CN107134504A - 一种纳米硅基石墨烯太阳能电池的制备方法 - Google Patents

一种纳米硅基石墨烯太阳能电池的制备方法 Download PDF

Info

Publication number
CN107134504A
CN107134504A CN201710211206.2A CN201710211206A CN107134504A CN 107134504 A CN107134504 A CN 107134504A CN 201710211206 A CN201710211206 A CN 201710211206A CN 107134504 A CN107134504 A CN 107134504A
Authority
CN
China
Prior art keywords
silicon
graphene
preparation
silicon nanowires
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710211206.2A
Other languages
English (en)
Other versions
CN107134504B (zh
Inventor
李绍元
马文会
于洁
秦博
杨佳
魏奎先
雷云
吕国强
谢克强
伍继君
杨斌
戴永年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201710211206.2A priority Critical patent/CN107134504B/zh
Publication of CN107134504A publication Critical patent/CN107134504A/zh
Application granted granted Critical
Publication of CN107134504B publication Critical patent/CN107134504B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种纳米硅基石墨烯太阳能电池的制备方法,包括硅片预处理、硅纳米线阵列引入、硅纳米线的表面钝化处理、对硅纳米线表面进行量子点修饰、石墨烯或碳纳米管的填充、窗口周围导电层引入、片层石墨烯转移、电极接入等八个步骤。本发明采用石墨烯量子点修饰的纳米硅为基底,目的在于大大增强太阳光利用范围,同时在硅纳米线之间填充高导电的掺杂石墨烯碎片或碳纳米管,有利于提高光生电子‑空穴对的有效分离,实现新型高效纳米硅基石墨烯太阳能电池的制备。

Description

一种纳米硅基石墨烯太阳能电池的制备方法
技术领域
本发明涉及一种纳米硅基石墨烯太阳能电池的制备方法,属于太阳能电池领域。
背景技术
近年来,太阳能因其储量无穷、不受地域限制、清洁无污染等优点而备受世界各国关注。石墨烯、纳米黑硅材料在第三代太阳能电池领域均表现出广阔的应用前景。在过去的数年中,石墨烯被广泛的应用于作为有机太阳能电池和染料敏化太阳能电池的透明导电电极,还被与半导体结合形成肖特基结光伏器件;而基于硅纳米结构的多种太阳能电池也得到了广泛的研究并取得了长足的进步。基于石墨烯/硅纳米结构的肖特基结光伏器件能够充分的结合石墨烯和硅纳米结构在光伏能量转换方面的优势,并且能够大幅地降低器件成本,因此有望成为新一代太阳能电池中的佼佼者。目前,基于石墨烯/硅纳米结构的肖特基结光伏器件已有报道,但是相比于其他基于硅纳米结构的光伏器件,该类型光伏器件的能量转换效率仍然偏低。
总体来说,限制石墨烯/硅纳米结构光伏器件性能提升的因素主要包括以下三个方面:(1)纳米硅表面存在的大量悬挂键和缺陷导致其表面载流子复合速率较高,从而大大降低光伏器件的光生电流;(2)石墨烯和硅之间的较低的肖特基势垒(0.6~0.7eV),这远远低于传统硅p-n结光伏器件的1.12eV;较低的肖特基势垒会引起较大的泄露电流,因而会导致器件性能的降低;(3)在石墨烯/硅纳米线阵列结构中,石墨烯与硅的有效结区面积较小,这不利于光生电子-空穴对的充分分离,不利于构建高性能光伏器件。
