄金屬層形成奈米島狀表面形態,以此做為蝕刻遮罩,此外,尚有多孔模板法(AAO)、電化學及各種化學沉積法等等。
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。
10‧‧‧主材料晶圓
11‧‧‧微奈米半導體陣列
12‧‧‧旋塗玻璃(SOG)
13p‧‧‧p型旋塗摻雜物(SOD)
13n‧‧‧n型旋塗摻雜物(SOD)
14‧‧‧選擇性蝕刻層
20‧‧‧暫時基板
21‧‧‧可固化接著材料
30‧‧‧第一透明基板
31‧‧‧薄層n型半導體
32‧‧‧金屬網狀電極結構
40‧‧‧第二透明基板
41‧‧‧薄層p型半導體
42‧‧‧金屬網狀電極結構
70‧‧‧雷射光
第1A圖~第1H圖係為本發明之實施例所提供之微奈米半導體陣列的移植方法;第2圖係本發明之實施例之增設有選擇性蝕刻層之示意圖;第3A圖~第3G圖係為本發明之實施例所提供之微奈米結構PN二極體陣列薄膜太陽能電池的製造方法;第4圖係為本發明之實施例所提供之微奈米結構PN二極體陣列薄膜太陽能電池增設有金屬網狀電極結構之示意圖;以及第5圖係為本發明之實施例所提供之微奈米結構PN二極體陣列薄膜太陽能電池相互堆疊之示意圖。
11‧‧‧微奈米半導體陣列結構
21‧‧‧可固化接著材料
30‧‧‧第一透明基板
31‧‧‧薄層n型半導體
40‧‧‧第二透明基板
41‧‧‧薄層p型半導體

Claims (58)

  1. 一種微奈米結構PN二極體陣列薄膜太陽能電池,係包含有:一第一透明基板;一薄層n型半導體,連接於該第一透明基板;一微奈米半導體陣列,一側連接於該薄層n型半導體;一薄層p型半導體,連接於該微奈米半導體陣列之另一側;以及一第二透明基板,連接於該薄層p型半導體。
  2. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該薄層n型半導體係選自砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(GaP)、銻化鎵(GaSb)、碲化鋅(ZnTe)、鍺(Ge)、矽(Si)以及其它單元素、二元化合物、三元化合物、四元化合物半導體或其所構成的組合。
  3. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該薄層p型半導體係選自砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(GaP)、銻化鎵(GaSb)、碲化鋅(ZnTe)、鍺(Ge)、矽(Si)以及其它單元素、二元化合物、三元化合物、四元化合物半導體或其所構成的組合。
  4. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該薄層n型半導體與該薄層p型半導體係為有機半導體材料。
  5. 如申請專利範圍第4項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該n型有機半導體材料係選自2-苯基-5-(4-聯苯基)-1,3,4-噁二唑(PBD)、8-羥基喹啉鋁(Alq3)、苯基碳61丁酸甲酯(PCBM)、4,4' 二(2,2二苯乙烯基)1,1' 聯苯(DPVBi)、8-羥基喹啉鈹(Beq2)、雙(2-甲基-8-喹啉)4-聯苯氧基鋁(Balq)、噁二唑(OXD)或2,5-雙(5-叔丁基-2-苯並噁唑)噻吩(BBOT)。
  6. 如申請專利範圍第5項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該有機半導體材料係為小分子型態,藉由摻雜聚甲基丙烯酸甲酯(PMMA)或聚苯乙烯(polystyrene)之高分子材料,改善其成膜性。
  7. 如申請專利範圍第4項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該p型有機半導體材料係選自聚3-己基噻吩(P3HT)、4-亞苯基亞乙烯基(MEH-PPV)、聚[2-甲氧基-5-(3',7'-乙烷辛基氧)-1,4-苯基乙烯基(MDMO-PPV)、聚3,4-二氧乙基噻吩(PEDOT)、聚9,9-二辛基聚芴(PFO)、N'-二苯基-N,N'-二(3-甲基苯基)-[1-1'-聯苯]-4,4'-二胺(TPD)或氮’兩-(苯基)-對二氨基聯苯(NPB)。
  8. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該第一透明基板、該第二透明基板之材料係選自塑膠、玻璃、石英片或鍍有透明導電層之塑膠、玻璃、石英片。
  9. 如申請專利範圍第8項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該鍍有透明導電層之塑膠、玻璃、石英片之該透明導電層係為ITO或FTO。
  10. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該微奈米半導體陣列之縱截面寬度係為1奈米(nm)至3000微米(μ m)。
  11. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該微奈米半導體陣列之長度係為50nm至50μ m。
  12. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該微奈米半導體陣列係為p型半導體材料所構成。
  13. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該微奈米半導體陣列係為n型半導體結構所構成。
  14. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽 能電池,其中該微奈米半導體陣列係為至少一個PN二極體陣列,該至少一個PN二極體陣列之最外層p型端連接於該薄層p型半導體結構,該至少一個PN二極體陣列之最外層n型端連接於該薄層n型半導體結構。
  15. 如申請專利範圍第14項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中複數PN二極體陣列係可吸收對應不同波段的太陽光。
  16. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,更包含堆疊有另一微奈米結構PN二極體陣列薄膜太陽能電池。
