TWI418856B - 光學多層反射膜、多層疊層體及金屬微粒子排列膜與其製造方法 - Google Patents
光學多層反射膜、多層疊層體及金屬微粒子排列膜與其製造方法 Download PDFInfo
- Publication number
- TWI418856B TWI418856B TW096112494A TW96112494A TWI418856B TW I418856 B TWI418856 B TW I418856B TW 096112494 A TW096112494 A TW 096112494A TW 96112494 A TW96112494 A TW 96112494A TW I418856 B TWI418856 B TW I418856B
- Authority
- TW
- Taiwan
- Prior art keywords
- film
- metal
- fine particle
- metal fine
- layer
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0816—Multilayer mirrors, i.e. having two or more reflecting layers
- G02B5/085—Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
- G02B5/0875—Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising two or more metallic layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3615—Coatings of the type glass/metal/other inorganic layers, at least one layer being non-metallic
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3639—Multilayers containing at least two functional metal layers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3644—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3657—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
- C03C17/3663—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties specially adapted for use as mirrors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/26—Reflecting filters
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/42—Coatings comprising at least one inhomogeneous layer consisting of particles only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Toxicology (AREA)
- General Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Laminated Bodies (AREA)
- Optical Filters (AREA)
Description
本發明之一態樣係關於具有可選擇性地反射特定波長之光線特性之光學多層反射膜。且本發明之另一態樣則係關於建立金屬微粒子之秩序以排列其之方法,詳細而言即關於使金屬微粒子於聚合物膜中朝與膜平行之方向層狀排列之方法。
近年來隨著網際網路之急速普及,做為支持其高容量通訊之技術,光通訊已成為必要之技術。且由於高密度波長多重通訊之普及,所使用之波長增加,與此同時所使用之光學零件之數量亦飛躍性地增加。其中使用具備有波長選擇性之反射.透射光學多層膜之光學元件已成為必備之構成要素。
至今為止,吾人經常使用多層介電質光學薄膜做為可將特定波長下光之反射特性加以控制之功能性薄膜。此等介電質多層膜,一般而言係於基板之表面將在特定波長下實質上光學性地透明之高折射率層與低折射率層加以交互疊層而構成。具體而言即是將Ta2
O5
、TiO2
、SiO2
、MgF2
等金屬氧化物或氟化物等加以疊層,利用其在層界面發生之反射與透射光線之干涉實現透射或反射等光學特性。
然而,為了製作擁有如此特性之多層介電質光學薄膜,需先決定使用材料之選擇與涉及許多層之層構造後,再以高精密度控制各層厚度與折射率以進行製膜。特別是若欲製作可選擇性地反射半頻帶寬度極為狹窄之光線之反射膜則需高度之製膜技術,製造製程亦多,有成本昇高之傾向。
另一方面,於專利文獻1~3記載有疊層有金屬膜之多層膜反射鏡,而此等除係一X光區域波長之反射鏡外,且係疊層有對X光區域之波長折射率大之層與折射率小之層者,其原理與上述之光學多層膜相同。
另一方面,關於有機/無機複合物,近年來有許多研究例,由於可改變高分子之功能特性,使有機高分子與無機材料複合化之有機/無機複合材料之研發相當榮盛。其中關於使金屬微粒子以一定之規則性分散於高分子中之方法之研究正相當熱烈地進行中。例如使用金屬錯合物做為金屬微粒子之先驅物,使其昇華,於氮氣下使其與金屬還原能力不同之嵌段共聚聚合物接觸,則錯合物僅能以一方之相態被選擇性地還原,而實現金屬微粒子之奈米級之排列(參照例如非專利文獻1~3)。
然而,關於所報告之高分子中之金屬微粒子之排列,共聚物之各聚合物之分布(排列形態)係由其自我組織性地決定,未聞有任何可完全控制金屬微粒子排列之例的報告。特別是未知有可使金屬微粒子於聚合物膜中朝與膜平行之方向層狀排列之方法。
[專利文獻1]日本特開平5-346498號公報[專利文獻2]日本特開平8-122498號公報[專利文獻3]日本特開平9-113697號公報[專利文獻4]日本特開2000-89010號公報
[非專利文獻1]Langmuir,19號,2963頁(2003年)[非專利文獻2]Advanced Materials,12號,1507頁(2000年)[非專利文獻3]Nature,414號,735頁(2001年)
本發明之一態樣以提供一光學多層膜為目的,該光學多層膜可藉由單純之構造選擇性地反射特定波長之光線。
本發明之另一態樣以提供一方法為目的,該方法可藉由簡便之方法製造金屬微粒子之新穎之排列膜。且本發明之又一態樣之目的係提供金屬微粒子之新穎之排列膜。
概略而言,本發明係關於光學多層反射膜與金屬微粒子排列膜。首先關於本發明之主要之一態樣之光學反射膜,本申請揭示有以下之事項。
1.一種光學多層反射膜,其特徵在於:具有在波長λ之光下實質上為透明之透明薄膜層與金屬層的周期性交互疊層構造,可選擇性地反射該波長λ之光。
2.如上述1所記載之光學多層反射膜,其中鄰接之金屬層彼此間之反複距離d之至少-部分具有實質上滿足下列條件的光學長度:d=λ/2。
3.如上述1所記載之光學多層反射膜,其中鄰接之金屬層彼此間之反複距離d之全部具有實質上滿足下列條件的光學長度:d=λ/2。
4.如上述1~3項中所記載之任一項之光學多層反射膜,其中該金屬層係金屬膜或金屬微粒子之凝聚層。
5.如上述1~3項中所記載之任一項之光學多層反射膜,其中該光學多層反射膜可反射50%以上之波長λ之光。
6.如上述1~3項中所記載之任一項之光學多層反射膜,其中該金屬層之層數至少為15層。
7.如上述1~3項中所記載之任一項之光學多層反射膜,其中大氣側之最外層係該透明薄膜層。
8.如上述1~3項中所記載之任一項之光學多層反射膜,其中該金屬層,以由銀、金、鋁、矽、鈦、鉻、鐵、鈷、鎳、銅、鋅、鍺、鋯、鈮、鉬、鈀、錫、銻、鉭、鎢、鉑、鉍及不銹鋼所構成之群組中所選出之至少一種類為主成分。
9.如上述1~3項中所記載之任一項之光學多層反射膜,其中該金屬層之幾何學膜厚為0.5~15nm。
10.如上述1~3項中所記載之任一項之光學多層反射膜,其中該透明薄膜層之幾何學膜厚為100~500nm。
11.如上述1~3項中所記載之任一項之光學多層反射膜,其中該波長λ係在由紫外線至近紅外線之波長範圍內。
12.如上述1~3項中所記載之任一項之光學多層反射膜,其中該光學多層反射膜可選擇性地反射由水銀燈之i線(λ=365nm)、藍色光(λ=460nm)、綠色光(λ=530nm)與紅色光(λ=680nm)所構成之群組中所選出之光。
13.如上述1~3項中所記載之任一項之光學多層反射膜,其中該金屬層之間之透明薄膜層之光學膜厚d係在以λ/2為中心±15%之範圍內。
14.如上述1~3項中所記載之任一項之光學多層反射膜,其中該透明薄膜層之折射率為1.2~4.0。
依此態樣,可提供一光學性多層膜,藉由單純之構造可選擇性地反射特定波長。亦即,於本發明中,層之構成設計單純,且使用之材料選擇自由度亦大。因此,可使製造製程簡略化,與至今為止之具有波長選擇性之多層反射膜相較,可降低製造成本。
本發明之光學多層膜,特別適合做為可選擇性地反射自紫外線至近紅外線區域之波長範圍之特定波長之反射膜使用。
且疊層有聚合物與金屬之構造可使其輕量化,提昇輸送性與耐衝擊性及機械柔軟性。
且關於本發明之另一主要之一態樣之金屬微粒子排列膜,於本申請案揭示有以下之事項。
1.一種金屬微粒子排列膜之製造方法,其特徵在於包含:製程(A),於反射基板上形成含有金屬成分之聚合物膜;及製程(B),對該聚合物膜照射特定波長之光。
2.如於上述第1項所記載之金屬微粒子排列膜之製造方法,其中該金屬微粒子排列膜之構造,係沿聚合物膜之膜厚方向周期性地存在著多層密集有金屬微粒子之層的構造。
3.如於上述第1或2項所記載之金屬微粒子排列膜之製造方法,其中該聚合物膜之製膜製程(A)包含:以含有金屬成分之聚合物溶液於反射基板上製膜的副製程;及將溶媒餾除的副製程。
4.如於上述第1~2項所記載之金屬微粒子排列膜之製造方法,其中:於該製程(A)之前,具有於反射基板上設置一剝離層的製程,於其後之製程(B)中所照射之波長之光可透射該剝離層;於製程(A)中,在該剝離層上製作一含有金屬成分之聚合物膜;進而在該製程(B)之後,具有將經光線照射後之該聚合物膜自該反射基板上剝離的製程。