发明内容
针对现有技术存在的不足,本发明提供一种纳米硅基石墨烯太阳能电池的制备方法,包括以下步骤:
(1)硅片预处理:将洗净的硅片四周进行胶封,留出待处理窗口,然后置于1~40wt%的HF酸溶液中浸泡1~60min去除窗口表面的氧化层;
(2)硅纳米线阵列引入:采用金属纳米颗粒辅助刻蚀法,在窗口表面引入具有亚波长结构的硅纳米线阵列(制备过程参考专利申请CN201410614911.3 “一种亚波长硅纳米线阵列的制备方法”),引入的硅纳米线长度为0.1~20μm,硅纳米线的直径为10~500nm,硅纳米线之间的间距为50~1000nm;
(3)硅纳米线的表面钝化处理:采用表面化学钝化或场钝化两种手段对硅纳米线阵列进行钝化,以降低其表面光生载留子的复合几率;化学钝化的钝化剂包括碘酒、溴酒、甲基基团等,场钝化的钝化剂包括Al2O3、TiO2、SiN x 、SiO2、a-Si:H等,钝化层厚度为5~200nm;
(4)对硅纳米线表面进行量子点修饰:采用化学沉积法在硅纳米线表面形成金属量子点修饰,选取的体系为金属盐/HF酸溶液,HF酸浓度为0.1~40wt%,金属盐包括:AgNO3、KAuCl4、HAuCl4、K2PtCl6、H2PtCl6、PdCl2等,金属盐/HF酸溶液浓度为1μmol/L~10mol/L,沉积时间1~600s,金属量子点的直径为1~50nm;或采用旋涂法在硅纳米线表面形成石墨烯量子点修饰,将石墨烯量子点分散于有机溶剂中,滴到硅纳米线,在500~4000r/min的高速旋转中实现对硅纳米线表面的修饰,选取的有机溶液主要为易挥发的有机溶剂,如乙醇、乙腈等,石墨烯量子点直径为1~50nm,修饰完后在50~100℃烘烤0.1~5h;
(5)石墨烯或碳纳米管的填充:采用旋涂法实现填充,将石墨烯碎片或碳纳米管分散于有机溶剂中,滴到硅纳米线,在500~4000r/min的高速旋转中实现对硅纳米线间隙的填充;石墨烯碎片的直径为50nm~1μm,碳纳米管可以为单壁碳纳米管或多壁碳纳米管,直径为1~100nm,长度为0.01~1000μm;填充完后在50~100℃烘烤0.1~12h;
(6)窗口周围导电层引入:将硅纳米线阵列遮挡,去除窗口四周胶封露出氧化层,采用物理气相沉积技术(如真空蒸镀、溅射镀、等离子体镀等)在窗口周围氧化层表面引入导电层并与硅片形成良好接触,镀层材料主要为金属导体材料如Au、Pt、Pd、Ti、Cu等中的一种或几种,引入厚度为5~100nm之间;
(7)片层石墨烯转移:去除硅纳米线阵列的遮挡,采用湿法转移技术将大面积的片层石墨烯转移到硅纳米线阵列表面,片层石墨烯可为单层也可为多层,面积为0.1×0.1~5×5cm2,为改善其接触效果可以进行多次转移形成多层结构;优选地,转移前对大面积片层石墨烯进行掺杂处理,包括P型或N型掺杂;
(8)电极接入:对硅基底背面进行打磨除去氧化层,涂抹In-Ga合金或导电银浆并粘附在导电铜片上作为硅基底的欧姆电极,用银浆在窗口四周和铜片上用导线引出,完成电池制备。
本发明的有益效果:本发明以钝化处理后的硅纳米线阵列为基底,在硅纳米线阵列中修饰金属或石墨烯量子点,量子点修饰的目的在于在石墨烯与硅的界面形成电子阻挡层,以提高石墨烯-硅之间的肖特基势垒,降低其光生载流子复合几率;此外,通过石墨烯量子点尺寸的改变可以灵活调节其带隙,实现其光能吸收与太阳光光谱的最佳匹配,有利于提高采光效率,对光子转换成电子的能力也可以从紫外光延伸到近红外光,更多地转换高能量光子部分的太阳光能,高效利用太阳光能;掺杂石墨烯颗粒或碳纳米管的引入目的在于增加除顶部接触以外的石墨烯与硅纳米线之间有效结区面积,形成更多的电子传输通道,有利于光生电子-空穴对的分离,实现新型高效纳米硅基石墨烯太阳能电池的制备。
附图说明
图1为本发明结构示意图(图中:1-石墨烯层,2-SiO2(氧化层),3-量子点,4-导电层,5-硅基底,6-石墨烯或碳纳米管填充);
图2为实施例1采用铜纳米粒子辅助刻蚀后的样品SEM表征;
图3为实施例2采用银纳米粒子辅助刻蚀后的样品SEM表征;
图4为石墨烯量子点TEM表征;