  17. 如申請專利範圍第16項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該些微奈米結構PN二極體陣列薄膜太陽能電池之該些微奈米半導體陣列係可吸收對應不同波段的太陽光。
  18. 如申請專利範圍第16項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該些微奈米結構PN二極體陣列薄膜太陽能電池更包含有網狀電極結構,使太陽光可以順利穿透數個堆疊結構。
  19. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中在該微奈米半導體陣列縫隙之間係填入透明不導電材料。
  20. 如申請專利範圍第19項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該透明不導電材料係選自SOG、PMMA、SiO2 、SiO2 奈米粒子、SiNx、SiNx奈米粒子、Al2 O3 或Al2 O3 奈米粒子。
  21. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該PN二極體陣列之材料係選自由砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(GaP)、銻化鎵(GaSb)、碲化鋅(ZnTe)、鍺(Ge)、矽(Si)以及其它單元素、二元化合物、三元化合物、四元化合物半導體或其所構成的組合。
  22. 如申請專利範圍第1項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該薄層n型半導體與該第一透明基板之間或該薄層p型半導體與該第二透明基板之間更包含有一薄金屬層。
  23. 如申請專利範圍第22項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中形成該薄金屬層的真空化製程溫度係對應於該第一透明基板與該第二透明基板之耐熱程度而決定。
  24. 如申請專利範圍第22項所述之微奈米結構PN二極體陣列薄膜太陽能電池,其中該薄金屬層係對應該微奈米半導體陣列之能階而選擇合適功函數之金屬材料。
  25. 一種微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,係包含有下列步驟:提供一具有一微奈米半導體陣列之主材料晶圓;塗佈一薄層n型半導體於一第一透明基板上;將該微奈米半導體陣列接觸於該第一透明基板之該薄層n型半導體;使該微奈米半導體陣列之頂端與該薄層n型半導體熔接;將該微奈米半導體陣列脫離而移植於該第一透明基板上;塗佈一薄層p型半導體於一第二透明基板上;將該微奈米半導體陣列接觸於該第二透明基板之該薄層p型半導體;以及使該微奈米半導體陣列之頂端與該薄層p型半導體熔接,而形成一微奈米結構PN二極體陣列薄膜太陽能電池。
  26. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中使該微奈米半導體陣列之頂端與該薄層n型半導體或該薄層p型半導體熔接之方法,係利用強烈雷射光照射或藉由加溫並施加壓力。
  27. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太 陽能電池之製作方法,其中該薄層n型半導體係選自砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(GaP)、銻化鎵(GaSb)、碲化鋅(ZnTe)、鍺(Ge)、矽(Si)以及其它單元素、二元化合物、三元化合物、四元化合物半導體或其所構成的組合。
  28. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該薄層p型半導體係選自砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(GaP)、銻化鎵(GaSb)、碲化鋅(ZnTe)、鍺(Ge)、矽(Si)以及其它單元素、二元化合物、三元化合物、四元化合物半導體或其所構成的組合。
  29. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該薄層n型半導體與該薄層p型半導體係為有機半導體材料。
  30. 如申請專利範圍第29項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該n型有機半導體材料係選自2-苯基-5-(4-聯苯基)-1,3,4-噁二唑(PBD)、8-羥基喹啉鋁(Alq3)、苯基碳61丁酸甲酯(PCBM)、4,4' 二(2.2二苯乙烯基)1,1' 聯苯(DPVBi)、8-羥基喹啉鈹(Beq2)、雙(2-甲基-8-喹啉)4-聯苯氧基鋁(Balq)、噁二唑(OXD)或2,5-雙(5-叔丁基-2-苯並噁唑)噻吩(BBOT)。
  31. 如申請專利範圍第30項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該有機半導體材料係為小分子型態,藉由摻雜PMMA或polystyrene之高分子材料,改善其成膜性。
  32. 如申請專利範圍第29項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該p型有機半導體材料係選自聚3-己基噻吩(P3HT)、4-亞苯基亞乙烯基(MEH-PPV)、聚[2-甲氧基-5-(3',7'-乙烷辛基氧)-1,4-苯基乙烯基(MDMO-PPV)、聚3,4-二氧乙基噻吩(PEDOT)、聚9,9-二辛基聚芴(PFO)、N'-二苯基 -N,N'-二(3-甲基苯基)-[1-1'-聯苯]-4,4'-二胺(TPD)或氮’兩-(苯基)-對二氨基聯苯(NPB)。
  33. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該主材料晶圓之材料係選自由砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(GaP)、銻化鎵(GaSb)、碲化鋅(ZnTe)、鍺(Ge)、矽(Si)以及其它單元素、二元化合物、三元化合物、四元化合物半導體所構成的組合。
