CN104471721A - 具有纳米线氧化钛和/或碳化硅芯及石墨烯外层的太阳能电池 - Google Patents

具有纳米线氧化钛和/或碳化硅芯及石墨烯外层的太阳能电池 Download PDF

Info

Publication number
CN104471721A
CN104471721A CN201380031828.7A CN201380031828A CN104471721A CN 104471721 A CN104471721 A CN 104471721A CN 201380031828 A CN201380031828 A CN 201380031828A CN 104471721 A CN104471721 A CN 104471721A
Authority
CN
China
Prior art keywords
core
equipment according
graphene
nano wire
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380031828.7A
Other languages
English (en)
Inventor
D·M·格伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dimerond Technologies LLC
Original Assignee
Dimerond Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/682,229 external-priority patent/US8586999B1/en
Application filed by Dimerond Technologies LLC filed Critical Dimerond Technologies LLC
Publication of CN104471721A publication Critical patent/CN104471721A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Composite Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种设备包括各自包括上面布置有石墨烯的纳米线氧化钛芯的多个太阳能电池。通过一个方法,所述多个太阳能电池能够至少部分地包括上面布置有所述多个太阳能电池的钛箔,其中,所述太阳能电池中的至少大多数被对准为彼此基本上平行且与所述钛箔基本上垂直。这样的多个太阳能电池能够被布置在光源与太阳能转换的另一模式部之间,使得所述太阳能电池和太阳能转换的所述另一模式部这二者利用相同的光源来发电。