图5为片层石墨烯TEM表征。
具体实施方式
下面通过具体实例详细介绍本发明,但以下实例仅限于解释本发明,本发明的保护范围不受以下内容限制。
实施例1
将面积为1.2×1.2cm2的单晶硅片依次用乙醇、去离子水超声波清洗硅片10min,硅片四周进行胶封,留出1×1cm2的窗口,然后置于1wt%的HF酸溶液中浸泡60min去除窗口表面的氧化层;采用金属纳米颗粒辅助刻蚀法在窗口表面引入长度为0.1μm、直径为10nm的具有亚波长结构的硅纳米线阵列(本实施例采用Cu纳米粒子辅助刻蚀,SEM表征如图2所示),纳米线之间的间距约为50nm;采用5wt%的碘酒对硅纳米线阵列进行钝化10min处理,形成一层20nm的钝化层;将PdCl2溶于0.1wt%的HF酸中制成1μmol/L的PdCl2/HF酸溶液,采用化学沉积法沉积50s,在硅纳米线表面形成Pd量子点修饰,Pd量子点的直径为10nm;将直径为50nm的石墨烯碎片分散于乙醇中,滴到硅纳米线,在1000r/min的高速旋转中实现其对硅纳米线间隙的填充,填充完后在50℃烘烤12h;将窗口硅纳米线阵列遮挡,去除窗口四周胶封露出氧化层,采用真空蒸镀方法在窗口周围氧化层表面引入厚度为5nm的Au导电层,并与硅片形成良好接触;去除硅纳米线阵列的遮挡,采用湿法转移技术将面积为0.1×0.1cm2的单层片层石墨烯(片层石墨烯TEM表征如图5所示)转移到硅纳米线阵列表面,转移两次形成多层结构;对硅基底背面进行打磨除去氧化层,涂抹In-Ga合金并粘附在导电铜片上作为硅基底的欧姆电极,用银浆在窗口四周和铜片上用导线引出,完成电池制备,制得的电池结构如图1所示。
实施例2
将面积为1.2×1.2cm2的单晶硅片依次用乙醇、去离子水超声波清洗硅片10min,硅片四周进行胶封,留出1×1cm2的窗口,然后置于40wt%的HF酸溶液中浸泡1min去除窗口表面的氧化层;采用金属纳米颗粒辅助刻蚀法在窗口表面引入长度为5μm、直径为50nm的具有亚波长结构的硅纳米线阵列(本实施例采用Ag纳米粒子辅助刻蚀,SEM表征如图3所示),纳米线之间的间距约为300nm;采用5wt%的碘酒对硅纳米线阵列进行钝化6min处理,形成一层10nm的钝化层;将AgNO3溶于10wt%的HF酸中制成1mmol/L的AgNO3/HF酸溶液,采用化学沉积法沉积5s,在硅纳米线表面形成Ag量子点修饰,Ag量子点的直径为5nm;将直径为500nm的石墨烯碎片分散于乙醇中,滴到硅纳米线,在1500r/min的高速旋转中实现其对硅纳米线间隙的填充,填充完后在60℃烘烤10h;将窗口硅纳米线阵列遮挡,去除窗口四周胶封露出氧化层,采用真空蒸镀方法在窗口周围氧化层表面引入厚度为70nm的Pt导电层,并与硅片形成良好接触;去除硅纳米线阵列的遮挡,采用湿法转移技术将面积为1×1cm2的多层片层石墨烯(片层石墨烯TEM表征如图5所示)转移到硅纳米线阵列表面,转移前对片层石墨烯进行P型掺杂;对硅基底背面进行打磨除去氧化层,涂抹In-Ga合金并粘附在导电铜片上作为硅基底的欧姆电极,用银浆在窗口四周和铜片上用导线引出,完成电池制备,制得的电池结构如图1所示。
实施例3
将面积为1.2×1.2cm2的单晶硅片依次用乙醇、去离子水超声波清洗硅片10min,硅片四周进行胶封,留出1×1cm2的窗口,然后置于20wt%的HF酸溶液中浸泡30min去除窗口表面的氧化层;采用金属纳米颗粒辅助刻蚀法在窗口表面引入长度为5μm、直径为200nm的具有亚波长结构的硅纳米线阵列,纳米线之间的间距约为700nm;采用真空蒸镀方法在纳米线表面形成一层100nm的Al2O3钝化层;将KAuCl4溶于20wt%的HF酸中制成1mol/L的KAuCl4/HF酸溶液,采用化学沉积法沉积200s,在硅纳米线表面形成Au量子点修饰,Au量子点的直径为30nm;将直径为1μm的石墨烯碎片分散于乙醇中,滴到硅纳米线,在2500r/min的高速旋转中实现其对硅纳米线间隙的填充,填充完后在70℃烘烤8h;将窗口硅纳米线阵列遮挡,去除窗口四周胶封露出氧化层,采用真空蒸镀方法在窗口周围氧化层表面引入厚度为90nm的Ti导电层,并与硅片形成良好接触;去除硅纳米线阵列的遮挡,采用湿法转移技术将面积为0.5×0.5cm2的多层片层石墨烯(片层石墨烯TEM表征如图5所示)转移到硅纳米线阵列表面,转移两次形成多层结构;对硅基底背面进行打磨除去氧化层,涂抹In-Ga合金并粘附在导电铜片上作为硅基底的欧姆电极,用银浆在窗口四周和铜片上用导线引出,完成电池制备,制得的电池结构如图1所示。
实施例4
将面积为1.2×1.2cm2的单晶硅片依次用乙醇、去离子水超声波清洗硅片10min,硅片四周进行胶封,留出1×1cm2的窗口,然后置于30wt%的HF酸溶液中浸泡10min去除窗口表面的氧化层;采用金属纳米颗粒辅助刻蚀法在窗口表面引入长度为0.5μm、直径为100nm的具有亚波长结构的硅纳米线阵列,纳米线之间的间距约为100nm;采用磁控溅射方法在纳米线表面形成一层150nm的TiO2钝化层;将K2PtCl6溶于40wt%的HF酸中制成10mol/L的K2PtCl6/HF酸溶液,采用化学沉积法沉积600s,在硅纳米线表面形成Pt量子点修饰,Pt量子点的直径为50nm;将直径为10nm、长度为0.01~2μm的单壁碳纳米管分散于乙醇中,滴到硅纳米线,在3000r/min的高速旋转中实现其对硅纳米线间隙的填充,填充完后在80℃烘烤6h;将窗口硅纳米线阵列遮挡,去除窗口四周胶封露出氧化层,采用溅射镀方法在窗口周围氧化层表面引入厚度为100nm的Cu导电层,并与硅片形成良好接触;去除硅纳米线阵列的遮挡,采用湿法转移技术将面积为2×2cm2的多层片层石墨烯(片层石墨烯TEM表征如图5所示)转移到硅纳米线阵列表面;对硅基底背面进行打磨除去氧化层,涂抹In-Ga合金并粘附在导电铜片上作为硅基底的欧姆电极,用银浆在窗口四周和铜片上用导线引出,完成电池制备,制得的电池结构如图1所示。
实施例5
将面积为2.5×2.5cm2的单晶硅片依次用乙醇、去离子水超声波清洗硅片10min,硅片四周进行胶封,留出2.3×2.3cm2的窗口,然后置于25wt%的HF酸溶液中浸泡20min去除窗口表面的氧化层;采用金属纳米颗粒辅助刻蚀法在窗口表面引入长度为2μm、直径为300nm的具有亚波长结构的硅纳米线阵列,纳米线之间的间距约为500nm;采用2wt%的溴酒对硅纳米线阵列进行钝化20min处理,形成一层5nm的钝化层;将直径为10nm的石墨烯量子点分散于乙醇中,滴到硅纳米线,在500r/min的高速旋转中实现其对硅纳米线表面的修饰,修饰完后在50℃烘烤5h(石墨烯量子点TEM表征如图4所示);将直径为5nm、长度为5~100μm的多壁碳纳米管分散于乙醇中,滴到硅纳米线,在500r/min的高速旋转中实现其对硅纳米线间隙的填充,填充完后在90℃烘烤4h;将窗口硅纳米线阵列遮挡,去除窗口四周胶封露出氧化层,采用溅射镀方法在窗口周围氧化层表面引入厚度为20nm的Au导电层,并与硅片形成良好接触;去除硅纳米线阵列的遮挡,采用湿法转移技术将面积为3×3cm2的单层片层石墨烯(片层石墨烯TEM表征如图5所示)转移到硅纳米线阵列表面,转移两次形成多层结构;对硅基底背面进行打磨除去氧化层,涂抹In-Ga合金并粘附在导电铜片上作为硅基底的欧姆电极,用银浆在窗口四周和铜片上用导线引出,完成电池制备,制得的电池结构如图1所示。
实施例6
将面积为2.5×2.5cm2的单晶硅片依次用乙醇、去离子水超声波清洗硅片10min,硅片四周进行胶封,留出2.3×2.3cm2的窗口,然后置于5wt%的HF酸溶液中浸泡50min去除窗口表面的氧化层;采用金属纳米颗粒辅助刻蚀法在窗口表面引入长度为10μm、直径为400nm的具有亚波长结构的硅纳米线阵列,纳米线之间的间距约为900nm;采用5wt%的溴酒对硅纳米线阵列进行钝化30min处理,形成一层50nm的钝化层;将直径为5nm的石墨烯量子点分散于乙醇中,滴到硅纳米线,在2000r/min的高速旋转中实现对硅纳米线表面的修饰,修饰完后在75℃烘烤2h(石墨烯量子点TEM表征如图4所示);将直径为50nm、长度为10~50μm的单壁碳纳米管分散于乙醇中,滴到硅纳米线,在2000r/min的高速旋转中实现其对硅纳米线间隙的填充,填充完后在100℃烘烤2h;将窗口硅纳米线阵列遮挡,去除窗口四周胶封露出氧化层,采用等离子体镀方法在窗口周围氧化层表面引入厚度为10nm的Pd导电层,并与硅片形成良好接触;去除硅纳米线阵列的遮挡,采用湿法转移技术将面积为3×3cm2的多层片层石墨烯(片层石墨烯TEM表征如图5所示)转移到硅纳米线阵列表面,转移两次形成多层结构;对硅基底背面进行打磨除去氧化层,涂抹导电银浆并粘附在导电铜片上作为硅基底的欧姆电极,用银浆在窗口四周和铜片上用导线引出,完成电池制备,制得的电池结构如图1所示。
实施例7
将面积为1.2×1.2cm2的单晶硅片依次用乙醇、去离子水超声波清洗硅片10min,硅片四周进行胶封,留出1×1cm2的窗口,然后置于10wt%的HF酸溶液中浸泡40min去除窗口表面的氧化层;采用金属纳米颗粒辅助刻蚀法在窗口表面引入长度为20μm、直径为500nm的具有亚波长结构的硅纳米线阵列,纳米线之间的间距约为1000nm;采用磁控溅射方法在纳米线表面形成一层200nm的SiN x 钝化层;将直径为50nm的石墨烯量子点分散于乙腈中,滴到硅纳米线,在4000r/min的高速旋转中实现对硅纳米线表面的修饰,修饰完后在100℃烘烤0.1h(石墨烯量子点TEM表征如图4所示);将直径为100nm、长度为500~1000μm的单壁碳纳米管分散于乙醇中,滴到硅纳米线,在4000r/min的高速旋转中实现其对硅纳米线间隙的填充,填充完后在100℃烘烤0.2h;将窗口硅纳米线阵列遮挡,去除窗口四周胶封露出氧化层,采用等离子体镀方法在窗口周围氧化层表面引入厚度为50nm的Au导电层,并与硅片形成良好接触;去除硅纳米线阵列的遮挡,采用湿法转移技术将面积为5×5cm2的单层片层石墨烯(片层石墨烯TEM表征如图5所示)转移到硅纳米线阵列表面,转移两次形成多层结构,转移前对片层石墨烯进行N型掺杂;对硅基底背面进行打磨除去氧化层,涂抹In-Ga合金并粘附在导电铜片上作为硅基底的欧姆电极,用银浆在窗口四周和铜片上用导线引出,完成电池制备,制得的电池结构如图1所示。

Claims (11)

1.一种纳米硅基石墨烯太阳能电池的制备方法,包括以下步骤:
(1)硅片预处理:将洗净的硅片四周进行胶封,留出待处理窗口,然后置于1~40wt%的HF酸溶液中浸泡1~60min去除窗口表面的氧化层;
(2)硅纳米线阵列引入:采用金属纳米颗粒辅助刻蚀法,在窗口表面引入具有亚波长结构的硅纳米线阵列;
(3)硅纳米线的表面钝化处理:采用表面化学钝化或场钝化对硅纳米线阵列表面进行钝化;
(4)对硅纳米线表面进行量子点修饰:采用化学沉积法在硅纳米线表面形成金属量子点修饰,或采用旋涂法在硅纳米线表面形成石墨烯量子点修饰;
(5)石墨烯或碳纳米管的填充:采用旋涂法将石墨烯碎片或碳纳米管填充到硅纳米线间隙,填充完后在50~100℃烘烤0.1~12h;
(6)窗口周围导电层引入:将硅纳米线阵列遮挡,去除窗口四周胶封露出氧化层,采用物理气相沉积技术在窗口周围氧化层表面引入导电层并与硅片形成良好接触;
(7)片层石墨烯转移:去除硅纳米线阵列的遮挡,采用湿法转移技术将大面积的片层石墨烯转移到硅纳米线阵列表面;
(8)电极接入:对硅基底背面进行打磨除去氧化层,涂抹In-Ga合金或导电银浆并粘附在导电铜片上作为硅基底的欧姆电极,用银浆在窗口四周和铜片上用导线引出,完成电池制备。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)引入的硅纳米线长度为0.1~20μm,硅纳米线的直径为10~500nm,硅纳米线之间的间距为50~1000nm。
3.根据权利要求1所述的制备方法,其特征在于,步骤(3)采用化学钝化时所用钝化剂为碘酒、溴酒、甲基基团中的任意一种,采用场钝化时所用钝化剂为Al2O3、TiO2、SiN x 、SiO2、a-Si:H中的任意一种。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)制备的钝化层厚度为5~200nm。
5.根据权利要求1所述的制备方法,其特征在于,步骤(4)采用化学沉积法在硅纳米线表面形成金属量子点修饰时,选取的体系为金属盐/HF酸溶液,HF酸浓度为0.1~40wt%,金属盐为AgNO3、KAuCl4、HAuCl4、K2PtCl6、H2PtCl6、PdCl2中的任意一种,金属盐/HF酸溶液浓度为1μmol/L~10mol/L;沉积时间为1~600s;金属量子点的直径为1~50nm。
6.根据权利要求1所述的制备方法,其特征在于,步骤(4)采用旋涂法在硅纳米线表面形成石墨烯量子点修饰时,将石墨烯量子点分散于有机溶剂中,滴到硅纳米线,在500~4000r/min的高速旋转中实现对硅纳米线表面的修饰,选取的有机溶液为易挥发的有机溶剂,石墨烯量子点直径为1~50nm,修饰完后在50~100℃烘烤0.1~5h。
7.根据权利要求1所述的制备方法,其特征在于,步骤(5)具体方法为:将石墨烯碎片或碳纳米管分散于有机溶剂中,滴到硅纳米线,在500~4000r/min的高速旋转中实现其对硅纳米线间隙的填充;石墨烯碎片的直径为50nm~1μm;碳纳米管可以为单壁碳纳米管或多壁碳纳米管,直径为1~100nm,长度为0.01~1000μm。
8.根据权利要求1所述的制备方法,其特征在于,步骤(6)所述物理气相沉积方法包括真空蒸镀、溅射镀、等离子体镀,镀层材料为金属导体材料,导电层厚度为5~100nm。
9.根据权利要求8所述的制备方法,其特征在于,镀层材料为Au、Pt、Pd、Ti、Cu中的任意一种或几种。
10.根根据权利要求1所述的制备方法,其特征在于,步骤(7)中的片层石墨烯面积为0.1×0.1~5×5cm2,片层石墨烯为单层片层石墨烯或多层片层石墨烯。
11.根根据权利要求1所述的制备方法,其特征在于,步骤(7)在转移前对大面积片层石墨烯进行掺杂处理,为P型或N型掺杂。
CN201710211206.2A 2017-04-01 2017-04-01 一种纳米硅基石墨烯太阳能电池的制备方法 Active CN107134504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710211206.2A CN107134504B (zh) 2017-04-01 2017-04-01 一种纳米硅基石墨烯太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710211206.2A CN107134504B (zh) 2017-04-01 2017-04-01 一种纳米硅基石墨烯太阳能电池的制备方法

Publications (2)

Publication Number Publication Date
CN107134504A true CN107134504A (zh) 2017-09-05
CN107134504B CN107134504B (zh) 2018-11-27

Family

ID=59715410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710211206.2A Active CN107134504B (zh) 2017-04-01 2017-04-01 一种纳米硅基石墨烯太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN107134504B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863416A (zh) * 2017-10-11 2018-03-30 昆明理工大学 一种柔性石墨烯硅太阳能电池的制备方法
CN108336181A (zh) * 2018-01-24 2018-07-27 南通壹选工业设计有限公司 一种太阳能电池及其制备方法
CN108394859A (zh) * 2018-02-01 2018-08-14 南京大学 一种硅基宽光谱吸收光热转换材料及其制备方法
CN108550658A (zh) * 2018-05-30 2018-09-18 电子科技大学 一种纳米线太阳能电池及其制备方法
CN109545868A (zh) * 2018-12-05 2019-03-29 深圳清华大学研究院 石墨烯量子点/黑硅异质结太阳能电池及其制备方法
CN109638093A (zh) * 2018-11-26 2019-04-16 国宏中晶集团有限公司 一种石墨烯基底涂覆太阳能电池及其制备方法
CN109950332A (zh) * 2019-03-26 2019-06-28 昆明理工大学 一种perc柔性石墨烯/硅太阳能电池的制备方法
CN110247028A (zh) * 2018-03-09 2019-09-17 广州墨羲科技有限公司 一种纳米线/三维石墨烯复合材料
CN110668425A (zh) * 2019-10-12 2020-01-10 厦门大学 一种柔性锂离子电池硅碳复合负极材料及其制备方法
CN113629080A (zh) * 2021-08-06 2021-11-09 合肥工业大学 一种基于泄漏模式共振的小直径硅纳米线阵列的紫外光电探测器及其制备方法
CN114164456A (zh) * 2021-12-08 2022-03-11 昆明理工大学 一种利用工业废硅粉制备复合硅纳米结构催化剂的方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471721A (zh) * 2012-08-10 2015-03-25 蒂梅尔罗德科技公司 具有纳米线氧化钛和/或碳化硅芯及石墨烯外层的太阳能电池
CN105845768A (zh) * 2016-06-22 2016-08-10 北京邮电大学 一种太阳能电池、太阳能电池的制备方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471721A (zh) * 2012-08-10 2015-03-25 蒂梅尔罗德科技公司 具有纳米线氧化钛和/或碳化硅芯及石墨烯外层的太阳能电池
CN105845768A (zh) * 2016-06-22 2016-08-10 北京邮电大学 一种太阳能电池、太阳能电池的制备方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUIFENG FAN,ET AL.: "Graphene/silicon Nanowire Schottky Junction for Enhanced Light Harvesting", 《APPLIED MATERIALS&INTERFACES》 *
XIAOZHEN ZHANG,ET AL.: "High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863416A (zh) * 2017-10-11 2018-03-30 昆明理工大学 一种柔性石墨烯硅太阳能电池的制备方法
WO2019144334A1 (zh) * 2018-01-24 2019-08-01 南通壹选工业设计有限公司 一种太阳能电池及其制备方法
CN108336181A (zh) * 2018-01-24 2018-07-27 南通壹选工业设计有限公司 一种太阳能电池及其制备方法
CN108394859A (zh) * 2018-02-01 2018-08-14 南京大学 一种硅基宽光谱吸收光热转换材料及其制备方法
CN108394859B (zh) * 2018-02-01 2021-09-10 南京大学 一种硅基宽光谱吸收光热转换材料及其制备方法
CN110247028A (zh) * 2018-03-09 2019-09-17 广州墨羲科技有限公司 一种纳米线/三维石墨烯复合材料
CN108550658A (zh) * 2018-05-30 2018-09-18 电子科技大学 一种纳米线太阳能电池及其制备方法
CN109638093A (zh) * 2018-11-26 2019-04-16 国宏中晶集团有限公司 一种石墨烯基底涂覆太阳能电池及其制备方法
CN109545868A (zh) * 2018-12-05 2019-03-29 深圳清华大学研究院 石墨烯量子点/黑硅异质结太阳能电池及其制备方法
CN109950332A (zh) * 2019-03-26 2019-06-28 昆明理工大学 一种perc柔性石墨烯/硅太阳能电池的制备方法
CN109950332B (zh) * 2019-03-26 2021-07-16 昆明理工大学 一种perc柔性石墨烯/硅太阳能电池的制备方法
CN110668425A (zh) * 2019-10-12 2020-01-10 厦门大学 一种柔性锂离子电池硅碳复合负极材料及其制备方法
CN110668425B (zh) * 2019-10-12 2021-06-11 厦门大学 一种柔性锂离子电池硅碳复合负极材料及其制备方法
CN113629080A (zh) * 2021-08-06 2021-11-09 合肥工业大学 一种基于泄漏模式共振的小直径硅纳米线阵列的紫外光电探测器及其制备方法
CN114164456A (zh) * 2021-12-08 2022-03-11 昆明理工大学 一种利用工业废硅粉制备复合硅纳米结构催化剂的方法及应用
CN114164456B (zh) * 2021-12-08 2023-08-08 昆明理工大学 一种利用工业废硅粉制备复合硅纳米结构催化剂的方法及应用

Also Published As

Publication number Publication date
CN107134504B (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
CN107134504B (zh) 一种纳米硅基石墨烯太阳能电池的制备方法
CN105469996B (zh) 一种基于金属纳米粒子界面修饰的钙钛矿太阳能电池及其制备方法
CN106024927B (zh) 硅基太阳能电池及其制备方法
CN107863416B (zh) 一种柔性石墨烯硅太阳能电池的制备方法
CN102263204B (zh) 一种有机-无机杂化太阳能电池及其制备方法
JP6608257B2 (ja) 光電変換素子、タンデム型光電変換素子および光充電型バッテリー装置
CN104157717B (zh) 一种全背电极n型晶硅异质结太阳电池的制备方法
CN102227002B (zh) 多晶硅纳米线太阳能电池及其制备方法
CN107946470A (zh) 一种异质结太阳能电池及其制备方法
CN109950332B (zh) 一种perc柔性石墨烯/硅太阳能电池的制备方法
CN111244278A (zh) 非掺杂晶硅异质结钙钛矿叠层太阳电池结构及制备方法
CN101369610A (zh) 一种新型结构硅纳米线太阳能电池
CN107994119A (zh) 一种有机无机杂化太阳能电池及其制备方法
CN102368503B (zh) 一种碳纳米管-硅异质结太阳能电池及其制作方法
CN102254963A (zh) 一种石墨烯/硅柱阵列肖特基结光伏电池及其制造方法
CN208256688U (zh) 一种钙钛矿/硅异质结太阳能叠层电池结构
CN102437226B (zh) 一种碳纳米管-硅薄膜叠层太阳能电池及其制备方法
CN111430494A (zh) 一种串联型钙钛矿晶硅太阳能电池及其制备方法
CN209104182U (zh) 非晶硅/晶体硅异质结太阳电池
Zhang et al. The diameter-dependent photoelectrochemical performance of silicon nanowires
CN204130563U (zh) 一种全背电极p型晶硅异质结太阳电池结构
CN102368506A (zh) 一种n-氧化锌/p-硅纳米线三维异质结太阳能转换装置
CN105655423B (zh) 一种基于硫属亚铜化合物的纳米异质结太阳能电池及其制备方法
CN101262019B (zh) 硅纳米线光电化学太阳能电池
CN104465814B (zh) 一种结合氧化锌纳米结构超小绒面太阳电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant