WO2019144334A1 - 一种太阳能电池及其制备方法 - Google Patents

一种太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2019144334A1
WO2019144334A1 PCT/CN2018/074081 CN2018074081W WO2019144334A1 WO 2019144334 A1 WO2019144334 A1 WO 2019144334A1 CN 2018074081 W CN2018074081 W CN 2018074081W WO 2019144334 A1 WO2019144334 A1 WO 2019144334A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon substrate
minutes
type silicon
solar cell
mixed solution
Prior art date
Application number
PCT/CN2018/074081
Other languages
English (en)
French (fr)
Inventor
郑伟
Original Assignee
南通壹选工业设计有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通壹选工业设计有限公司 filed Critical 南通壹选工业设计有限公司
Publication of WO2019144334A1 publication Critical patent/WO2019144334A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • H10K30/352Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of photoelectric conversion technology, in particular to a solar cell and a preparation method thereof.
  • solar cells can be divided into three major categories: the first generation of solar cells specifically include monocrystalline silicon solar energy. Silicon solar cells such as batteries, polycrystalline silicon solar cells, and amorphous silicon solar cells; second-generation solar cells include amorphous silicon thin film solar cells, gallium arsenide solar solar cells, cadmium telluride solar cells, and copper indium gallium selenide solar cells. Thin film solar cells; third generation solar cells specifically include dye-sensitized solar cells, nanocrystalline solar cells. New solar cells such as organic solar cells, organic-inorganic hybrid solar cells, and perovskite solar cells.
  • the defect state on the surface of the silicon substrate causes electron-hole recombination, thereby greatly reducing the photoelectric conversion efficiency of the organic-inorganic solar cell.
  • Methylation is used to form Si-CH3 bonds on the surface of the silicon wafer to passivate the silicon surface.
  • the methylated silicon wafer still has a large number of defect states, and on the other hand, the methylation process is more complicated and The basic processing time is long and it is impossible to perform large-scale applications. Therefore, in view of the above technical problems, it is necessary to improve the passivation mode of the surface of the silicon wafer to improve the photoelectric conversion efficiency of the organic-inorganic solar cell.
  • An object of the present invention is to overcome the above deficiencies of the prior art and to provide a solar cell and a method of fabricating the same.
  • a method for preparing a solar cell comprises the following steps: (1) cleaning of an n-type silicon substrate: cutting an n-type silicon wafer into an n-type silicon substrate having a size of 3 cm ⁇ 3 cm, and then The n-type silicon substrate is ultrasonically washed in acetone, ethanol and deionized water for 10-15 minutes, then placed in a concentrated H 2 SO 4 /H 2 O 2 mixed solution and heated to 100-110 ° C to maintain 50- 70 minutes, then the n-type silicon substrate was rinsed with deionized water and blown dry with nitrogen for use; (2) a silicon nanowire array was prepared on the upper surface of the n-type silicon substrate: the n obtained in step 1 The silicon substrate is placed in a mixed solution of silver nitrate/hydrofluoric acid, wherein the molar concentration of hydrofluoric acid in the silver nitrate/hydrofluoric acid mixed solution is 4.8 mol/l, and the molar
  • step 2 is obtained n
  • the silicon substrate is immersed in a hydrofluoric acid solution for 5-10 minutes, and then a mixed solution containing sodium hydroxide and silicon tetrapropoxide is dropped on the upper surface of the n-type silicon substrate and allowed to stand for 3-6 minutes, followed by 2000.
  • Cobalt sulfide nanowire/P3HT layer Cobalt sulfide nanowire/P3HT layer; (5) PEDOT: PSS layer preparation: spin-coated PEDOT:PSS solution on the surface of the cobalt sulfide nanowire/P3HT layer; 4000-5000 rpm and time 1-4 minutes, then annealing in a nitrogen atmosphere at a temperature of 110-130 ° C for 20-30 minutes to form the PEDOT:PSS layer; (6) front silver grid Preparation of the electrode; (7) Preparation of the back aluminum electrode.
  • the volume ratio of H 2 SO 4 to H 2 O 2 in the concentrated H 2 SO 4 /H 2 O 2 mixed solution is 3:1.
  • the concentration of sodium hydroxide in the mixed solution containing sodium hydroxide and silicon tetrapropoxide is 0.3-0.6 mg/ml, and the concentration of silicon tetrapropoxide is 1-2 mg/ml. .
  • the concentration of the cobalt sulfide nanowires in the P3HT solution containing the cobalt sulfide nanowires is 0.5-1 mg/ml, and the concentration of the P3HT is 2-5 mg/ml.
  • the PEDOT:PSS layer has a thickness of 10-20 nm.
  • the front silver gate electrode is formed by a thermal evaporation method, and the front silver gate electrode has a thickness of 100 to 200 nm.