5.如於上述第4項所記載之金屬微粒子排列膜之製造方法,其中將該聚合物膜自該反射基板剝離之該製程包含去除該剝離層之製程。
6.如於上述第5項所記載之金屬微粒子排列膜之製造方法,其中該剝離層之去除係藉由該剝離層之溶解進行之。
7.如於上述第1~2項中所記載之任一項之金屬微粒子排列膜之製造方法,其中該金屬成分包含一金屬化合物,該金屬化合物藉由該特定波長之光而被還原,以產生金屬微粒子。
8.如於上述第1~2項中所記載之任一項之金屬微粒子排列膜之製造方法,其中該金屬成分包含金屬微粒子。
9.如於上述第7項所記載之金屬微粒子排列膜之製造方法,其中該金屬化合物係自過氯酸銀、硝酸銀與氯金酸中所選出之至少其中一種。
10.如於上述第1~2項中所記載之任一項之金屬微粒子排列膜之製造方法,其中構成該聚合物膜之聚合物係至少於該特定之波長下為透明者。
11.如於上述第1~2項中所記載之任一項之金屬微粒子排列膜之製造方法,其中該聚合物係自聚甲基丙烯酸、聚丙烯酸、含有甲基丙烯酸或丙烯酸單體單元之共聚體與由聚乙烯醇所構成之群組中所選出之至少一種。
12.如於上述第1~2項中所記載之任一項之金屬微粒子排列膜之製造方法,其中於該製程(B)中,藉由變更照射之光之波長,而調整金屬微粒子排列膜中之金屬微粒子層之反複距離。
13.如於上述第1~2項中所記載之任一項之金屬微粒子排列膜之製造方法,其中於該製程(B)中,藉由變更照射之光相對於該反射基板之角度,而調整金屬微粒子排列膜中之金屬微粒子層之反複距離。
14.一種金屬微粒子排列膜,於聚合物膜中,沿其膜厚方向周期性地存在著多層密集有金屬微粒子之層的構造。
15.一種金屬微粒子排列膜,其係藉由上述第1至13項中任一項中所記載的金屬微粒子排列膜之製造方法所製造,於聚合物膜中,沿其膜厚方向周期性地存在著多層密集有金屬微粒子之層的構造。
16.一種金屬微粒子排列膜之多層疊層體之製造方法,其特徵在於包含:藉由上述第1至13項中任一項中所記載之製造方法製造金屬微粒子排列膜之製程;及將複數片所得之金屬微粒子排列膜加以疊層之製程。
17.一種多層疊層體,其特徵為:於聚合物膜中,沿其膜厚方向周期性地存在著多層密集有金屬微粒子之層的構造;且係藉由上述第16項記載的金屬微粒子排列膜之多層疊層體之製造方法所製造。
18.一種波長選擇性之反射膜,其採用上述第14或15項所記載之金屬微粒子排列膜,或採用上述第17項所記載之多層疊層體。
依此態樣,可以簡便之方法製作一新穎之金屬微粒子排列膜,該新穎之金屬微粒子排列膜具有金屬微粒子層之周期性多層疊層構造。所得之金屬微粒子排列膜重量輕,輸送性與耐衝擊性及機械柔軟性佳,因此可利用於各種用途。且由於可選擇性地反射特定波長之光線,因此做為反射膜可廣泛應用於各種光學元件、光學零件等。
首先,詳細說明為本發明之第1主要態樣之光學多層反射膜。本發明之光學多層反射膜具有透明薄膜層與金屬層周期性交互疊層之構造,可選擇性反射滿足其周期構造之光學條件之波長λ。在此所謂選擇性意指於反射膜所發出之反射光譜中,於波長λ處具有反射峰值之最大值。反射峰值之最大值宜為40%以上,50%以上則更佳。且其意亦指半頻帶寬度愈狹小選擇性愈佳,宜為300nm以下,200nm以下則更佳,150nm以下則更為理想。
於本發明,藉由將構成多層反射膜之透明薄膜層與金屬層疊層構造之條件加以設定,可設定所期望之波長為反射光之波長λ。首先,透明薄膜層對波長λ之光實質上係透明者。在此所謂實質性透明,意指多層反射膜全膜厚皆以透明薄膜層形成時,其是以50%左右以上之透射率者。關於此透明性,愈透明愈佳,而多層反射膜全膜厚皆以透明薄膜層形成時,若是以50%以上之透射率則可使用於特定之用途,其宜為70%以上,80%以上則更佳,90%以上則更理想。
通常,一層金屬層具有反射入射光之一部份,使另一部份透射之半透射.半反射膜之功能。一層金屬層本身無須具備波長選擇性。通常,光之吸收宜盡可能小,而其於反射波長λ以外之波長下會吸收光亦可。藉由將一層金屬層所具有之反射率與透射率及其疊層構造中之金屬層層數加以調整,可控制波長λ下之反射率與波長選擇性。
金屬層層數宜為2以上,通常為5以上,15以上則更佳,20以上則更理想。一般而言層數愈多愈可提昇波長選擇性,波長半頻帶寬度變得狹窄,然而由於其會受金屬層與/或透明薄膜層之材料造成之吸收之影響,金屬層之層數現實上宜為300以下,200以下則更佳,100以下則更理想。
為使所期望之波長λ為反射光之波長,需具有一光學長度,鄰近之金屬層彼此之反複距離d中至少一部分實質上滿足d=λ/2之條件。反複距離係金屬層為連續之金屬膜時一金屬膜之入射光側表面與鄰近之金屬膜之入射光側表面之距離,且金屬層為金屬微粒子以高密度所累積之層(以下稱高密度層)時,其為高密度層之中心與鄰近之高密度層之中心之距離。
在此,由於金屬膜與透明薄膜層之厚度相比非常薄,且其為金屬微粒子之高密度層時微粒子分散於透明薄膜層中,因此例如僅考慮透明薄膜層之厚度,以d’為反複距離之幾何學長度,n為透明薄膜層之折射率,則關係為d=nd’,幾何學長度d’則為λ/(2n)。例如,光學多層反射膜所選擇性反射之光線波長λ為365nm,其波長下之透明薄膜層之折射率n為1.6時,金屬層間之透明薄膜層之幾何學長度d’為365/(2×1.6)=114(nm)。
又所謂「具有實質上滿足d=λ/2之光學長度」意指容許d自λ/2具有少量之變動。具體而言,容許不同之金屬層間之反複距離d以λ/2為中心,在±20%以內,更佳則在±15%以內之範圍內變動。實際上製作光學多層反射膜時,有時各層膜厚間多少會有差異,且有時會刻意地使其具有差異。例如,在應用於顯示器等用途時,有時吾人會尋求位於可見光區域之R(紅)、G(綠)、B(藍)等之反射,此時係尋求配合人之能見敏銳度之特性,以設計波長為中心具有適當幅度的反射特性。此時,刻意地使金屬層之反複距離(或透明薄膜層之光學膜厚)存在有差異為一有效方式。於此場合,由於人之能見敏銳度之分布,使金屬層之反複距離之光學長度以λ/2為中心在±20%以內,或±15%程度內變動即可因應。
又,多層構造中,亦可存在有不滿足鄰近之金屬層間之反複距離d=λ/2之條件之層,而其層宜具有一光學長度,滿足d=mλ/2(m為2~5之整數,2則更佳。)之條件。
又,金屬層之反複距離中,滿足d=λ/2之層之比例宜為50%以上,70%則更佳,90%則更為理想,最理想則為100%,亦即所有金屬層間之透明薄膜層滿足d=λ/2之條件。
金屬層如同上述,其為連續之金屬膜亦或以金屬微粒子高密度所累積之層(高密度層)皆可。其為金屬膜時,通常為0.5~15nm(幾何學長度),1.5~10nm則更佳,2~5nm則更為理想。金屬層係金屬微粒子之高密度層時,金屬粒子分布之疏密周期性出現即可,而其宜係例如50%左右以上之粒子位於上述之厚度(幾何學長度)之範圍內之層構造。
金屬層宜以自銀、金、鋁、矽、鈦、鉻、鐵、鈷、鎳、銅、鋅、鍺、鋯、鈮、鉬、鈀、錫、銻、鉭、鎢、鉑、鉍與不銹鋼(SUS)所成之群組中所選出之至少一種類為主成分而含有之。在此,所謂以其「至少一種類為主成分而含有之」,意指其可含有此等之構成元素以外之元素於不滿50atm%之範圍內。且金屬層僅由一種類之金屬所形成亦或由混合有2種類以上之合金所形成皆可。
金屬層宜以銀與/或金為主成分。特別是其若為緊密地排列著銀原子之銀層,或以銀之微粒子高密度地形成層者則更為適合。
透明薄膜層以至少於反射波長下為透明之材料形成即可,而亦可係於其他之波長域(紫外~可見光區域)下為透明者。特別是宜為於可見光區域下係透明者之材料。又折射率並無特別之限定,但宜具有例如1.2~4.0,且2~2.2則更佳。
可構成透明薄膜層之材料中,可舉出各種有機化合物(各種聚合物)及各種無機化合物等。例如,有機化合物中,可舉出如聚碳酸酯、聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯及聚對萘二甲酸乙二酯之聚酯類、如聚甲基丙烯酸甲酯之丙烯酸聚合物類、如甲基苯乙烯樹脂、丙烯腈丁二烯苯乙烯(ABS)樹脂、丙烯腈苯乙烯(AS)樹脂之苯乙烯樹脂、如聚乙烯、聚丙烯、聚甲基戊烯之聚烯烴類、如聚氧代環丁烷之聚醚類、如尼龍6、尼龍66之透明聚醯胺類、聚苯乙烯、聚氯乙烯、聚醚碸、聚碸、聚丙烯酸酯與三醋酸纖維素、聚乙烯醇、聚丙烯腈、環狀聚烯烴、丙烯酸樹脂、環氧樹脂、環己二烯系聚合物、非晶聚酯樹脂、透明聚醯亞胺、透明聚胺基甲酸酯、透明氟樹脂、熱可塑性彈性體、聚乳酸以及各種透明聚合物等。亦可使用此等聚合物之共聚物與/或混合物。又無機化合物中可舉出二氧化矽、石英、玻璃、氮化矽、氧化鈦、氧化鋁、氮化鋁、氧化鋅、氧化鍺、氧化鋯、氧化鈮、氧化鉬、氧化銦、氧化錫、氧化鉭、氧化鎢、氧化鉛、鑽石、氮化硼、氮化碳、鋁酸氮化物、矽酸氮化物等。
使用以聚丙烯酸、聚甲基丙烯酸為主成分(含有50%以上)之物質做為有機物之透明薄膜層相當適合。特別是聚丙烯酸相當適合。使用以二氧化矽、石英為主成分(含有50%以上)之物質做為無機化合物之透明層相當適合。特別是二氧化矽相當適合。
透明薄膜層之膜厚設定如上述,而於具體之一態樣中,設定於例如100~500nm之範圍內,100~350nm則更佳,110~250nm則更理想。
本發明之光學多層反射膜之與大氣接觸之最外層宜為透明薄膜層。此係由於大氣側最外層為金屬層時,金屬會氧化而劣質化。最外層之透明薄膜層之膜厚無特別限定,而大致上,宜為光學膜厚d為λ/4之膜厚。
本發明中,製作金屬層與透明薄膜層時,配合材料以周知之方法製作即可,關於以金屬層與無機化合物製作透明薄膜層之方法,可舉例如真空蒸鍍法、濺鍍法、電漿CVD法、熱CVD法、溶膠凝膠法等為例,關於以有機化合物製作透明薄膜層之方法,可舉出真空蒸鍍法、溶液鑄塗法、旋鍍法、其他各種塗膜形成方法、各種印刷法等。
如上,將在選擇性地反射之光線波長下之透明薄膜層之折射率考慮在內,使nd’=λ/2之關係成立而設計.製作光學多層反射膜,則可得於各種波長域中具有波長選擇性之反射膜。
以下為具體例。使光學多層反射膜所選擇性地反射之光線波長為λ=365nm時,可選擇性地反射紫外線區域中之水銀燈之i線。使光學多層反射膜所選擇性地反射之光線波長為λ=460nm時,可選擇性地反射可見光區域中之藍色光。使光學多層反射膜所選擇性地反射之光線波長為λ=530nm時,可選擇性地反射可見光區域中之綠色光。而使光學多層反射膜所選擇性地反射之光線波長為λ=680nm時,可製作選擇性地反射可見光區域中之紅色光之光學多層反射膜。
