CN101689609A - 杂化光伏电池和相关方法 - Google Patents

杂化光伏电池和相关方法 Download PDF

Info

Publication number
CN101689609A
CN101689609A CN200880017164A CN200880017164A CN101689609A CN 101689609 A CN101689609 A CN 101689609A CN 200880017164 A CN200880017164 A CN 200880017164A CN 200880017164 A CN200880017164 A CN 200880017164A CN 101689609 A CN101689609 A CN 101689609A
Authority
CN
China
Prior art keywords
nanometer rods
nanocrystal
capping reagent
polymer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880017164A
Other languages
English (en)
Other versions
CN101689609B (zh
Inventor
奈杰尔·皮克特
詹姆斯·哈里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanoco Technologies Ltd
Original Assignee
Nanoco Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoco Technologies Ltd filed Critical Nanoco Technologies Ltd
Publication of CN101689609A publication Critical patent/CN101689609A/zh
Application granted granted Critical
Publication of CN101689609B publication Critical patent/CN101689609B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/125Deposition of organic active material using liquid deposition, e.g. spin coating using electrolytic deposition e.g. in-situ electropolymerisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种光伏电池,所述光伏电池包括第一和第二电极,以及多个排列的被布置在所述电极之间的半导体纳米棒,每个纳米棒都与所述第一电极电连接,并且与所述第二电极电绝缘。多个感光纳米晶体环绕所述纳米棒并且与所述纳米棒结合。半导体聚合物环绕所述纳米棒并且与所述纳米晶体和至少所述第二电极结合。所述纳米晶体起到将第一电荷载流子引导至所述纳米棒中和将第二电荷载流子引导至所述聚合物中的异质结的作用。

Description

杂化光伏电池和相关方法
本发明涉及太阳能电池及其制备,并且特别涉及纳米棒-纳米晶体-聚合物杂化太阳能电池。
为了从电磁辐射产生有用的电流,光伏(PV)电池必须吸收入射辐射以使得电子从价带跃至导带(从而在价带中留下空穴),并且必须能够分离电子和空穴,并且将这些电荷载流子输送至它们各自的电极,之后它们重新结合。
为了以商业上另人满意的效率实现这些基本的性能,采用了许多基于各种材料的不同策略,成功的程度不同。代表性的器件包括晶体无机太阳能电池(例如,硅、锗、GaAs)、纳米晶体染料敏化太阳能电池、半导体-聚合物太阳能电池、纳米粒子太阳能电池,和更近一些的结合和组合了来自其它策略的上述组件的复合太阳能电池。
硅是迄今为止最通常使用的用于制备无机光伏电池的材料。这些电池依赖于硅吸收光,因而产生激发的电子-空穴对且所述的激发的电子-空穴对随后在p-n结处分离的能力。由p-n结产生的电场促进这样的分离,原因在于电子和空穴穿过材料移动的方式,即,电子移动到较低能级,而空穴移动到较高能级。
p-n结的产生通常涉及在惰性气氛中高温处理,以形成不可弯曲且昂贵的非常纯的晶体硅晶片。因为硅是间接半导体,典型地需要较厚的层以实现良好的吸收水平,这进一步增加材料成本。最纯(且昂贵)的硅光伏电池的效率在20%的数量级;较便宜的非晶硅电池的效率为约5-10%。
目前的商业PV系统可以将5%至15%的日光能转化成电力。这些系统是高度可靠的并且通常延续20年以上。通过较不昂贵的低温技术制备太阳能电池的可能性非常有吸引力。因此,纳米晶体染料敏化太阳能电池(DSSC)、半导体-聚合物太阳能电池和纳米粒子太阳能电池享受到广泛的兴趣。
半导体的聚合物可以用于制备有机光伏电池。这些聚合物的性质可以通过组成单体的官能化来调整。这样,许多具有合适的带隙、吸收特性和物理性质的聚合物是可用的。为了实现电子-空穴对的分离,有机光伏电池依赖于给体-受体异质结。在聚合物中,激发态的电子和空穴以称为激子的准粒子形式结合在一起,并且一起移动。它们保持在一起,直至它们遇到将它们分离的异质结。不幸的是,激子是非常短命的并且在重新结合之前仅可以移动约10nm。因此,所吸收的任何距离异质结比此扩散长度远的光子都将被浪费。与电荷迁移率高得多的硅(1500cm2V-1s-1)相比,聚合物的电荷迁移率通常是低的(0.5-0.1cm2V-1s-1)。目前的现有技术的聚合物光伏电池具有1-2%的效率。尽管这样的效率是低的,但是这些材料有希望用于低成本、柔性的太阳能电池。
无机纳米粒子(或纳米晶体)已被用于制备胶体、薄膜PV电池,它们在保持无机光伏电池的许多优点的同时显示出聚合物光伏电池的某些优点。例如,这样的电池可以包括含有给体层和受体纳米粒子层的双层结构,其中所述的两层显示出很少的杂化,并且二者对所测得的光电流均有贡献。这些器件显示出的强光电导效应表明这些材料具有大量被截流的载流子,并且与用p-n带模型相比,用给体-受体分子模型描述更好。与体积半导体(bulk semiconductors)的带隙能量相比,增加的带隙能量将可用的载流子的数目最小化,并且在不同相中给体和受体粒子的空间分离截流激子,使得它们必须在受体-给体异质结处分裂。没有能带弯曲,所以激子的分裂更困难。
应当强调,将给体和受体纳米粒子简单地混合到一起并不制成产生光电压的膜。在电极处对一种粒子或另一种粒子的没有选择性表示电极可以与给体和受体物种均发生接触。这些物种可以采取纳米棒而非纳米球的形式,因为具有高纵横比的纳米棒有助于分散载流子。激子沿纳米棒长度的迅速迁移改善了在给体-受体异质结处分裂激子的机会。
例如CdSe棒的溶液加工可以获得直径的5%和长度的10%的尺寸分布,其中纵横比为20且长度为100nm。通过溶液加工可得的实质控制允许通过纳米棒长度和带隙能量的改变将电池最优化。
纳米材料与聚合物膜的组合显示了在提供用于制备的低温溶液法的同时产生良好的功率转化效率。在一种途径中,纳米材料用于传导电荷,而聚合物用作吸收物质,或备选地,纳米材料起到生色团即吸光剂的作用,而半导体聚合物用作空穴导体。在前一种情况中,宽带隙半导体(例如TiO2)接收来自生色聚合物半导体的导带的激发电子;而在后一种情况中,吸光半导体纳米晶体吸收光子并且将所得到的负电荷传递到透明的原电极(primary electrode),而半导体的聚合物将空穴传递到对电极。在两种类型的电池中,纳米晶体与聚合物之间的异质结将在纳米晶体或聚合物中产生的激子分离。电子被传递到纳米晶体的导带,而空穴留在聚合物的价带中,或电子留在纳米晶体的导带中,而空穴被传递到聚合物的价带。
聚合物-纳米晶体电池中的活性层具有两种组分:吸光剂和纳米颗粒电子载流子。典型地,吸光剂是p-型聚合物导体,例如聚(亚苯基亚乙烯基)或聚(3-己基噻吩),而纳米颗粒电子载流子是宽带隙半导体,比如ZnO或TiO2。在此构造中,聚合物起到吸收光、将电子传递到电子受体/载流子,和将空穴运送到原电极的作用。电子受体接收电子并且将电子传递到金属背触点(metal back contact)。
相分离的形态是决定性的。例如,其中每个层仅有一种组分的双层结构导致具有差性能的电池。原因在于吸光聚合物的激发态的寿命通常比激子到界面的传递速率短,因此在聚合物本体中形成的激子的大部分从未到达分离电子和空穴的界面,从而导致光电流的损失。其中形成体积异质结的形态趋于显示更高的效率。如果吸收剂和电子受体紧密接触贯穿整个活性层,则较短的激子路径长度将导致电子传递增加和较高的效率。由这种构造的电池得到的最佳效率为约2%。
这种技术显示了前景,但是有要克服的障碍。一个问题是入射辐射的不完全吸收。吸光很强烈并且被称为聚合物染料的聚合物具有大的吸光系数(>100,000M-1cm-1),但是由于低的激子迁移率,因此膜通常必须比100nm薄,这样导致了显著的不完全吸收。这种效果可以通过给体和受体物种的相互交叉阵列结构来防止。
与吸光聚合物方案相关的问题是由于典型聚合物的窄吸收带宽造成的可用太阳能的利用不足。约40%的光(从约600nm以外进入近IR)可能被浪费。备选的构造是采用纳米晶体作为吸光剂和电子载流子,而采用聚合物作为吸光剂和空穴载流子。CdSe纳米棒和四脚体/聚合物体系已经显示了至多1.7%的功率转化效率。这些体系的优点在于可以通过纳米晶体的尺寸来调整纳米晶体的吸收,从而可以制备基本上吸收所有入射辐射的系统。
不幸的是,难以将无机纳米晶体分散到单体的溶液中。两相趋于附聚并且使对于形成能够电荷分离的异质结关键的电接触最小化。纳米晶体在聚合物相中的分散是具有巨大意义的领域。
典型地,用于分散纳米晶体的措施是用具有有机尾部的封端剂将纳米晶体官能化,这增加在进行聚合的溶剂中的溶解度。用于此目的的封端剂典型地具有头基,其具有与纳米晶体的强烈亲合力;例如,胺、羧酸酯、膦、硫醇、氧化膦和磷酸均强烈结合。封端剂的有机尾部应当与聚合物可溶于其中的溶剂相容。长烃链典型地提供高溶解度,但是是不传导的;因此,必须使最优溶解度相对于传导性平衡。
用于复合物研究的最流行的聚合物是PDFC、P3Ht和MEH-PPV(其中PDFC是指-{聚[9,9-二己基芴基-2,7-二基)-交替共聚-(9-乙基-3,6-咔唑)]}-,P3Ht是指聚(3-己基噻吩),而MEH-PPV是指聚(2-甲氧基-5-(2’-乙基-己氧基)-1,4-亚苯基亚乙烯基))。这些聚合物中的每一个都具有用于官能化的位置,从而允许控制价带/导带能量以获得用于将电荷传递至纳米晶体和从纳米晶体传递电荷的最优条件。已经指出,封端剂还可以起到有机受体相的作用;例如,已经显示用磷酸基团官能化的P3HT隔绝CdSe纳米晶体。
DSSC结合涂覆有透明传导氧化物的基底(其起到原电极的作用)。对电极也可以涂覆有透明传导氧化物,但是还可以是非腐蚀性金属,比如涂覆有非常薄的铂层的钛。宽带隙半导体(比如TiO2)的多孔层沉积在原电极的导电性表面上。然后用在光谱的可见区域中具有强吸收的染料涂覆此多孔层。为了最有效,染料浓度应当限于染料分子的单层。为此,大表面积对于容纳足够的染料来吸收所有入射光是必需的。因此,纳米晶体(例如TiO2)用于制备高度多孔的膜。含有氧化还原耦(redox couple)(典型地I-/I3 -)的电解质被吸收到二氧化钛层中。为了完成电池,使得承载了原电极和敏化二氧化钛层的基底与对电极面对面接触。
典型的染料是无机-钌基的,但是对有机染料兴趣在增加。染料吸收可见光,而激发态将电子注入到TiO2导带中。在可能发生反向电子传递之前,氧化的染料被溶液中的氧化还原活性物种(典型地I-/I3 -)还原,从而再次产生染料。氧化的氧化还原活性物种扩散到对电极,它在那里被还原,从而完成循环并且使电路完整。在允许注入的电子在对电极处将氧化的氧化还原活性物种还原之前,可以通过使注入的电子穿过外负载来做功。
可以制备便宜的DSSC器件,其显示出至多10%的能量转换效率。对此技术有许多问题要解决以改善性能和稳定性,包括用固态或较高沸点的电解质代替最优性能液体电解质;改善光谱重叠;使用具有较低氧化还原电势的氧化还原介质;和降低归因于通过纳米粒子TiO2层的差的电子传导的重新结合损失。
杂化电池结合了被涂覆且烧结到透明的半导体氧化物上的染料敏化二氧化钛和将电子运送至氧化的染料的p-型聚合物。因为仅一种聚合物代替多组分电解质,所以这些电池可以方便且可再生产地制备。然而,钌染料敏化的纳米棒基DSSC趋于显示出低效率,因为较小的表面积没有容纳足够的染料来吸收所有的入射光。到目前为止发现的最有效率的染料仅具有~20,000M-1cm-1量级的消光系数,因而需要大表面积以结合足够的染料来获得最大吸光率。
本发明的一个目的是排除或减轻与现有光伏电池和/或光伏电池组件的制备有关的缺点中的一个或多个。
本发明的方面是提供包含半导体纳米棒-纳米晶体-聚合物杂化层的光伏(PV)电池,以及用于制备所述光伏电池的方法。在根据本发明的PV电池中,纳米晶体起到作为吸光物质和作为激发的电子-空穴对(即激子)在该处分裂的异质结的作用。纳米棒起到电子载流子的作用并且电连接到电池的阳极,而聚合物起到空穴载流子的作用并且电连接到电池的阴极。
本发明的一个优点在于使用小粒子即纳米晶体同时作为吸光剂和异质结。与例如常规聚合物PV电池的那些重新结合损失相比,所得到的激子产生和分裂的空间-时间近似(spatio-temporal proximity)引起重新结合损失的显著降低,因而获得了较高的光子向电的转换效率。本发明的实施方案提供另外的优点是机械柔性和低成本制备方法。
因此,在第一方面,本发明提供光伏电池,所述光伏电池包含两个电极和在这些电极之间的被多个感光纳米晶体环绕且与所述多个感光纳米晶体结合的多个排列的半导体纳米棒,以及环绕纳米棒且与纳米晶体结合的半导体聚合物。纳米晶体起到将电子引导至纳米棒中和将空穴引导至聚合物中或反之亦然的异质结的作用。纳米棒电连接到第一电极,并且通过与第二电极结合的聚合物薄层与第二电极电绝缘。在各种实施方案中,聚合物是空穴传递聚合物,因此纳米晶体将空穴引导至聚合物中并且将电子引导至纳米棒中。在各种实施方案中,纳米晶体通过双官能封端剂与纳米棒结合,所述双官能封端剂可以为例如巯基乙酸。例如,纳米棒可以在第一电极上生长,而稍后另一个电极可以以确保纳米棒与第二电极绝缘的方式沉积在纳米棒-纳米晶体-聚合物层上。
有利的纳米棒具有至少为3的纵横比(即,粒子的最长尺寸与最短尺寸的比率),并且它们的最短尺寸不大于100nm。优选的纳米棒是单晶的。根据本发明的合适纳米棒材料包括但不限于宽带隙半导体,比如例如ZnO、SnO和TiO2,其中ZnO是优选的材料。
根据本发明的合适纳米晶体包括直径不大于20nm的半导体的单晶或多晶的纳米粒子,它们可以(但不是必须)通常为球形。合适的纳米晶体材料包括但不限于:CuInSe2、CuInS2、CuIn1-xGaxSe2(其中0≤x≤1)、GaAs、InAs、InP、PbS、PbSe、PbTe、GaSb、InSb、CdTe和CdSe。消光系数为至少100,000M-1cm-1的纳米晶体是优选的。在各种实施方案中,纳米晶体的最大空间尺寸不大于在纳米晶体中通过吸收光产生的激子的平均扩散距离。
合适的聚合物材料包括但不限于:聚(3-己基噻吩)、聚亚苯基亚乙烯基(PPV)及其衍生物,和,聚芴(PFO)及其衍生物。在各种实施方案中,聚合物与纳米晶体结合,但不与纳米棒结合。
在第二方面,本发明提供制备具有异质结的半导体结构体的方法;所述结构体可以用在光伏电池中。所述方法的实施方案涉及提供多个纳米棒和多个用第一封端剂封端的感光纳米晶体;使纳米棒或纳米晶体暴露于第二双官能封端剂;然后将纳米晶体与纳米棒组合使得纳米晶体通过双官能封端剂与纳米棒结合;将结合的纳米棒和纳米晶体与具有结合基团的官能化单体组合,所述结合基团具有(i)与第一封端剂相比,对纳米晶体更强的亲合力和(ii)与双官能封端剂相比,对纳米棒更弱的亲合力,使得单体优选置换第一封端剂并且与纳米晶体结合;以及,聚合单体。双官能封端剂可以首先与纳米棒结合,然后置换一些第一封端剂与纳米晶体结合。备选地,双官能封端剂可以首先与纳米晶体结合(置换一些第一封端剂),然后用其自由端与纳米棒结合。在各种实施方案中,第一封端剂含有硫醇、硒醇、胺、膦、氧化膦、和/或芳族杂环官能团。合适的封端剂的非限制性实例是辛硫醇。
当与附图结合时,更易于从以下对本发明的详细描述中理解上述描述。
图1A示例性地示出一个根据本发明的纳米棒-纳米晶体-聚合物杂化太阳能电池的实施方案。
图1B是图1A的杂化半导体层的三种主要组件及其互相连接的放大的示意图。
图2A是详述根据一个实施方案制备图1A中示出的结构体的方法的流程图。
图2B是详述根据一个备选实施方案制备图1A中示出的结构体的方法的流程图。
图3在微观水平示出图2中显示的方法的某些步骤和所得到的产品。
1.纳米棒-纳米晶体-聚合物杂化结构体
在聚合物基光伏电池中,激子在重新结合之前平均移动10nm的量级;因此,需要尽可能快地分离激子,即,使它们遇到异质结。这样的需要在本发明的实施方案中得到满足,其中纳米晶体(量子点)起到空穴传递聚合物和宽带隙半导体电子受体之间的桥的作用,因此构成异质结,并且纳米晶体同时起到吸光剂即产生激子的地方的作用。根据本发明的纳米晶体的直径约等于或小于激子的扩散距离。因此,在纳米晶体中产生的激子通常在其平均扩散距离以内遇到纳米晶体与电子受体或空穴传递聚合物的界面,这与其迁移的方向无关。因此,激子非常有效率地分裂,并且偶尔发生在纳米晶体内的重新结合。电子进入宽带隙半导体中,而空穴进入聚合物中。
根据本发明的PV电池100的结构示出于图1A中。在两个电极即阳极101和阴极103之间,安置构成电子受体的多个排列的宽带隙半导体纳米棒106。如图1A中详细显示的,纳米棒106分别被感光纳米晶体109环绕。敏化的纳米棒进而被空穴传递聚合物112环绕,所述的空穴传递聚合物112填充电极101,103之间剩余的空间。聚合物112还在阴极103下面形成薄层,该薄层使阴极103与敏化的纳米棒106电绝缘。
图1B显示在本发明的优选实施方案中怎样将这三种组件相互连接。纳米晶体109与纳米棒106通过双官能结合分子115结合。在各种实施方案中,双官能封端剂115具有硫醇和羧酸酯部分。硫醇基优选与纳米晶体109结合,而羧酸酯基优选与(金属氧化物)纳米棒106结合。插入链(intervening chain)应当足够短,使得不妨碍从纳米晶体109向纳米棒106的电荷传递。代表性的双官能封端剂115是巯基乙酸。空穴传递聚合物112与纳米晶体109直接结合,但是优选不与纳米棒106结合。
纳米棒、双官能分子、纳米晶体和聚合物的体系的代表性非限制实例包括用巯基乙酸封端的ZnO纳米棒、CuInSe2量子点和聚(3-己基噻吩)。
1.1纳米晶体109
在用于特别应用中的纳米晶体的半导体材料取决于价带和导带能级的适合性。导带应当具有足以能够将电子有效率地注入纳米棒中的能量,而价带应当具有充分低的能量以将空穴注入到聚合物价带中。后一约束通常易于满足,因为可以容易地识别具有比纳米晶体更高能量价带的合适聚合物。对于上述约束,纳米晶体的带隙应当足够小,以允许大部分的太阳光谱被吸收。合适的纳米晶体材料包括基于铜-铟-联硒化物及其变体的材料,例如,CuInS2、CuInSe2、或CuIn1-xGaxSe2(其中0≤x≤1),以及CdSe、GaAs、InAs和InP。
纳米晶体可以使用例如在美国专利6,379,635和同时待审的美国专利申请序列号11/579,050和11/588,880中描述的技术来合成。
用于制备CdSe、InS、GaS、ZnS、CdS、ZnAs、CdAs和其它相关纳米晶体材料的方法描述于美国专利6,379,635的实验部分的第1至10部分中。在此描述了怎样可以以单前体络合物(比如但不限于所需金属离子的烷基碳酸酯络合物)提供纳米晶体前体,然后使其在合适的条件(例如,约200至300℃的温度)下热分解以得到最终所需的纳米晶体材料。
作为实例,纳米晶体CdSe可以如下这样形成:将1.2MeCddsc(0.5mmol)放置于10ml的TOP(98%,Aldrich)中,并且将所形成的混合物过滤,之后在200℃注入30g的TOPO。然后将溶液的温度升高到250℃,并且加热半小时。使所形成的深红色溶液冷却至75℃,之后将大量过量的干燥CH3OH(BDH)加入。絮凝物沉淀形成,通过离心分离并且再分散在甲苯中,然后将所有不溶的物质丢弃。然后在真空(10-2托)下将甲苯泵出以得到深红色物质,然后用CH3OH洗涤。将固体再分散于甲苯中,以产生葡萄酒红色的溶液,其保持光学透明数周。通过向此溶液中加入CH3OH进行尺寸选择沉淀直至观察到浑浊,随后将固体离心。在没有检测到光学吸收之前,此过程成功地应用于在制备工艺的过程中得到的上层清液。
可以采用类似的方法,通过用通式(AlK1)2MIIIE2CN(AlK2)2的络合物代替MeCddsc来制备III-VI纳米晶体材料(例如InS、GaS),在所述通式中,AlK1和AlK2独立为烷基,比如Me、Et、Np等,每一个AlK1和AlK2都相同或不同,MIII为III族金属离子,比如In、Ga等,并且E是VI族离子,比如S、Se等;和通过用通式[MII[E2CN(AlK3)2]2]的络合物代替MeCddsc来制备II-VI或II-V纳米晶体材料(例如,ZnS、CdS、ZnAs和CdAs),在所述通式中,每一个AlK3都是烷基,比如Me、Et、Pr等,每一个AlK3都相同或不同,MII是II族金属离子,比如Zn、Cd等,并且E是V或VI族离子,比如As或S、Se等。
用于制备大量纳米晶体材料的方法描述于美国专利申请序列11/579,050和11/588,880中。这些申请第一次描述了怎样可以使用分子簇作为任何所需纳米晶体材料的控制生长的晶种,然后可以提供一个或多个与形成生长于分子簇晶种上的纳米晶体芯的材料不同的材料的外壳。
作为实例,美国专利申请序列11/579,050在实施例1至9中描述了簇[HNEt3]2[Cd4(SPh)10]和[HNEt3]4[Cd10Se4(SPh)16]的制备,然后所述簇可以用于通过在合适的时间内控制添加Cd离子和Se离子(来自例如,TOPSe和Cd(CH3CO2)2)与合适地控制反应混合物的温度的升高组合,来制备CdSe纳米晶体。例如,实施例1描述了在HDA中由[Et3NH]4[Cd10Se4(SPh)16]/TOPSe/Cd(CH3CO2)2制备CdSe纳米粒子。将HDA(300g)放置于三口烧瓶中,并且通过在动态真空下加热至120℃1小时以干燥/脱气。然后将溶液冷却至70℃。向其加入1.0g的[Et3NH]4[Cd10Se4(SPh)16](0.311mmol)、TOPSe(20ml,40.00mmol)[由将硒粉末溶解于TOP中预先制备]和Cd(CH3CO2)2(10.66g,40.00mmol),历时8小时将反应混合物的温度逐渐从70℃升高至180℃。纳米粒子的逐步形成/生长通过从反应混合物中取出等份试样并且测量它们的紫外-可见和光致发光光(PL)光谱,通过它们的发射波长来监测。当发射光谱达到572nm时,通过将反应冷却至60℃随后加入200ml的使纳米粒子沉淀的干“温“乙醇来停止反应。在将所得到的CdSe干燥,之后再溶解于甲苯中,通过硅藻土过滤,随后从温乙醇中再沉淀以移除任何过量的HDA和Cd(CH3CO2)2。这产生9.26g的HDA封端的CdSe纳米粒子。
作为另外的实例,美国专利申请序列11/588,880描述了在HDA中通过逐滴加入Me2CdTOP由[HNEt3]4[Cd10Se4(SPh)16]/TOPSe/Me2CdTOP制备CdSe纳米粒子,和在HDA中通过逐滴加入Et2Zn和S-辛胺由[Et3NH]4Zn10S4(SPh)16]晶种制备ZnS纳米粒子。用此方法形成的纳米粒子然后可以配置有一个或多个壳层以提供CdSe/ZnS-HDA封端的纳米粒子,和ZnSe/ZnS纳米粒子。例如,ZnS纳米粒子可以通过在HDA中,逐滴加入Et2Zn和S-辛胺,由[Et3NH]4Zn10S4(SPh)16]晶种形成。将200g部分的十六烷胺(HDA)放置于三口圆底烧瓶中,并且通过在动态真空下加热至120℃>1小时而干燥和脱气。然后将溶液冷却至60℃,然后将反应烧瓶用氮填充,并且使用标准无空气技术将以下试剂装载到烧瓶中:0.6g[HNEt3]4[Zn10S4(SPh)16](0.2mmol)、4ml的Et2Zn在三辛基膦中的0.5M溶液(2mmol),和4ml的元素硫在辛胺中的0.5M溶液(2mmol)。将温度升高至120℃并且允许搅拌2小时。在此点,开始进行速率为~0.2℃/min的从120℃至210℃的程序升温。同时,以~0.05mL/min的速率逐滴加入8ml的0.5M Et2Zn和8ml的0.5M S-辛胺。当PL最大发射达到所需发射(λmax=391nm,FWHM=95nm)时,通过冷却至60℃之后加入300ml的干乙醇或丙酮以从溶液中沉淀粒子来停止反应。通过过滤分离此沉淀物。将所得到的ZnS粒子通过以下方法进一步纯化(以移除过量的HDA、硫和锌):再溶解于甲苯中,通过硅藻土过滤溶液,并且从温乙醇中再沉淀(产物收率:0.9g)。然后可以进行CdSe纳米粒子的封端或壳化(shelling),例如按如下进行:将HDA(800g)放置于三口圆底烧瓶中,通过在动态真空下加热至120℃>1小时而干燥和脱气。然后将溶液冷却至60℃,向其中加入9.23g的PL最大发射为585nm的CdSe纳米粒子。然后将HDA加热至220℃。通过向其中交替滴加共计20ml的0.5M Me2Zn·TOP和0.5M,20ml的溶解于辛胺中的硫。分别进行3.5、5.5和11.0ml的三次交替添加,其中首先滴加3.5ml的硫直至PL最大强度接近零。然后滴加3.5ml的Me2Zn·TOP直至PL最大强度达到最大值。重复此循环,其中PL最大在每次循环中达到更高的强度。在最后一次循环中,一旦达到PL最大强度,就加入另外的前体,直至PL最大强度低于最大强度5-10%,并且允许反应在150℃退火(anneal)1小时。然后允许反应混合物冷却至60℃,由此加入300ml的干“温”乙醇,这导致粒子的沉淀。将所得到的CdSe-ZnS粒子干燥,之后再溶解于甲苯中,并且通过硅藻土过滤,随后从温乙醇中再沉淀以移除任何过量的HAD。这产生12.08g的HAD封端的CdSe-ZnS芯-壳纳米粒子。元素分析C=20.27,H=3.37,N=1.25,Cd=40.11,Zn=4.43%;最大PL 590nm,FWHM 36nm。
在美国临时申请序列60/991,510中公开了采用硒醇化合物制备任意适宜化学计量的CIGS纳米晶体的方法。该方法的实施方案涉及将至少第一部分的纳米晶体前体组合物(包含Al、Ga和/或In中的至少一种以及Cu、Ag、Zn和/或Cd中的至少一种的源)分散在溶剂(例如,长链烃溶剂)中;历时适宜的时间长度将溶剂加热至第一温度;将硒醇化合物加入到溶剂中并且加热该溶剂;将第二部分的纳米晶体前体组合物加入到反应混合物中;历时适宜的时间长度将混合物加热至比第一温度高的第二温度;并且保持该温度至多10小时。一旦形成粒子,粒子的表面原子就典型地与封端剂配位,所述封端剂可以包括在本方法中使用的硒醇化合物。如果使用挥发性的硒醇化合物,则此封端剂可以经加热除去,以得到“裸露的”纳米晶体,其经得起用其它配位配体封端和进一步加工。实施例1和2提供关于此方法的实施的进一步的细节:
实施例1:将乙酸铜(I)(1mmol)和乙酸铟(III)(1mmol)加入到清洁且干燥的RB-烧瓶中。加入十八烯ODE(5mL),反应混合物在真空下于100℃加热30分钟。烧瓶用氮反填充并且温度升高至140℃。注入1-辛烷硒醇并且温度降至120℃。在搅拌的条件下加热所得到的橙色悬浮体,当温度达到140℃时得到透明的橙色/红色溶液。保持此温度30分钟,然后逐滴加入1M三-辛基-膦硒化物TOPSe(2mL,2mmol),并且在160℃加热溶液。监测PL直至其达到所需波长,之后将其冷却并且用甲醇/丙酮(2∶1)洗涤所得到的油4-5次,并且最后通过用丙酮沉淀分离。
实施例2(大规模制备):通过在氮下将Se粉末(10.9,138mmol)溶解于TOP(60mL)中制备TOPSe的备用溶液。向干燥、脱气的ODE中加入乙酸铜(I)(7.89g,64.4mmol)和乙酸铟(III)(20.0g,68.5mmol)。反应容器排空并且在140℃加热10分钟,用N2反填充,并且冷却至室温。加入1-辛烷硒醇(200mL)以生成鲜橙色悬浮液。将烧瓶的温度升高至140℃,并且乙酸在120℃从反应中蒸出。当达到140℃时,滴加TOPSe溶液,滴加时间为1小时。在3小时之后将温度升高至160℃。通过从反应中周期性取出等份试样并且测量紫外/可见和光致发光光谱来监测反应的进程。7小时之后将反应冷却至室温,并且用甲醇洗涤所得到的黑色油。持续甲醇洗涤直至能够通过加入丙酮从油中沉淀细小的黑色物质。通过离心分离黑色沉淀物,用丙酮洗涤并且在真空下干燥。收率:31.97g。
为了将纳米晶体的组成、尺寸和电荷最优化,它们可以通过常规技术来表征,所述常规技术包括但不限于:XRD、紫外/可见/近红外光谱法、SEM、TEM、EDAX、光致发光光谱法和元素分析。
本发明的某些实施方案使利用消光系数至少为100,000M-1cm-1的纳米晶体。在这样高的吸光率下,需要更少的纳米晶体来得到相同的总吸收。因此,本发明的基于这些纳米晶体的实施方案可以从吸收增加中受益,而没有由于重新结合增加招致效率损失的情况。
1.2纳米棒106
为了控制形状,纳米棒可以通过直接化学合成利用配体如氧化三辛基膦(TOPT)和各种膦酸例如十八烷基膦酸的合适组合来制备。此外,可以采用以下技术在有序的纳米棒阵列中生长不同种类的金属氧化物:例如金属箔的电化学蚀刻,或基板播种晶,随后在化学浴(chemical bath)中在垂直于基板的方向上生长纳米棒。参见,例如,D.C.Olson等,J.Phys.Chem.C,2007,111,16640-16645;和J.Yang等,Crystal Growth & Design,2007,12/2562。
在本发明的优选实施方案中,纳米棒具有超过3的高纵横比,并且至多200nm长。优选的纳米棒材料是ZnO。其它可能合适的材料包括SnO、TiO2和其它金属氧化物。
如之前提到的,纳米晶体的小尺寸大大减少了在粒子中的重新结合。为了进一步减少重新结合损失,本发明的优选实施方案利用单晶纳米棒。尽管在纳米多孔离子基膜中,如在DSSC电池中采用的那些膜中,电子缓慢地渗滤穿过膜,从而可以发生与电解质的重新结合,但是通过单晶纳米棒的电子传递非常快,这限制了来自纳米棒的电子与纳米晶体或聚合物中的空穴的重新结合。
在优选实施方案中并且如下面更详细讨论的,纳米棒涂覆有双官能封端剂的层,其使量子点与纳米棒紧密结合,从而防止了半导体聚合物进入纳米棒的附近,这更进一步减少了纳米棒-聚合物重新结合损失。
1.3聚合物112
聚合物112应当具有允许空穴从纳米晶体价带有效率地传递到聚合物价带的价带能量。合适的聚合物包括聚(3-己基噻吩)、聚亚苯基亚乙烯基(PPV)及其衍生物,和聚芴(PFO)及其衍生物。由于有机材料中的高空穴迁移率,因而这些聚合物是有效率的空穴传递聚合物。
2.用于制备纳米棒-纳米粒子-聚合物杂化结构体的方法
根据本发明的杂化半导体结构体可以使用低成本沉积技术如印刷、浸涂或化学浴沉积来制备。关于制备的重要考虑是控制各种工件在何处结合到一起。例如,聚合物与纳米棒的结合将最可能导致由于重新结合造成的效率的大量损失。在优选实施方案中,纳米晶体与纳米棒和半导体聚合物这两者结合,以提升作为异质结的最优性能,并且聚合物不直接与纳米棒结合。此结构可以用合适的封端剂在适当的加工步骤中得到。
图2A和2B示出执行本发明的实施方案的代表性加工顺序200A和200B。图3进一步以微观水平示出这些顺序中的某些步骤和它们产生的结构体。在第一步骤202中,纳米棒在阳极基底上生长,例如通过在基底上印刷晶种,然后使纳米棒经由化学浴垂直于基底生长。在此结构体中,纳米棒固有地与基底电接触。在随后的步骤中,将纳米晶体和单体引入到所得到的排列的纳米棒的膜上。
在步骤204中,提供用含有与纳米晶体弱结合的官能团的(第一)封端剂封端的纳米晶体。合适的官能团包括硫醇、硒醇、胺、膦、氧化膦和芳族杂环。典型地,将纳米晶体溶解于非极性有机溶剂中。封端剂起到控制纳米晶体与纳米棒和聚合物结合的作用;结合是可逆的,并且稍后封端剂可以用其它配体交换。适合于与CuInSe2纳米晶体一起使用的封端剂的实例是辛硫醇或吡啶。
在步骤206、208中,纳米棒被纳米晶体覆盖,其中经由双官能封端剂115(例如巯基乙酸)建立纳米棒与纳米晶体之间的结合,所述双官能封端剂115具有与纳米棒和纳米晶体强结合的基团。这可以通过不同方式完成。在某些实施方案中,如图2A和图3中所示,例如通过将具有纳米棒的基底浸入到双官能封端剂的溶液中,将纳米棒用双官能封端剂封端(步骤206A)。例如,封端剂可以经由羧酸酯官能团与纳米棒结合。然后例如通过将经冲洗的(rinced)具有纳米棒300的基底浸入到一种或多种纳米晶体溶液中,将封端的纳米晶体302引入到封端的纳米棒300的膜上(步骤208A)。在此阶段,纳米晶体的弱封端剂的一部分被双官能封端剂的更强的结合基团例如巯基乙酸的硫醇官能团置换,这产生纳米晶体敏化的纳米棒304。
在备选实施方案中,如图2B中所示,将封端的纳米晶体在非极性有机溶剂中的溶液加入到双官能封端剂在极性有机溶剂中的溶液中,所述极性有机溶剂与所述的非极性有机溶剂不混溶,并且摇动溶液以确保良好混合(步骤206B)。纳米晶体发生配体交换并且从非极性有机相转移至极性有机相。随后,将表面上有排列的纳米棒的基底浸入纳米晶体溶液中或以其它方式与纳米晶体接触(步骤208B),由此纳米棒经由封端剂的羧酸官能团与纳米晶体结合。这些实施方案同样产生纳米晶体敏化的纳米棒304。
单体用结合基团官能化(步骤210),所述结合基团具有与(第一)纳米晶体封端剂相比对纳米晶体更强的亲合力,但是与双官能封端剂相比对纳米棒更弱的亲合力。此外,单体上结合基团对纳米晶体的亲合力优选比双官能封端剂对纳米晶体的亲合力弱。单体官能团不应当妨碍聚合反应。具有适当差异的结合亲合力的结合基团易于由本领域技术人员在不进行过多试验的情况下基于封端剂及其取代基的特征(例如,它们是单齿或多齿的,或存在吸电子基团,等)和纳米晶体的尺寸确认。然后将官能化单体与纳米晶体敏化的纳米棒组合(步骤212),其中官能化单体与纳米晶体(但不是纳米棒)结合,优选置换纳米晶体上的弱封端剂,但是保持纳米棒-纳米晶体结合不受影响,从而产生结构体306。随后的聚合步骤214产生纳米棒-纳米晶体-聚合物半导体结构体308。
最后,例如,通过溅射或金属蒸镀,可以将金属阴极(例如Al)沉积在结构体上(步骤216),使得纳米棒形成在两个相对电极之间沉积的排列的棒的阵列。阴极下的聚合物层应当足够厚,以将阴极与纳米棒电隔离。
尽管已经参照具体细节描述了本发明,但是并不意在应当将这样的细节视为对本发明范围的限制,本发明的范围仅由它们被包括在后附权利要求中的形式和程度限制。

Claims (21)

1.一种光伏电池,所述光伏电池包括:
a.第一和第二电极;
b.多个排列的半导体纳米棒,所述多个排列的半导体纳米棒布置在所述电极之间,每个纳米棒与所述第一电极电连接,并且与所述第二电极电绝缘;
c.多个感光纳米晶体,所述多个感光纳米晶体环绕所述纳米棒并且与所述纳米棒结合;和
d.半导体聚合物,所述半导体聚合物环绕所述纳米棒并且与所述纳米晶体和至少所述第二电极结合,因而所述纳米晶体起到将第一电荷载流子引导至所述纳米棒中和将第二电荷载流子引导至所述聚合物中的异质结的作用。
2.根据权利要求1所述的电池,其中(i)所述聚合物是空穴传递聚合物,(ii)所述第一电荷载流子是电子,并且(iii)所述第二电荷载流子是空穴。
3.根据权利要求1或2所述的电池,其中所述聚合物是聚(3-己基噻吩)、聚亚苯基亚乙烯基或其衍生物,或聚芴或其衍生物。
4.根据权利要求1、2或3所述的电池,其中所述纳米棒是宽带隙半导体。
5.根据权利要求1、2、3或4所述的电池,其中所述纳米棒包含ZnO、SnO和/或Ti02中的至少一种。
6.根据前述权利要求中任一项所述的电池,其中所述纳米棒是单晶纳米棒。
7.根据前述权利要求中任一项所述的电池,其中所述纳米棒具有至少为3的纵横比。
8.根据前述权利要求中任一项所述的电池,其中所述纳米棒通过双官能封端剂与所述纳米晶体结合。
9.根据权利要求8所述的电池,其中所述封端剂是巯基乙酸。
10.根据前述权利要求中任一项所述的电池,其中通过纳米晶体的光吸收导致激子的产生,所述纳米晶体具有的最大空间尺寸不大于所述激子的平均扩散距离。
11.根据前述权利要求中任一项所述的电池,其中所述纳米晶体包括CuInSe2、CuInS2、CuIn1-xGaxSe2、GaAs、InAs、InP、PbS、PbSe、PbTe、GaSb、InSb、CdTe和CdSe中的至少一种,其中0≤x≤1。
12.根据前述权利要求中任一项所述的电池,其中所述纳米晶体具有至少为100,000M-1cm-1的消光系数。
13.根据前述权利要求中任一项所述的电池,其中所述半导体聚合物与所述纳米晶体结合,但不与所述纳米棒结合。
14.一种制备包含异质结并且适于在光伏电池中使用的半导体结构体的方法,所述方法包括以下步骤:
a.提供多个纳米棒和多个用第一封端剂封端的感光纳米晶体;
b.使所述纳米棒或所述纳米晶体暴露于第二双官能封端剂;
c.之后将所述纳米晶体与所述纳米棒组合,从而所述纳米晶体通过所述双官能封端剂与所述纳米棒结合;
d.将所述结合的纳米棒和纳米晶体与具有结合基团的官能化单体组合,所述结合基团(i)显示出与所述第一封端剂相比对所述纳米晶体更强的亲合力和(ii)显示出与所述双官能封端剂相比对所述纳米棒更弱的亲合力,由此所述单体优选置换所述第一封端剂,因而与所述纳米晶体结合,但不与所述纳米棒结合;和
e.聚合所述单体。
15.根据权利要求14所述的方法,所述方法还包括以下步骤:将所述纳米棒布置在所述第一和第二电极之间,所述纳米棒各自有一端与所述第一电极电接触,而通过在另一端的聚合物薄层与所述第二电极电绝缘。
16.根据权利要求14或15所述的方法,所述方法还包括:在步骤(a)之前,在提供所述第一电极的基底上生长多个纳米棒的步骤。
17.根据权利要求14、15或16所述的方法,所述方法还包括:在步骤(e)之后,沉积所述第二电极的步骤,所述第二电极通过聚合物薄层与所述纳米棒电绝缘。
18.根据权利要求14、15、16或17所述的方法,其中步骤(a)包括提供用第一封端剂封端的纳米晶体,所述第一封端剂含有选自由以下各项组成的组中的至少一种结合官能团:硫醇、硒醇、胺、膦、氧化膦或芳族杂环。
19.根据权利要求14至18中任一项所述的方法,其中所述第一封端剂是辛硫醇。
20.根据权利要求14至19中任一项所述的方法,其中步骤(b)包括:用所述第二封端剂将所述纳米棒封端,与所述第二封端剂相比,所述第一封端剂对所述纳米晶体的亲合力更弱,由此所述第二封端剂优选置换所述第一封端剂从而与所述纳米晶体结合。
21.根据权利要求14至20中任一项所述的方法,其中步骤(b)包括:使所述纳米晶体暴露于所述第二封端剂,所述第二封端剂置换所述纳米晶体上的一部分但不是所有的所述第一封端剂,由此在步骤(c)中所述第二封端剂的自由端与所述纳米棒结合。
CN2008800171648A 2007-04-25 2008-04-25 杂化光伏电池和相关方法 Expired - Fee Related CN101689609B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US92610307P 2007-04-25 2007-04-25
US60/926,103 2007-04-25
PCT/GB2008/001457 WO2008132455A1 (en) 2007-04-25 2008-04-25 Hybrid photovoltaic cells and related methods

Publications (2)

Publication Number Publication Date
CN101689609A true CN101689609A (zh) 2010-03-31
CN101689609B CN101689609B (zh) 2012-05-30

Family

ID=39672081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800171648A Expired - Fee Related CN101689609B (zh) 2007-04-25 2008-04-25 杂化光伏电池和相关方法

Country Status (10)

Country Link
US (3) US20080264479A1 (zh)
EP (1) EP2140511A1 (zh)
JP (1) JP2010525597A (zh)
KR (1) KR20100016587A (zh)
CN (1) CN101689609B (zh)
AU (1) AU2008243976A1 (zh)
CA (1) CA2685033A1 (zh)
IL (1) IL201712A (zh)
TW (1) TWI426614B (zh)
WO (1) WO2008132455A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779943A (zh) * 2012-06-20 2012-11-14 浙江大学 一种高效率的有机无机杂化太阳能电池及其制备方法
CN103219418A (zh) * 2013-03-26 2013-07-24 华中科技大学 一种具有纳米异质复合结构的紫外光探测器及其制备方法
CN105027298A (zh) * 2012-11-20 2015-11-04 诺基亚技术有限公司 光探测
CN105377973A (zh) * 2013-03-01 2016-03-02 苏米特·库马尔 杂化复合纳米材料
TWI556683B (zh) * 2013-03-15 2016-11-01 伊利諾大學受託人董事會 多-異質接面奈米粒子、其製造方法及包含該粒子之製品
CN106328750A (zh) * 2016-10-25 2017-01-11 合肥工业大学 一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法
CN106435534A (zh) * 2010-07-26 2017-02-22 L·皮尔·德罗什蒙 液相化学沉积装置、方法及其制品
CN108806990A (zh) * 2018-06-12 2018-11-13 湖北文理学院 基于Ⅱ型CdSe/CdTe量子阱的高效光阳极及其制备方法
CN116283287A (zh) * 2023-03-20 2023-06-23 西北工业大学 一种量子片锚固的钒酸铋薄膜、制备方法及应用

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0409877D0 (en) * 2004-04-30 2004-06-09 Univ Manchester Preparation of nanoparticle materials
US7588828B2 (en) * 2004-04-30 2009-09-15 Nanoco Technologies Limited Preparation of nanoparticle materials
GB2429838B (en) * 2005-08-12 2011-03-09 Nanoco Technologies Ltd Nanoparticles
GB0522027D0 (en) * 2005-10-28 2005-12-07 Nanoco Technologies Ltd Controlled preparation of nanoparticle materials
GB0606845D0 (en) 2006-04-05 2006-05-17 Nanoco Technologies Ltd Labelled beads
US8563348B2 (en) * 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
US20080264479A1 (en) 2007-04-25 2008-10-30 Nanoco Technologies Limited Hybrid Photovoltaic Cells and Related Methods
US7759150B2 (en) * 2007-05-22 2010-07-20 Sharp Laboratories Of America, Inc. Nanorod sensor with single-plane electrodes
US20110139233A1 (en) * 2009-12-11 2011-06-16 Honeywell International Inc. Quantum dot solar cell
US20100275985A1 (en) * 2009-04-30 2010-11-04 Honeywell International Inc. Electron collector and its application in photovoltaics
US20110174364A1 (en) * 2007-06-26 2011-07-21 Honeywell International Inc. nanostructured solar cell
KR101813688B1 (ko) * 2007-09-28 2017-12-29 나노코 테크놀로지스 리미티드 코어 쉘 나노입자들 및 이들의 준비 방법
US8784701B2 (en) 2007-11-30 2014-07-22 Nanoco Technologies Ltd. Preparation of nanoparticle material
US8106388B2 (en) * 2007-12-19 2012-01-31 Honeywell International Inc. Quantum dot solar cell with rigid bridge molecule
US8710354B2 (en) * 2007-12-19 2014-04-29 Honeywell International Inc. Solar cell with hyperpolarizable absorber
US8067763B2 (en) * 2007-12-19 2011-11-29 Honeywell International Inc. Quantum dot solar cell with conjugated bridge molecule
US8089063B2 (en) * 2007-12-19 2012-01-03 Honeywell International Inc. Quantum dot solar cell with electron rich anchor group
JP5749495B2 (ja) * 2008-02-25 2015-07-15 ナノコ テクノロジーズ リミテッド 半導体ナノ粒子キャッピング剤
US8288649B2 (en) * 2008-02-26 2012-10-16 Honeywell International Inc. Quantum dot solar cell
US8373063B2 (en) * 2008-04-22 2013-02-12 Honeywell International Inc. Quantum dot solar cell
US8299355B2 (en) * 2008-04-22 2012-10-30 Honeywell International Inc. Quantum dot solar cell
US8283561B2 (en) * 2008-05-13 2012-10-09 Honeywell International Inc. Quantum dot solar cell
US8350144B2 (en) * 2008-05-23 2013-01-08 Swaminathan Ramesh Hybrid photovoltaic cell module
US20100006148A1 (en) * 2008-07-08 2010-01-14 Honeywell International Inc. Solar cell with porous insulating layer
US8148632B2 (en) * 2008-07-15 2012-04-03 Honeywell International Inc. Quantum dot solar cell
US20100012168A1 (en) * 2008-07-18 2010-01-21 Honeywell International Quantum dot solar cell
GB0813273D0 (en) * 2008-07-19 2008-08-27 Nanoco Technologies Ltd Method for producing aqueous compatible nanoparticles
GB0814458D0 (en) * 2008-08-07 2008-09-10 Nanoco Technologies Ltd Surface functionalised nanoparticles
US8455757B2 (en) 2008-08-20 2013-06-04 Honeywell International Inc. Solar cell with electron inhibiting layer
EP2172986B1 (en) * 2008-08-27 2013-08-21 Honeywell International Inc. Solar cell having hybrid hetero junction structure
US20100101636A1 (en) * 2008-10-23 2010-04-29 Honeywell International Inc. Solar cell having supplementary light-absorbing material and related system and method
GB0820101D0 (en) * 2008-11-04 2008-12-10 Nanoco Technologies Ltd Surface functionalised nanoparticles
GB0821122D0 (en) * 2008-11-19 2008-12-24 Nanoco Technologies Ltd Semiconductor nanoparticle - based light emitting devices and associated materials and methods
KR100988206B1 (ko) * 2008-12-12 2010-10-18 한양대학교 산학협력단 탄소 나노튜브 복합재료를 이용한 태양 전지 및 그 제조방법
US8227686B2 (en) * 2009-02-04 2012-07-24 Honeywell International Inc. Quantum dot solar cell
US8227687B2 (en) * 2009-02-04 2012-07-24 Honeywell International Inc. Quantum dot solar cell
KR101010856B1 (ko) * 2009-03-02 2011-01-26 고려대학교 산학협력단 광전자 소자 및 그 제조 방법
US20100258163A1 (en) * 2009-04-14 2010-10-14 Honeywell International Inc. Thin-film photovoltaics
US20100294367A1 (en) * 2009-05-19 2010-11-25 Honeywell International Inc. Solar cell with enhanced efficiency
WO2010144487A2 (en) * 2009-06-09 2010-12-16 Sdsu Research Foundation Organic photovoltaic cell and light emitting diode with an array of 3-dimensionally fabricated electrodes
US8426728B2 (en) * 2009-06-12 2013-04-23 Honeywell International Inc. Quantum dot solar cells
US20110247693A1 (en) * 2009-06-22 2011-10-13 Richard Brotzman Composite photovoltaic materials
US20100326499A1 (en) * 2009-06-30 2010-12-30 Honeywell International Inc. Solar cell with enhanced efficiency
US8308973B2 (en) * 2009-07-27 2012-11-13 Rohm And Haas Electronic Materials Llc Dichalcogenide selenium ink and methods of making and using same
GB0916700D0 (en) * 2009-09-23 2009-11-04 Nanoco Technologies Ltd Semiconductor nanoparticle-based materials
GB0916699D0 (en) * 2009-09-23 2009-11-04 Nanoco Technologies Ltd Semiconductor nanoparticle-based materials
JP2013506965A (ja) * 2009-10-02 2013-02-28 サウス ダコタ ステイト ユニバーシティ 半導体ナノ粒子/ナノファイバ複合材電極
US20110108102A1 (en) * 2009-11-06 2011-05-12 Honeywell International Inc. Solar cell with enhanced efficiency
US20110139248A1 (en) * 2009-12-11 2011-06-16 Honeywell International Inc. Quantum dot solar cells and methods for manufacturing solar cells
US8372678B2 (en) * 2009-12-21 2013-02-12 Honeywell International Inc. Counter electrode for solar cell
GB201005601D0 (en) 2010-04-01 2010-05-19 Nanoco Technologies Ltd Ecapsulated nanoparticles
JP6178725B2 (ja) * 2010-04-23 2017-08-09 ピクセリジェント・テクノロジーズ,エルエルシー ナノ結晶の合成、キャップ形成および分散
JP2012004572A (ja) * 2010-06-17 2012-01-05 Nextgen Solar Llc 複合光起電材料
CN101969102B (zh) * 2010-08-09 2012-05-23 吉林大学 全水相纳米晶/导电聚合物杂化太阳能电池的制备方法
CN103328374B (zh) 2010-10-27 2017-04-26 皮瑟莱根特科技有限责任公司 纳米晶体的合成、盖帽和分散
JP6084572B2 (ja) * 2010-11-05 2017-02-22 イサム・リサーチ・デベロツプメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシテイ・オブ・エルサレム・リミテッド 偏光照明システム
KR101208272B1 (ko) * 2011-02-24 2012-12-10 한양대학교 산학협력단 양면 구조를 가지는 태양전지 및 이의 제조방법
KR101304491B1 (ko) * 2011-07-18 2013-09-05 광주과학기술원 나노구조체 어레이 기판, 그 제조방법 및 이를 이용한 염료감응 태양전지
US9359689B2 (en) * 2011-10-26 2016-06-07 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
CN102856499B (zh) * 2012-08-17 2015-10-21 许昌学院 一种SnO2与P3HT杂化异质结薄膜太阳能电池的制备方法
KR101479157B1 (ko) * 2013-03-15 2015-02-25 김일구 나노구조의 양자점 유기 벌크 이종접합 수광소자
KR101788570B1 (ko) * 2013-03-15 2017-10-19 나노코 테크놀로지스 리미티드 Cu2XSnY4 나노 입자들
DE102013221758B4 (de) * 2013-10-25 2019-05-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtungen zur aussendung und/oder zum empfang elektromagnetischer strahlung und verfahren zur bereitstellung derselben
JP6455915B2 (ja) * 2014-08-29 2019-01-23 国立大学法人電気通信大学 太陽電池
RU2577174C1 (ru) * 2014-12-18 2016-03-10 Общество с ограниченной ответственностью "Энергоэкотех" Покрытие для фотовольтаической ячейки и способ его изготовления
KR20180077733A (ko) 2016-12-29 2018-07-09 엘에스산전 주식회사 태양전지 모듈용 보호 유리 및 그 제조방법
WO2020099284A1 (en) 2018-11-14 2020-05-22 Merck Patent Gmbh Nanoparticle
CN113828298B (zh) * 2021-09-09 2023-08-22 四川轻化工大学 一种提高ZnO表面光电压的方法

Family Cites Families (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769838A (en) 1953-11-20 1956-11-06 Ciba Pharm Prod Inc Polyglycol ether acid anilides
US3524771A (en) 1969-04-03 1970-08-18 Zenith Radio Corp Semiconductor devices
US4609689A (en) * 1984-04-27 1986-09-02 Becton, Dickinson And Company Method of preparing fluorescently labeled microbeads
US6696585B1 (en) * 1993-04-13 2004-02-24 Southwest Research Institute Functionalized nanoparticles
GB9518910D0 (en) 1995-09-15 1995-11-15 Imperial College Process
US6607829B1 (en) 1997-11-13 2003-08-19 Massachusetts Institute Of Technology Tellurium-containing nanocrystalline materials
US6322901B1 (en) * 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
AUPP051497A0 (en) 1997-11-24 1997-12-18 University Of Melbourne, The Antimicrobial peptides
US6699723B1 (en) 1997-11-25 2004-03-02 The Regents Of The University Of California Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US5990479A (en) 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6501091B1 (en) 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
US20030148024A1 (en) 2001-10-05 2003-08-07 Kodas Toivo T. Low viscosity precursor compositons and methods for the depositon of conductive electronic features
US6326144B1 (en) 1998-09-18 2001-12-04 Massachusetts Institute Of Technology Biological applications of quantum dots
WO2000017655A1 (en) 1998-09-18 2000-03-30 Massachusetts Institute Of Technology Water-soluble fluorescent semiconductor nanocrystals
US6426513B1 (en) 1998-09-18 2002-07-30 Massachusetts Institute Of Technology Water-soluble thiol-capped nanocrystals
DE69905832T2 (de) 1998-09-18 2004-02-05 Massachusetts Institute Of Technology, Cambridge Biologische Verwendungen von halbleitenden Nanokristallen
US6221602B1 (en) 1998-11-10 2001-04-24 Bio-Pixels Ltd. Functionalized nanocrystals and their use in labeling for strand synthesis or sequence determination
US6333110B1 (en) 1998-11-10 2001-12-25 Bio-Pixels Ltd. Functionalized nanocrystals as visual tissue-specific imaging agents, and methods for fluorescence imaging
US6261779B1 (en) 1998-11-10 2001-07-17 Bio-Pixels Ltd. Nanocrystals having polynucleotide strands and their use to form dendrimers in a signal amplification system
US6114038A (en) * 1998-11-10 2000-09-05 Biocrystal Ltd. Functionalized nanocrystals and their use in detection systems
EP1161490A4 (en) * 1999-02-05 2003-04-09 Univ Maryland NANOPARTICLES IN LIEU OF LUMINESCENCE PROBES
US6919119B2 (en) * 2000-05-30 2005-07-19 The Penn State Research Foundation Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films
US20020045190A1 (en) 2000-07-11 2002-04-18 Wilson Robert B. Encoding methods using up-converting phosphors for high-throughput screening of catalysts
EP1176646A1 (en) * 2000-07-28 2002-01-30 Ecole Polytechnique Féderale de Lausanne (EPFL) Solid state heterojunction and solid state sensitized photovoltaic cell
AU2001290075A1 (en) 2000-09-22 2002-04-02 Glaxo Group Limited Novel alkanoic acid derivatives
ATE491230T1 (de) 2000-10-04 2010-12-15 Univ Arkansas Synthese von kolloidalen metall chalcogenide nanokristallen
US8618595B2 (en) * 2001-07-02 2013-12-31 Merck Patent Gmbh Applications of light-emitting nanoparticles
US6846565B2 (en) * 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
US6918946B2 (en) * 2001-07-02 2005-07-19 Board Of Regents, The University Of Texas System Applications of light-emitting nanoparticles
CN1394599A (zh) 2001-07-06 2003-02-05 中国科学院上海原子核研究所 药用硫化锑纳米胶粒的制备方法
CA2453450A1 (en) * 2001-07-20 2003-11-06 Quantum Dot Corporation Luminescent nanoparticles and methods for their preparation
AU2002365069A1 (en) 2001-07-30 2003-06-23 The Board Of Trustees Of The University Of Arkansas High quality colloidal nanocrystals and methods of preparation of the same in non-coordinating solvents
US6794265B2 (en) 2001-08-02 2004-09-21 Ultradots, Inc. Methods of forming quantum dots of Group IV semiconductor materials
US20030106488A1 (en) * 2001-12-10 2003-06-12 Wen-Chiang Huang Manufacturing method for semiconductor quantum particles
US20040007169A1 (en) 2002-01-28 2004-01-15 Mitsubishi Chemical Corporation Semiconductor nanoparticles and thin film containing the same
JP3683265B2 (ja) * 2002-05-28 2005-08-17 松下電器産業株式会社 ナノ粒子の製造方法及び該製造方法によって製造されたナノ粒子
US7291782B2 (en) * 2002-06-22 2007-11-06 Nanosolar, Inc. Optoelectronic device and fabrication method
US6946597B2 (en) * 2002-06-22 2005-09-20 Nanosular, Inc. Photovoltaic devices fabricated by growth from porous template
US7253017B1 (en) * 2002-06-22 2007-08-07 Nanosolar, Inc. Molding technique for fabrication of optoelectronic devices
US7594982B1 (en) * 2002-06-22 2009-09-29 Nanosolar, Inc. Nanostructured transparent conducting electrode
WO2004008550A2 (en) 2002-07-15 2004-01-22 Advanced Research And Technology Institute, Inc. Rapid low-temperature synthesis of quantum dots
JP4931348B2 (ja) 2002-08-13 2012-05-16 マサチューセッツ インスティテュート オブ テクノロジー 半導体ナノクリスタルヘテロ構造体
WO2004065362A2 (en) 2002-08-16 2004-08-05 University Of Massachusetts Pyridine and related ligand compounds, functionalized nanoparticulate composites and methods of preparation
WO2004022714A2 (en) 2002-09-05 2004-03-18 Nanosys, Inc. Organic species that facilitate charge transfer to or from nanostructures
AU2003264452A1 (en) 2002-09-20 2004-05-04 Matsushita Electric Industrial Co., Ltd. Method for preparing nano-particle and nano-particle prepared by said preparation method
TW546859B (en) 2002-09-20 2003-08-11 Formosa Epitaxy Inc Structure and manufacturing method of GaN light emitting diode
US6992202B1 (en) 2002-10-31 2006-01-31 Ohio Aerospace Institute Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same
US6969897B2 (en) * 2002-12-10 2005-11-29 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
US7056471B1 (en) 2002-12-16 2006-06-06 Agency For Science Technology & Research Ternary and quarternary nanocrystals, processes for their production and uses thereof
JP2004243507A (ja) 2002-12-19 2004-09-02 Hitachi Software Eng Co Ltd 半導体ナノ粒子及びその製造方法
ATE512115T1 (de) 2003-01-22 2011-06-15 Univ Arkansas Monodisperse nanokristalle mit kern/schale und anderen komplexen strukturen sowie herstellungsverfahren dafür
US6936761B2 (en) * 2003-03-29 2005-08-30 Nanosolar, Inc. Transparent electrode, optoelectronic apparatus and devices
JP4181435B2 (ja) 2003-03-31 2008-11-12 日油株式会社 ポリエチレングリコール修飾半導体微粒子、その製造法及び生物学的診断用材料
US7511217B1 (en) * 2003-04-19 2009-03-31 Nanosolar, Inc. Inter facial architecture for nanostructured optoelectronic devices
US7645934B1 (en) * 2003-04-29 2010-01-12 Nanosolar, Inc. Nanostructured layer and fabrication methods
US7462774B2 (en) * 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7605327B2 (en) * 2003-05-21 2009-10-20 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template
CN1312479C (zh) 2003-08-08 2007-04-25 清华大学 一种纳米荧光磁粒及其制备方法
WO2005021150A2 (en) 2003-09-01 2005-03-10 The University Of Manchester Labelled polymeric materials
JP2005139389A (ja) 2003-11-10 2005-06-02 Sumitomo Osaka Cement Co Ltd 半導体超微粒子
US6987071B1 (en) * 2003-11-21 2006-01-17 Nanosolar, Inc. Solvent vapor infiltration of organic materials into nanostructures
JP4789809B2 (ja) 2004-01-15 2011-10-12 サムスン エレクトロニクス カンパニー リミテッド ナノ結晶をドーピングしたマトリックス
US7645397B2 (en) 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
WO2006001848A2 (en) 2004-02-12 2006-01-05 Advanced Research And Technology Institute, Inc. Quantum dots as high-sensitivity optical sensors and biocompatible imaging probes, compositions thereof, and related methods
US7663057B2 (en) * 2004-02-19 2010-02-16 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
US7605328B2 (en) 2004-02-19 2009-10-20 Nanosolar, Inc. Photovoltaic thin-film cell produced from metallic blend using high-temperature printing
US7227066B1 (en) * 2004-04-21 2007-06-05 Nanosolar, Inc. Polycrystalline optoelectronic devices based on templating technique
CA2505655C (en) 2004-04-28 2013-07-09 Warren Chan Stable, water-soluble quantum dot, method of preparation and conjugates thereof
GB0409877D0 (en) * 2004-04-30 2004-06-09 Univ Manchester Preparation of nanoparticle materials
US7588828B2 (en) * 2004-04-30 2009-09-15 Nanoco Technologies Limited Preparation of nanoparticle materials
WO2005123575A1 (en) 2004-06-10 2005-12-29 Ohio University Method for producing highly monodisperse quantum dots
US20070045777A1 (en) 2004-07-08 2007-03-01 Jennifer Gillies Micronized semiconductor nanocrystal complexes and methods of making and using same
US7229690B2 (en) 2004-07-26 2007-06-12 Massachusetts Institute Of Technology Microspheres including nanoparticles
WO2006022325A1 (ja) 2004-08-26 2006-03-02 Nippon Shinyaku Co., Ltd. ガラクトース誘導体、薬物担体及び医薬組成物
CN1327953C (zh) * 2004-08-30 2007-07-25 中国科学院上海硅酸盐研究所 硒化镉改性的纳米氧化钛光催化剂及制备方法
US7615169B2 (en) 2004-09-20 2009-11-10 The Regents Of The University Of California Method for synthesis of colloidal nanoparticles
US7772487B1 (en) * 2004-10-16 2010-08-10 Nanosolar, Inc. Photovoltaic cell with enhanced energy transfer
US7261940B2 (en) 2004-12-03 2007-08-28 Los Alamos National Security, Llc Multifunctional nanocrystals
JP4928775B2 (ja) 2005-01-06 2012-05-09 株式会社日立ソリューションズ 半導体ナノ粒子表面修飾方法
KR101088147B1 (ko) 2005-01-17 2011-12-02 에이전시 포 사이언스, 테크놀로지 앤드 리서치 신규한 수용성 나노결정 및 그 제조방법
TWI389897B (zh) 2005-02-22 2013-03-21 Chugai Pharmaceutical Co Ltd 1- (2H) -isoquinolinone derivatives
WO2006118543A1 (en) 2005-05-04 2006-11-09 Agency For Science, Technology And Research Novel water-soluble nanocrystals comprising a low molecular weight coating reagent, and methods of preparing the same
EP1891686B1 (en) 2005-06-15 2011-08-10 Yissum Research Development Company Of The Hebrew University Of Jerusalem Iii-v semiconductor core-heteroshell nanocrystals, method for their manufacture and their applications
KR100666477B1 (ko) * 2005-06-16 2007-01-11 한국과학기술연구원 산화티타늄 나노로드 및 그의 제조방법
EP1908126A4 (en) 2005-07-13 2010-08-18 Evident Technologies Inc SEMICONDUCTOR NANOCRYSTALLINE COMPLEX ELECTROLUMINESCENT DIODE
GB2429838B (en) 2005-08-12 2011-03-09 Nanoco Technologies Ltd Nanoparticles
EP1917557A4 (en) * 2005-08-24 2015-07-22 Trustees Boston College APPARATUS AND METHODS FOR SOLAR ENERGY CONVERSION IMPLEMENTING COMPOSITE METAL STRUCTURES OF NANOMETRIC SCALE
EP1760800B1 (en) 2005-09-02 2017-01-04 OSRAM OLED GmbH Radiation emitting device and method of manufacturing the same
GB0522027D0 (en) * 2005-10-28 2005-12-07 Nanoco Technologies Ltd Controlled preparation of nanoparticle materials
KR100745744B1 (ko) 2005-11-11 2007-08-02 삼성전기주식회사 나노 입자 코팅 방법
EP1989744A1 (en) * 2006-02-16 2008-11-12 Solexant Corporation Nanoparticle sensitized nanostructured solar cells
KR100745745B1 (ko) 2006-02-21 2007-08-02 삼성전기주식회사 나노복합재료 및 그 제조방법
GB0606845D0 (en) * 2006-04-05 2006-05-17 Nanoco Technologies Ltd Labelled beads
US20080112877A1 (en) 2006-11-14 2008-05-15 Toyota Engineering & Manufacturing North America, Inc. Metal telluride nanocrystals and synthesis thereof
KR101290251B1 (ko) 2006-08-21 2013-07-30 삼성전자주식회사 복합 발광 재료 및 그를 포함하는 발광 소자
US7893348B2 (en) * 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
US7754329B2 (en) 2006-11-06 2010-07-13 Evident Technologies, Inc. Water-stable semiconductor nanocrystal complexes and methods of making same
US20080135089A1 (en) * 2006-11-15 2008-06-12 General Electric Company Graded hybrid amorphous silicon nanowire solar cells
US20080110486A1 (en) * 2006-11-15 2008-05-15 General Electric Company Amorphous-crystalline tandem nanostructured solar cells
US8003883B2 (en) * 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices
US20080190483A1 (en) 2007-02-13 2008-08-14 Carpenter R Douglas Composition and method of preparing nanoscale thin film photovoltaic materials
US8563348B2 (en) 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
US20080264479A1 (en) 2007-04-25 2008-10-30 Nanoco Technologies Limited Hybrid Photovoltaic Cells and Related Methods
GB0714865D0 (en) 2007-07-31 2007-09-12 Nanoco Technologies Ltd Nanoparticles
US8784701B2 (en) 2007-11-30 2014-07-22 Nanoco Technologies Ltd. Preparation of nanoparticle material
JP5749495B2 (ja) 2008-02-25 2015-07-15 ナノコ テクノロジーズ リミテッド 半導体ナノ粒子キャッピング剤
GB0813273D0 (en) 2008-07-19 2008-08-27 Nanoco Technologies Ltd Method for producing aqueous compatible nanoparticles
GB0814458D0 (en) 2008-08-07 2008-09-10 Nanoco Technologies Ltd Surface functionalised nanoparticles
GB0820101D0 (en) 2008-11-04 2008-12-10 Nanoco Technologies Ltd Surface functionalised nanoparticles
GB0821122D0 (en) 2008-11-19 2008-12-24 Nanoco Technologies Ltd Semiconductor nanoparticle - based light emitting devices and associated materials and methods
GB0901857D0 (en) 2009-02-05 2009-03-11 Nanoco Technologies Ltd Encapsulated nanoparticles

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435534A (zh) * 2010-07-26 2017-02-22 L·皮尔·德罗什蒙 液相化学沉积装置、方法及其制品
CN102779943A (zh) * 2012-06-20 2012-11-14 浙江大学 一种高效率的有机无机杂化太阳能电池及其制备方法
CN105027298A (zh) * 2012-11-20 2015-11-04 诺基亚技术有限公司 光探测
CN105377973B (zh) * 2013-03-01 2018-09-18 苏米特·库马尔 杂化复合纳米材料
CN105377973A (zh) * 2013-03-01 2016-03-02 苏米特·库马尔 杂化复合纳米材料
TWI556683B (zh) * 2013-03-15 2016-11-01 伊利諾大學受託人董事會 多-異質接面奈米粒子、其製造方法及包含該粒子之製品
CN103219418A (zh) * 2013-03-26 2013-07-24 华中科技大学 一种具有纳米异质复合结构的紫外光探测器及其制备方法
CN103219418B (zh) * 2013-03-26 2016-07-27 华中科技大学 一种具有纳米异质复合结构的紫外光探测器及其制备方法
CN106328750A (zh) * 2016-10-25 2017-01-11 合肥工业大学 一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法
CN108806990A (zh) * 2018-06-12 2018-11-13 湖北文理学院 基于Ⅱ型CdSe/CdTe量子阱的高效光阳极及其制备方法
CN108806990B (zh) * 2018-06-12 2020-02-14 湖北文理学院 基于Ⅱ型CdSe/CdTe量子阱的高效光阳极及其制备方法
CN116283287A (zh) * 2023-03-20 2023-06-23 西北工业大学 一种量子片锚固的钒酸铋薄膜、制备方法及应用
CN116283287B (zh) * 2023-03-20 2024-04-05 西北工业大学 一种量子片锚固的钒酸铋薄膜、制备方法及应用

Also Published As

Publication number Publication date
CA2685033A1 (en) 2008-11-06
TWI426614B (zh) 2014-02-11
US20130153012A1 (en) 2013-06-20
US8394663B2 (en) 2013-03-12
CN101689609B (zh) 2012-05-30
JP2010525597A (ja) 2010-07-22
IL201712A0 (en) 2010-05-31
US20120028406A1 (en) 2012-02-02
EP2140511A1 (en) 2010-01-06
AU2008243976A1 (en) 2008-11-06
IL201712A (en) 2013-10-31
US20080264479A1 (en) 2008-10-30
TW200901488A (en) 2009-01-01
KR20100016587A (ko) 2010-02-12
WO2008132455A1 (en) 2008-11-06

Similar Documents

Publication Publication Date Title
CN101689609B (zh) 杂化光伏电池和相关方法
Carey et al. Colloidal quantum dot solar cells
Zhou et al. Synergistic combination of semiconductor quantum dots and organic-inorganic halide perovskites for hybrid solar cells
US7777303B2 (en) Semiconductor-nanocrystal/conjugated polymer thin films
AU2011313809B2 (en) Sintered device
AU2008334276B2 (en) Photovoltaic cells comprising group IV-VI semiconductor core-shell nanocrystals
CN100380684C (zh) 半导体-纳米晶体/共轭聚合物薄膜
Han et al. Trilaminar ZnO/ZnS/Sb 2 S 3 nanotube arrays for efficient inorganic–organic hybrid solar cells
Yang et al. Colloidal CsCu5S3 nanocrystals as an interlayer in high-performance perovskite solar cells with an efficiency of 22.29%
US8673260B2 (en) Development of earth-abundant mixed-metal sulfide nanoparticles for use in solar energy conversion
WO2018186542A1 (ko) 정공수송재료 및 이를 포함하는 광전 소자
JP2009541974A (ja) 無機半導体粒子含有層を製造する方法並びに該層を含んでなる構成要素
Jain et al. Chemical Route Synthesis and Properties of CZTS Nanocrystals for Sustainable Photovoltaics
Kedarnath et al. Quantum dots for type III photovoltaics
Hu Surface Engineering of CuInS2 Colloidal Quantum Dots for Advanced Photovoltaics
Kumar et al. Quantum Dots Based Flexible Solar Cells
Arici Inorganic nanoparticles for photovoltaic applications
Tan Investigations on Semiconductor Material Synthesis and on Morphology Manipulation Towards High Efficiency and Stable Solar Technologies
Lee The Synthesis and Characterization of Colloidal Nanocrystals for Perovskite Solar Cells
Steinhagen CuInSe₂ nanowires and earth-abundant nanocrystals for low-cost photovoltaics
Panthani Colloidal nanocrystals with near-infrared optical properties: synthesis, characterization, and applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

Termination date: 20210425

CF01 Termination of patent right due to non-payment of annual fee