  • the back surface aluminum electrode is formed by a thermal evaporation method, and the back surface aluminum electrode has a thickness of 200 to 300 nm.
  • the present invention also provides a solar cell which is a solar cell prepared by the above method.
  • the present invention can effectively reduce the defect state of the silicon surface by spin-coating silicon tetrapropoxide on the surface of the silicon and annealing the silicon tetrapropoxide to silicon oxide, and simultaneously adding sodium hydroxide and tetra
  • the mixed solution of silicon propoxide is allowed to stand for 3-6 minutes, and the surface of the silicon substrate can be micro-etched with sodium hydroxide, so that the silicon tetrapropoxide is sufficiently contacted with the silicon substrate, and the specific process parameters are optimized. Therefore, in the annealing process, a dense and uniform silicon oxide film is formed on the surface of the silicon, the method is simple and easy, and the defect state of the surface of the silicon substrate can be effectively reduced, and the time cost is effectively saved.
  • the invention adopts a silicon nanowire array as a light absorbing layer to reduce light reflection, and the presence of a silicon nanowire array increases the contact between silicon and the cobalt sulfide nanowire/P3HT layer, which is beneficial to the separation of electron hole pairs. And transmission efficiency, while the cobalt sulfide nanowires form an interconnection network in the P3HT layer, providing a conduction path for the transport of holes, effectively improving the hole transmission efficiency, by optimizing the structure of the solar cell and the specific content of each component. , effectively improving the photoelectric conversion efficiency of solar cells.
  • FIG. 1 is a schematic view showing the structure of a solar cell of the present invention.
  • n-type silicon substrate an n-type silicon wafer is cut into an n-type silicon substrate having a size of 3 cm ⁇ 3 cm, and then the n-type silicon substrate is sequentially ultrasonically cleaned in acetone, ethanol, deionized water, 10-15 Minutes, then placed in a concentrated H 2 SO 4 /H 2 O 2 mixed solution and heated to 100-110 ° C for 50-70 minutes, the concentrated H 2 SO 4 /H 2 O 2 mixed solution H 2 SO a volume ratio of 4 to H 2 O 2 of 3:1, followed by rinsing the n-type silicon substrate with deionized water and drying with nitrogen for use;
  • the n-type silicon substrate obtained in the step 1 is placed in a silver nitrate/hydrofluoric acid mixed solution, wherein the silver nitrate/hydrogen fluoride
  • the molar concentration of hydrofluoric acid in the acid mixed solution is 4.8 mol/l
  • the molar concentration of silver nitrate is 0.02 mol/l
  • the etching is performed at room temperature for 10-30 minutes to remove the etched n-type silicon substrate.
  • rinse with deionized water then immerse in concentrated nitric acid for 50-60 minutes, then rinse the wafer with deionized water and blow dry with nitrogen for later use;
  • (6) preparation of a front side silver gate electrode forming the front side silver gate electrode by thermal evaporation, the front side silver gate electrode having a thickness of 100-200 nm;
  • the back surface aluminum electrode was formed by a thermal evaporation method, and the back surface aluminum electrode had a thickness of 200 to 300 nm.
  • the solar cell prepared by the above method according to the present invention includes a back aluminum electrode 1, a silicon oxide passivation film 2, an n-type silicon substrate 3, a silicon nanowire array 4, and a silicon oxide from bottom to top.
  • Passivation film 5 cobalt sulfide nanowire/P3HT layer 6, PEDOT:PSS layer 7, and front silver gate electrode 8.
  • a method for preparing a solar cell comprising the steps of:
  • the n-type silicon wafer was cut into an n-type silicon substrate having a size of 3 cm ⁇ 3 cm, and then the n-type silicon substrate was sequentially ultrasonically washed in acetone, ethanol, deionized water for 12 minutes, Then, it was placed in a concentrated H 2 SO 4 /H 2 O 2 mixed solution and heated to 105 ° C for 70 minutes, and the concentrated H 2 SO 4 /H 2 O 2 mixed solution was H 2 SO 4 and H 2 O 2 . a volume ratio of 3:1, followed by rinsing the n-type silicon substrate with deionized water and drying with nitrogen for later use;
  • the n-type silicon substrate obtained in the step 1 is placed in a silver nitrate/hydrofluoric acid mixed solution, wherein the silver nitrate/hydrogen fluoride
  • the molar concentration of hydrofluoric acid in the acid mixed solution is 4.8 mol/l
  • the molar concentration of silver nitrate is 0.02 mol/l
  • etching at room temperature for 20 minutes after the etched n-type silicon substrate is taken out, Rinse with deionized water, then immerse in concentrated nitric acid for 60 minutes, then rinse the wafer with deionized water and blow dry with nitrogen for later use;
  • PEDOT:PSS layer spin-coating PEDOT:PSS solution on the surface of the cobalt sulfide nanowire/P3HT layer; spin coating speed of 4000 rpm/min and time of 3 minutes, then in a nitrogen atmosphere, and Annealing at a temperature of 120 ° C for 25 minutes to form the PEDOT: PSS layer, the thickness of the PEDOT: PSS layer is 15 nm;
  • the front side silver gate electrode is formed by thermal evaporation, the thickness of the front side silver gate electrode is 150 nm;
  • the back surface aluminum electrode was formed by a thermal evaporation method, and the thickness of the back surface aluminum electrode was 220 nm.
  • the solar cell had an open circuit voltage of 0.63 V, a short-circuit current of 31.5 mA/cm 2 , a fill factor of 0.75, and a photoelectric conversion efficiency of 14.9%.
  • a method for preparing a solar cell comprising the steps of:
  • the n-type silicon wafer was cut into an n-type silicon substrate having a size of 3 cm ⁇ 3 cm, and then the n-type silicon substrate was sequentially ultrasonically cleaned in acetone, ethanol, deionized water for 15 minutes, Then, it was placed in a concentrated H 2 SO 4 /H 2 O 2 mixed solution and heated to 110 ° C for 50 minutes, and the concentrated H 2 SO 4 /H 2 O 2 mixed solution was H 2 SO 4 and H 2 O 2 . a volume ratio of 3:1, followed by rinsing the n-type silicon substrate with deionized water and drying with nitrogen for later use;
  • the n-type silicon substrate obtained in the step 1 is placed in a silver nitrate/hydrofluoric acid mixed solution, wherein the silver nitrate/hydrogen fluoride
  • the molar concentration of hydrofluoric acid in the acid mixed solution is 4.8 mol/l
  • the molar concentration of silver nitrate is 0.02 mol/l
  • etching at room temperature for 30 minutes after the etched n-type silicon substrate is taken out, Rinse with deionized water, then immerse in concentrated nitric acid for 60 minutes, then rinse the wafer with deionized water and blow dry with nitrogen for later use;
  • PEDOT:PSS layer spin-coating PEDOT:PSS solution on the surface of the cobalt sulfide nanowire/P3HT layer; spin coating speed of 5000 rpm and time of 4 minutes, then in a nitrogen atmosphere, and Annealing at a temperature of 130 ° C for 30 minutes to form the PEDOT:PSS layer, the thickness of the PEDOT:PSS layer is 12 nm;
  • the front side silver gate electrode is formed by thermal evaporation, the front side silver gate electrode has a thickness of 200 nm;
  • the back surface aluminum electrode was formed by a thermal evaporation method, and the thickness of the back surface aluminum electrode was 300 nm.
  • the solar cell had an open circuit voltage of 0.61 V, a short-circuit current of 32.5 mA/cm 2 , a fill factor of 0.71, and a photoelectric conversion efficiency of 14.1%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种太阳能电池及其制备方法,所述太阳能电池的制备方法包括:n型硅基底的清洗、在所述n型硅基底的上表面制备硅纳米线阵列、对所述n型硅基底进行钝化处理、硫化钴纳米线/P3HT层的制备、PEDOT:PSS层的制备、正面银栅电极的制备以及背面铝电极的制备,其中在对所述n型硅基底进行钝化处理的工序中选择旋涂含有氢氧化钠和四丙醇硅的混合溶液,并进行退火处理,以有效降低硅基底表面的缺陷态,提高相应太阳能电池的光电转换效率。

Description

一种太阳能电池及其制备方法 技术领域
本发明涉及光电转换技术领域,特别是涉及一种太阳能电池及其制备方法。
背景技术
纵观太阳能电池发展的百年时间,出现了各种各样的太阳能电池,就太阳能电池的发展时间而言,可以将太阳能电池分为三个大类:第一代太阳能电池具体包括单晶硅太阳能电池、多晶硅太阳能电池以及非晶硅太阳能电池等硅太阳能电池;第二代太阳能电池具体包括非晶硅薄膜太阳能电池、砷化镓太阳能太阳能电池、碲化镉太阳能电池以及铜铟镓硒太阳能电池等薄膜太阳能电池;第三代太阳能电池具体包括染料敏化太阳能电池、纳米晶太阳能电池。有机太阳能电池、有机无机杂化太阳能电池以及钙钛矿太阳能电池等新型太阳能电池。
在有机无机杂化太阳能电池的制备过程中,硅基底表面的缺陷态导致电子空穴复合,进而大幅降低有机无机太阳能电池的光电转换效率,现有技术中为了减少硅基底表面的缺陷态,通常采用甲基化的方式在硅片表面形成Si-CH3键以钝化硅表面,一方面甲基化处理的硅片依然存在大量的缺陷态,另一方面甲基化处理的工艺较为复杂且甲基化处理的时间较长,无法进行大规模的应用。因此,针对上述技术问题,有必要改进硅片表面的钝化方式,以提高有机无机太阳能电池的光电转换效率。
发明内容
本发明的目的是克服上述现有技术的不足,提供一种太阳能电池及其制备方法。
为实现上述目的,本发明提出的一种太阳能电池的制备方法,包括以下步骤:(1)n型硅基底的清洗:将n型硅片切割成尺寸为3cm×3cm的n型硅基底,接着将所述n型硅基底依次在丙酮、乙醇、去离子水中超声清洗10-15分钟,然后置入浓H 2SO 4/H 2O 2混合溶液中并加温至100-110℃保持50-70分钟,接着用去离子水冲洗所述n型硅基底,并用氮气吹干以备用;(2)在所述n型硅基底的上表面制备硅纳米线阵列:将步骤1得到的所述n型硅基底置于硝酸银/氢氟酸混合溶液中,其中所述硝酸银/氢氟酸混合溶液中氢氟酸的摩尔浓度为4.8mol/l,硝酸银的摩尔浓度为0.02mol/l,并在室温下刻蚀10-30分钟,将刻蚀过的所述n型硅基底取出后,用去离子水冲洗,然后浸入浓硝酸中保持50-60分钟,接着用去离子水清洗硅片,并用氮气吹干以备用;(3)对所述n型硅基底进行钝化处理:将步骤2得到n型硅基底在氢氟酸溶液中浸泡5-10分钟,接着在所述n型硅基底的上表面滴加含有氢氧化钠和四丙醇硅的混合溶液并静置3-6分钟,接着在2000-2500转/分钟的条件下旋涂2-5分钟,并在200-400℃的温度下退火30-60分钟,以钝化所述n型硅基底的上表面,然后在所述n型硅基底的下表面滴加含有氢氧化钠和四丙醇硅的混合溶液并静置3-6分钟,接着在2000-2500转/分钟的条件下旋涂2-5分钟,并在200-400℃的温度下退火30-60分钟,以钝化所述n 型硅基底的下表面;(4)硫化钴纳米线/P3HT层的制备:在步骤3得到的n型硅基底的上表面旋涂含有硫化钴纳米线的P3HT溶液,旋涂的转速为2000-3000转/分钟以及时间为1-3分钟,然后在氮气环境中,并在120-140℃的温度下退火20-30分钟,形成所述硫化钴纳米线/P3HT层;(5)PEDOT:PSS层的制备:在所述硫化钴纳米线/P3HT层表面旋涂PEDOT:PSS溶液;旋涂的转速为4000-5000转/分钟以及时间为1-4分钟,然后在氮气环境中,并在110-130℃的温度下退火20-30分钟,以形成所述PEDOT:PSS层;(6)正面银栅电极的制备;(7)背面铝电极的制备。
作为优选,在所述步骤1中,所述浓H 2SO 4/H 2O 2混合溶液中H 2SO 4与H 2O 2体积比为3:1
作为优选,在所述步骤3中,所述含有氢氧化钠和四丙醇硅的混合溶液中氢氧化钠的浓度为0.3-0.6mg/ml,四丙醇硅的浓度为1-2mg/ml。
作为优选,在所述步骤4中,所述含有硫化钴纳米线的P3HT溶液中硫化钴纳米线的浓度为0.5-1mg/ml,P3HT的浓度为2-5mg/ml。
作为优选,所述PEDOT:PSS层的厚度为10-20nm。
作为优选,在所述步骤6中通过热蒸镀法形成所述正面银栅电极,所述正面银栅电极的厚度为100-200nm。
作为优选,在所述步骤7中通过热蒸镀法形成所述背面铝电极,所述背面铝电极的厚度为200-300nm。
本发明还提供了一种太阳能电池,所述太阳能电池为采用上述方法制备形成的太阳能电池。
本发明与现有技术相比具有下列优点:
1、本发明通过在硅表面旋涂四丙醇硅,并通过退火的方式,使得四丙醇硅变为氧化硅,可以有效减少硅表面的缺陷态,同时通过滴加含有氢氧化钠和四丙醇硅的混合溶液并静置3-6分钟的方式,可以利用氢氧化钠对硅基底的表面进行微刻蚀,进而使得四丙醇硅与硅基底充分接触,并通过优化具体的工艺参数,使得在退火过程中以在硅表面形成致密均匀的氧化硅膜,该方法简单易行,且可以有效降低硅基底表面的缺陷态,同时有效节约时间成本。
2、本发明采用硅纳米线阵列作为光吸收层,减少光反射,同时硅纳米线阵列的存在,增大了硅与硫化钴纳米线/P3HT层的接触增加,有利于电子空穴对的分离及传输效率,同时硫化钴纳米线在P3HT层中形成互连网络,为空穴的传输提供了传导路径,有效提高了空穴的传输效率,通过优化太阳能电池的结构以及各组分的具体含量,有效提高了太阳能电池的光电转换效率。
附图说明
图1为本发明的太阳能电池的结构示意图。
具体实施方式
本发明具体实施例提出的一种太阳能电池的制备方法,包括以下步骤:
(1)n型硅基底的清洗:将n型硅片切割成尺寸为3cm×3cm的n型硅基底,接着将所述n型硅基底 依次在丙酮、乙醇、去离子水中超声清洗10-15分钟,然后置入浓H 2SO 4/H 2O 2混合溶液中并加温至100-110℃保持50-70分钟,所述浓H 2SO 4/H 2O 2混合溶液中H 2SO 4与H 2O 2体积比为3:1,接着用去离子水冲洗所述n型硅基底,并用氮气吹干以备用;
(2)在所述n型硅基底的上表面制备硅纳米线阵列:将步骤1得到的所述n型硅基底置于硝酸银/氢氟酸混合溶液中,其中所述硝酸银/氢氟酸混合溶液中氢氟酸的摩尔浓度为4.8mol/l,硝酸银的摩尔浓度为0.02mol/l,并在室温下刻蚀10-30分钟,将刻蚀过的所述n型硅基底取出后,用去离子水冲洗,然后浸入浓硝酸中保持50-60分钟,接着用去离子水清洗硅片,并用氮气吹干以备用;
(3)对所述n型硅基底进行钝化处理:将步骤2得到n型硅基底在氢氟酸溶液中浸泡5-10分钟,接着在所述n型硅基底的上表面滴加含有氢氧化钠和四丙醇硅的混合溶液并静置3-6分钟,接着在2000-2500转/分钟的条件下旋涂2-5分钟,并在200-400℃的温度下退火30-60分钟,以钝化所述n型硅基底的上表面,然后在所述n型硅基底的下表面滴加含有氢氧化钠和四丙醇硅的混合溶液并静置3-6分钟,接着在2000-2500转/分钟的条件下旋涂2-5分钟,并在200-400℃的温度下退火30-60分钟,以钝化所述n型硅基底的下表面,所述含有氢氧化钠和四丙醇硅的混合溶液中氢氧化钠的浓度为0.3-0.6mg/ml,四丙醇硅的浓度为1-2mg/ml。氢氧化钠的太低则不能有效刻蚀硅表面,氢氧化钠的浓度太高则会影响后续太阳能电池的性能,四丙醇硅的浓度太低则无法有效钝化硅表面,四丙醇硅的浓度太高则形成的氧化硅膜较厚则会影响太阳能电池的性能;
(4)硫化钴纳米线/P3HT层的制备:在步骤3得到的n型硅基底的上表面旋涂含有硫化钴纳米线的P3HT溶液,旋涂的转速为2000-3000转/分钟以及时间为1-3分钟,然后在氮气环境中,并在120-140℃的温度下退火20-30分钟,形成所述硫化钴纳米线/P3HT层,所述含有硫化钴纳米线的P3HT溶液中硫化钴纳米线的浓度为0.5-1mg/ml,P3HT的浓度为2-5mg/ml;(5)PEDOT:PSS层的制备:在所述硫化钴纳米线/P3HT层表面旋涂PEDOT:PSS溶液;旋涂的转速为4000-5000转/分钟以及时间为1-4分钟,然后在氮气环境中,并在110-130℃的温度下退火20-30分钟,以形成所述PEDOT:PSS层,所述PEDOT:PSS层的厚度为10-20nm;
(6)正面银栅电极的制备:通过热蒸镀法形成所述正面银栅电极,所述正面银栅电极的厚度为100-200nm;
(7)背面铝电极的制备:通过热蒸镀法形成所述背面铝电极,所述背面铝电极的厚度为200-300nm。
如图1所示,本发明根据上述方法制备的太阳能电池,所述太阳能电池从下至上包括背面铝电极1、氧化硅钝化膜2、n型硅基底3、硅纳米线阵列4、氧化硅钝化膜5、硫化钴纳米线/P3HT层6、PEDOT:PSS层7以及正面银栅电极8。
实施例1:
一种太阳能电池的制备方法,包括以下步骤:
(1)n型硅基底的清洗:将n型硅片切割成尺寸为3cm×3cm的n型硅基底,接着将所述n型硅基底依次在丙酮、乙醇、去离子水中超声清洗12分钟,然后置入浓H 2SO 4/H 2O 2混合溶液中并加温至105℃保持70分钟,所述浓H 2SO 4/H 2O 2混合溶液中H 2SO 4与H 2O 2体积比为3:1,接着用去离子水冲洗所述n型硅基底,并用氮气吹干以备用;
(2)在所述n型硅基底的上表面制备硅纳米线阵列:将步骤1得到的所述n型硅基底置于硝酸银/氢氟酸混合溶液中,其中所述硝酸银/氢氟酸混合溶液中氢氟酸的摩尔浓度为4.8mol/l,硝酸银的摩尔浓度为0.02mol/l,并在室温下刻蚀20分钟,将刻蚀过的所述n型硅基底取出后,用去离子水冲洗,然后浸入浓硝酸中保持60分钟,接着用去离子水清洗硅片,并用氮气吹干以备用;
(3)对所述n型硅基底进行钝化处理:将步骤2得到n型硅基底在氢氟酸溶液中浸泡8分钟,接着在所述n型硅基底的上表面滴加含有氢氧化钠和四丙醇硅的混合溶液并静置5分钟,接着在2200转/分钟的条件下旋涂4分钟,并在300℃的温度下退火40分钟,以钝化所述n型硅基底的上表面,然后在所述n型硅基底的下表面滴加含有氢氧化钠和四丙醇硅的混合溶液并静置5分钟,接着在2200转/分钟的条件下旋涂4分钟,并在300℃的温度下退火40分钟,以钝化所述n型硅基底的下表面,所述含有氢氧化钠和四丙醇硅的混合溶液中氢氧化钠的浓度为0.5mg/ml,四丙醇硅的浓度为1.5mg/ml;
(4)硫化钴纳米线/P3HT层的制备:在步骤3得到的n型硅基底的上表面旋涂含有硫化钴纳米线的P3HT溶液,旋涂的转速为2500转/分钟以及时间为2分钟,然后在氮气环境中,并在130℃的温度下退火25分钟,形成所述硫化钴纳米线/P3HT层,所述含有硫化钴纳米线的P3HT溶液中硫化钴纳米线的浓度为0.8mg/ml,P3HT的浓度为4mg/ml;
(5)PEDOT:PSS层的制备:在所述硫化钴纳米线/P3HT层表面旋涂PEDOT:PSS溶液;旋涂的转速为4000转/分钟以及时间为3分钟,然后在氮气环境中,并在120℃的温度下退火25分钟,以形成所述PEDOT:PSS层,所述PEDOT:PSS层的厚度为15nm;
(6)正面银栅电极的制备:通过热蒸镀法形成所述正面银栅电极,所述正面银栅电极的厚度为150nm;
(7)背面铝电极的制备:通过热蒸镀法形成所述背面铝电极,所述背面铝电极的厚度为220nm。
该太阳能电池的开路电压为0.63V,短路电流为31.5mA/cm 2,填充因子为0.75,光电转换效率为14.9%。
实施例2
一种太阳能电池的制备方法,包括以下步骤:
(1)n型硅基底的清洗:将n型硅片切割成尺寸为3cm×3cm的n型硅基底,接着将所述n型硅基底依次在丙酮、乙醇、去离子水中超声清洗15分钟,然后置入浓H 2SO 4/H 2O 2混合溶液中并加温至110℃保持50分钟,所述浓H 2SO 4/H 2O 2混合溶液中H 2SO 4与H 2O 2体积比为3:1,接着用去离子水冲洗所述n型硅基底,并用氮气吹干以备用;
(2)在所述n型硅基底的上表面制备硅纳米线阵列:将步骤1得到的所述n型硅基底置于硝酸银/氢 氟酸混合溶液中,其中所述硝酸银/氢氟酸混合溶液中氢氟酸的摩尔浓度为4.8mol/l,硝酸银的摩尔浓度为0.02mol/l,并在室温下刻蚀30分钟,将刻蚀过的所述n型硅基底取出后,用去离子水冲洗,然后浸入浓硝酸中保持60分钟,接着用去离子水清洗硅片,并用氮气吹干以备用;
(3)对所述n型硅基底进行钝化处理:将步骤2得到n型硅基底在氢氟酸溶液中浸泡10分钟,接着在所述n型硅基底的上表面滴加含有氢氧化钠和四丙醇硅的混合溶液并静置6分钟,接着在2500转/分钟的条件下旋涂5分钟,并在400℃的温度下退火50分钟,以钝化所述n型硅基底的上表面,然后在所述n型硅基底的下表面滴加含有氢氧化钠和四丙醇硅的混合溶液并静置6分钟,接着在2500转/分钟的条件下旋涂5分钟,并在400℃的温度下退火50分钟,以钝化所述n型硅基底的下表面,所述含有氢氧化钠和四丙醇硅的混合溶液中氢氧化钠的浓度为0.6mg/ml,四丙醇硅的浓度为2mg/ml;
(4)硫化钴纳米线/P3HT层的制备:在步骤3得到的n型硅基底的上表面旋涂含有硫化钴纳米线的P3HT溶液,旋涂的转速为3000转/分钟以及时间为3分钟,然后在氮气环境中,并在140℃的温度下退火20分钟,形成所述硫化钴纳米线/P3HT层,所述含有硫化钴纳米线的P3HT溶液中硫化钴纳米线的浓度为0.5mg/ml,P3HT的浓度为3mg/ml;
(5)PEDOT:PSS层的制备:在所述硫化钴纳米线/P3HT层表面旋涂PEDOT:PSS溶液;旋涂的转速为5000转/分钟以及时间为4分钟,然后在氮气环境中,并在130℃的温度下退火30分钟,以形成所述PEDOT:PSS层,所述PEDOT:PSS层的厚度为12nm;
(6)正面银栅电极的制备:通过热蒸镀法形成所述正面银栅电极,所述正面银栅电极的厚度为200nm;
(7)背面铝电极的制备:通过热蒸镀法形成所述背面铝电极,所述背面铝电极的厚度为300nm。
该太阳能电池的开路电压为0.61V,短路电流为32.5mA/cm 2,填充因子为0.71,光电转换效率为14.1%。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (8)

  1. 一种太阳能电池的制备方法,其特征在于:包括以下步骤:
    (1)n型硅基底的清洗:将n型硅片切割成尺寸为3cm×3cm的n型硅基底,接着将所述n型硅基底依次在丙酮、乙醇、去离子水中超声清洗10-15分钟,然后置入浓H 2SO 4/H 2O 2混合溶液中并加温至100-110℃保持50-70分钟,接着用去离子水冲洗所述n型硅基底,并用氮气吹干以备用;
    (2)在所述n型硅基底的上表面制备硅纳米线阵列:将步骤1得到的所述n型硅基底置于硝酸银/氢氟酸混合溶液中,其中所述硝酸银/氢氟酸混合溶液中氢氟酸的摩尔浓度为4.8mol/l,硝酸银的摩尔浓度为0.02mol/l,并在室温下刻蚀10-30分钟,将刻蚀过的所述n型硅基底取出后,用去离子水冲洗,然后浸入浓硝酸中保持50-60分钟,接着用去离子水清洗硅片,并用氮气吹干以备用;
    (3)对所述n型硅基底进行钝化处理:将步骤2得到n型硅基底在氢氟酸溶液中浸泡5-10分钟,接着在所述n型硅基底的上表面滴加含有氢氧化钠和四丙醇硅的混合溶液并静置3-6分钟,接着在2000-2500转/分钟的条件下旋涂2-5分钟,并在200-400℃的温度下退火30-60分钟,以钝化所述n型硅基底的上表面,然后在所述n型硅基底的下表面滴加含有氢氧化钠和四丙醇硅的混合溶液并静置3-6分钟,接着在2000-2500转/分钟的条件下旋涂2-5分钟,并在200-400℃的温度下退火30-60分钟,以钝化所述n型硅基底的下表面;
    (4)硫化钴纳米线/P3HT层的制备:在步骤3得到的n型硅基底的上表面旋涂含有硫化钴纳米线的P3HT溶液,旋涂的转速为2000-3000转/分钟以及时间为1-3分钟,然后在氮气环境中,并在120-140℃的温度下退火20-30分钟,形成所述硫化钴纳米线/P3HT层;
    (5)PEDOT:PSS层的制备:在所述硫化钴纳米线/P3HT层表面旋涂PEDOT:PSS溶液;旋涂的转速为4000-5000转/分钟以及时间为1-4分钟,然后在氮气环境中,并在110-130℃的温度下退火20-30分钟,以形成所述PEDOT:PSS层;
    (6)正面银栅电极的制备;
    (7)背面铝电极的制备。
  2. 根据权利要求1所述的太阳能电池的制备方法,其特征在于:在所述步骤1中,所述浓H 2SO 4/H 2O 2混合溶液中H 2SO 4与H 2O 2体积比为3:1
  3. 根据权利要求1所述的太阳能电池的制备方法,其特征在于:在所述步骤3中,所述含有氢氧化钠和四丙醇硅的混合溶液中氢氧化钠的浓度为0.3-0.6mg/ml,四丙醇硅的浓度为1-2mg/ml。
  4. 根据权利要求1所述的太阳能电池,其特征在于:在所述步骤4中,所述含有硫化钴纳米线的P3HT溶液中硫化钴纳米线的浓度为0.5-1mg/ml,P3HT的浓度为2-5mg/ml。
  5. 根据权利要求1所述的太阳能电池的制备方法,其特征在于:所述PEDOT:PSS层的厚度为10-20nm。
  6. 根据权利要求1所述的太阳能电池的制备方法,其特征在于:在所述步骤6中通过热蒸镀法形成所述正面银栅电极,所述正面银栅电极的厚度为100-200nm。
  7. 根据权利要求1所述的太阳能电池的制备方法,其特征在于:在所述步骤7中通过热蒸镀法形成所述背 面铝电极,所述背面铝电极的厚度为200-300nm。
  8. 一种太阳能电池,其特征在于,采用权利要求1-6任一项所述的方法制备形成的。
PCT/CN2018/074081 2018-01-24 2018-01-25 一种太阳能电池及其制备方法 WO2019144334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810067075.X 2018-01-24
CN201810067075.XA CN108336181B (zh) 2018-01-24 2018-01-24 一种太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2019144334A1 true WO2019144334A1 (zh) 2019-08-01

Family

ID=62926642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074081 WO2019144334A1 (zh) 2018-01-24 2018-01-25 一种太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN108336181B (zh)
WO (1) WO2019144334A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109509839A (zh) * 2018-11-05 2019-03-22 深圳清华大学研究院 杂化太阳能电池的制备方法及杂化太阳能电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006565A (ja) * 2002-04-16 2004-01-08 Sharp Corp 太陽電池とその製造方法
CN103346260A (zh) * 2013-07-24 2013-10-09 苏州大学 有机薄膜钝化的有机-无机杂化太阳能电池及其制备方法
US20150125601A1 (en) * 2013-11-04 2015-05-07 Systems And Materials Research Corporation Method and apparatus for producing nanosilicon particles
CN106935664A (zh) * 2012-07-12 2017-07-07 日立化成株式会社 钝化层形成用组合物、半导体基板及制造方法、太阳能电池元件及制造方法、太阳能电池
CN107134504A (zh) * 2017-04-01 2017-09-05 昆明理工大学 一种纳米硅基石墨烯太阳能电池的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3868341B2 (ja) * 2002-04-22 2007-01-17 日清紡績株式会社 耐熱性に優れたプラズマエッチング電極及びそれを装着したドライエッチング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006565A (ja) * 2002-04-16 2004-01-08 Sharp Corp 太陽電池とその製造方法
CN106935664A (zh) * 2012-07-12 2017-07-07 日立化成株式会社 钝化层形成用组合物、半导体基板及制造方法、太阳能电池元件及制造方法、太阳能电池
CN103346260A (zh) * 2013-07-24 2013-10-09 苏州大学 有机薄膜钝化的有机-无机杂化太阳能电池及其制备方法
US20150125601A1 (en) * 2013-11-04 2015-05-07 Systems And Materials Research Corporation Method and apparatus for producing nanosilicon particles
CN107134504A (zh) * 2017-04-01 2017-09-05 昆明理工大学 一种纳米硅基石墨烯太阳能电池的制备方法

Also Published As

Publication number Publication date
CN108336181A (zh) 2018-07-27
CN108336181B (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
CN107946471B (zh) 一种基于硅纳米线阵列的异质结光伏电池及其制备方法
CN102263204B (zh) 一种有机-无机杂化太阳能电池及其制备方法
WO2019144335A1 (zh) 一种异质结光伏电池及其制备方法
CN107946384B (zh) 一种硅-pedot:pss杂化太阳能电池及其制备方法
CN113707734B (zh) 具有空穴选择钝化结构的晶硅/钙钛矿叠层太阳电池
CN107994119B (zh) 一种有机无机杂化太阳能电池及其制备方法
CN103346260B (zh) 有机薄膜钝化的有机-无机杂化太阳能电池及其制备方法
Jiang et al. Efficiency enhancement mechanism for poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate)/silicon nanowires hybrid solar cells using alkali treatment
Yameen et al. Low temperature fabrication of PEDOT: PSS/micro-textured silicon-based heterojunction solar cells
CN105470392A (zh) 一种有机无机杂化太阳能电池及其制备方法
CN105470399A (zh) 基于无掺杂有机空穴传输层的钙钛矿太阳能电池及制备方法
CN106876595A (zh) 一种n型硅异质结太阳能电池及其制备方法
WO2019144334A1 (zh) 一种太阳能电池及其制备方法
CN108011045B (zh) 一种硅微米柱阵列有机无机杂化太阳能电池及其制备方法
CN108183150B (zh) 一种异质结光伏电池及其制备方法
WO2023123190A1 (zh) 钙钛矿电池、其制备方法、以及包含其的光伏组件
WO2019144336A1 (zh) 一种太阳能电池组件
CN108172686B (zh) 一种硅光伏电池及其制备方法
CN108695435A (zh) 一种基于超声波退火工艺的有机太阳能电池及其制备方法
CN110299429B (zh) 一种新型硅-有机杂化太阳能电池及其制备方法
CN114188429A (zh) 一种带有隧穿隧道结的同质异质结电池及其制备方法
CN104078567A (zh) 混合太阳能电池及其制备方法、空穴输运层形成方法
CN111653669A (zh) 一种小分子有机太阳能电池及其制备方法
CN110931641B (zh) 一种硅基有机无机杂化太阳能电池及其制备方法
CN219478460U (zh) 一种基于双空穴传输层的钙钛矿太阳能电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902078

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18902078

Country of ref document: EP

Kind code of ref document: A1