  34. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該微奈米半導體陣列係採用磊晶、摻雜、蝕刻或長晶的方式形成。
  35. 如申請專利範圍第34項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中蝕刻方式可為乾蝕刻、濕蝕刻、物理蝕刻、化學蝕刻或兩者以上蝕刻的組合方式。
  36. 如申請專利範圍第35項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該蝕刻製程所需的遮罩製備,係包含微影技術之圖案化光阻做為遮罩、旋轉塗佈奈米粒子做為遮罩、以及鍍上薄金屬再藉由快速熱退火方式使此薄金屬層形成奈米島狀表面形態,以此做為遮罩、多孔模板法(AAO)或電化學之化學沉積法所產生的模版做為遮罩。
  37. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中將該微奈米半導體陣列接觸於該第一透明基板之該薄層n型半導體的步驟,更包含有下列步驟:將該微奈米半導體陣列脫離該主材料晶圓而轉移至一暫時基板。
  38. 如申請專利範圍第37項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,更包含有下列步驟:塗佈一可固化接著材料於該暫時基板上;將該主材料晶圓之該微奈米半導體陣列插入該暫時基板之該可固 化接著材料中;固化該可固化接著材料;以及將該微奈米半導體陣列脫離該主材料晶圓而移植於該暫時基板上。
  39. 如申請專利範圍第38項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該可固化接著材料係為可固化之溶膠、凝膠、融熔態的金屬或是高分子、旋塗玻璃(spin-on glass;SOG)、蠟、聚甲基丙烯酸甲酯(polym ethylm ethacrylate;PMMA)、P3HT之有機材料。
  40. 如申請專利範圍第37項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該微奈米半導體陣列脫離該主材料晶圓的方式係使用超音波振盪、輕輕敲斷、化學蝕刻或直接將該主材料晶圓拿起的方式讓該微奈米半導體陣列脫離該主材料晶圓。
  41. 如申請專利範圍第37項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該暫時基板之材料係為半導體、導體、絕緣體之可塗佈該可固化接著材料之基板。
  42. 如申請專利範圍第37項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該微奈米半導體陣列脫離於該暫時基板係利用溶劑溶解固化接著材料、黏力、應力、化學蝕刻或雷射消融之外力方式達成。
  43. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該形成該微奈米半導體陣列於該主材料晶圓之步驟,更包含一在該微奈米半導體陣列與該主材料晶圓之間形成一選擇性蝕刻層之步驟。
  44. 如申請專利範圍第43項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,係在磊晶該主材料晶圓完成二極體構造前,先行形成該選擇性蝕刻層,而後蝕刻製成該微奈米半導體陣列。
  45. 如申請專利範圍第43項所述之微奈米結構PN二極體陣列薄膜太 陽能電池之製作方法,其中該選擇性蝕刻層係可供以化學蝕刻或乾蝕刻方式去除,而將該微奈米半導體陣列脫離該主材料晶圓。
  46. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該第一透明基板、該第二透明基板之材料係選自由塑膠、玻璃或鍍有透明導電層之塑膠、玻璃、石英片。
  47. 如申請專利範圍第46項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中鍍有透明導電層之塑膠、玻璃、石英片之該透明導電層係為ITO或FTO。
  48. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該微奈米半導體陣列之縱截面寬度係為1nm至3000μ m。
  49. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該微奈米半導體陣列之長度係為50nm至50μ m。
  50. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該微奈米半導體陣列係為p型半導體材料所構成。
  51. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該微奈米半導體陣列係為n型半導體結構所構成。
  52. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該微奈米半導體陣列係為至少一個PN二極體陣列,該至少一個PN二極體陣列之最外層p型端連接於該薄層p型半導體結構,該至少一個PN二極體陣列之最外層n型端連接於該薄層n型半導體結構。
  53. 如申請專利範圍第52項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中複數PN二極體陣列係可吸收對應不同 波段的太陽光。
  54. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,更包含堆疊有另一微奈米結構PN二極體陣列薄膜太陽能電池的步驟。
  55. 如申請專利範圍第54項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該些微奈米結構PN二極體陣列薄膜太陽能電池之該些微奈米半導體陣列係可吸收對應不同波段的太陽光。
  56. 如申請專利範圍第54項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該些微奈米結構PN二極體陣列薄膜太陽能電池更包含有網狀電極結構,且該網狀電極結構之金屬係上下重疊,使上層的金屬不會遮住下層的非金屬網狀電極結構部份,使太陽光可以順利穿透數個堆疊結構。