本發明之光學多層反射膜,可做為光學零件以各種形態使用於各種用途。形態上,光學多層反射膜本身若具有自立性,則可以單獨使用光學多層反射膜。光學多層反射膜亦可疊層或成膜於基體,此時,基體亦可為形成多層膜之際之基板。基體配合用途,為透明亦或不透明皆可。
接著說明關於本發明之第2主要態樣,即金屬微粒子排列膜、其製造方法及其用途。於本發明之製造方法,係於反射基板上製作含有金屬成分之聚合物膜,照射特定之波長λ之光。以下詳細說明本發明。
於本發明可使用之「反射基板」,其若為基板表面可反射特定波長λ之光者即無特別限定。可舉例如於基板表面使用自鋁、銀等各種金屬與金屬氧化物等中所選出之材料而形成單層膜或多層膜之反射鏡(mirror)為例。其中於玻璃基板上依序形成鋁、二氧化矽者尤為適合。此係由於可以鋁形成自紫外線至可見光之區域中穩定具有高反射率之膜。二氧化矽層具有防止鋁氧化之效果。
反射基板中之鋁厚(膜厚)宜為例如100~2000nm,150~1000nm則更佳,200~800nm左右則更為理想。而二氧化矽之厚度(膜厚)則為使鋁之反射特性不降低,扁薄者為佳,宜為例如5~100nm,10~50nm則更佳,10~30nm左右則更理想。
「含有金屬成分之聚合物膜」,其於聚合物中含有金屬成分,金屬元素之種類為1種類或2種類以上皆可。金屬成分宜含有金屬化合物(含有錯合物與鹽。以下同。)與金屬微粒子之其中至少一者。一般而言,將包含金屬化合物與/或金屬微粒子之聚合物溶液塗布於反射基板之方法佳,特別是將溶解有金屬化合物之聚合物溶液塗布於反射基板之方法更佳。
於本發明所使用之金屬化合物,係以特定波長λ之照射可產生金屬微粒子者。如此材料已知其為吸收光線能量,因還原產生金屬微粒子(或構成金屬微粒子之金屬)之化合物(亦即金屬原子之氧化數為正之金屬化合物),通常,其為金屬鹽之狀況較多。
如此金屬化合物中可舉出例如金屬氧化物、金屬氫氧化物、金屬鹵化物(金屬氯化物等)、金屬酸鹽[金屬無機酸鹽(硫酸鹽、硝酸鹽、磷酸鹽、過氯酸鹽、鹽酸鹽等含氧酸鹽等)、金屬有機酸鹽(醋酸鹽等)等]。金屬鹽之形態為單鹽、複鹽或錯鹽(電解質錯合物或非電解質錯合物,通常為電解質錯合物)亦或多量體(例如2量體)等皆可。而金屬化合物(金屬鹽)亦可為例如含有酸成分[氯化氫(HCl)等]、鹼成分(氨等)、水(H2
O)等之化合物(例如含鹵化氫化合物、含水物、水合物等)。金屬化合物為單獨或2種以上組合者皆可。
且構成金屬化合物之金屬元素亦無特別限定。構成金屬化合物之金屬元素中,為周期表第8~11族金屬(亦即鐵、釕、鋨、銠、銥、鎳、鈀、鉑、銅、銀、金等)者佳,於特定之實施形態,貴金屬(銀、金、鉑、釕等)特別適合。金屬化合物單獨包含此等金屬元素或包含2種以上皆可。
具體而言,金屬化合物中,可舉出周期表第8~11族金屬化合物(包含金屬鹽)。例如,周期表第8~11族金屬酸鹽中可舉出無機酸鹽[例如過氯酸銀(AgClO4
)、硝酸銀(AgNO3
)等貴金屬無機酸鹽]及有機酸鹽[例如醋酸鈀(Pd(CH3
CO2
)等)、醋酸銠([Rh(CH3
CO2
)2
]2
等)等貴金屬醋酸鹽等貴金屬有機酸鹽]等。且周期第8~11族金屬鹵化物中,可舉出貴金屬鹵化物[例如氯化銀(AgCl)、氯化金(AuCl3
)、氯化鉑(PtCl2
、PtCl4
等)、氯化鈀(PdCl2
等)等貴金屬氯化物等]、含有酸成分金屬鹵化物[例如氯金酸(HauCl4
等)、氯化鉑酸(H2
PtCl6
等)等氯化貴金屬酸等含有氯化氫之貴金屬鹵化物]與此等之水合物等。
以下例示以周期表第11族金屬中,關於金、銀、銅、鉑、鈀、銠之代表性金屬化合物。
金化合物中可舉出金鹵化物(AuCl、AuCl3
、AuBr3
、AuI、AuI3
、AuCl(PPh3
)、AuCl(SC4
H8
)等)、鹵化金酸或其鹽(HAuCl4
、HAuCl4
.4H2
O、NaAuCl4
.4H2
O、KAuCl4
.4H2
O等)、氫氧化金(AuOH)、氰化金(AuCN)、氧化金(Au2
O3
等)、硫化金(Au2
S、Au2
S3
(III)等)等無機鹽,或三甲基金(III)(Au2
(CH3
)6
)、甲基(三苯基磷)金(I)(Au2
CH3
(PPh3
))、4-乙苯硫醇金(I)(Au{S(C6
H4
)C2
H5
})、{μ-1,8-雙(二苯基磷)-3,6-二氧辛烷}雙{氯金(I)}((AuCl)2
(μ-{Ph2
P(CH2
)2
O(CH2
)2
O(CH2
)2
PPh2
})、(五氟苯基)(四氫噻吩)金(I)([Au(C6
F5
)(SC4
H8
)])、三(五氟苯基)(四氫噻吩)金(III)([Au(C6
F5
)3
(SC4
H8
)])等各種金錯合物。
銀化合物中可舉出無機鹽[例如AgF、AgCl、AgI、AgBr等銀鹵化物、Ag2
O等氧化銀、Ag2
SO4
、AgS、AgCN、AgClO4
、Ag3
PO4
、AgSCN、AgNO3
、Ag2
SO3
、Ag2
CO3
、Ag2
CrO4
、Ag2
Se、AgReO4
、AgBF4
、AgW4
O16
、Ag3
AsO4
、AgSbF6
、AgPF6
、AgHF2
、AgIO3
、AgBrO3
、AgOCN、AgMnO4
、AgVO3
等無機酸鹽等]、有機鹽(或錯合物)[例如C6
H5
CO2
Ag、C6
H11
(CH2
)3
CO2
Ag、CH3
CH(OH)CO2
Ag、三氟醋酸銀(CF3
CO2
Ag)、C2
F5
CO2
Ag、C3
F7
CO2
Ag、AgO2
CCH2
C(OH)(CO2
Ag)CH2
CO2
Ag等羧酸鹽、對甲苯磺酸銀、三氟甲烷磺酸銀(CF3
SO3
Ag)等磺酸鹽、(CH3
COCH=C(O-)CH3
)Ag、(C2
H5
)2
NCS2
Ag、苯基銀(I)、四均三甲苯四銀(I)、乙炔丁基銀(I)、氯(異氰環己烷)銀、(環戊二烯)三苯基磷銀(I)、雙吡啶銀(I)過氯酸鹽、(η4
-1,5-環辛二烯)(1,1,1,5,5,5-六氟-2,4-戊二酮)銀(I)、溴(三-正丁基膦)銀(I)、雙咪唑銀(I)硝酸鹽、雙(1,10-啡咯啉)銀(I)過氯酸鹽與硝酸鹽、1,4,8,11-四氮雜十四烷銀(II)過氯酸鹽、(1,1,1,5,5,5-六氟-2,4-戊二酮)(N,N,N’-三甲基乙二胺)銀(I)等]等。
銅化合物中可舉出無機鹽[例如Cu2
O、CuO,Cu(OH)2
、CuF2
、CuCl、CuCl2
、CuBr、CuBr2
、CuI等銅鹵化物、CuCO3
、CuCN、Cu(NO3
)2
、Cu(ClO4
)2
、Cu2
P2
O7
、Cu2
Se、CuSe、CuSeO3
、CuSO4
、Cu2
S、CuS、Cu(BF4
)2
、Cu2
HgI4
、CuSCN、(CF3
CO2
)2
Cu、(CF3
SO3
)2
Cu、CuWO4
、Cu2
(OH)PO4
等無機酸鹽等]、有機鹽(或錯合物)[例如醋酸銅(I)、醋酸銅(II)、[C6
H11
(CH2
)3
CO2
]2
Cu、[CH3
(CH2
)3
CH(C2
H5
)CO2
]2
Cu、(HCO2
)2
Cu、[HOCH2
[CH(OH)]4
CO2
]2
Cu等羧酸鹽、(CH3
COCH=C(O-)CH3
)Cu、CH3
(CH2
)3
SCu、(CH3
O)2
Cu等]等。
鉑化合物中可舉出無機鹽[例如PtO2
、PtCl2
、PtCl4
、PtBr2
、PtBr4
、PtI2
、PtI5
等鉑鹵化物、HPtCl6
.2H2
O等鹵化鉑酸、PtS2
、Pt(CN)2
等]、有機鹽(或錯合物)[例如(CH3
COCH=C(O-)CH3
)Pt、(C6
H5
CN)2
PtCl2
等]等。
鈀化合物中可例示以無機鹽[例如PdO、PdCl2
、PdBr2
、PdI2
等鹵化鈀、PdCN2
、Pd(NO3
)2
、PdS、PdSO4
、K2
Pd(S2
O3
)2
.H2
O、氯化鈀酸等]、有機鹽(或錯合物)[例如Pd(CH3
CO2
)、丙酸鈀(II)、(CF3
CO2
)2
Pd等羧酸鹽、(CH3
COCH=C(O-)CH3
)Pd、(C6
H5
CN)2
PdCl2
等]等。
銠化合物中可舉出無機鹽[例如Rh2
O3
、RhO3
、RhCl3
、RhBr3
、RhI3
等銠鹵化物、RhPO4
、Rh2
SO4
等]、有機鹽(或錯合物)[例如Rh(CH3
CO2
)2
、(CF3
CO2
)2
Rh、{[CH3
(CH2
)6
CO2
]2
Rh}2
、[(CF3
CF2
CF2
CO2
)2
Rh]2
、{[(CH3
)3
CCO2
]2
Rh}2
等羧酸鹽、(CH3
COCH=C(O-)CH3
)Rh等]等。
此等金屬化合物中特別是銀鹽係光感受性高,易於因光而被還原之金屬化合物,使用過氯酸銀或硝酸銀相當合適。
且金屬微粒子(在此意指於製程(A)之時點聚合物膜所含有之金屬微粒子)中,可藉由特定波長λ之照射而於膜中移動者佳,特別是宜為膠狀粒子等之10nm左右以下者,2nm以下之金屬粒子則更為理想。可舉例如自上述金屬化合物析出金屬微粒子者為例。例如銀之微粒子即佳。且亦可為金屬化合物與金屬微粒子之混合物。
使聚合物中所含有之金屬成分之比例,雖依聚合物之分子量等有所不同,但基本上相對於聚合物100重量份宜為例如0.5~500重量份,1~400重量份更佳,5~200重量份左右則更為理想。
聚合物中,宜使用在特定波長λ下為透明,可使金屬成分均勻溶解或分散而含有者(特別是溶解者)。且於一實施形態中,宜使用均勻溶解於有機溶媒者。
可舉下列者為例:例如聚碳酸酯、聚對苯二甲酸乙二酯、聚對苯二甲酸丁酯與聚對萘二甲酸乙二酯般之聚酯類、聚甲基丙烯酸甲酯般之丙烯酸聚合物類、甲基苯乙烯樹脂、丙烯腈丁二烯苯乙烯(ABS)樹脂、丙烯腈苯乙烯(AS)樹脂般之苯乙烯樹脂、聚乙烯、聚丙烯、聚甲基戊烯般之聚烯烴類、聚氧代環丁烷般之聚醚類、尼龍6、尼龍66般之透明聚醯胺類、聚苯乙烯、聚氯乙烯、聚醚碸、聚碸、聚丙烯酸酯與三醋酸纖維素、聚乙烯醇、聚丙烯腈、環狀聚烯烴、丙烯酸樹脂、環氧樹脂、環己二烯系聚合物、非晶聚酯樹脂、透明聚醯亞胺、透明聚胺基甲酸酯、透明氟樹脂、熱可塑性彈性體、聚乳酸以及各種透明聚合物等。且亦可使用係此等聚合物構成要素之單體之共聚物、與/或此等聚合物之混合物。其中適於使用自聚甲基丙烯酸、聚丙烯酸、含有甲基丙烯酸或丙烯酸單體單元之共聚物與聚乙烯醇所選出之聚合物。