Description

具有纳米线氧化钛和/或碳化硅芯及石墨烯外层的太阳能电池
技术领域
本发明总体上涉及利用太阳能发电。
背景技术
在本领域中太阳能转换的各种模式部是已知的。例如,已知采用有利于将日光直接转换成电的光伏结,还已知将日光转换成热并且然后利用该热来发电。
这些方法是已知的,然而,本身不是万能的。各种实现和操作问题随着太阳能转换的各个这样的模式部而出现。例如,转换效率在不同的模式部之间变化,其中许多设想的模式部表现相当差并且没有实现较高的转换效率。那些相对转换效率进而直接影响企业追求给定太阳能转换系统而可能期望接收的投资回报。
发送能力(Dispatchability)是另一这样的示例。发送能力指代在需要的时候将电贡献给配电网的能力。因为太阳能转换需要日光的存在,所以缺乏储能机制时不能够在晚上将太阳能转换成电。然而,能量储存能够引起新的关注。例如,按照各种方式将电池大规模地用于能量储存是相对昂贵的。
附图说明
上述需求至少部分地通过以下具体实施方式中(尤其是当结合附图研究时)描述的与具有碳化硅和/或纳米线氧化钛芯及石墨烯外层的太阳能电池有关的设备以及光变成电的热电联产转换来满足,附图中:
图1包括根据本发明的各种实施方式构造的侧立面截面示意图;
图2包括根据本发明的各种实施方式构造的侧立面示意图;
图3包括根据本发明的各种实施方式构造的俯视图;
图4包括根据本发明的各种实施方式构造的立体示意图;
图5包括根据本发明的各种实施方式构造的立体图;
图6包括根据本发明的各种实施方式构造的俯视图;
图7包括根据本发明的各种实施方式构造的俯视图;
图8包括根据本发明的各种实施方式构造的侧立面示意图;
图9包括根据本发明的各种实施方式构造的侧立面示意图;
图10包括根据本发明的各种实施方式构造的立体示意图;
图11包括根据本发明的各种实施方式构造的侧立面示意图;以及
图12包括根据本发明的各种实施方式构造的框图视图。
图中的元素是为了简单和清楚而例示的,并且未必按比例绘制。例如,图中的元素中的一些的尺寸和/或相对定位可以相对于其它元素被放大以帮助改进对本发明的各种实施方式的理解。并且,常常不描绘在商业上可行的实施方式中有用的或必要的普通但为人所熟知的元素,以便于本发明的这些各种实施方式的不太阻碍的查看。可以按发生的特定次序描述或描绘特定动作和/或步骤,但是本领域技术人员应当理解,相对于顺序的这样的特性不是实际上需要的。除了在已另外在本文中阐述了不同的特定意义情况下,本文所使用的术语和表达具有如本领域技术人员像以上所阐述的那样的这些术语和表达的普通技术意义。
具体实施方式
一般地说,按照这些各种实施方式,多个太阳能电池能够各自包括上面布置有石墨烯的纳米线氧化钛芯。通过一个方法,这多个太阳能电池能够至少部分地包括上面布置有多个太阳能电池的钛箔,其中,至少大多数太阳能电池被彼此基本上平行地且与钛箔基本上垂直地对准。
对应的设备能够包括被布置在光源与太阳能转换的第二模式部之间的太阳能转换的第一模式部。如此构造,太阳能转换的第一模式部和太阳能转换的第二模式部这二者能够利用相同的光源来独立地发电。(如本文所使用的,对“第二”模式部的该引用将被理解为不仅仅指代数字上附加的或补充的模式部,还可替代地被理解为指代与太阳能转换的第一模式部相比另一且种类不同的模式部。)
通过一个方法,太阳能转换的第一模式部包括诸如各自包括上面布置有石墨烯的纳米线氧化钛芯的前述太阳能电池的太阳能转换的基于石墨烯的模式部。太阳能转换的基于石墨烯的模式部能够包括将光直接转换成电的光伏换能器。通过一个方法,太阳能转换的第二模式部用来将热转换成电。在这种情况下,太阳能转换的基于石墨烯的模式部能够被直接布置在包括太阳能转换的第二模式部的一部分的吸热表面上。该吸热表面例如能够包括流体承载(fluid-carrying)管道。
在这种太阳能转换的第二模式部下采用的流体可能超过350摄氏度。这样的温度当然相当不适于采用硅或砷化镓的许多普通光伏装置的运行。然而,石墨烯能够在这样的温度下以令人满意的方式操作。因此,能够预期基于石墨烯的光伏结使光伏功能维持在能量转换的有用水平下,而不管太阳能转换的相邻第二模式部的高温度如何。
因此,如此构造,这样的系统包括用于将光转换成电的热电联产系统。根据所采用的设计,各个模式部的相对转换效率可以是相对相似的。通过一个方法,能够将由太阳能转换的基于石墨烯的模式部产生的电实时地提供给配电网。然而,由太阳能转换的第二模式部产生的热能够被立即用来发电,或者能够被存储和稍后(例如,在峰值负载的下午晚期期间和/或在晚间期间)利用来发电以对配电网做出贡献。
这样的热电联产设施提供了超过以上所指出的经改进的发送能力的其它优点。例如,这样的热电联产设施的相对成本未必明显地多于将太阳能转换的第二模式部构建并操作为隔离系统的成本。在真正意义上,本教导许可通过在大大增强使已产生电的分配时移的能力的同时大大增加总体系统的电力输出来利用这种系统的可用性。因此,本教导提供了发电和配电的高度灵活的方法。
石墨烯是由纯碳制成的物质,其中原子按照与石墨相似的规则六边形图案而在单原子厚的片中布置(从而导致常用的石墨烯描述符为“二维”)。石墨烯是包括石墨、炭、碳纳米管和富勒烯在内的许多碳的同素异形体的基本结构元素,石墨烯具有许多有趣的光学特性、电特性和热特性并且是最近研究的主题。例如,2010年诺贝尔物理学奖授予给从事涉及石墨烯的“开创性”试验的研究者。
单层石墨烯是几乎透明的。然而,即便如此,四十三个石墨烯层的层叠具有大约百分之九十九的不透明性并且实质上完全吸收太阳光谱的所有可见区域和近红外区域中的光,尽管其具有少于十五纳米的膜厚度。
现在参照附图,图1描绘了具有实质上由宽带隙材料构成的芯101的对象100。对宽带隙材料的该引用将被理解为指代价带和导带相差至少两个电子伏特的材料。通过一个方法,该芯101能够包括氧化钛。对实质上由该材料构成的芯101的引用将被理解为指代芯101在这些方面中主要是纯的,但是能够包括微量杂质(并且其还能够包括例如被设计为引出特定电性能而特意引入的n型掺杂物或p型掺杂物)。
在图1中,芯101包括球体。如将在下面所示的,芯101能够实际上假定各种规则形式和不规则形式中的任一种。即便如此,通过一个方法,芯101具有不超过例如一百纳米的至少一个纳米级对分尺寸。然而,该要求不指定芯100的所有尺寸受如此限制。当芯101例如包括纳米线时,芯101可能具有超过数百纳米的纵向长度。(所提及的二等分线并不一定将芯101划分成两个相等二等分。替代地,如果对应的线通过外围上的对立点并且按照对应的参考系包括芯101的几何中心,则如本文中所使用的参考尺寸是“二等分线”。例如,当芯101包括圆柱体时,该圆柱体的横向截面直径能够用作这些目的的二等分线。)
所描绘的对象100还具有实质上由共形地布置在芯的至少相当大部分附近的石墨烯构成的壳102。如本文所使用的,对“相当大”的该引用将被理解为指代超过百分之五十的数量。
该石墨烯壳102的厚度能够随着应用设定而变化。然而,出于许多目的,厚度能够从大约一个层到大约四十三个层左右变化。因此,出于许多目的,壳102的厚度是非常薄的。一般地说,当被用在光伏设定中时,层的数量需要不多于实现特定数量的光吸收所需要的(例如,四十三层的石墨烯将吸收几乎所有入射光)。将在本文中假设,壳102对于给定对象100具有实质上均匀的厚度,但是必要时和/或适于给定应用设定需要时,这些教导将适应这些方面的变化。例如,在一些应用设定中,如果壳102具有不多于大约十层石墨烯则这可能是有用的。
一般地说,电子/空穴复合速率依赖于各种因素。为了实现高效率太阳能电池,为芯101选择的材料能够被选取为优先于电子/空穴复合来优化电荷分离。