  57. 如申請專利範圍第25項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,更包含在該微奈米結構半導體陣列縫隙之間填入透明不導電材料的步驟。
  58. 如申請專利範圍第57項所述之微奈米結構PN二極體陣列薄膜太陽能電池之製作方法,其中該透明不導電材料係選自SOG、PMMA、SiO2 、SiO2 奈米粒子、SiNx、SiNx奈米粒子、Al2 O3 或Al2 O3 奈米粒子。
TW097133261A 2008-08-29 2008-08-29 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法 TWI381536B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW097133261A TWI381536B (zh) 2008-08-29 2008-08-29 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法
US12/318,356 US8258396B2 (en) 2008-08-29 2008-12-29 Micro/nanostructure PN junction diode array thin-film solar cell and method for fabricating the same
US13/295,205 US8486749B2 (en) 2008-08-29 2011-11-14 Micro/nanostructure PN junction diode array thin-film solar cell and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097133261A TWI381536B (zh) 2008-08-29 2008-08-29 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法

Publications (2)

Publication Number Publication Date
TW201010094A TW201010094A (en) 2010-03-01
TWI381536B true TWI381536B (zh) 2013-01-01

Family

ID=41726049

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097133261A TWI381536B (zh) 2008-08-29 2008-08-29 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法

Country Status (2)

Country Link
US (2) US8258396B2 (zh)
TW (1) TWI381536B (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006047045A1 (de) * 2006-10-02 2008-04-03 Universität Paderborn Photovoltaische Einrichtung
WO2009052324A2 (en) 2007-10-19 2009-04-23 Qualcomm Mems Technologies, Inc. Display with integrated photovoltaic device
KR20110000695A (ko) * 2008-04-11 2011-01-04 퀄컴 엠이엠스 테크놀로지스, 인크. Pv 심미성 및 효율의 향상방법
TWI381536B (zh) * 2008-08-29 2013-01-01 Univ Nat Taiwan 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法
JP2012503221A (ja) * 2008-09-18 2012-02-02 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 太陽光収集器/集光器における光収集の角度範囲の増大化
TWI394708B (zh) * 2009-07-06 2013-05-01 Nat Univ Tsing Hua 一維奈米材料之轉印方法
US20110126896A1 (en) * 2009-12-02 2011-06-02 Taiwan Textile Research Institute Photovoltaic Devices and Methods for Producing the Same
US8620354B2 (en) * 2009-12-03 2013-12-31 Richard K. Beasley Method and system for selectively limiting wireless communication in a motor vehicle
US20110240099A1 (en) * 2010-03-30 2011-10-06 Ellinger Carolyn R Photovoltaic nanowire device
TWI426619B (zh) * 2010-06-25 2014-02-11 Univ Nat Taiwan 太陽能電池與其異質接合結構的製造方法
US9343609B2 (en) * 2010-12-09 2016-05-17 Faculdade De Ciencias E Tecnologia Da Universidade Nova De Lisboa Mesoscopic optoelectronic devices comprising arrays of semiconductor pillars deposited from a suspension and production method thereof
TWI455867B (zh) * 2012-01-19 2014-10-11 Univ Nat Sun Yat Sen 導電薄膜上形成具奈米結構pn接面及其方法
KR101989144B1 (ko) * 2012-04-06 2019-06-14 삼성디스플레이 주식회사 박막 및 박막의 패터닝 방법, 박막 트랜지스터 기판 및 박막 트랜지스터 기판의 제조 방법
US9711770B2 (en) 2012-11-27 2017-07-18 Apple Inc. Laminar battery system
US10033029B2 (en) 2012-11-27 2018-07-24 Apple Inc. Battery with increased energy density and method of manufacturing the same
CN103066209B (zh) * 2013-01-15 2015-08-26 陈卫兵 一种太阳电池及其制备方法
EP2956969A4 (en) * 2013-02-14 2016-11-23 Univ Northeastern SOLAR CELLS WITH METAL OXIDES
US9899661B2 (en) 2013-03-13 2018-02-20 Apple Inc. Method to improve LiCoO2 morphology in thin film batteries
US10141600B2 (en) 2013-03-15 2018-11-27 Apple Inc. Thin film pattern layer battery systems
US9887403B2 (en) 2013-03-15 2018-02-06 Apple Inc. Thin film encapsulation battery systems
US9570775B2 (en) 2013-03-15 2017-02-14 Apple Inc. Thin film transfer battery systems
US9601751B2 (en) 2013-03-15 2017-03-21 Apple Inc. Annealing method for thin film electrodes
CN103302446A (zh) * 2013-06-09 2013-09-18 河南理工大学 一种金属微小柱状体阵列的固定方法
US10553738B2 (en) * 2013-08-21 2020-02-04 Sunpower Corporation Interconnection of solar cells in a solar cell module
US9776858B2 (en) * 2014-02-26 2017-10-03 Taiwan Semiconductor Manufacturing Company Limited Semiconductor arrangement and formation thereof
US10930915B2 (en) 2014-09-02 2021-02-23 Apple Inc. Coupling tolerance accommodating contacts or leads for batteries
US9484332B2 (en) * 2015-03-18 2016-11-01 Intel Corporation Micro solar cell powered micro LED display
CN106158582B (zh) * 2015-04-01 2018-09-28 中国科学院上海高等研究院 近邻阴影效应辅助阵列法制备层转移薄晶硅工艺
DE102015108402B4 (de) 2015-05-28 2021-03-18 Infineon Technologies Ag Halbleiterbauelemente, ein Fluidsensor und ein Verfahren zum Bilden eines Halbleiterbauelements
CN105304737B (zh) * 2015-09-29 2018-02-13 北京大学 一种可控阵列纳米线太阳能电池及其制备方法
EP3401674B1 (en) * 2017-05-09 2020-07-15 ams International AG Capacitive-type humidity sensor with superhydrophobic top surface and corresponding fabrication method
US11362229B2 (en) * 2018-04-04 2022-06-14 California Institute Of Technology Epitaxy-free nanowire cell process for the manufacture of photovoltaics
CN110610669A (zh) * 2018-06-15 2019-12-24 深圳富泰宏精密工业有限公司 显示模块及具有该显示模块的电子装置
CN109037315B (zh) * 2018-06-26 2020-07-28 浙江大学 一种用于薄膜晶体管的沟道层材料及其制备方法与应用
US11041338B2 (en) 2018-08-21 2021-06-22 California Institute Of Technology Windows implementing effectively transparent conductors and related methods of manufacturing
CN109560151A (zh) * 2018-10-22 2019-04-02 长春理工大学 一种获取完整纳米线材料的方法
CN109534279B (zh) * 2018-11-26 2020-11-03 长春理工大学 一种纳米线阵列器件的制备方法
TWI746974B (zh) * 2019-05-09 2021-11-21 國立清華大學 熱電奈米感測器及其製造方法與應用方法
US11824220B2 (en) 2020-09-03 2023-11-21 Apple Inc. Electronic device having a vented battery barrier
CN112490319B (zh) * 2020-11-27 2023-03-28 东华理工大学 一种利用湿法刻蚀具有微沟槽的AlGaAs/GaAs中子探测器
CN113161414B (zh) * 2021-04-29 2023-04-14 齐鲁工业大学 一种pn微米线制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040112422A1 (en) * 2002-12-11 2004-06-17 Spivack James L. Structured micro-channel semiconductor electrode for photovoltaic cells
US20050081908A1 (en) * 2003-03-19 2005-04-21 Stewart Roger G. Method and apparatus for generation of electrical power from solar energy
US20060151025A1 (en) * 2005-01-13 2006-07-13 Chung-Hua Li Active layer for solar cell and the manufacturing method making the same
US20070095387A1 (en) * 2003-11-27 2007-05-03 Shuichi Fujii Solar cell module
US20070295383A1 (en) * 2006-03-31 2007-12-27 Intematix Corporation Wavelength-converting phosphors for enhancing the efficiency of a photovoltaic device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283812B1 (en) * 1999-01-25 2001-09-04 Agere Systems Guardian Corp. Process for fabricating article comprising aligned truncated carbon nanotubes
EP1028475A1 (en) * 1999-02-09 2000-08-16 Sony International (Europe) GmbH Electronic device comprising a columnar discotic phase
US6649824B1 (en) * 1999-09-22 2003-11-18 Canon Kabushiki Kaisha Photoelectric conversion device and method of production thereof
JP2003077940A (ja) * 2001-09-06 2003-03-14 Sony Corp 素子の転写方法及びこれを用いた素子の配列方法、画像表示装置の製造方法
US7563500B2 (en) * 2003-08-27 2009-07-21 Northeastern University Functionalized nanosubstrates and methods for three-dimensional nanoelement selection and assembly
US7067328B2 (en) * 2003-09-25 2006-06-27 Nanosys, Inc. Methods, devices and compositions for depositing and orienting nanostructures
US7692179B2 (en) * 2004-07-09 2010-04-06 Hewlett-Packard Development Company, L.P. Nanowire device with (111) vertical sidewalls and method of fabrication
US8173525B2 (en) * 2005-06-17 2012-05-08 Georgia Tech Research Corporation Systems and methods for nanomaterial transfer
KR20090054260A (ko) * 2007-11-26 2009-05-29 삼성전기주식회사 태양전지
US8106289B2 (en) * 2007-12-31 2012-01-31 Banpil Photonics, Inc. Hybrid photovoltaic device
KR100935322B1 (ko) * 2008-01-02 2010-01-06 삼성전기주식회사 고효율 태양전지 및 이의 제조방법
TWI403457B (zh) * 2008-05-28 2013-08-01 Univ Nat Taiwan One - dimensional micro - nanometer structure transplantation method
TW200952184A (en) * 2008-06-03 2009-12-16 Univ Nat Taiwan Structure of mixed type heterojunction thin film solar cells and its manufacturing method
US20100012190A1 (en) * 2008-07-16 2010-01-21 Hajime Goto Nanowire photovoltaic cells and manufacture method thereof
TWI390242B (zh) * 2008-07-30 2013-03-21 Univ Nat Taiwan 利用雷射使光學元件表面平滑化的製作方法
TWI381536B (zh) * 2008-08-29 2013-01-01 Univ Nat Taiwan 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法
TWI491308B (zh) * 2009-07-17 2015-07-01 Univ Nat Taiwan 有機/無機白光發光元件及其製作方法
TWI426619B (zh) * 2010-06-25 2014-02-11 Univ Nat Taiwan 太陽能電池與其異質接合結構的製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040112422A1 (en) * 2002-12-11 2004-06-17 Spivack James L. Structured micro-channel semiconductor electrode for photovoltaic cells
US20050081908A1 (en) * 2003-03-19 2005-04-21 Stewart Roger G. Method and apparatus for generation of electrical power from solar energy
US20070095387A1 (en) * 2003-11-27 2007-05-03 Shuichi Fujii Solar cell module
US20060151025A1 (en) * 2005-01-13 2006-07-13 Chung-Hua Li Active layer for solar cell and the manufacturing method making the same
US20070295383A1 (en) * 2006-03-31 2007-12-27 Intematix Corporation Wavelength-converting phosphors for enhancing the efficiency of a photovoltaic device

Also Published As

Publication number Publication date
US20100055824A1 (en) 2010-03-04
US8258396B2 (en) 2012-09-04
TW201010094A (en) 2010-03-01
US8486749B2 (en) 2013-07-16
US20120058593A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
TWI381536B (zh) 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法
CN102414788B (zh) 用纳米/微球光刻制造纳米/微线太阳能电池
Asim et al. A review on the role of materials science in solar cells
US8053025B2 (en) Mixed-typed heterojunction thin-film solar cell structure and method for fabricating the same
CN100405617C (zh) 基于碳纳米管薄膜的太阳能电池及其制备方法
US20080230120A1 (en) Photovoltaic device with nanostructured layers
TW200847449A (en) Nanophotovoltaic device with improved quantum efficiency
JP2009532851A (ja) ナノ粒子増感ナノ構造太陽電池
Chen et al. Rational design of nanowire solar cells: from single nanowire to nanowire arrays
KR20080111488A (ko) 나노입자 감응형 탄소 나노튜브를 함유하는 광기전 장치
Chen et al. Efficiency enhancement of PEDOT: PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface
TW201133974A (en) Method for improving the efficiency of a flexible organic solar cell
KR20230147195A (ko) 페로브스카이트 기재 다중-접합 태양 전지 및 이를 제조하기 위한 방법
Ju et al. Graphene/silicon Schottky solar cells: Technical strategies for performance optimization
Peksu et al. Towards the fabrication of third generation solar cells on amorphous, flexible and transparent substrates with well-ordered and disordered Si-nanowires/pillars
CN115775848A (zh) 垂直结构GaN紫外光探测器及其制备方法
Karaağaç et al. One-dimensional silicon nano-/microstructures based opto-electronic devices
KR101541108B1 (ko) 태양전지 및 이의 제조방법
Alkhatab Material studies for flexible 3rd generation solar cells
Thiyagu et al. Silicon nanowire-based solar cells
Iqbal et al. Advances in solar cell fabrication and applications using nanotechnology
Togonal Silicon Nanowires for Photovoltaics: from the Material to the Device
Li et al. Enhancement of Si-Based Solar Cell Efficiency via Nanostructure Integration
Lin et al. Solar Cells: Silicon Nanowires for
TWM569083U (zh) 3D solar panel structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees