TWI426619B - 太陽能電池與其異質接合結構的製造方法 - Google Patents

太陽能電池與其異質接合結構的製造方法 Download PDF

Info

Publication number
TWI426619B
TWI426619B TW099120910A TW99120910A TWI426619B TW I426619 B TWI426619 B TW I426619B TW 099120910 A TW099120910 A TW 099120910A TW 99120910 A TW99120910 A TW 99120910A TW I426619 B TWI426619 B TW I426619B
Authority
TW
Taiwan
Prior art keywords
semiconductor
organic polymer
conductive organic
solar cell
nanowire
Prior art date
Application number
TW099120910A
Other languages
English (en)
Other versions
TW201201393A (en
Inventor
Ching Fuh Lin
Shu Jia Syu
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW099120910A priority Critical patent/TWI426619B/zh
Priority to US12/975,933 priority patent/US20110315201A1/en
Publication of TW201201393A publication Critical patent/TW201201393A/zh
Application granted granted Critical
Publication of TWI426619B publication Critical patent/TWI426619B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • H10K30/352Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Description

太陽能電池與其異質接合結構的製造方法
本發明是有關於一種高效率太陽能電池與其異質接合結構的製造方法。
具有聚合物與半導體異質接合結構的太陽能電池,具有不用考慮晶格匹配問題、面積覆蓋率大、可低溫製作、製程較容易、製作成本低等許多優點,因此成為本領域的研究焦點。迄今,許多平面式的聚合物/半導體異質接合結構已被研究出來,這些異質接合結構以結晶或非結晶形的矽與聚合物作異質接合,例如Poly-(CH3)3Si-Cyclooctatetraene/n-Si,tetraphenylporphyrin/n-Si,4-tricyanovinyl-N,N-diethyl-aniline/p-Si,poly(3-hexylthiophene)/a-Si,poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/n-Si,polyaniline/n-Si,phthalocyanine/n-Si等等。然而,利用平面式聚合物/半導體異質接合結構的太陽能電池,只有靠近異質接合結構由光照產生的電子電洞對(electron-hole pairs,EHPs)會被分離且被收集,其他在聚合物或矽結構內產生的多數電子電洞對會複合(recombination),造成太陽能電池的功率轉換效率(power conversion efficiency)降低。
為了增加電子電洞對的分離與收集,一有效可行的方法是在太陽能電池中,利用矽奈米線增加異質接合的面積與減短載子擴散距離。另外,矽奈米線可大幅減少光線反射損失,使更多的光被矽奈米線捕捉,增加光吸收率。通常,習知技術是以氣相沈積方法,沈積薄的非結晶或奈米結晶矽層於矽奈米結構上,形成矽奈米線p-n異質接合結構。以此異質接合結構製作的太陽能電池,在可見光區域都具有良好的光電轉換效率(incident photo-to-current conversion efficiency,IPCE),但是在近紅外光區域的光電轉換效率不佳,由於高的串聯電阻與低的分流電阻(shunt resistances)使這些太陽能電池的光電轉換效率都低於1%。
因此,亟需提供一種太陽能電池與其製法,能夠提高其光電轉化效率。
本發明的目的之一在於提供一種太陽能電池與其與其異質接合結構的製造方法,能夠提高其光電轉化效率,並且,可降低材料成本與製造成本。
根據上述的目的,本發明實施例提供一種用於一半導體裝置之異質接合結構的製造方法,包含:提供一半導體基板;形成複數個半導體奈米結構於該半導體基板上;以及利用毛細現象使一導電有機聚合物附著於每個半導體奈米結構上,形成一半導體奈米結構/導電有機聚合物的異質接合結構。當上述之異質接合結構製備完成後,即可利用該異質接合結構接續製作一太陽能電池。
根據上述的目的,本發明實施例提供一種太陽能電池,至少包含複數個異質接合結構,每一異質接合結構包含一半導體奈米結構與一導電有機聚合物,該半導體奈米結構與該導電有機聚合物呈現芯-鞘(core-sheath)態樣,該太陽能電池的最大光電轉換效率達到30%以上。
在本發明一實施例,傳導電洞的導電聚合物層,例如聚(3,4-二氧乙基塞吩):聚苯乙烯磺酸[poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate);(PEDOT:PSS)],取代傳統的P型摻雜的非結晶或奈米結晶矽層,被塗佈在矽奈米線上。根據此異質接合結構製作的太陽能電池,由於PEDOT最高佔據分子軌域能量(highest occupied molecular orbital,HOMO)大約為5.1eV,小於矽的價電帶能(valence band energy),因此,PEDOT層與n型矽奈米線的介面可形成使電子電洞對分離的良好異質接合結構。
根據本發明實施例,具有矽奈米線/PEDOT異質接合結構的太陽能電池,其電流電壓曲線表現出一典型穩定整流二極體的特性。另外,本發明實施例的異質接合結構結構可大幅增加激發子(exciton)解離機率與入射光捕捉效應,可增加近紅外光區域的光電轉換效率。
根據本發明實施例,一半導體基板可重複製作半導體奈米結構,可大幅降低材料成本;另外,溶液製程可降低製造成本。
21‧‧‧半導體基板
22‧‧‧半導體奈米結構
23‧‧‧透明基板
24‧‧‧透明電極
25‧‧‧導電有機聚合物溶液
26‧‧‧絕緣層
27‧‧‧金屬電極
28‧‧‧導電有機聚合物
圖1為根據本發明實施例的示意圖,顯示製造具有矽奈米線/PEDOT芯鞘(core-sheath)異質接合結構之太陽能電池的方法;圖2(a)至(d)圖顯示本發明實施例所製備矽奈米線以及矽奈米線/PEDOT異質接合結構的SEM圖與TEM圖;圖3顯示根據本發明實施例所製備的矽奈米線/PEDOT異質接合結構,應用於太陽能電池後,其電流電壓特性的測量;圖4顯示根據本發明實施例具矽奈米線/PEDOT異質接合結構之太陽能電池的二維(2-D)光電流測量圖;圖5(a)至(b)分別顯示本發明實施例具有矽奈米線/PEDOT異質接合結構之太陽能電池在各種波長的光電轉換效率(incident photo-to-current conversion efficiency,IPCE)與光電轉換效率增加比值(IPCE enhancement ratio);圖6A至圖6G顯示根據本發明一實施例製造具異質接合結構之太陽能電池的方法;以及圖7A至圖7F顯示根據本發明另一實施例製造具異質接合結構之太陽能電池的方法。
本發明的一些實施例將詳細描述如下。然而,除了如下描述外,本發明還可以廣泛地在其他的實施例施行,且本發明的範圍並不受實施例之限定,其以之後的專利範圍為準。在說明書的描述中,為了使讀者對本發明有較完整的了解,提供了許多特定細節;然而,本發明可能在省略部分或全部這些特定細節的前提下,仍可實施。此外,眾所周知的步驟或元件並未描述於細節中,以避免造成本發明不必 要之限制。
製作半導體奈米結構範例
在本實施例,是以美國專利申請案,申請號12/713,094,題為”SILICON SUBSTRATE HAVING NANOSTRUCTURES AND METHOD FOR PRODUCING THE SAME AND APPLICATION THEREOF”,所揭露的金屬輔助化學蝕刻方法,製備矽奈米線(silicon nanowires SiNWs),該專利申請案的說明書全文併入本文,視為本案說明書的一部分。
首先,提供一n型1-10ohm-cm的矽(100)基板在室溫下以硝酸銀(AgNO3)與氫氟酸(HF)的水溶液製作矽奈米線。硝酸銀與氫氟酸的濃度分別為0.023mol/L與5.6mol/L。在蝕刻之後,將形成的矽奈米線浸沒於濃的硝酸(nitric acid)中,將銀奈米結構自矽奈米線表面移除。之後,將矽奈米線浸沒於氧化物蝕刻緩衝液(BOE,Buffer oxidation etchant)以移除矽奈米線表面的氧化層,並在矽奈米線的表面形成氫鍵。
根據本方法所形成的矽奈米線,會垂直排列在矽基板表面上,面積可達晶圓級,並且,矽奈米線的分布密度可等於或大於每平方微米二十個矽奈米線(20wires/μm2)。之後,可以蒸鍍方式形成鋁電極在矽基板相對於矽奈米線的背面上。
製作太陽能電池範例
本實施例使用聚(3,4-二氧乙基塞吩):聚苯乙烯磺酸[poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate),於本文簡稱 「PEDOT:PSS」或「PEDOT」,以形成聚合物/半導體奈米結構異質接合結構。
在矽奈米線製備完成後,接著,將具有平均直徑為80nm的PEDOT膠體粒子分散在一水溶液中。然而,浸沒過氧化物蝕刻緩衝液(BOE)的矽奈米線表面具有氫鍵結,其為斥水性。為了形成聚合物/半導體異質接合結構,必須將矽奈米線的表面改質成親水性,如此PEDOT分子才能附著在矽奈米線的表面上。為了改質成親水性的表面,矽奈米線被放置在一相對溼度60%、溫度25℃的環境下2小時,使在矽奈米線表面上形成一自生氧化層。此自生氧化層為親水性,並具有一接觸角(contact angle)小於20º。之後,以旋轉塗佈方式,將PEDOT塗佈於一玻璃基板的氧化銦錫(ITO:indium tin oxide)表面上。被塗佈在ITO表面上濕的PEDOT薄膜的厚度大約為9μm(全乾的PEDOT薄膜的厚度大約為200nm)。之後,在濕PEDOT薄膜變乾之前,將矽奈米線的頂端部分浸沒於其中。
圖1為根據本發明實施例的示意圖,顯示製造具有矽奈米線/PEDOT芯鞘(core-sheath)異質接合結構之太陽能電池的方法。因為以金屬輔助化學蝕刻方法形成的矽奈米線在矽基板上呈垂直排列,並且具有十分均勻分佈的長度;因此,當矽奈米線的頂端部分浸沒於濕的PEDOT薄膜,幾乎全部的矽奈米線可浸沒於PEDOT薄膜內,藉由毛細現象,PEDOT被吸附於矽奈米線的表面上。之後,進行一退火製程,在氮氣環境中以140℃加熱所述結構約10min,使濕的PEDOT薄膜乾燥,在矽奈米線的表面上形成一緊密的PEDOT薄膜。藉此,每個矽奈米線透過PEDOT與ITO電極固定。注意,於本實施例,毛細作用是在 室溫下進行,但是,於其他實施例,毛細作用可在不同溫度或不同溶液濃度等參數下進行。本發明實施例的方法,相較於習知的化學氣相沈積法,具有更低的製造成本。
結果
圖2(a)至(d)圖顯示本發明實施例所製備矽奈米線以及矽奈米線/PEDOT異質接合結構的掃描式電子顯微鏡(SEM)圖與穿透式電子顯微鏡(TEM)圖。其中,圖2(a)為以金屬輔助化學蝕刻法製備之矽奈米線結構的SEM圖,其顯示矽奈米線垂直排列在矽基板的表面上。圖2(b)為所製備矽奈米線/PEDOT異質接合結構的SEM圖,為檢視異質接合結構,將已形成的異質接合結構以機械力使其與ITO表面分離。
圖2(c)為所製備單一矽奈米線/PEDOT異質接合結構的TEM圖,其呈現一種芯(core,指矽奈米線)鞘(sheath,指PEDOT)結構,PEDOT的厚度為20nm以下。如圖可證明,PEDOT不僅僅是覆蓋矽奈米的頂部表面,而是藉由毛細現象,覆蓋整個矽奈米線的表面。
圖2(d)為所製備矽奈米線/PEDOT介面的TEM圖,此取自接近矽奈米線邊緣的高解析度TEM圖顯示PEDOT緊密地附著於矽奈米線的表面上。
圖3顯示根據本發明實施例所製備的矽奈米線/PEDOT異質接合結構,應用於太陽能電池後,其電流電壓特性的測量,並與一具有平面式矽/PEDOT異質接合結構的太陽能電池作比較,其中本發明實施例之矽奈米線的平均長度大約為2.78μm;於測量時,照光強度為100mW/cm2(AM1.5G)。另外,圖中顯示的插圖為在暗態 下,亦即未照光下本發明實施例所製備太陽能電池的電流電壓特性測量。如圖3所示,相較於具有平面式矽/PEDOT異質接合結構的太陽能電池,本發明實施例具有矽奈米線/PEDOT異質接合結構的太陽能電池,可大幅增加短路電流密度(short-circuit current density,Jsc)、開路電壓(open-circuit voltage,Voc)、填充因子(fill factor,FF)與光電轉換效率(PCE)。其中,短路電流密度由1.27mA/cm2增加到19.28mA/cm2、開路電壓由0.34V增加到0.47V、填充因子由18%增加到61%,如此使光電轉換效率由0.08增加到5.09%。短路電流密度的增加有兩個主要原因:
第一,於平面式矽/PEDOT結構,載子的擴散距離可能有數十微米;然而,載子由芯(矽奈米線)擴散到矽奈米線/PEDOT異質接合結構的距離只有數十奈米或更短,因此,矽奈米線/PEDOT異質接合結構可大幅增加電子電洞分離與收集效率。
第二,矽奈米線/PEDOT異質接合結構在波長400至1100nm範圍可將光反射率減少至5%以下,而平面式的矽/PEDOT異質接合結構結構的光反射率卻高於30%。另外,矽奈米線捕捉更多的光線,增加光吸收率,導致產生更多光電流。
而圖3的插圖顯示,在暗態下,具有矽奈米線/PEDOT異質接合結構的太陽能電池,亦會隨者施加電壓增加而增加電流密度,顯示具有矽奈米線/PEDOT異質接合結構的太陽能電池其特性為一穩定的整流二極體。而具平面式異質接合結構之太陽能電池的串聯電阻為60.42Ωcm2,本發明實施例具矽奈米線/PEDOT異質接合結構之太陽能電池的串聯電阻為1.47Ωcm2。本發明實施例具矽奈米 線/PEDOT異質接合結構之太陽能電池的填充因子的改善亦可歸因於此串聯電阻的降低。此結果表示本發明實施例的矽奈米線/PEDOT結構可增加異質接合面積,因此可大幅增加電流密度。本發明實施例具矽奈米線/PEDOT結構之太陽能電池的串聯電阻甚至比文獻提供的具矽奈米線同質接合(homojunction)之太陽能電池的串聯電阻還低。其原因在於,在本發明實施例的矽奈米線/PEDOT結構,載子可直接透過PEDOT,在矽奈米線與平面ITO電極之間傳輸。因此,由於異質接合面積增加,造成串聯電阻減少。
圖4顯示根據本發明實施例具矽奈米線/PEDOT異質接合結構之太陽能電池的二維(2-D)光電流測量圖,其中白色區域為太陽能電池的主動區域。結果顯示,在主動區域內具有很均勻的光電流響應。此表示絕大多數由光照產生的電子電洞對(EHPs)都已經被分離且分別由電極收集,於此實施例,電洞由ITO電極收集,電子由鋁電極收集。此結果亦表示絕大多數的矽奈米線都已經藉由PEDOT固定在ITO電極上。
根據本發明實施例,具矽奈米線結構的太陽能電池有利於載子傳輸。在本發明實施例,一平面的ITO薄膜取代傳統金屬手指狀電極,透過PEDOT與矽奈米線的頂端作一前端接觸(front contact)。而傳統平面式矽/PEDOT異質接合結構,載子會沿者靠近金屬手指電極的前端表面傳輸。因此,如果太陽能電池的前端表面形成奈米結構,載子的傳輸距離會大幅增加,如此可能造成串聯電阻增加。然而,如圖1所示,本發明實施例提供的矽奈米線/PEDOT異質接合結構,在矽奈米線分離的電子電洞對(electron-hole pair),電洞會立即在與PEDOT的異質接面由ITO電極收集,而不是在矽奈米線內作長距離的擴散,串聯 電阻得以降低。
圖5(a)至(b)分別顯示本發明實施例具有矽奈米線/PEDOT異質接合結構之太陽能電池在各種波長的光電轉換效率(incident photo-to-current conversion efficiency,IPCE與光電轉換效率增加比值(IPCE enhancement ratio)。圖5(a)的插圖顯示具平面矽/PEDOT異質接面的測量值,以作比較。另外,圖5(b)的光電轉換效率增加比值,是圖5(a)的光電轉換效率,除以圖5(b)插圖的光電轉換效率後得到的。如圖5(a)所示,本發明實施例的太陽能電池在波長400nm至1100nm獲得光子(photons),而最大光電轉換效率是在波長700nm的32%。而具傳統平面矽/PEDOT異質接面的太陽能電池,最大光電轉換效率是在波長682nm的約1.94%。如圖(b)所示,光電轉換效率增加比值在波長530nm至1100nm的範圍都超過15,在1014nm具有最大值。本發明實施例之太陽能電池的光電轉換效率,遠較於具平面式矽/PEDOT之太陽能電池的光電轉換效率高,可歸因於捕光效應。對於具平面式矽/PEDOT之太陽能電池而言,光在矽基板的穿透深度在可見光大約是幾微米(μm)而在近紅外光大約是幾十微米。因此在矽基板的較深區域的載子收集效率不佳,導致低的光電流與低的光電轉換效率,在近紅外光波長範圍尤其如此。而本發明實施例的具矽奈米線/PEDOT異質接合結構的太陽能電池,矽奈米線強的捕光效應,會在可見光至紅外光範圍增加光的吸收,再者,芯鞘結構促進矽奈米線在半徑方向的電子電洞對分離與收集;因此,光電轉換效率得以提高。
以上實施例所使用的材質與步驟可作等效改變或修 飾,不限於所述細節。本發明另一實施例提供製造具異質接合結構之太陽能電池的方法,包含:提供一半導體基板;形成複數個半導體奈米結構於半導體基板上;利用毛細現象使一導電有機聚合物附著於每個半導體奈米結構上,形成一半導體奈米結構/導電有機聚合物的異質接合結構;以及利用該異質接合結構製作一太陽能電池。
其中,半導體奈米結構可包含矽奈米線、鍺奈米線、三五族奈米線、二六族奈米線。另外,形成複數個半導體奈米結構的方法,可以前述的金屬輔助化學蝕刻方法蝕刻半導體基板而成,或者,以氣相磊晶、液相磊晶等方法製作複數個半導體奈米結構。另外,導電有機聚合物材料可包括聚(3,4-二氧乙基塞吩):聚苯乙烯磺酸(PEDOT:PSS)、聚(3-己烷基噻吩)(Poly(3-hexylthiophene);P3HT)、6,6-苯基-C61-丁酸甲酯(6,6-phenyl-C61-butyric acid methyl ester;PCBM)等等。
而利用毛細現象使導電有機聚合物附著於每個該半導體奈米結構上的方法,例如,首先,使導電有機聚合物溶於有機溶劑或水,形成一導電有機聚合物溶液。接著,如溶劑為有機溶劑,例如丙酮、甲醇、異丙醇等,則將半導體奈米結構表面改質成親油性(斥水性);如溶劑為水,則將半導體奈米結構表面改質成親水性。接著,將半導體奈米結構的頂端插入導電有機聚合物溶液,在半導體奈米結構之間,導電有機聚合物藉由毛細現象附著於半導體奈米結構表面。例如,導電有機聚合物溶液被塗佈於一透明導電基板或一透明基板的一透明電極上,且在被塗佈的導電有機聚合物溶液未揮發、使導電有機聚合物具有流動性的條件下,將半導體奈米結構的頂端插入導電有機聚合物溶 液。接著,加熱使導電有機聚合物結晶,以增加導電有機聚合物的導電度。
上述透明導電變基板與透明電極例如氧化銦錫(ITO:indium tin oxide),透明基板例如玻璃基板、塑膠基板、石英基板等。另外,塗佈導電有機聚合物溶液於透明導電基板或透明電極的方式包含旋轉塗佈與浸泡塗佈等。
圖6A至圖6G顯示根據本發明一實施例製造具異質接合結構之太陽能電池的方法,其中材質與步驟的變化與置換可與前述實施例相同,不再贅述。如圖6A,先在半導體基板21上形成半導體奈米結構22,並採用台灣專利申請號99105914,題為「矽奈米結構與其製造方法及應用」中的金屬輔助化學側向蝕刻方法,使在半導體奈米結構22的根部造成側向蝕刻與孔洞結構,該專利的全文併入本文,視為本案說明書的一部分。如圖6B,在透明基板23的透明電極24上塗佈導電有機聚合物溶液25。如圖6C,在導電有機聚合物溶液25未揮發、具有流動性的條件下,將半導體奈米結構的頂端22插入導電有機聚合物溶液25。如圖6D,在導電有機聚合物溶液25藉由毛細現象附著於半導體奈米結構22表面之後,加熱使導電有機聚合物溶液25結晶固化成導電有機聚合物28。如圖6E,施一機械力使半導體奈米結構22脫離半導體基板27。如圖6F,形成一絕緣層26覆蓋導電有機聚合物24,露出半導體奈米結構22。如圖6G,形成一金屬電極27覆蓋絕緣層26與半導體奈米結構22。
圖7A至圖7F顯示根據本發明另一實施例製造具異質接 合結構之太陽能電池的方法,其與圖6A至圖6G實施例的不同處在於步驟的順序,因此,以相同元件符號代表相同元件,說明如下。如圖7A,在半導體基板21形成在根部具有側向蝕刻與孔洞結構的半導體奈米結構22。如圖7B,以物理方式轉移半導體奈米結構22至金屬電極27,例如固定半導體奈米結構22於金屬電極27後,施加外力使半導體基板21脫離。如圖7C,形成絕緣層26覆蓋金屬電極27,露出半導體奈米結構22。如圖7D,在透明基板23的透明電極24上塗佈導電有機聚合物溶液25。如圖7E,在導電有機聚合物溶液25未揮發具有流動性的條件下,將半導體奈米結構22的頂端插入導電有機聚合物溶液25。如圖7F,在導電有機聚合物溶液25藉由毛細現象附著於半導體奈米結構22表面之後,加熱使導電有機聚合物溶液25的溶劑揮發並結晶固化成導電有機聚合物28。
根據本發明實施例所製備的太陽能電池,由於載子擴散距離大幅減少,可減少載子與晶格碰撞,增加熱載子效應(hot carrier effect),因此太陽能電池的輸出電壓,亦即,開路電壓,較一般太陽能電池為高,且最大光電轉換效率在波長700nm於實施例達到32%。並若再搭配側向蝕刻使半導體奈米結構,例如矽奈米線,脫離半導體基板後再製備太陽能電池,不僅可大幅降低材料成本,也可以大幅減少光吸收層的厚度,再透過兩端電極的功函數差距的選擇與其他材料的搭配,本發明實施例可製備一熱載子太陽能電池(hot carrier solar cell),其最大光電轉換效率理論上可達到40%或50%以上。
上述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟悉此技藝之人士能了解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即凡其他未脫離本發明所揭示精神所完成 之各種等效改變或修飾都涵蓋在本發明所揭露的範圍內,均應包含在下述之申請專利範圍內。
22‧‧‧半導體奈米結構
23‧‧‧透明基板
24‧‧‧透明電極
26‧‧‧絕緣層
27‧‧‧金屬電極
28‧‧‧導電有機聚合物

Claims (20)

  1. 一種用於一半導體裝置之異質接合結構的製造方法,包含:提供一半導體基板;形成複數個半導體奈米結構於該半導體基板上;以及利用毛細現象使一導電有機聚合物附著於每個半導體奈米結構上,形成一半導體奈米結構/導電有機聚合物的異質接合結構;其中,利用毛細現象使該導電有機聚合物附著於每個該半導體奈米結構上的方法包含:使該導電有機聚合物溶於一溶劑,形成一導電有機聚合物溶液,其中該溶劑為一有機溶劑;根據該溶劑的種類,將該半導體奈米結構表面改質成親油性(斥水性);將該半導體奈米結構的頂端插入該導電有機聚合物溶液,在該半導體奈米結構之間,該導電有機聚合物藉由毛細現象附著於半導體奈米結構表面;以及加熱使該導電有機聚合物結晶。
  2. 如申請專利範圍第1項所述的方法,該半導體奈米結構包含矽奈米線、鍺奈米線、三五族奈米線、二六族奈米線。
  3. 如申請專利範圍第1項所述的方法,包含以金屬輔助化學蝕刻方法蝕刻該半導體基板,形成該複數個半導體奈米結構,該複數個半導體奈米結構的分布密度等於或大於每平方微米二十個半導體奈 米結構(20pieces/μm2)。
  4. 如申請專利範圍第1項所述的方法,包含以氣相磊晶、液相磊晶等方法製作該複數個半導體奈米結構。
  5. 如申請專利範圍第1項所述的光電元件,其中導電有機聚合物材料包括聚(3,4-二氧乙基塞吩):聚苯乙烯磺酸(PEDOT:PSS)、聚(3-己烷基噻吩)(Poly(3-hexylthiophene);P3HT)、6,6-苯基-C61-丁酸甲酯(6,6-phenyl-C61-butyric acid methyl ester;PCBM)等。
  6. 如申請專利範圍第1項所述的方法,該有機溶劑包括丙酮、甲醇、異丙醇等。
  7. 如申請專利範圍第1項所述的方法,其中該導電有機聚合物溶液被塗佈於一透明導電基板或一透明基板的一透明電極上,且在被塗佈的該導電有機聚合物溶液未揮發、使該導電有機聚合物具有流動性的條件下,將該半導體奈米結構的頂端插入該導電有機聚合物溶液。
  8. 如申請專利範圍第7項所述的方法,其中塗佈該導電有機聚合物溶液於該透明導電基板或該透明電極的方式包含旋轉塗佈與浸泡塗佈等。
  9. 如申請專利範圍第7項所述的方法,其中該透明導電基板或該透明電極包含氧化銦錫(ITO:indium tin oxide)。
  10. 如申請專利範圍第7項所述的方法,其中該透明基板包含玻璃基板、塑膠基板、石英基板等。
  11. 如申請專利範圍第7項所述的方法,於形成該半導體奈米結構/導電有機聚合物的異質接合結構之前,尚包含以金屬輔助化學側向 蝕刻方法,在每個半導體奈米結構根部形成側向蝕刻。
  12. 如申請專利範圍第11項所述的方法,於形成該半導體奈米結構/導電有機聚合物的異質接合結構之後,尚包含:施一機械力使該複數個半導體奈米結構脫離該半導體基板;形成一絕緣層覆蓋該導電有機聚合物,露出該複數個半導體奈米結構;以及形成一金屬電極覆蓋該絕緣層與該複數個半導體奈米結構。
  13. 如申請專利範圍第11項所述的方法,於形成該半導體奈米結構/導電有機聚合物的異質接合結構之前,尚包含:以物理方式轉移該複數個半導體奈米結構至一金屬電極;以及形成一絕緣層覆蓋該金屬電極,露出該複數個半導體奈米結構。
  14. 如申請專利範圍第1項所述的方法,其中上述之半導體裝置包含一太陽能電池,並且該太陽能電池的最大光電轉換效率達到30%以上。
  15. 如申請專利範圍第1項所述的方法,其中上述之半導體裝置包含一種熱載子太陽能電池。
  16. 一種太陽能電池,至少包含複數個異質接合結構,每一異質接合結構包含一半導體奈米結構與一導電有機聚合物,該半導體奈米結構與該導電有機聚合物呈現芯-鞘(core-sheath)態樣,該太陽能電池的最大光電轉換效率達到30%以上,其中該半導體奈米結構的一端連接一金屬電極,另一端透過該導電有機聚合物連接一透明電極,且該 金屬電極與該導電有機聚合物之間具有一絕緣層。
  17. 如申請專利範圍第16項所述的太陽能電池,該半導體奈米結構包含矽奈米線、鍺奈米線、三五族奈米線、二六族奈米線。
  18. 如申請專利範圍第16項所述的太陽能電池,該導電有機聚合物材料包括聚(3,4-二氧乙基塞吩):聚苯乙烯磺酸(PEDOT:PSS)、聚(3-己烷基噻吩)(Poly(3-hexylthiophene);P3HT)、6,6-苯基-C61-丁酸甲酯(6,6-phenyl-C61-butyric acid methyl ester;PCBM)等。
  19. 如申請專利範圍第16項所述的太陽能電池,該複數個半導體奈米結構的分布密度等於或大於每平方微米二十個半導體奈米結構(20pieces/μm2)。
  20. 如申請專利範圍第16項所述的太陽能電池,該太陽能電池係一種熱載子太陽能電池。
TW099120910A 2010-06-25 2010-06-25 太陽能電池與其異質接合結構的製造方法 TWI426619B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099120910A TWI426619B (zh) 2010-06-25 2010-06-25 太陽能電池與其異質接合結構的製造方法
US12/975,933 US20110315201A1 (en) 2010-06-25 2010-12-22 Solar cell and method for fabricating the heterojunction thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099120910A TWI426619B (zh) 2010-06-25 2010-06-25 太陽能電池與其異質接合結構的製造方法

Publications (2)

Publication Number Publication Date
TW201201393A TW201201393A (en) 2012-01-01
TWI426619B true TWI426619B (zh) 2014-02-11

Family

ID=45351354

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099120910A TWI426619B (zh) 2010-06-25 2010-06-25 太陽能電池與其異質接合結構的製造方法

Country Status (2)

Country Link
US (1) US20110315201A1 (zh)
TW (1) TWI426619B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI381536B (zh) * 2008-08-29 2013-01-01 Univ Nat Taiwan 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法
WO2014089179A2 (en) * 2012-12-04 2014-06-12 Massachusetts Institute Of Technology Devices including organic materials such as singlet fission materials
TWI493739B (zh) * 2013-06-05 2015-07-21 Univ Nat Taiwan 熱載子光電轉換裝置及其方法
JP2015046424A (ja) * 2013-08-27 2015-03-12 大阪瓦斯株式会社 有機層含有全固体型太陽電池及びその製造方法
WO2015046876A2 (ko) * 2013-09-30 2015-04-02 재단법인대구경북과학기술원 3차원 p-n접합구조 태양전지 및 이의 제조방법
CN104733616A (zh) * 2013-12-24 2015-06-24 香港城市大学 一种太阳能电池及其制备方法
WO2016071762A1 (en) * 2014-11-07 2016-05-12 Sol Voltaics Ab Shell-enabled vertical alignment and precision-assembly of a close-packed colloidal crystal film
US10794771B2 (en) 2015-02-17 2020-10-06 Massachusetts Institute Of Technology Compositions and methods for the downconversion of light
CN108258121B (zh) * 2018-01-15 2021-03-02 苏州大学 有机无机复合自驱动光电探测器及其制备方法
US11362229B2 (en) * 2018-04-04 2022-06-14 California Institute Of Technology Epitaxy-free nanowire cell process for the manufacture of photovoltaics
WO2020041522A1 (en) 2018-08-21 2020-02-27 California Institute Of Technology Windows implementing effectively transparent conductors and related methods of manufacturing
CN109560203B (zh) * 2018-11-22 2022-07-29 集美大学 纳米结构在阳极光栅凹陷处的钙钛矿电池及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790785B1 (en) * 2000-09-15 2004-09-14 The Board Of Trustees Of The University Of Illinois Metal-assisted chemical etch porous silicon formation method
US6878871B2 (en) * 2002-09-05 2005-04-12 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US6969897B2 (en) * 2002-12-10 2005-11-29 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
US7265037B2 (en) * 2003-06-20 2007-09-04 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
EP2650905B1 (en) * 2004-06-04 2022-11-09 The Board of Trustees of the University of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US7799699B2 (en) * 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US7476573B2 (en) * 2005-05-23 2009-01-13 International Business Machines Corporation Methods of selective deposition of fine particles onto selected regions of a substrate
TW200806829A (en) * 2006-07-20 2008-02-01 Univ Nat Central Method for producing single crystal gallium nitride substrate
US9108880B2 (en) * 2008-08-18 2015-08-18 The Regents Of The University Of California Nanostructured superhydrophobic, superoleophobic and/or superomniphobic coatings, methods for fabrication, and applications thereof
TWI381536B (zh) * 2008-08-29 2013-01-01 Univ Nat Taiwan 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法
TWI394708B (zh) * 2009-07-06 2013-05-01 Nat Univ Tsing Hua 一維奈米材料之轉印方法
US8101522B2 (en) * 2010-02-25 2012-01-24 National Taiwan University Silicon substrate having nanostructures and method for producing the same and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shiu et. al., Chem. Mater., 22, 3108 (2010) (Published on Web 2010/4/26) Kim et. al., Adv. Funct. Mater., 20, 540 (2010) (Published on Web 2010/2/22) Geyer et. al., Nano Lett., 9, 3106 (2009) (Published on Web 2009/08/05) *

Also Published As

Publication number Publication date
TW201201393A (en) 2012-01-01
US20110315201A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
TWI426619B (zh) 太陽能電池與其異質接合結構的製造方法
Liang et al. Interface engineering to boost photoresponse performance of self-powered, broad-bandwidth PEDOT: PSS/Si heterojunction photodetector
Pudasaini et al. High efficiency hybrid silicon nanopillar–polymer solar cells
Feng et al. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS
KR101117127B1 (ko) 비정질 실리콘 태양전지와 유기 태양전지를 이용한 탠덤형 태양전지
EP1964144B1 (en) Tandem photovoltaic cells
Khang Recent progress in Si-PEDOT: PSS inorganic–organic hybrid solar cells
He et al. Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells
Chen et al. Vanadium oxide as transparent carrier-selective layer in silicon hybrid solar cells promoting photovoltaic performances
He et al. Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10% efficiency
Zhang et al. Heterojunction with organic thin layer for three dimensional high performance hybrid solar cells
Jiang et al. Efficiency enhancement mechanism for poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate)/silicon nanowires hybrid solar cells using alkali treatment
JP2017508294A (ja) 太陽電池の背面における導電性ポリマー/Si界面
EP2432027A2 (en) Silicon solar cell comprising a carbon nanotube layer
CN105720197B (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
US20200203083A1 (en) Fabrication of stable perovskite-based optoelectronic devices
Yameen et al. Low temperature fabrication of PEDOT: PSS/micro-textured silicon-based heterojunction solar cells
US20170207405A1 (en) Multi-terminal tandem cells
Ge et al. Substantial improvement of short wavelength response in n-SiNW/PEDOT: PSS solar cell
KR20190007812A (ko) 하이브리드 정공 수송층을 포함하는 페로브스카이트 태양전지 및 그 제조방법
Gupta et al. Highly conformal Ni micromesh as a current collecting front electrode for reduced cost Si solar cell
CN108258124B (zh) 一种异质结光伏电池及其制备方法
Ge et al. Improved performance of silicon nanowire/cadmium telluride quantum dots/organic hybrid solar cells
RU2694113C2 (ru) Тонкопленочный гибридный фотоэлектрический преобразователь и способ его изготовления
Srivastava et al. Enhanced performance of poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate)/silicon solar cells employing inverted pyramidal silicon by one-step copper catalyzed etching