通过一个方法,壳102通过利用诸如硼化物、碳化物、氮化物、氧化物和硫化物的不同化合物的纳米粉体在升高温度下接触反应物而被共形地应用于芯101。这些化合物的典型示例是碳化硼、碳化硅、氮化硅、二氧化硅、氧化钛、氧化锌、硫化铁等等。
更具体地,通过一个方法,所对应的合成法利用芯101的所选材料的选定尺寸和形状的纳米粉体来执行反应。经反应,烃分子在纳米粉体的表面上分解以形成包括壳102的石墨烯层。具体地,以上所引用的纳米材料用作反应的催化剂以形成石墨烯,并且产生壳102是石墨烯而芯101由特定起始材料的纳米微粒组成的很不寻常的芯/壳纳米结构。在合成期间或之后添加掺杂物使得它们结合到壳中或使壳官能化能够产生期望的掺杂物水平。
通过一个方法,用来形成石墨烯的反应在下述温度以一级动力学发生,在存在纳米粉体时,该温度通常比不存在纳米粉体时低大约1000摄氏度。反应温度方面的这个急剧下降的至少一个原因据信是各种类型的缺陷普遍存在于纳米材料的表面上。因为纳米材料的较大表面积(相对而言)和反应活化能量由于缺陷的存在而导致的下降,所以反应动力学在适度反应温度下是快速的。
反应速率主要由温度确定,并且当然能够仔细地控制温度。然而,壳102的厚度(即,石墨烯层的数量)主要受反应能够在受控温度下进行的时间长度的控制。逐层生长机制在目前公开的合成方法中因此是固有的,从而使该机制成为精确地控制能够用作太阳能电池装置中的材料的最终性能的重要决定因数的关键参数的非常强大的方式。
所描述的一步合成方法的这个极其通用的方面因此使得能够调节除芯尺寸和组成之外的壳厚度参数以便能够优化石墨烯光物理。如以上所提到的,石墨烯的光物理(涉及激发态转变生存期和电荷传输动力学)能够高度地可用于实现高度有效且商业上可行的太阳能电池。例如,由各自具有单层石墨烯壳102的20个纳米微粒(各自的尺寸从大约十纳米到八十纳米)构成的膜将具有大约200纳米至1600纳米的厚度,并且将吸收入射光的大约百分之九十五。这样非常薄的膜太阳能电池将预期在比现有技术的太阳能电池显著低廉的同时以显著更高的效率操作。
以上示例假设为利用石墨烯壳来包封单独的小微粒。然而,这些教导将适应其它方法。通过一个方法,例如,芯101能够包括像图2中所例示的那样经彼此退火的多个纳米微粒201。在这个简单示例中,宽带隙材料的合成纳米线包括三个依次连接的纳米微粒201。当然应当理解,这种纳米线能够包括相当大量的这些纳米微粒201。因此,尽管这种纳米线的横向截面可以保持在前述的一百纳米对分限制内,但是纳米线的长度可以实质上具有选择的任何尺寸。通过一个方法,继退火步骤之后施加壳。
通过更特定示例(但是不旨在通过这些对应细节进行任何特定限制),能够以各种方式合成碳化硅纳米线。例如,化学气相沉积过程能够在这些方面中适用。作为另一示例,能够在存在诸如铁粉体的催化剂的情况下把碳化硅纳米微粒加热至2000K。
围绕纳米线的石墨烯壳102进而能够通过像已经陈述的那样或通过在真空中把纳米线加热至1500K或者在一个巴的氩气中加热至2000K来在升高的温度下使纳米线与含碳物质起反应而被合成为预定厚度。针对具有碳化硅纳米线芯101和石墨烯壳102的对象100的一个直接且经济上有吸引力的合成工艺将包括在氩气中把商用碳化硅粉体加热至2000K以使纳米线生长,随后去除催化剂并且合成材料然后在氩气中被再加热至2000K以将外延石墨烯层形成为预定的厚度和掺杂水平。
应当指出和强调的是,这些教导将利用具有各样形式中的任一种的芯101来适应。参照图3,例如,芯101能够包括纳米线300。如图4所例示的,期望厚度的石墨烯壳102然后能够被容易地共形地施加于这样的芯101。通过另外的说明性示例,图5例示了包括纳米管500的芯101,图6例示了包括纳米纤维600的芯101,并且图7例示了包括纳米织物700的芯101。再者,这些示例旨在表示这些方面的可能性的非详尽列举。
一般地说,可行的太阳能电池将包括多个这样的对象100,并且从而将包括各自具有布置在附近的壳102的多个芯101。通过一个有用的方法,当芯101包括通常纵向的构件(诸如纳米线、纳米棒和/或纳米管)时,能够布置多个芯101,其中它们的纵轴被至少彼此基本上平行地定向。具体地,通过一个方法,这些纵轴还被与预期光束基本上同轴且平行地定向。
图8呈现了这些方面的一个说明性示例。在该说明性示例中,太阳能电池800具有第一电通路801和对立的第二电通路802(后者为透明的或至少半透明的,以允许光804通过)。这两个电通路801和802进而(视需要而定,经由例如一个或更多个变压器、调节器等)耦合至诸如但不限于配电网的选择的电负载803。
在该示例中,芯101中的每一个物理上且电连接至第一电通路801而不是连接至第二电通路802。通过一个方法,这些芯101的纵轴能够从大约两百纳米到不多于大约五百纳米变化。
通过一个方法,在该示例中包括芯101的纳米线实质上由碳化硅构成,并且同轴地具有从大约三百纳米到大约五百纳米的长度和从大约十纳米到大约八十纳米的截面直径。这些芯101在任何地方被实质上构成石墨烯壳102的单层或大约四十三层的石墨烯围绕。
通过使甲烷在氢中的稀释混合物与承载催化剂的硅衬底起反应,激活气液固生长机制,能够在使壳102生长之前使这些对准的碳化硅芯101生长。通过一个方法,催化剂促进对准的碳化硅纳米线的生长。形成镓/铁/硅合金的催化剂例如能够使得与甲烷中的碳反应能够以这样的方式发生以导致对准的碳化硅纳米线的生长。
通过使反应能够在大约1300K至大约1600K的温度下进行长达对应长度的时间,能够使经对准的碳化硅纳米线生长到所期望的长度。当已达到所期望的纳米线长度时,在纳米线上方流动的气体混合物被改变为纯甲烷以从而创建用于使石墨烯壳102生长的条件。再者,壳102中的层的数量受在给定温度下进行的生长的时间长度的控制。
得到的纳米线纳米结构的底部被附接至包括例如硅基底或一些其它导电基底的第一电通路801,从而电连接芯101中的全部。纳米线的顶部承载与围绕纳米线芯101的同轴石墨烯壳102中的全部电接触的石墨烯层。生长过程因此自动地生成将单独的电连接提供给芯101和壳102的太阳能电池纳米结构。
通过一个方法,能够通过防止同轴石墨烯壳102与硅基底和与碳化硅纳米线芯接触来使暗电流和大多数载流子传输最小化。这能够在沉积石墨烯壳102之前例如通过单层或多层诸如二氧化硅的绝缘体的化学气相沉积来实现。
与这样的构造相关联的太阳能转换效率在纳米结构的径向同轴壳/芯纳米线构造中被强烈地增强而优于常规的平面太阳能电池构造,部分地因为扩散长度是非常短的。关于薄石墨烯壳102的情况尤其是这样。
另外,可以观察到,这样的太阳能电池借助于从石墨烯层发出并且在通过光辐照时被注入到碳化硅芯101的导带中的高能电子的内部光电发射而起作用。以这种方式产生的光电流的每平方厘米数十毫安预期在标准日光强度下具有大约一个电子伏特的能量。所述的电池性能是部分地由于在石墨烯与碳化硅形成结时生成的势垒而导致的。该势垒的大小基于利用安德森逼近的计算被估计为稍微少于一个电子伏特,所述安德森逼近采用诸如石墨烯和碳化硅的功函数、电子亲和能以及电导率的已知量值。
所描述的石墨烯/碳化硅结也是值得注意的,在于该结将石墨烯(零带隙材料,其中电子根据量子电动力学的理论表现得好像它们是服从狄拉克波函数的无质量费米子)接合至宽带隙半导体碳化硅,其中电子服从量子力学的规定。该结(其宽度少于一个纳米)的功能之一是在使电子与空穴的复合最小化的同时,在光电发射的处理期间将“狄拉克(Dirac)”电子高效地变换成“薛定谔(Schroedinger)”电子。
一般地说,已证明构成这种结的原子的重建在结合成期间发生。该重建又进一步增强界面面积从而促进结的复杂功能。例如,已知石墨烯的费米能级的位置在与宽带隙半导体的异质结处改变。其它金属/半导体异质结不发生这个例外情况,至少部分地因为不像在普通金属情况下发现的非常大量的量子态,石墨烯靠近费米能级具有仅少量的状态。石墨烯/半导体异质结的唯一量子物理预期对诸如它们的暗电流行为的量子结构太阳能电池的特性有利。
石墨烯/碳化硅太阳能电池的有用属性是其温度稳定性。石墨烯和碳化硅这二者是高温材料,在于它们具有非常高的熔点并且是热力学稳定的。这些材料中的掺杂物的扩散过程在高达大约1000K的温度下是非常缓慢的,从而帮助防止相当于至少600K的温度的对应肖特基势垒的整流特性。
石墨烯/宽带隙半导体材料全部与作为示例的石墨烯/碳化硅共享这些属性。石墨烯/宽带隙材料因此唯一地能够在热电联产应用设定中充当高温太阳能电池。
作为另一示例,在这些方面中(并且再参照图8),这些教导将适应提供钛箔并且利用热液合成工艺来形成多个基本上对准的氧化钛纳米线以用作纳米线芯101。再者,这多个纳米线芯101被与钛箔基本上垂直地布置。(如在这些方面中所使用的,单词“基本上”将被理解为意指在二十五度内。)(因为在本领域中已知利用在升高温度下将钛箔在压力容器中暴露于由碱性氢氧化物的混合物构成的水溶液的热液合成工艺来在钛箔上形成氧化钛纳米线,所以为了简洁起见,除了注意到在使所期望的对准纳米线生长时这些教导将适应激活对应的压力安全阀以从而允许去除具有所期望的对准纳米线的箔部并且利用新鲜的箔部来替换这样的箔部以允许该工艺在使相关压力阀闭合时重复以外,这里在这些特定方面中不提供进一步详细描述。)
通过一个方法,能够结合选择的一个或更多个预定的(即,计划中的而不是随机的或偶然的)掺杂物利用生长后热处理工艺来对这样的氧化钛纳米线101进行掺杂(n型或p型,视需要而定)。作为一个说明性示例,在这些方面中,但是不旨在在这些方面中建议任何特定限制,能够通过在真空中把前述的氧化钛纳米线101加热或通过在600至900摄氏度的温度下于相应的适当长度的时间和特定压力下利用氢气(或选择的另一反应物)处理来实现p型掺杂(以实现特定掺杂水平)。
这样的方法能够用来在氧化钛晶格中引入氧空位以从而高效地生成三阶态的钛。这样的掺杂能够用来减少氧化钛纳米线101的平均原子价以从而以受控方式增加其电导率。p型掺杂的这样的方法能够帮助优化石墨烯-氧化钛结的特性,以便产生在将光转换为电方面显示最大效率的太阳能电池。
在这样的掺杂之后,能够在900至1000摄氏度的温度下将经对准的氧化钛纳米线101暴露于诸如甲烷的烃气长达适当长度的时间,以在这些线之间的空间中以及在纳米线101本身的顶面上实现石墨烯的所期望的化学气相沉积。通过一个方法,该石墨烯壳102仅轻度施加并且在厚度上包括例如不多于大约十层。
通过一个说明性方法,并且参照图9,能够结合包括线性菲涅耳(Fresnel)透镜装置的一个或更多个菲涅耳透镜901采用这样的太阳能电池800。通过一个方法,并且如所例示的,将甚至能够将太阳能电池800直接布置在透镜901本身上。
通过另一例示并且现在参照图10和图11,能够与诸如具有流体承载管1002的基于太阳热的系统1000的太阳能转换的第二模式部相结合地应用采用本教导的太阳能电池,所述流体承载管1002吸收来自从对应的抛物线槽太阳能收集器1001反射的日光804的热。具体地,并且如图11所具体地例示的,如本文所描述的太阳能电池800能够被在外部布置在流体承载管道1002本身的至少一部分上(诸如在从抛物线槽太阳能收集器1001接收反射光的管道1002的一部分上)。当太阳能电池包括如以上所描述的钛箔时,太阳能电池800能够通过将该钛箔本身物理上附接至流体承载太阳能收集器1001的表面而被布置在流体承载管道1002上。
图12提供了这些方面中的另一说明性示例。在该示例中,热电联产设施1200采用了具有太阳能收集器部1202的塔架1201。光804(来自诸如地球的太阳1203的星体)可以在太阳能收集器部1202处直接从光源接收,但是还以相对更大的数量如同从(通常)多个太阳反射器1204反射而被接收。
在该示例中,太阳能收集器部1202包括承载被所接收到的光加热的流体(诸如熔盐)的一个或更多个流体承载管道(例如,如图10和图11所示)。如上所述,基于石墨烯的光伏换能器被再次直接布置在这些管道上并且用来将接收到的日光直接转换成电。再者,当基于石墨烯的光伏换能器包括如以上所描述的钛箔时,基于石墨烯的光伏换能器能够通过将该钛箔本身物理上附接至这些管道的表面而被布置在这些管道上。
该电能够经由一个或更多个导体1205被导向配电网1210,或者若需要,导向诸如电池组的储电设施。
前述的热流体(其可能在工作温度下超过四百摄氏度)在该系统中流向能够堆积热的储罐1206直到需要时为止。当需要时,该热驱动将蒸汽提供给涡轮发电机1208的蒸汽生成机1207,该涡轮发电机1208产生要提供给配电网1210的电。这种系统中的冷却(或已冷却)盐能够被传递给并且存储在冷盐储罐中直到需要时为止。
如此构造,在相关热经由例如常规的电磁感应技术被转换为电的同时通过太阳能电池800提供光子到电的直接转换。这样的热电联产的基于太阳能的系统能够潜在地在适度温度下将太阳辐射流能量含量的大约百分之五十转换为电,其中光伏和电磁感应做出大致相等的贡献。
这样的纳米线芯太阳能电池的效率不仅取决于如以上所说明的它们之间的结的性质,而且首先取决于纳米结构的石墨烯壳吸收的光的能力。具体地,在三个维度的二个中,这样的纳米线与太阳辐射的波长相比是较小的。实际上,与块体材料相比对于这样的纳米线来说光的吸收似乎增强了大约两倍。此原因的至少一部分似乎是电磁辐射沿纳米线的整个长度进入或由经对准的纳米线传播。因此,大表面容积比(与块体材料相比)对吸收光的量做出显著贡献。
结果,辐射被这样的石墨烯壳/碳化硅或氧化钛纳米线非常高效地吸收。此外,光分布在大石墨烯表面区域之上,因为在这样的实施方式中,石墨烯壳102围绕各个纳米线。因此很可能的是,这样的纳米结构电池能够忍受高得多的辐射强度。
存在于这样的光伏装置中的大量这样的纳米线中的每一个包括单独地作为有效的纳米天线(nantenna)和光学整流器的独特结构。对于半径二十纳米的圆柱纳米线的计算表明,全光吸收因大约四百纳米(其进而在可见光的波长范围内)的纳米线长度而发生。各个纳米线因此能够被视为同时拥有天线的光(电磁波)聚集能力和光伏装置的整流特性这二者。
石墨烯的不透明性(其通常与光的波长无关)结合它用作围绕纳米线的纳米天线壳有助于确保入射日光的最大收集。因此,与石墨烯/碳化硅或氧化钛结的高效整流特性结合的这些基于石墨烯的纳米天线的高太阳能收集效率组合生成了新的且高效类别的太阳能电池。
除了如高效且便宜的太阳能电池的使能器这样的明显好处之外,还能够将这些教导容易地扩展到其它感兴趣领域。例如,能够容易地利用这些教导有利于新类别的生物传感器:色敏视网膜植入物。正如耳蜗植入物刺激耳朵的耳蜗中的听觉神经细胞一样,所以视网膜植入物刺激连接至视神经的眼睛的视网膜中的细胞。对于以将色视觉提供给视觉障碍者为最终目标这样的视觉辅器的研究已经长时间进行。通过控制这些纳米线的长度来优化对光波长的电响应的能力使得这些纳米结构唯一地适于色辨别视网膜植入物应用。此外,因为这些生物传感器是光电传感器以及光伏,所以传入光本身能够寻找给它们的操作供电的能量的来源,从而潜在地消除对于电池的需要。
应当了解,尽管太阳能转换的前述第一模式部以光伏方式发电,而太阳能转换的第二模式部以热的方式发电,但是第一模式部还将通常产生热作为光伏转换的副产品。该热能够实际上增大由太阳能转换的第二模式部以热的方式产生的总电力。
本领域技术人员将认识到,在不脱离本发明的范围的情况下,能够相对于以上描述的实施方式进行各种修改、变更和组合,并且这些修改、变更和组合将被视为在本发明构思的范围内。

Claims (60)

1.一种方法,该方法包括以下步骤:
提供各自包括上面布置有石墨烯的纳米线氧化钛芯的多个太阳能电池。
2.根据权利要求1所述的方法,其中,提供所述多个太阳能电池的步骤包括以下步骤:至少部分地提供上面布置有所述多个太阳能电池的钛箔,其中,所述太阳能电池中的至少大多数被对准为彼此基本上平行且与所述钛箔基本上垂直。
3.根据权利要求2所述的方法,其中,所述钛箔的面积是至少一平方米。
4.根据权利要求2所述的方法,其中,提供所述多个太阳能电池的步骤还包括以下步骤:至少部分地提供所述纳米线氧化钛芯中的至少一些作为掺杂的纳米线氧化钛芯。
5.根据权利要求2所述的方法,其中,所述石墨烯按照厚度不超过大约十层被布置在所述纳米线二氧化钛芯上。
6.根据权利要求2所述的方法,该方法还包括以下步骤:
将上面布置有所述多个太阳能电池的所述钛箔布置在热转换发电设备的聚热表面上,从而形成热电联产设备以将光转换成电。
7.根据权利要求6所述的方法,其中,将所述钛箔布置在热转换发电设备的聚热表面上的步骤包括以下步骤:至少部分地将所述钛箔布置在抛物线槽和电力塔接收器中的至少一个中的流体承载太阳能收集器上。
8.一种用来形成多个太阳能电池的方法,该方法包括以下步骤:
提供钛箔;
利用热液合成工艺来在所述钛箔上形成被布置为与所述钛箔基本上垂直的多个基本上对准的氧化钛纳米线;
将石墨烯沉积在所述氧化钛纳米线的至少一部分上。
9.根据权利要求8所述的方法,其中,将石墨烯沉积在所述氧化钛纳米线的至少一部分上的步骤包括以下步骤:将不超过大约十层石墨烯沉积在所述氧化钛纳米线的顶部上,其中,所述石墨烯的最顶层用作太阳能电极。
10.根据权利要求9所述的方法,该方法还包括以下步骤:
将石墨烯沉积在所述氧化钛纳米线中的相邻的氧化钛纳米线之间的空间中。
11.根据权利要求9所述的方法,该方法还包括以下步骤:
对所述氧化钛纳米线中的至少一些进行掺杂。
12.根据权利要求11所述的方法,其中,对所述氧化钛纳米线中的至少一些进行掺杂的步骤包括以下步骤:利用伴随有至少一种预定掺杂物的生长后热处理工艺来对所述氧化钛纳米线进行掺杂。
13.根据权利要求12所述的方法,其中,对所述氧化钛纳米线进行掺杂的步骤包括以下步骤:对所述氧化钛纳米线进行掺杂以将氧空位引入到氧化钛晶格中,从而生成三价钛。
14.根据权利要求12所述的方法,其中,利用生长后热处理工艺的步骤包括以下步骤中的至少一个:
在真空中将所述氧化钛纳米线加热;
利用氢气来处理所述氧化钛纳米线。
15.一种设备,该设备包括:
至少一个流体承载太阳能收集器,该至少一个流体承载太阳能收集器包括热转换发电系统的一部分;
布置在所述流体承载太阳能收集器的表面上的多个太阳能电池,该多个太阳能电池各自包括上面布置有石墨烯的纳米线氧化钛芯。
16.根据权利要求15所述的设备,其中,所述多个太阳能电池包括上面布置有所述多个太阳能电池的钛箔,其中,所述太阳能电池中的至少大多数被对准为彼此基本上平行且与所述钛箔基本上垂直,并且其中,所述钛箔物理上附接至所述流体承载太阳能收集器的所述表面。
17.根据权利要求16所述的设备,其中,所述纳米线氧化钛芯中的至少一些包括掺杂的纳米线氧化钛芯。
18.根据权利要求16所述的设备,其中,所述流体承载太阳能收集器操作上耦合至被构造为从所述至少一个流体承载太阳能收集器接收热的至少一个热储存单元,并且其中,存储在所述热储存单元中的热被用来发电。
19.根据权利要求18所述的设备,其中,所述多个太阳能电池包括高温光伏换能器。
20.一种设备,该设备包括被布置在光源与太阳能转换的第二模式部之间的太阳能转换的第一模式部,使得太阳能转换的所述第一模式部和太阳能转换的所述第二模式部这二者利用相同的光源来发电。
21.根据权利要求20所述的设备,其中,太阳能转换的所述第二模式部将热转换成电。
22.根据权利要求21所述的设备,其中,太阳能转换的所述第二模式部包括具有多个流体承载太阳能收集器的塔架。
23.根据权利要求21所述的设备,其中,太阳能转换的所述第一模式部被直接布置在包括太阳能转换的所述第二模式部的一部分的吸热表面上。
24.根据权利要求23所述的设备,其中,所述吸热表面包括流体承载管道。
25.根据权利要求23所述的设备,其中,太阳能转换的所述第一模式部包括足以总计吸收冲击在其上的至少基本上全部光的多层石墨烯。
26.根据权利要求25所述的设备,其中,所述多层石墨烯包括至少四十层石墨烯。
27.根据权利要求23所述的设备,其中,所述光源包括从星体直接接收到的光。
28.根据权利要求27所述的设备,其中,所述光源包括从所述星体直接接收到的光和经由来自所述星体的所述光的至少一次反射接收到的光这二者。
29.根据权利要求21所述的设备,其中,太阳能转换的所述第二模式部包括至少一个流体承载太阳能收集器,并且其中,太阳能转换的所述第二模式部还包括至少一个热储存单元,该至少一个热储存单元被构造为从所述至少一个流体承载太阳能收集器接收热,使得存储在所述热储存单元中的热能够被用来在缺少来自所述光源的光的情况下发电。
30.根据权利要求29所述的设备,其中,包含在所述流体承载太阳能收集器中的流体具有超过350摄氏度的工作温度范围。
31.根据权利要求20所述的设备,其中,太阳能转换的所述第一模式部包括:
芯,该芯实质上由宽带隙材料构成,其中,该芯具有不超过100纳米的至少一个对分尺寸;
壳,该壳实质上由共形地布置在所述芯的至少相当大部分附近的石墨烯构成。
32.根据权利要求31所述的设备,其中,太阳能转换的所述第一模式部包括各自具有布置在附近的所述壳中的一个的多个所述芯。
33.根据权利要求32所述的设备,其中,布置了所述多个芯,并且所述多个芯的纵轴被定向为彼此至少基本上平行。
34.根据权利要求33所述的设备,其中,所述纵轴的范围从至少大约200纳米到不超过大约5000纳米。
35.根据权利要求31所述的设备,其中,所述芯和所述壳中的至少一个包括掺杂物。
36.根据权利要求20所述的设备,其中,所述设备还包括具有太阳能转换的所述第二模式部的部件的流体承载管道,并且其中,太阳能转换的基于石墨烯的模式部被布置在所述流体承载管道的外表面上。
37.根据权利要求36所述的设备,其中,太阳能转换的所述第一模式部与由所述流体承载管道运载的被加热流体热接触。
38.一种设备,该设备包括被布置在光源与太阳能转换的另一模式部之间的高温光伏换能器,使得所述高温光伏换能器和太阳能转换的所述另一模式部这二者利用相同的光源来发电。
39.一种设备,该设备包括:
芯,该芯实质上由宽带隙材料构成,其中,该芯具有不超过100纳米的至少一个对分尺寸;
壳,该壳实质上由共形地布置在所述芯的至少相当大部分附近的石墨烯构成。
40.根据权利要求39所述的设备,其中,所述芯至少部分地包括所述宽带隙材料的多个退火的纳米微粒。
41.根据权利要求39所述的设备,其中,所述芯至少部分地由所述宽带隙材料的纳米线构成。
42.根据权利要求39所述的设备,其中,所述芯至少部分地包括所述宽带隙材料的以下各项中的至少一种:
纳米棒;
纳米纤维;
织物;
纳米管。
43.根据权利要求39所述的设备,其中,所述宽带隙材料包括以下各项中的至少一种:
硼;
铁;
钛;
锌;
碳;以及
硅。
44.根据权利要求43所述的设备,其中,所述宽带隙材料还包括以下各项中的至少一种:
硼化物;
碳化物;
氮化物;
氧化物;以及
硫化物。
45.根据权利要求39所述的设备,其中,所述宽带隙材料包括以下各项中的至少一种:
硼化物;
碳化物;
氮化物;
氧化物;以及
硫化物。
46.根据权利要求39所述的设备,其中,所述设备包括各自具有布置在附近的所述壳中的一个的多个所述芯。
47.根据权利要求46所述的设备,其中,布置了所述多个芯,并且所述多个芯的纵轴被定向为彼此至少基本上平行。
48.根据权利要求47所述的设备,其中,所述纵轴的范围从至少大约200纳米到不超过大约1500纳米。
49.根据权利要求46所述的设备,其中,所述多个芯中的至少一些电连接至共享电通路,以便于来自所述芯的电子远离所述芯移动。
50.根据权利要求39所述的设备,其中,所述石墨烯和所述芯至少部分地电连接至共享电通路,以便于来自所述石墨烯的正电荷远离所述石墨烯移动。
51.根据权利要求50所述的装置,其中,所述共享电通路包括石墨烯。
52.根据权利要求39所述的设备,其中,所述壳至少相当大部分地包括仅单层的所述石墨烯。
53.根据权利要求39所述的设备,其中,所述壳至少相当大部分地包括不超过大约五层的所述石墨烯。
54.根据权利要求39所述的设备,其中,所述壳至少相当大部分地包括不超过大约四十层的所述石墨烯。
55.根据权利要求39所述的设备,其中,连接所述壳和所述芯的通路之间的连接包括光伏结。
56.根据权利要求39所述的设备,其中,所述芯和所述壳中的至少一个包括掺杂物。
57.根据权利要求56所述的设备,其中,所述掺杂物包括n型掺杂物和p型掺杂物中的至少一种。
58.根据权利要求39所述的设备,该设备还包括:
至少一个流体承载管道;
其中,所述芯和壳被在外部布置在所述流体承载管道上。
59.根据权利要求58所述的设备,其中,所述至少一个流体承载管道包括抛物线式太阳能收集器的一部分。
60.根据权利要求39所述的设备,该设备还包括:
菲涅耳透镜太阳能收集器,其中,所述芯和壳被在外部布置在所述菲涅耳收集器上。
CN201380031828.7A 2012-08-10 2013-08-07 具有纳米线氧化钛和/或碳化硅芯及石墨烯外层的太阳能电池 Pending CN104471721A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201261681873P 2012-08-10 2012-08-10
US61/681,873 2012-08-10
US13/682,229 2012-11-20
US13/682,229 US8586999B1 (en) 2012-08-10 2012-11-20 Apparatus pertaining to a core of wide band-gap material having a graphene shell
US13/908,215 2013-06-03
US13/908,215 US8829331B2 (en) 2012-08-10 2013-06-03 Apparatus pertaining to the co-generation conversion of light into electricity
PCT/US2013/053919 WO2014025865A1 (en) 2012-08-10 2013-08-07 Solar cells having nanowire titanium oxide and/or si licon carbide cores and graphene exteriors

Publications (1)

Publication Number Publication Date
CN104471721A true CN104471721A (zh) 2015-03-25

Family

ID=50065260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380031828.7A Pending CN104471721A (zh) 2012-08-10 2013-08-07 具有纳米线氧化钛和/或碳化硅芯及石墨烯外层的太阳能电池

Country Status (5)

Country Link
US (2) US8829331B2 (zh)
EP (2) EP2828898B1 (zh)
CN (1) CN104471721A (zh)
ES (1) ES2654622T3 (zh)
WO (1) WO2014025865A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134504A (zh) * 2017-04-01 2017-09-05 昆明理工大学 一种纳米硅基石墨烯太阳能电池的制备方法
CN113072061A (zh) * 2021-03-02 2021-07-06 电子科技大学 锂离子电池正极导电添加剂碳纳米管阵列的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495850B (zh) * 2014-12-30 2017-02-01 哈尔滨工业大学 一种SiC/石墨烯核壳结构纳米材料的制备方法
JP2022535268A (ja) 2019-06-03 2022-08-05 ダイムロンド テクノロジーズ, エルエルシー 高効率グラフェン/ワイドバンドギャップ半導体ヘテロ接合太陽電池セル
CN116120097A (zh) * 2023-01-14 2023-05-16 西北工业大学 一种SiC纳米线@碳纳米相核壳异质结构增韧SiC涂层及制备方法

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988166A (en) * 1975-01-07 1976-10-26 Beam Engineering, Inc. Apparatus for enhancing the output of photovoltaic solar cells
US4320246A (en) * 1978-05-04 1982-03-16 Russell George F Uniform surface temperature heat pipe and method of using the same
DE3502902A1 (de) 1984-01-31 1985-08-08 Futaba Denshi Kogyo K.K., Mobara, Chiba Ionenstrahl-aufdampfvorrichtung
US4568663A (en) 1984-06-29 1986-02-04 Exxon Research And Engineering Co. Cobalt catalysts for the conversion of methanol to hydrocarbons and for Fischer-Tropsch synthesis
JPS6115967A (ja) 1984-06-29 1986-01-24 Sumitomo Electric Ind Ltd 表面処理方法
GB8423255D0 (en) 1984-09-14 1984-10-17 Atomic Energy Authority Uk Surface treatment of metals
US5132105A (en) 1990-02-02 1992-07-21 Quantametrics, Inc. Materials with diamond-like properties and method and means for manufacturing them
JPH0520028A (ja) 1990-12-28 1993-01-29 Matsushita Electric Ind Co Ltd 加減算のための浮動小数点演算装置の仮数部処理回路
US5209916A (en) 1991-11-25 1993-05-11 Gruen Dieter M Conversion of fullerenes to diamond
US6592839B2 (en) 1991-11-25 2003-07-15 The University Of Chicago Tailoring nanocrystalline diamond film properties
US5772760A (en) 1991-11-25 1998-06-30 The University Of Chicago Method for the preparation of nanocrystalline diamond thin films
US5370855A (en) 1991-11-25 1994-12-06 Gruen; Dieter M. Conversion of fullerenes to diamond
US5273788A (en) 1992-07-20 1993-12-28 The University Of Utah Preparation of diamond and diamond-like thin films
US5308661A (en) 1993-03-03 1994-05-03 The Regents Of The University Of California Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate
US5698328A (en) 1994-04-06 1997-12-16 The Regents Of The University Of California Diamond thin film electron emitter
EP0731490A3 (en) 1995-03-02 1998-03-11 Ebara Corporation Ultra-fine microfabrication method using an energy beam
US6020677A (en) 1996-11-13 2000-02-01 E. I. Du Pont De Nemours And Company Carbon cone and carbon whisker field emitters
AU8453098A (en) * 1997-01-18 2000-02-14 Btg International Limited A differential voltage cell
WO2000018518A1 (en) 1998-10-01 2000-04-06 The Uab Research Foundation A process for ultra smooth diamond coating on metals and uses thereof
KR20000028741A (ko) 1998-10-12 2000-05-25 안자키 사토루 열전반도체 재료 또는 소자의 제조방법 및 열전모듈의제조방법
US6277438B1 (en) 1999-05-03 2001-08-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Protective fullerene (C60) packaging system for microelectromechanical systems applications
AU3706401A (en) 2000-02-16 2001-08-27 Fullerene Internat Corp Diamond/carbon nanotube structures for efficient electron field emission
KR100837033B1 (ko) 2000-06-15 2008-06-10 엘리먼트 씩스 (프티) 리미티드 화학 증착에 의해 제조된 단결정 다이아몬드
US6669996B2 (en) 2000-07-06 2003-12-30 University Of Louisville Method of synthesizing metal doped diamond-like carbon films
WO2002020143A1 (fr) 2000-09-08 2002-03-14 Nippon Steel Corporation Article composite en ceramique/metal, structure composite permettant le transport d'ions oxyde et article composite presentant des proprietes d'etancheification
IL140281A0 (en) 2000-12-13 2002-02-10 Coil-based electronic and electrical components (such as coils, transformers, filters and motors) based on nanotechnology
US7795468B2 (en) 2001-01-19 2010-09-14 Chevron U.S.A. Inc. Functionalized higher diamondoids
US7306674B2 (en) 2001-01-19 2007-12-11 Chevron U.S.A. Inc. Nucleation of diamond films using higher diamondoids
US6783589B2 (en) 2001-01-19 2004-08-31 Chevron U.S.A. Inc. Diamondoid-containing materials in microelectronics
US7276222B2 (en) 2001-01-19 2007-10-02 Chevron U.S.A. Inc. Diamondoid-containing thermally conductive materials
US7127286B2 (en) 2001-02-28 2006-10-24 Second Sight Medical Products, Inc. Implantable device using ultra-nanocrystalline diamond
JP3833489B2 (ja) 2001-03-29 2006-10-11 株式会社東芝 冷陰極放電装置
US7285919B2 (en) 2001-06-22 2007-10-23 Lutron Electronics Co., Inc. Electronic ballast having improved power factor and total harmonic distortion
US6534923B2 (en) 2001-07-13 2003-03-18 Microwave Power Technology Electron source
CN1404345A (zh) 2001-08-31 2003-03-19 三洋电机株式会社 电激发光显示板的制造方法及蒸镀遮罩
US6884290B2 (en) 2002-01-11 2005-04-26 Board Of Trustees Of Michigan State University Electrically conductive polycrystalline diamond and particulate metal based electrodes
US20030152700A1 (en) 2002-02-11 2003-08-14 Board Of Trustees Operating Michigan State University Process for synthesizing uniform nanocrystalline films
US20070126312A1 (en) 2002-03-08 2007-06-07 Chien-Min Sung DLC field emission with nano-diamond impregnated metals
US7235912B2 (en) 2002-03-08 2007-06-26 Chien-Min Sung Diamond-like carbon thermoelectric conversion devices and methods for the use and manufacture thereof
US20030221717A1 (en) 2002-05-30 2003-12-04 Rensselaer Polytechnic Institute Composite thermal system
TW574174B (en) 2002-06-11 2004-02-01 Ind Tech Res Inst Nanostructured tungsten carbide material and method of fabricating the same
US7309476B2 (en) 2002-07-18 2007-12-18 Chevron U.S.A. Inc. Diamondoid-based components in nanoscale construction
US7224532B2 (en) 2002-12-06 2007-05-29 Chevron U.S.A. Inc. Optical uses diamondoid-containing materials
US7238963B2 (en) 2003-04-28 2007-07-03 Tpo Displays Corp. Self-aligned LDD thin-film transistor and method of fabricating the same
DE102004025048A1 (de) 2003-05-20 2004-12-23 Futaba Corp., Mobara Ultra-dispergierter Nano-Kohlenstoff und Verfahren zu seiner Herstellung
US7097906B2 (en) 2003-06-05 2006-08-29 Lockheed Martin Corporation Pure carbon isotropic alloy of allotropic forms of carbon including single-walled carbon nanotubes and diamond-like carbon
US20050019114A1 (en) 2003-07-25 2005-01-27 Chien-Min Sung Nanodiamond PCD and methods of forming
GB0320222D0 (en) 2003-08-29 2003-10-01 Univ Bristol Field emitter
US7312562B2 (en) 2004-02-04 2007-12-25 Chevron U.S.A. Inc. Heterodiamondoid-containing field emission devices
US7183548B1 (en) 2004-02-25 2007-02-27 Metadigm Llc Apparatus for modifying and measuring diamond and other workpiece surfaces with nanoscale precision
JP2005294478A (ja) 2004-03-31 2005-10-20 Dainippon Printing Co Ltd 熱電変換材料
US20060222850A1 (en) 2005-04-01 2006-10-05 The University Of Chicago Synthesis of a self assembled hybrid of ultrananocrystalline diamond and carbon nanotubes
US7858186B2 (en) 2004-11-12 2010-12-28 William Marsh Rice University Fluorinated nanodiamond as a precursor for solid substrate surface coating using wet chemistry
US7842271B2 (en) 2004-12-07 2010-11-30 Petrik Viktor I Mass production of carbon nanostructures
US20060207647A1 (en) 2005-03-16 2006-09-21 General Electric Company High efficiency inorganic nanorod-enhanced photovoltaic devices
US20060269567A1 (en) 2005-05-16 2006-11-30 Liu Yuen Universal detoxifying composition
JP2007081097A (ja) 2005-09-14 2007-03-29 Frontier Material:Kk 太陽光・熱ハイブリッドモジュールおよびハイブリッド発電システム、並びに建材一体型モジュールおよび建物
US7572332B2 (en) 2005-10-11 2009-08-11 Dimerond Technologies, Llc Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications
US7718000B2 (en) 2005-10-11 2010-05-18 Dimerond Technologies, Llc Method and article of manufacture corresponding to a composite comprised of ultra nonacrystalline diamond, metal, and other nanocarbons useful for thermoelectric and other applications
US20110005564A1 (en) 2005-10-11 2011-01-13 Dimerond Technologies, Inc. Method and Apparatus Pertaining to Nanoensembles Having Integral Variable Potential Junctions
US20070157924A1 (en) 2005-12-22 2007-07-12 Solbeam, Inc. Method for light ray steering
WO2007078210A1 (fr) 2005-12-30 2007-07-12 Gosudarstvennoe Uchrezhdenie 'federalnoe Agentstvo Po Pravovoi Zaschite Rezultatov Intellektualnoi Deyatelnosti Voennogo, Spetsialnogo I Dvoinogo Naznachenia' Pri Ministerstve Yustitsii Rossiyskoy Fed Nanodiamant et procede de fabrication correspondant
US7841428B2 (en) 2006-02-10 2010-11-30 Us Synthetic Corporation Polycrystalline diamond apparatuses and methods of manufacture
US20070232074A1 (en) 2006-03-31 2007-10-04 Kramadhati Ravi Techniques for the synthesis of dense, high-quality diamond films using a dual seeding approach
US7947329B2 (en) 2006-09-11 2011-05-24 Wisconsin Alumni Research Foundation Methods of applying a nanocrystalline diamond film to a cutting tool
US8044292B2 (en) 2006-10-13 2011-10-25 Toyota Motor Engineering & Manufacturing North America, Inc. Homogeneous thermoelectric nanocomposite using core-shell nanoparticles
US20090042029A1 (en) 2007-04-13 2009-02-12 Drexel University Polyamide nanofibers and methods thereof
US7999176B2 (en) 2007-05-08 2011-08-16 Vanguard Solar, Inc. Nanostructured solar cells
US20090017258A1 (en) 2007-07-10 2009-01-15 Carlisle John A Diamond film deposition
US7714317B2 (en) * 2007-08-30 2010-05-11 Brookhaven Science Associates, Llc Assembly of ordered carbon shells on semiconducting nanomaterials
US8440467B2 (en) 2007-09-28 2013-05-14 William Marsh Rice University Electronic switching, memory, and sensor devices from a discontinuous graphene and/or graphite carbon layer on dielectric materials
US20100326506A1 (en) * 2007-12-13 2010-12-30 Merck Patent Gmbh Photovoltaic Cells Comprising Group IV-VI Semiconductor Core-Shell Nanocrystals
US8236386B2 (en) 2008-01-24 2012-08-07 Wisys Technology Foundation Nanowire and microwire fabrication technique and product
CN102066243B (zh) 2008-06-20 2014-07-30 大阪瓦斯株式会社 钛氧化物包覆的碳纤维和多孔钛氧化物包覆的碳材料组合物
US20100101621A1 (en) * 2008-10-28 2010-04-29 Jun Xu Solar powered generating apparatus and methods
EP2345087B1 (en) 2008-11-04 2019-08-21 Eaton Corporation Combined solar/thermal (chp) heat and power for residential and industrial buildings
US20140370380A9 (en) 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
WO2010132868A1 (en) * 2009-05-15 2010-11-18 The Trustees Of Columbia University In The City Of New York Functionally graded solar roofing panels and systems
FR2948819B1 (fr) * 2009-08-03 2012-04-13 Areva Collecteur d'energie solaire hybride et centrale solaire comprenant au moins un tel collecteur
KR101539670B1 (ko) 2009-10-13 2015-07-27 삼성전자주식회사 전기에너지 발생장치
US8390705B2 (en) 2009-10-27 2013-03-05 Hewlett-Packard Develoment Company, L.P. Nanowire photodiodes
WO2011052508A1 (ja) * 2009-10-30 2011-05-05 住友化学株式会社 パイプ及び該パイプを備えた温水システム
US20120227787A1 (en) * 2009-11-16 2012-09-13 Tomer Drori Graphene-based photovoltaic device
KR101087911B1 (ko) 2009-11-23 2011-11-30 한양대학교 산학협력단 유기-무기 하이브리드 태양전지 및 그 제조방법
US9193879B2 (en) * 2010-02-17 2015-11-24 Baker Hughes Incorporated Nano-coatings for articles
US8890277B2 (en) 2010-03-15 2014-11-18 University Of Florida Research Foundation Inc. Graphite and/or graphene semiconductor devices
SA111320374B1 (ar) 2010-04-14 2015-08-10 بيكر هوغيس انكوبوريتد طريقة تشكيل الماسة متعدد البلورات من الماس المستخرج بحجم النانو
US8969717B2 (en) * 2010-08-12 2015-03-03 Aeris Capital Sustainable Ip Ltd. Thermoelectric stack coating for improved solar panel function
CN103261563B (zh) 2010-10-29 2016-04-13 贝克休斯公司 涂有石墨烯的金刚石粒子、包括这种粒子的组合物和中间结构、以及形成涂有石墨烯的金刚石粒子和聚晶复合片的方法
US20120192920A1 (en) * 2011-01-27 2012-08-02 Total Energy Renewable Power Systems, Llc Stacked Layer High Efficiency Solar Energy Collector
WO2012142269A1 (en) * 2011-04-12 2012-10-18 Nanocomp Technologies, Inc. Nanostructured material-based thermoelectric generators and methods of generating power
US20130040204A1 (en) 2011-08-08 2013-02-14 Battelle Memorial Institute Functional Nanocomposite Materials, Electrodes, and Energy Storage Systems
US20130206199A1 (en) * 2011-08-12 2013-08-15 AEgis Technologies Group, Inc. Device and Method for Hybrid Solar-Thermal Energy Harvesting
WO2013027561A1 (en) 2011-08-19 2013-02-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US8878157B2 (en) 2011-10-20 2014-11-04 University Of Kansas Semiconductor-graphene hybrids formed using solution growth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134504A (zh) * 2017-04-01 2017-09-05 昆明理工大学 一种纳米硅基石墨烯太阳能电池的制备方法
CN107134504B (zh) * 2017-04-01 2018-11-27 昆明理工大学 一种纳米硅基石墨烯太阳能电池的制备方法
CN113072061A (zh) * 2021-03-02 2021-07-06 电子科技大学 锂离子电池正极导电添加剂碳纳米管阵列的制备方法
CN113072061B (zh) * 2021-03-02 2022-10-14 电子科技大学 锂离子电池正极导电添加剂碳纳米管阵列的制备方法

Also Published As

Publication number Publication date
US8829331B2 (en) 2014-09-09
EP2828898A4 (en) 2015-06-24
US20170054044A1 (en) 2017-02-23
US20140041704A1 (en) 2014-02-13
EP2828898B1 (en) 2017-10-04
EP3261132A1 (en) 2017-12-27
WO2014025865A1 (en) 2014-02-13
ES2654622T3 (es) 2018-02-14
WO2014025865A9 (en) 2014-06-19
EP2828898A1 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
Yin et al. MXenes for solar cells
Choubey et al. A review: Solar cell current scenario and future trends
Bierman et al. Potential applications of hierarchical branching nanowires in solar energy conversion
Cheng et al. Branched nanowires: Synthesis and energy applications
CN104471721A (zh) 具有纳米线氧化钛和/或碳化硅芯及石墨烯外层的太阳能电池
Sagadevan Recent trends on nanostructures based solar energy applications: a review
TW201104890A (en) Carbon nanotube-based solar cells
TW200810136A (en) Photovoltaic device with nanostructured layers
Sohrabi et al. Optimization of third generation nanostructured silicon-based solar cells
Roco et al. Nanotechnology for sustainability: energy conversion, storage, and conservation
US9040395B2 (en) Apparatus pertaining to solar cells having nanowire titanium oxide cores and graphene exteriors and the co-generation conversion of light into electricity using such solar cells
Chen et al. 2D/3D halide perovskites for optoelectronic devices
Kim et al. Energy materials for energy conversion and storage: focus on research conducted in Korea
US20150200316A1 (en) Solar cells having nanowire titanium oxide and/or silicon carbide cores and graphene exteriors
Raval et al. Historic Developments, Current Technologies and Potential of Nanotechnology to Develop Next Generation Solar Cells with Improved Efficiency.
US8586999B1 (en) Apparatus pertaining to a core of wide band-gap material having a graphene shell
Low et al. Graphene and its derivatives, synthesis route, and mechanism for photovoltaic solar cell applications
Ganguly et al. Production and storage of energy with one-dimensional semiconductor nanostructures
JP2022535268A (ja) 高効率グラフェン/ワイドバンドギャップ半導体ヘテロ接合太陽電池セル
Hut et al. Nanomaterials for sustainable energy production and storage: Present day applications and possible developments
Hurst et al. Nanomaterials for energy applications
Deshmukh et al. Versatile 1-D Nanostructures for Green Energy Conversion and Storage Devices
Xue et al. Nickel Phosphide-Coupled Methylammonium Lead Halide as an Efficient and Stable Photocatalyst for Photocatalytic H2 Evolution from HI Splitting
Majumder et al. Photoelectrochemical Behavior of ZnO Nanostructure: A Short Review
Serrano et al. Nanotechnology for energy production

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150325