溶媒中,通常可使用可使聚合物與金屬成分溶解或分散(特別是可溶解)之溶媒。如此之溶媒中,可應聚合物與金屬成分之種類適當選擇,可舉下列者為例:例如水(酸性、中性、鹼性皆可)、醇類(甲醇、乙醇、丙醇、異丙醇、丁醇、異丁醇等烷基醇類等)、醚類(二甲醚、乙醚等鏈狀醚類、二氧陸圜、四氫呋喃等環狀醚類等)、酯類(醋酸甲酯、醋酸乙酯、醋酸丁酯等醋酸酯類等)、酮類(丙酮、乙基甲基酮等二烷基酮類等)、二醇醚酯類(乙二醇單甲醚醋酸酯、丙二醇單甲醚醋酸酯、賽珞蘇醋酸酯、乙酸丁氧基卡必醇酯等)、賽珞蘇類(甲基賽珞蘇、乙基賽珞蘇、丁基賽珞蘇等)、卡必醇類(卡必醇等)、鹵化烴類(二氯甲烷、氯仿等)、縮醛類(縮醛、二甲氧甲烷等)、醯胺類(二甲基甲醯胺等)、亞碸類(二甲基亞碸等)、腈類(乙腈、苯甲腈等)等。此等溶媒單獨或以二種以上組合而使用皆可。
溶媒之比例應考慮於反射基板上所意圖製膜之含有金屬成分之聚合物膜之厚度(膜厚)等以決定之,但原則上相對於該聚合物100重量份,溶媒宜為例如10~10000重量份,30~5000重量份更佳,50~3000重量份左右則更為理想。
並且,關於使含有金屬成分之聚合物溶液塗布於反射基板之製膜法,其只要可形成膜即無特別之限定,可利用慣用之塗布法,例如旋轉塗布法(spin coating)、滾子塗布法、淋幕塗布法、浸泡塗布法、鑄塗法等。塗布裝置中,可使用對應上述塗布方法之裝置,例如旋轉塗布機、狹縫塗布機、滾子塗布機、塗布棒等。
並且,於基板所製膜之含有金屬成分之聚合物溶液之溶媒之餾除方法亦無特別限定,吾人可舉出慣用之溶媒餾除法,例如以加熱進行之蒸發或以各種蒸發器進行之真空乾燥。
如此,製膜於反射基板上之含有金屬成分之聚合物膜之厚度無特別限定,可應其用途適當設定之。例如,可形成0.5~500 μm之厚度,0.5~100 μm佳,1~20 μm左右則更為理想。
於本發明之製造方法中,接著要對製膜於反射基板上之含有金屬成分之聚合物膜照射特定之波長λ之光線。雖然可選擇所期望之波長為波長λ,但需自上述之金屬成分接收此波長之光線時,金屬微粒子之產生、金屬微粒子之移動與金屬粒子之成長之任一者皆可能發生之波長區域中選出而設定之。通常係自具有充分之能量,可激發金屬化合物還原為金屬微粒子之波長區域中選出,自紫外線至可見光區域者佳。具體而言,宜為200~600nm,300~500nm者佳,350~500nm則更為理想,宜自此等之波長區域中選出1波長。於如此之波長範圍中,其可將各種金屬化合物高效率地光還原為金屬微粒子。
照射光源中,可使用例如鹵素燈、水銀燈(低壓水銀燈、高壓水銀燈、超高壓水銀燈等)、重氫燈、UV燈、雷射(例如,氦-鎘雷射、準分子雷射等)等。於一實施形態中,適合使用超高壓水銀燈。並且宜盡可能照射半頻帶寬度狹窄之1波長。照射波長之半頻帶寬度宜為50nm,30nm以下者佳,20nm以下則更佳,10nm以下則更為理想。為壓縮半頻帶寬度,宜組合市售之窄頻帶通濾波器於內。
光照射時間雖相當程度受照射光源能力(照射強度)所左右,但亦需考慮反應速度及金屬成分之移動,產生之金屬粒子之直徑等亦須考慮在內以決定之。雖無特別限定,但在此舉1例示之:使用500W之超高壓水銀燈(照射強度:165W/cm2
以上)時,照射小時宜為20分鐘~6小時,30分鐘~3小時則更佳,30分鐘~2小時則更為理想。
藉由該光照射製程,於含有金屬成分之聚合物膜中,自金屬化合物產生金屬微粒子,或使金屬微粒子移動並密集而形成平行之層於膜面,且此層為周期性之多層構造。亦即,自膜之剖面方向觀察,即可見密集有金屬之金屬微粒子層與僅有聚合物之層交互疊層之多層構造。
圖26係顯示可得如此之多層構造之推定機構之概念圖。如此圖所示,入射光與反射光互相干涉使具有周期性光強度分布之駐波發生,主要於光強度大之部分引起金屬微粒子之產生。且由於光係一種電磁波,因此於光強度強之部分電場強度亦大,金屬微粒子自電場弱之部分朝強之部分移動,可推定其結果會使多層構造形成。另一方面亦可推定於含有金屬微粒子之聚合物內,由於產生了穩定的電場強度分布,因此可藉由相同之機構使金屬微粒子移動,以形成多層構造。
並且於本發明之製造方法中,可人為地調整金屬微粒子層之反複距離(間距)。依上述之理論,使產生於聚合物膜之厚度方向之光強度之周期變化而調整之,即可使金屬微粒子層之反複距離(間距)變化。其中具代表性者,即係藉由變更照射光之波長λ以使其可調整之方法。例如,使照射光之波長為長波長即可使金屬微粒子層之反複距離延長。且使照射光之角度變化亦可調整金屬微粒子層之反複距離(間距)。例如,使照射光之入射角變大即可延長金屬微粒子層之反複距離。為使入射角變化,僅傾斜基板,或使照射光以某角度入射即可實現,因此係非常簡便之方法。且以此方法,可將金屬微粒子層之反複距離,自照射光之波長獨立而調整之,因此於製造時可選擇適於反應之波長之光。而選擇性地反射與照射光波長相異之波長之光之膜之製作亦容易進行。於本發明之金屬微粒子膜中,以如此之人為之控制,可決定金屬微粒子層之排列。又,由於光照射後之處理等,有時會發生膜厚之收縮或增加,此時金屬微粒子層之反複距離(間距)可能亦會發生變化。
由於干涉容易發生在自1光源發出,通過2個相異之通路而傳播之光線中,可觀測干涉所造成之相長.相消之位置係由2道光之光程差所決定,而更為詳細者,可由如以下之理論説明達成之。
例如,吾人認為於本發明中,垂直照射入射光時,來自光源之具有波長λ之入射光與來自基板之反射光,於自反射基板起算幾何學距離為d’之1點P相互干涉。於圖27A顯示理論性地説明此現象之概念圖。本發明中,由於薄膜之折射率較反射基板大,因此其反射係自折射率大之物質朝小之物質之入射所造成之反射,不會因於點O之反射而使光之相位發生逆轉。亦即,若要使入射光與反射光於此點互相干涉,入射光與反射光之光程差=2×OP必須為薄膜中之入射波長之整數倍。
亦即,將自反射基板起算之幾何學距離設為d’,將照射光之波長設為λ,將薄膜中光之波長設為λ’,將包含金屬成分之聚合物之折射率設為n,則d’若滿足下式即發生干涉。
2d’=m λ’=m λ/n(m=0、1、2…)
考慮到關於薄膜全體,由於干涉點由自反射基板起算之距離所決定,因此干涉點沿與基板平行之方向呈層狀而存在,而使後述之本發明之實施例中之結果可得到理論性地説明。
同樣地,可以如以下般思考以某入射角θ1
將光照射於薄膜之狀況。於圖27B顯示理論性地説明此現象之概念圖。與垂直照射時相同,若要使入射光與反射光於此點互相干涉,入射光與反射光之光程差=OP+OQ必須為薄膜中入射波長之整數倍。以入射角θ1
入射於薄膜時,薄膜中之入射角θ2
之值滿足圖中所示之斯涅爾定律。以薄膜之折射率可算出薄膜中之入射角θ2
。
並且,考慮到關於光程差=OP+OQ,利用三角定理,光程差可以2d’ cos θ2
表示。因此,令自反射基板起算之幾何學距離為d’,令薄膜中之入射角為θ2
,令照射光之波長為λ,令薄膜中光之波長為λ’,令包含金屬成分之聚合物之折射率為n,則若d’滿足下式即發生干涉。
2d’ cos θ2
=m λ’=m λ/n(m=0、1、2…)
考慮到關於薄膜全體,與垂直照射時相同,由於干涉點由自反射基板起算之距離所決定,因此干涉點沿與基板平行之方向呈層狀而存在,而使後述之本發明之實施例中之結果可得到理論性地説明。
金屬微粒子層中之金屬微粒子雖然於其產生時極小,但金屬微粒子藉由通常所觀測得到之凝聚.固結而其粒徑變大,且有時亦採取實質上可視為金屬膜之態樣。另一方面,含有金屬微粒子之聚合物中亦由於光強度變大,做為駐波所產生之電場強度大之部分與小之部分之差異變大,因此,藉此可移動之金屬微粒子之大小變大。
如此雖受某些條件所左右,但其通常為2~100nm。於特定之態樣中,微粒子之大部分(例如80%以上)具有50nm以下之奈米級粒子徑。利用金屬微粒子層之周期性多層構造,可期待金屬微粒子排列膜應用於各種用途。其中具代表性者,可如後述做為反射膜利用之。如此所製造之金屬微粒子排列膜,可以形成於反射基板之狀態使用之,或剝離而使用之皆可。
以上説明之製造方法(做為第1實施形態。)中,由於金屬微粒子排列膜形成於反射基板上,因此依材料等之選擇,有時無法將金屬微粒子排列膜自反射基板剝離,而使用途受到限制。第2實施形態中,將説明關於使金屬微粒子排列膜為自立膜而得之之方法。又,於第2實施形態之説明中,關於無特別言及之事項,只要與其不互相矛盾即採用於第1實施形態説明之事項(材料、條件、適用範圍等)。
於第2實施形態中,不於反射基板上直接進行含有金屬成分之聚合物膜之製膜,而自一開始即於反射基板上設置剝離層。剝離層係不妨礙特定之波長λ之照射之材料,亦即於其波長下為透明之材料,只要係可將於其後之製程所形成之金屬微粒子排列膜自反射基板剝離者即可,無特別之限定。例如,可舉出剝離層本身將於其後之製程中被去除,以使金屬微粒子排列膜為可剝離者之形態、反射基板與剝離層之黏著強度小因此於其後之製程可與金屬微粒子排列膜一同剝離之形態、剝離層與金屬微粒子排列膜之黏著強度小因此於其後之製程可將金屬微粒子排列膜予以剝離之形態等。
為達成穩定之剝離,於其後之製程去除剝離層本身之形態佳,特別是以使剝離層溶解於溶媒之方式去除之形態最為理想。為此設計之剝離層中,以聚合物形成者佳,例如,可舉出不溶於含有金屬成分之聚合物溶液之溶媒之聚合物。
例如,可舉出聚碳酸酯、聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯與聚對萘二甲酸乙二酯般之聚酯類、聚甲基丙烯酸甲酯般之丙烯酸聚合物類、甲基苯乙烯樹脂、丙烯腈丁二烯苯乙烯(ABS)樹脂、丙烯腈苯乙烯(AS)樹脂般之苯乙烯樹脂、聚乙烯、聚丙烯、聚甲基戊烯般之聚烯烴類、聚氧代環丁烷般之聚醚類、尼龍6、尼龍66般之透明聚醯胺類、聚苯乙烯、聚氯乙烯、聚醚碸、聚碸、聚丙烯酸酯與三醋酸纖維素、聚乙烯醇、聚丙烯腈、環狀聚烯烴、丙烯酸樹脂、環氧樹脂、環己二烯系聚合物、非晶聚酯樹脂、透明聚醯亞胺、透明聚胺基甲酸酯、透明氟樹脂、熱可塑性彈性體、聚乳酸以及各種透明聚合物等。且亦可使用係此等聚合物構成要素之單體之共聚物、與/或此等聚合物之混合物。其中苯乙烯特別適用於此。
此剝離層之厚度,為使其不妨礙藉由光照射所進行之聚合物中之金屬微粒子之排列,扁薄者為佳,例如,宜為0.01~50 μm,0.01~20 μm更佳,0.01~5 μm左右則更為理想。
膜層之形成,例如塗布此等之聚合物溶液後去除溶媒之方法,或因需單體而與起始劑一同塗布後再使其聚合皆可。關於塗布方法,可利用慣用之塗布法,例如旋轉塗布法(spin coating)、滾子塗布法、淋幕塗布法、浸泡塗布法、鑄塗法等。塗布裝置中,可使用對應上述塗布方法之裝置,例如旋轉塗布機、狹縫塗布機、滾子塗布機、塗布棒等。
如此,於反射基板上形成剝離層後,再於剝離層上,與第1實施形態相同,製作含有金屬成分之聚合物膜,照射特定之波長λ之光。聚合物膜即成為排列有多層之金屬微粒子層之金屬微粒子排列膜。
接著,將照射光後之該聚合物膜,亦即金屬微粒子排列膜自反射基板剝離。剝離方法受剝離層之材料左右。剝離層係於界面之黏著強度小者時,可機械性地使其剝離。
剝離層為可去除之材料時,特別是為上述之可溶解之材料時,剝離層為可溶解者,可將剝離層浸漬於不溶解金屬微粒子排列膜之溶媒,以溶解去除剝離層。其結果,可使金屬微粒子配列膜自反射基板剝離。
如此而得之自反射基板剝離之金屬微粒子排列膜,以此狀態使用或貼附於適當之基材使用皆可。基材中使用例如透明或不透明之薄膜或薄片,特別是樹脂型(聚合物製)薄膜或薄片,將金屬微粒子排列膜貼附或疊層於其上,即可使其在不減損本發明之金屬微粒子排列膜之機械柔軟性與輕量性之狀況下,由於機械強度與處理方便性獲得改善而可使用於各種用途。
於第1實施形態與第2實施形態中所説明之本發明之金屬微粒子排列膜,可考慮應用於各種之用途,而其中特別適合做為反射膜使用。對金屬微粒子排列膜之反射特性進行測定,即可得知如後述之實施例所示,此膜在與光照射之際之波長λ幾乎一致之波長位置具有反射之極大值,具有做為波長選擇性反射膜之功能。
在此藉由模擬計算於透明層中,多層之金屬層(部分反射.部分透射性)以光學距離d之周期疊層之形態,顯示滿足d=λ/2亦即d’=λ’/2=λ/(2n)(在此d為光學距離,d’為幾何學距離,λ為反射波長,λ’為聚合物中之波長,n為聚合物之折射率)之波長λ可選擇性地被反射。
依本發明而得之金屬微粒子排列膜中,金屬微粒子層以幾乎等間隔之間距疊層,因此可推定金屬微粒子層與部分反射.部分透射性層具有類似之功能。吾人認為若以光學距離d(幾何學距離d’=d/n,n為聚合物之折射率)表示金屬粒子層之周期(自層中央至中央之距離),反射光譜之極大位置即與滿足上述式之波長λ相對應。然而由於金屬微粒子之分布、密度等因素,峰值之半頻帶寬度、其他波長之反射抑制等選擇性受到影響。
自反射基板剝離之本發明之金屬微粒子排列膜,由於易於撓曲,藉由夾在如石英板、樹脂製(聚合物製)薄膜或薄片等透明基材中而元件化,可抑制散射之光線,以使其做為波長選擇性之反射膜之特性獲得提昇。
並且,自反射基板剝離之金屬微粒子排列膜,可藉由使其複數片相疊合,或摺疊薄膜等方法,使其以相互密接之形疊層而成為疊層體。使其為疊層體,可提昇其反射特性。疊合所產生之疊層之反射特性之提昇效果具有飽和之傾向,因此疊合而疊層2 μm左右之金屬微粒子排列膜時,宜重疊例如2~20片而使用之,2~15片更佳,2~10片左右則更為理想。
且如後述之實施例所示,已知可變化照射光之波長或入射角,以控制金屬微粒子層之反複距離,製作選擇性地反射與照射光之波長相異之波長之光之膜。如此,依本發明,可易於製作選擇性地反射各種波長之光之膜。
依本發明製造之金屬微粒子排列膜,可取代過去以無機物或無機氧化物製作之光學多層反射膜以使用之。因此可使其輕量化,改良輸送性、耐衝擊性、機械柔軟性等特性,做為光學材料可廣泛應用於光學零件等。
以下根據實施例,將更加詳細地説明本發明,但本發明並不限定於本實施例。
一開始顯示<A部>之光學多層反射膜之實施例。
參考例A-1
使用銀做為金屬層,使用二氧化矽做為透明薄膜層,以光學薄膜設計軟體Essential Macleod計算選擇性地反射457nm之波長之光之膜構成。依計算結果預測,實現交互疊層有二氧化矽140nm、銀10nm之多層膜,即可實現將457nm之波長之光以50%以上之高反射率選擇性地反射之膜。顯示依計算所預測之反射光譜於圖1。
實施例A-1
根據參考例A-1之光學計算之結果,以濺鍍法製作選擇性地反射457nm之波長之光之選擇波長反射膜。於蘇打石灰玻璃上,首先以13.56MHz之交流濺鍍法使二氧化矽膜成膜,於其上以直流濺鍍法疊層銀膜,重複此,交互使41層成膜,俾使最後為二氧化矽膜。選擇濺鍍時之條件,俾使二氧化矽膜厚、銀膜厚分別為140nn、10nm。
以透射式電子顯微鏡(TEM)觀測所得之多層膜。顯示此於圖2。
再測定所得之蘇打石灰玻璃上之光學多層膜之反射特性時發現,所得之薄膜於波長457nm具有反射極大值,其反射率為56.1%,可得於所期望之波長之反射。顯示反射測定之結果於圖3。
為比較實際測量值與根據參考例A-1所預測之計算結果,重疊其而顯示於圖4。自此結果得知,可依光學計算設計波長選擇性多層反射膜後,配合其設計製作本發明之多層反射膜。
參考例A-2
與參考例A-1相同,以光學薄膜設計軟體Essential Macleod計算反射與水銀燈之i線相對應之365nm之波長之光之41層之多層膜之構成,即可得60.5nm二氧化矽/3nm銀/122.5nm二氧化矽/3nm銀/…/122.5nm二氧化矽/3nm銀/60.5nm二氧化矽/蘇打石灰玻璃之構成。設計中心波長365nm之反射率為75%,波長半頻帶寬度為19nm。顯示推測之反射特性於圖5。
參考例A-3
與參考例A-1相同,以光學薄膜設計軟體Essential Macleod計算反射與藍色光相對應之460nm之波長之光之41層之多層膜之構成,即可得77.5nm二氧化矽/3nm銀/156.5nm二氧化矽/3nm銀/…/156.5nm二氧化矽/3nm銀/77.5nm二氧化矽/蘇打石灰玻璃之構成。設計中心波長460nm之反射率為92%,波長半頻帶寬度為36nm。顯示推測之反射特性於圖6。
參考例A-4
與參考例A-1相同,以光學薄膜設計軟體Essential Macleod計算反射與綠色光相對應之530nm之波長之光之41層之多層膜之構成,即可得89nm二氧化矽/3nm銀/179.5nm二氧化矽/3nm銀/…/179.5nm二氧化矽/3nm銀/89nm二氧化矽/蘇打石灰玻璃之構成。設計中心波長530nm之反射率95%,波長半頻帶寬度為48nm。顯示推測之反射特性於圖7。
參考例A-5
與參考例A-1相同,以光學薄膜設計軟體Essential Macleod計算反射與紅色光相對應之680nm之波長之光之41層之多層膜之構成,即可得165nm二氧化矽/3nm銀/231.5nm二氧化矽/3nm銀/…/231.5nm二氧化矽/3nm銀/165nm二氧化矽/蘇打石灰玻璃之構成。設計中心波長680nm之反射率為97%,波長半頻帶寬度為76nm。顯示推測之反射特性於圖8。
接著顯示<B部>之金屬微粒子排列膜之實施例。
實施例B-1
於蘇打石灰玻璃上,以直流濺鍍法使200nm之鋁成膜,再以13.56MHz之交流濺鍍法使10nm之二氧化矽成膜,使其為反射基板。將使過氯酸銀63.1mg溶解於10wt%聚甲基丙烯酸之甲醇溶液5.01g而得之溶液旋鍍(1500rpm,10秒)於反射基板後,於室溫中使其乾燥3小時。其後對反射基板上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與窄頻帶通濾波器,垂直照射365nm波長之紫外線1小時。
顯示所得之反射基板上之薄膜剖面之透射式電子顯微鏡(TEM)攝影於圖9。確認於聚甲基丙烯酸中銀微粒子以大致為90nm(幾何學距離)之間隔沿與基板平行之方向呈層狀排列。且觀測到大多數之銀粒子具有10nm以下之粒徑。
使過氯酸銀63.1mg溶解於10wt%聚甲基丙烯酸之甲醇溶液5.01g中。使所得之溶液旋鍍(1500rpm,10秒)於蘇打石灰玻璃後,於室溫中使其乾燥3小時。其後對蘇打石灰玻璃上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與窄頻帶通濾波器,垂直照射365nm之波長之紫外線1小時。
顯示所得之蘇打石灰玻璃上之薄膜剖面之透射式電子顯微鏡(TEM)攝影於圖10。於聚甲基丙烯酸中析出之銀微粒子之粒徑不規則,無法見到使用反射基板之際所觀測到之銀粒子沿與基板平行之方向呈層狀排列之構造。
於實施例B-1製作之反射基板上以10wt%聚苯乙烯之甲苯溶液進行旋鍍(1500rpm,10秒)後,於室溫中使其乾燥3小時。將過氯酸銀71.7mg之甲醇溶液2.44g滴入10wt%聚丙烯酸之甲醇溶液2.51g而得之溶液,在基板上之薄膜之上進行旋鍍(1500rpm,40秒)後,於室溫中使其乾燥3小時。其後,對反射基板上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與窄頻帶通濾波器,垂直照射365nm之波長之紫外線1小時。將所得之試樣浸泡於二甲苯以使苯乙烯層溶解,使金屬微粒子排列膜自反射基板剝離。
顯示所得之薄膜剖面之透射式電子顯微鏡(TEM)攝影於圖11。確認於聚丙烯酸中銀沿與基板平行之方向呈層狀排列。再將此薄膜之反射光譜顯示於圖12。得知於照射波長365nm具有反射之極大值。
於實施例B-1製作之反射基板上旋鍍(1500rpm,10秒)使過氯酸銀61.8mg溶解於10wt%聚甲基丙烯酸之甲醇溶液5.02g而得之溶液後,於室溫中使其乾燥3小時。其後對反射基板上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與g線透射濾波器,垂直照射436nm之波長之紫外線12小時。
顯示所得之反射基板上之薄膜剖面之透射式電子顯微鏡(TEM)攝影於圖13。於聚甲基丙烯酸中銀微粒子大致以110nm(幾何學距離)之間隔沿與基板平行之方向呈層狀排列,確認與使用365nm之波長時相比較金屬微粒子層之反複距離變長。並且觀測到銀粒子多數具有10nm以下之粒徑。
如此,金屬微粒子層之反複距離(間距),可藉由照射變更光之波長λ調整。
參考例B-1
採用相當於具有60.5nm二氧化矽/3nm銀/122.5nm二氧化矽/3nm銀/…/122.5nm二氧化矽/3nm銀/60.5nm二氧化矽之構成之共41層之多層膜之物性值,以光學薄膜設計軟體Essential Macleod推測其反射特性。結果如圖14所示,推測其於365nm處具有最大反射波長。在此金屬層間之間隔d(光學長度)滿足d=λ/2(λ=365nm)。以此結果推定,於實施例B-2之金屬微粒子排列膜中亦由於相同之原理而引起反射波長之選擇性。
實施例B-4
於實施例B-1製作之反射基板上旋鍍(1500rpm,10秒)使過氯酸銀51.5mg溶解於10wt%聚(甲基丙烯酸甲酯.甲基丙烯酸)75:25隨機共聚物之四氫呋喃(THF)溶液4.99g而得之溶液後,於室溫中使其乾燥3小時。其後對反射基板上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與窄頻帶通濾波器,垂直照射365nm之波長之紫外線1小時。
顯示所得之反射基板上之薄膜剖面之透射式電子顯微鏡(TEM)攝影於圖15。確認於聚合物中銀微粒子大致以108nm(幾何學距離)之間隔沿與基板平行之方向呈層狀排列。並且觀測到銀粒子多數具有10nm以下之粒徑。
實施例B-5
於實施例B-1製作之反射基板上旋鍍(3000rpm,30秒)使硝酸銀98.0mg溶解於10wt%聚乙烯醇之水溶液5.04g而得之溶液後,於室溫中使其乾燥5小時。其後對反射基板上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與窄頻帶通濾波器,垂直照射365nm之波長之紫外線2小時。
顯示所得之反射基板上之薄膜剖面之透射式電子顯微鏡(TEM)攝影於圖16。確認於聚乙烯醇中銀微粒子大致以120nm(幾何學距離)之間隔沿與基板平行之方向呈層狀排列。並且觀測到銀粒子多數具有10nm以下之粒徑。
實施例B-6
於實施例B-1製作之反射基板上旋鍍(1500rpm,10秒)10wt%聚苯乙烯之甲苯溶液後,於室溫中使其乾燥3小時。在於基板上之薄膜之上旋鍍(1500rpm,10秒)將17wt%氯金酸之稀鹽酸水溶液704mg滴入5wt%聚丙烯酸之甲醇溶液10.01g而得之溶液後,於室溫中使其乾燥3小時。其後對反射基板上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與窄頻帶通濾波器,垂直照射365nm之波長之紫外線3小時。浸泡所得之試樣於二甲苯以使苯乙烯層溶解,使金屬微粒子排列膜自反射基板剝離。
顯示所得之薄膜剖面之透射式電子顯微鏡(TEM)攝影於圖17。確認於聚丙烯酸中金微粒子大致以130nm(幾何學距離)之間隔沿與基板平行之方向呈層狀排列。並且觀測到金粒子多數具有10nm左右之粒徑。
實施例B-7
於實施例B-1製作之反射基板上旋鍍(1500rpm,10秒)使過氯酸銀64.3mg溶解於10wt%聚甲基丙烯酸之甲醇溶液5.02g而得之溶液後,於室溫中使其乾燥3小時。其後對反射基板上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與窄頻帶通濾波器,以30°之入射角照射365nm之波長之紫外線1小時。
顯示所得之反射基板上之薄膜剖面之透射式電子顯微鏡(TEM)攝影於圖18。確認於聚甲基丙烯酸中銀微粒子大致以105nm(幾何學距離)之間隔沿與基板平行之方向呈層狀排列。並且觀測到銀粒子多數具有10nm以下之粒徑。
實施例B-8
於實施例B-1製作之反射基板上旋鍍(1500rpm,10秒)使過氯酸銀64.3mg溶解於10wt%聚甲基丙烯酸之甲醇溶液5.02g而得之溶液後,於室溫中使其乾燥3小時。其後對反射基板上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與窄頻帶通濾波器,以45°之入射角照射365nm之波長之紫外線1小時。
顯示所得之反射基板上之薄膜剖面之透射式電子顯微鏡(TEM)攝影於圖19。確認於聚甲基丙烯酸中銀微粒子大致以109nm(幾何學距離)之間隔沿與基板平行之方向呈層狀排列。並且觀測到銀粒子多數具有10nm以下之粒徑。
實施例B-9
於實施例B-1製作之反射基板上旋鍍(1500rpm,10秒)使過氯酸銀52.0mg溶解於10wt%聚甲基丙烯酸之甲醇溶液4.00g而得之溶液後,於室溫中使其乾燥3小時。其後對反射基板上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與窄頻帶通濾波器,以60°之入射角照射365nm之波長之紫外線1小時。
顯示所得之反射基板上之薄膜剖面之透射式電子顯微鏡(TEM)攝影於圖20。確認於聚甲基丙烯酸中銀微粒子大致以122nm(幾何學距離)之間隔沿與基板平行之方向呈層狀排列。並且觀測到銀粒子多數具有10nm以下之粒徑。
如此,藉由使照射光之入射角變大可使金屬微粒子層之反複距離變長。亦即,以同一波長λ進行排列時,藉由使照射光之入射角變化,可控制入射光與反射光之光程差,使金屬微粒子層之反複距離(間距)之調整成為可能。
參考例B-2
以實施例B-7(入射角30°)之TEM攝影為基礎,採用相當於具有100.0nm聚甲基丙烯酸/10nm銀/95.0nm聚甲基丙烯酸/10nm銀/…/100.0nm聚甲基丙烯酸/10nm銀之構成之共28層之多層膜之物性值,以光學薄膜設計軟體Essential Macleod推測其反射特性。結果如圖21所示,推測其於326nm處具有極大反射波長。在此,326nm處之聚合物之折射率,根據分光橢圓儀所進行之測定,大致為1.55,因此金屬層間之間隔d(光學長度)滿足d=nd’=λ/2(λ=326nm,幾何學距離d’=105nm)。同樣地,以實施例B-8(入射角45°)與9(入射角60°)之TEM攝影為基礎,配合推測其反射特性之結果顯示於圖21。確認於實施例B-8與9上述之關係式亦成立,藉由使入射角變化可控制極大反射波長。亦即可推定出藉由變化照射光之角度,可調整金屬微粒子層之反複距離(間距),以變化反射波長之選擇性。
參考例B-3
另一方面,根據使用圖27A説明之干涉理論,可推定垂直照射λ=365nm之光線時金屬微粒子排列膜之構成,採用相當於具有116.0nm聚甲基丙烯酸/3nm銀/116.0nm聚甲基丙烯酸/3nm銀/…/116.0nm聚甲基丙烯酸/3nm銀之構成之共38層之多層膜之物性值,以光學薄膜設計軟體Essential Macleod,推測其反射特性。顯示其結果於圖22。
並且同樣地可推定以60°之角度照射λ=365nm之光線時金屬微粒子排列膜之構成,採用相當於具有141.0nm聚甲基丙烯酸/3nm銀/141.0nm聚甲基丙烯酸/3nm銀/…/141.0nm聚甲基丙烯酸/3nm銀之構成之共38層之多層膜之物性值,以光學薄膜設計軟體Essential Macleod推測其反射特性。顯示結果於圖22。
實施例B-10
於實施例B-1製作之反射基板上旋鍍(1500rpm,10秒)使過氯酸銀50.1mg溶解於10wt%聚(甲基丙烯酸甲酯.甲基丙烯酸)75:25隨機共聚物之四氫呋喃(THF)溶液5.00g而得之溶液後,於室溫中使其乾燥3小時。其後對反射基板上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與窄頻帶通濾波器,垂直照射365nm之波長之紫外線2小時。使金屬微粒子排列膜自所得之試樣之反射基板剝離後,以2片石英板夾住薄膜以製作光學元件。
圖23顯示所得之光學元件之反射光譜。幾乎如根據於參考例B-3所示之干涉理論之預測,吾人得知於緊鄰照射波長之360nm處具有反射之極大值24.1%。
再以同一方法製作複數片之金屬微粒子排列膜,顯示製作重疊特定之片數之金屬微粒子排列膜再以石英板夾住而成之光學元件之際之反射光譜於圖24。得知疊層3片及9片時,顯示其較1片時分別具有較高之反射極大值(3片:27.6,9片:27.1%)。如此,將複數片金屬微粒子排列膜疊層可提昇其反射特性。
實施例B-11
於實施例B-1製作之反射基板上旋鍍(1500rpm,10秒)使過氯酸銀50.1mg溶解於10wt%聚(甲基丙烯酸甲酯.甲基丙烯酸)75:25隨機共聚物之四氫呋喃(THF)溶液5.00g而得之溶液後,於室溫中使其乾燥3小時。其後對反射基板上之薄膜,使用超高壓水銀燈(優志旺(股份有限公司)製,「Multi-Light」)與窄頻帶通濾波器,以60°之入射角照射365nm之波長之紫外線3小時。使金屬微粒子排列膜自所得之試樣之反射基板剝離後,以2片石英板夾住薄膜以製作光學元件。
顯示所得之光學元件之反射光譜於圖25。得知其為反射極大之波長偏移至430nm,具有反射極大值30.5%。確認如此藉由變化照射光之角度,可調整金屬微粒子層之反複距離(間距),幾乎如根據於參考例B-3所示之干涉理論之預測使反射波長之選擇性變化。
λ、λ’‧‧‧波長
d、d’‧‧‧距離
n、n1
‧‧‧折射率
m‧‧‧特定之整數
θ1
、θ2
‧‧‧入射角
P、O‧‧‧特定之點
Li‧‧‧入射光
Lr‧‧‧反射光
R‧‧‧反射層
S‧‧‧基版
MP‧‧‧含有金屬成份之聚合物
A‧‧‧空氣
圖1係顯示以光學薄膜設計軟體Essential Macleod預測參考例A-1之光學特性之圖。
圖2係顯示以實施例A-1製作之光學多層膜之TEM觀測結果之圖。
圖3係顯示實施例A-1之蘇打石灰玻璃上之光學多層膜之反射特性之圖。
圖4係比較實施例A-1中之光學多層膜之實際測量之反射特性與參考例A-1之以光學計算預測之反射特性之圖。使最大反射峰值為1而進行規格化。
圖5係顯示以光學薄膜設計軟體Essential Macleod預測參考例A-2之光學特性之圖。
圖6係顯示以光學薄膜設計軟體Essential Macleod預測參考例A-3之光學特性之圖。
圖7係顯示以光學薄膜設計軟體Essential Macleod預測參考例A-4之光學特性之圖。
圖8係顯示以光學薄膜設計軟體Essential Macleod預測參考例A-5之光學特性之圖。
圖9係以實施例B-1製作之金屬微粒子排列膜之TEM攝影。
自底部起依序為玻璃基板、鋁層、二氧化矽層、銀微粒子排列聚合物層。
圖10係比較例B-1之金屬-聚合物複合物之TEM攝影。自底部起依序為玻璃基板、金屬-聚合物複合物層。
圖11係實施例B-2之金屬微粒子排列膜之TEM攝影。又底部
與上部為用以製作試樣之包埋樹脂。
圖12係顯示實施例B-2之金屬微粒子排列膜之反射特性之圖。
圖13係以實施例B-3製作之金屬微粒子排列膜之TEM攝影。自底部為玻璃基板、鋁層、二氧化矽層、銀微粒子排列聚合物層。
圖14係顯示以光學薄膜設計軟體Essential Macleod預測參考例B-1之光學特性之圖。
圖15係以實施例B-4製作之金屬微粒子排列膜之TEM攝影。自底部為玻璃基板、鋁層、二氧化矽層、銀微粒子排列聚合物層。
圖16係以實施例B-5製作之金屬微粒子排列膜之TEM攝影。自底部為玻璃基板、鋁層、二氧化矽層、銀微粒子排列聚合物層。
圖17係以實施例B-6製作之金屬微粒子排列膜之TEM攝影。又自底部為用以製作試樣之包埋樹脂、金微粒子排列聚合物層。
圖18係以實施例B-7製作之金屬微粒子排列膜之TEM攝影。自底部為玻璃基板、鋁層、二氧化矽層、銀微粒子排列聚合物層。
圖19係以實施例B-8製作之金屬微粒子排列膜之TEM攝影。自底部為玻璃基板、鋁層、二氧化矽層、銀微粒子排列聚合物層。
圖20係以實施例B-9製作之金屬微粒子排列膜之TEM攝影。自底部為玻璃基板、鋁層、二氧化矽層、銀微粒子排列聚合物層。
圖21係顯示以光學薄膜設計軟體Essential Macleod預測參考例B-2之光學特性之圖,其中曲線B-7、B-8、B-9係表示實施例B-7、B-8、B-9的實驗結果。
圖22係顯示以光學薄膜設計軟體Essential Macleod預測參考例B-3之光學特性之圖。
圖23係顯示以石英板夾住1片實施例B-10之金屬微粒子排列膜,製作光學元件之際之反射特性之圖。
圖24係顯示製作多片實施例B-10之金屬微粒子排列膜,疊合以特定之片數,以石英板夾住,製作光學元件之際之反射特性之圖。
圖25係顯示實施例B-11之金屬微粒子排列膜之反射特性之圖。
圖26係顯示本發明之製造方法中,可得交互疊層有金屬微粒子層與僅有聚合物之層之多層構造之推定機構之概念圖;其中,Li係表示入射光,Lr係表示反射光,R係表示反射層,S係表示基板,MP係表示含有金屬成分之聚合物。
圖27A係理論性地說明垂直照射入射光時,入射光與來自基板之反射光相互干涉之條件之概念圖;其中,Li係表示入射光,Lr係表示反射光,MP係表示含有金屬成分之聚合物、A係表示空氣。
圖27B係理論性地說明光線以某入射角θ1
照射薄膜時,入射光與來自基板之反射光相互干涉之條件之概念圖;其中,Li係表示入射光,Lr係表示反射光,MP係表示含有金屬成分之聚合物、A係表示空氣。
Claims (14)
- 一種金屬微粒子排列膜之製造方法,其特徵在於包含:製程(A),於反射基板上形成含有金屬成分之聚合物膜,該反射基板,係在基板表面上具有使用從金屬及金屬氧化物所選擇的材料所形成之單層膜或多層膜的反射鏡,而該金屬成分包含以光還原而產生金屬微粒子之金屬化合物;及製程(B),藉由對該聚合物膜照射半頻帶寬度為20nm以下之特定波長之光,以形成具有多層構造之金屬微粒子排列膜,該多層構造中,在聚合物膜的膜厚方向上鄰接的層之間,隔著間隔週期性地存在密集有金屬微粒子的層。
- 如申請專利範圍第1項之金屬微粒子排列膜之製造方法,其中該聚合物膜之製膜製程(A)包含:以含有金屬成分之聚合物溶液於反射基板上製膜的副製程;及將溶媒餾除的副製程。
- 如申請專利範圍第1項之金屬微粒子排列膜之製造方法,其中:於該製程(A)之前,具有於反射基板上設置一剝離層的製程,於其後之製程(B)中所照射之波長之光可透射該剝離層;於製程(A)中,在該剝離層上製作一含有金屬成分之聚合物膜;進而在該製程(B)之後,具有將經光線照射後之該聚合物膜自該反射基板上剝離的製程。
- 如申請專利範圍第3項之金屬微粒子排列膜之製造方法,其中將該聚合物膜自該反射基板剝離之該製程包含去除該剝離層之製程。
- 如申請專利範圍第4項之金屬微粒子排列膜之製造方法,其中該剝離層之去除係藉由該剝離層之溶解進行之。
- 如申請專利範圍第1項之金屬微粒子排列膜之製造方法, 其中該金屬化合物係自過氯酸銀、硝酸銀與氯金酸中所選出之至少其中一種。
- 如申請專利範圍第1項之金屬微粒子排列膜之製造方法,其中構成該聚合物膜之聚合物係至少於該特定之波長下為透明者。
- 如申請專利範圍第1項之金屬微粒子排列膜之製造方法,其中該聚合物係自聚甲基丙烯酸、聚丙烯酸、含有甲基丙烯酸或丙烯酸單體單元之共聚體與由聚乙烯醇所構成之群組中所選出之至少一種。
- 如申請專利範圍第1項之金屬微粒子排列膜之製造方法,其中於該製程(B)中,藉由變更照射之光之波長,而調整金屬微粒子排列膜中之金屬微粒子層之反複距離。
- 如申請專利範圍第1項之金屬微粒子排列膜之製造方法,其中於該製程(B)中,藉由變更照射之光相對於該反射基板之角度,而調整金屬微粒子排列膜中之金屬微粒子層之反複距離。
- 一種金屬微粒子排列膜,其係藉由申請專利範圍第1至10項中任一項中所記載的金屬微粒子排列膜之製造方法所製造,於聚合物膜中,具有多層構造,係在膜厚方向上鄰接的層之間,隔著間隔周期性存在密集有以光使金屬化合物還原所生成的金屬微粒子的層。
- 一種金屬微粒子排列膜之多層疊層體之製造方法,其特徵在於包含:藉由申請專利範圍第1至10項中任一項中所記載之製造方法製造金屬微粒子排列膜之製程;及將複數片所得之金屬微粒子排列膜加以疊層之製程。
- 一種多層疊層體,其特徵為:於聚合物膜中,具有多層構造,其在膜厚方向上鄰接的層之間,隔著間隔周期性存在密集有以光使金屬化合物還原所生成的金屬微粒子之層;且係藉由申請專利範圍第12項記載的金屬微粒子排列膜之多層疊層體之製造方 法所製造。
- 一種波長選擇性之反射膜,其採用申請專利範圍第11項所記載之金屬微粒子排列膜,或採用申請專利範圍第13項所記載之多層疊層體。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006268912A JP5061386B2 (ja) | 2006-09-29 | 2006-09-29 | 光学多層反射膜 |
JP2006268911 | 2006-09-29 | ||
JP2006330579 | 2006-12-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200815796A TW200815796A (en) | 2008-04-01 |
TWI418856B true TWI418856B (zh) | 2013-12-11 |
Family
ID=39261502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096112494A TWI418856B (zh) | 2006-09-29 | 2007-04-10 | 光學多層反射膜、多層疊層體及金屬微粒子排列膜與其製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7955662B2 (zh) |
EP (1) | EP2072245A4 (zh) |
KR (1) | KR101135407B1 (zh) |
TW (1) | TWI418856B (zh) |
WO (1) | WO2008041382A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4993129B2 (ja) * | 2008-02-29 | 2012-08-08 | 宇部興産株式会社 | 金属微粒子配列膜の製造方法および金属微粒子配列膜 |
JP5493289B2 (ja) * | 2008-05-02 | 2014-05-14 | 宇部興産株式会社 | 配列した金属微粒子を含有する無機酸化物膜およびその製造方法 |
TWI382552B (zh) * | 2009-02-13 | 2013-01-11 | Nexpower Technology Corp | 具有不透明高反射粒子之薄膜太陽能電池與其製作方法 |
JP5186545B2 (ja) | 2009-12-23 | 2013-04-17 | ローム アンド ハース カンパニー | 光バンドパスフィルタのための複合体粒子 |
EP2354716A1 (de) * | 2010-02-03 | 2011-08-10 | Kuraray Europe GmbH | Spiegel für solarthermische Kraftwerke enthaltend weichmacherhaltige Polyvinylacetalfolien |
TWI447441B (zh) * | 2010-11-08 | 2014-08-01 | Ind Tech Res Inst | 紅外光阻隔多層膜結構 |
WO2012100167A2 (en) * | 2011-01-21 | 2012-07-26 | President & Fellows Of Harvard College | Micro-and nano-fabrication of connected and disconnected metallic structures in three-dimensions using ultrafast laser pulses |
DE102011003641A1 (de) * | 2011-02-04 | 2012-08-09 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Bauteils und optoelektronisces Bauteil |
RU2485063C2 (ru) * | 2011-06-16 | 2013-06-20 | Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология" | Способ получения многофункционального покрытия на органическом стекле |
CN102905473B (zh) * | 2011-07-29 | 2017-06-06 | 富泰华工业(深圳)有限公司 | 电路板及电路板的制作方法 |
JP5938189B2 (ja) * | 2011-10-12 | 2016-06-22 | デクセリアルズ株式会社 | 光学体、窓材、建具および日射遮蔽装置 |
KR101698524B1 (ko) * | 2014-09-17 | 2017-01-20 | 주식회사 엘지화학 | 도전성 패턴 형성용 조성물 및 도전성 패턴을 갖는 수지 구조체 |
WO2016148141A1 (ja) * | 2015-03-17 | 2016-09-22 | 東レ株式会社 | 積層フィルム、それを用いた液晶ディスプレイ、タッチパネルおよび有機elディスプレイ |
DE102018204364A1 (de) * | 2018-03-22 | 2019-09-26 | Carl Zeiss Smt Gmbh | Optische Anordnung für die EUV-Lithographie |
CN108906099A (zh) * | 2018-05-30 | 2018-11-30 | 常州科力尔环保科技有限公司 | Cu2S/g-C3N4异质结光催化剂的制备方法 |
US11525945B2 (en) | 2018-06-22 | 2022-12-13 | Lawrence Livermore National Security, Llc | System and method for ablation assisted nanostructure formation for graded index surfaces for optics |
US11740532B2 (en) | 2018-12-17 | 2023-08-29 | Viavi Solutions Inc. | Article including light valves |
US11118061B2 (en) * | 2018-12-17 | 2021-09-14 | Viavi Solutions Inc. | Article including at least one metal portion |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5968664A (en) * | 1997-11-11 | 1999-10-19 | Mitsubishi Polyester Film, Llc | Polymeric coated substrates for producing optically variable products |
US20040070833A1 (en) * | 2002-10-09 | 2004-04-15 | Jds Uniphase Corporation | Etalon having a self-supporting thin film |
US20050119390A1 (en) * | 2003-12-02 | 2005-06-02 | Usa As Represented By The Administrator Of The National Aeronautics And Space Administration | Process for the simultaneous formation of surface and sub-surface metallic layers in polymer films |
EP1571467A2 (en) * | 2004-02-27 | 2005-09-07 | Bose Corporation | Selectively reflecting optical component, in particular reflection screen |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2922089C2 (de) * | 1979-05-31 | 1984-05-30 | Dynamit Nobel Ag, 5210 Troisdorf | Verfahren zur Herstellung partiell vernetzter Folien aus einem EPDM- oder EPM-Kunststoff |
US4512855A (en) | 1984-07-23 | 1985-04-23 | E. I. Du Pont De Nemours And Company | Deposition of metals as interlayers within organic polymeric films |
US5716679A (en) * | 1991-09-13 | 1998-02-10 | Institut Fur Neue Materialien Gemeinnutzige Gmbh | Optical elements containing nanoscaled particles and having an embossed surface and process for their preparation |
JPH06174906A (ja) | 1992-02-04 | 1994-06-24 | Komii Kogei Kk | フレネルミラー |
JPH05346496A (ja) | 1992-06-15 | 1993-12-27 | Nitto Denko Corp | 多層膜反射鏡 |
JPH05346498A (ja) | 1992-06-16 | 1993-12-27 | Nkk Corp | ミラ−装置 |
JPH08122498A (ja) | 1994-10-21 | 1996-05-17 | Nikon Corp | 多層膜反射鏡 |
US5851644A (en) * | 1995-08-01 | 1998-12-22 | Loctite (Ireland) Limited | Films and coatings having anisotropic conductive pathways therein |
US5661042A (en) * | 1995-08-28 | 1997-08-26 | Motorola, Inc. | Process for electrically connecting electrical devices using a conductive anisotropic material |
JPH09113697A (ja) | 1995-10-20 | 1997-05-02 | Nikon Corp | 多層膜反射鏡 |
US5900098A (en) * | 1996-10-11 | 1999-05-04 | Wea Manufacturing Inc. | Methods for bonding structurally dissimilar optical discs |
JP2000089010A (ja) | 1998-09-10 | 2000-03-31 | Nikon Corp | 多層膜反射鏡 |
JP2002151551A (ja) * | 2000-11-10 | 2002-05-24 | Hitachi Ltd | フリップチップ実装構造、その実装構造を有する半導体装置及び実装方法 |
KR100379250B1 (ko) * | 2000-12-04 | 2003-04-08 | 한국과학기술연구원 | 나노 단위 크기의 금속 입자가 함유된 고분자 복합 소재및 그 제조 방법 |
FR2863182B1 (fr) | 2003-12-04 | 2006-10-13 | Commissariat Energie Atomique | Procede de concentration de particules. |
-
2007
- 2007-03-20 US US11/725,732 patent/US7955662B2/en not_active Expired - Fee Related
- 2007-03-29 KR KR1020097008472A patent/KR101135407B1/ko not_active IP Right Cessation
- 2007-03-29 WO PCT/JP2007/056987 patent/WO2008041382A1/ja active Application Filing
- 2007-03-29 EP EP07740425A patent/EP2072245A4/en not_active Withdrawn
- 2007-04-10 TW TW096112494A patent/TWI418856B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5968664A (en) * | 1997-11-11 | 1999-10-19 | Mitsubishi Polyester Film, Llc | Polymeric coated substrates for producing optically variable products |
US20040070833A1 (en) * | 2002-10-09 | 2004-04-15 | Jds Uniphase Corporation | Etalon having a self-supporting thin film |
US20050119390A1 (en) * | 2003-12-02 | 2005-06-02 | Usa As Represented By The Administrator Of The National Aeronautics And Space Administration | Process for the simultaneous formation of surface and sub-surface metallic layers in polymer films |
EP1571467A2 (en) * | 2004-02-27 | 2005-09-07 | Bose Corporation | Selectively reflecting optical component, in particular reflection screen |
Also Published As
Publication number | Publication date |
---|---|
WO2008041382A1 (fr) | 2008-04-10 |
KR101135407B1 (ko) | 2012-04-20 |
EP2072245A4 (en) | 2010-04-14 |
US7955662B2 (en) | 2011-06-07 |
EP2072245A1 (en) | 2009-06-24 |
US20080081207A1 (en) | 2008-04-03 |
TW200815796A (en) | 2008-04-01 |
KR20090073207A (ko) | 2009-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI418856B (zh) | 光學多層反射膜、多層疊層體及金屬微粒子排列膜與其製造方法 | |
Zhang et al. | Thin‐metal‐film‐based transparent conductors: Material preparation, optical design, and device applications | |
CN110407152B (zh) | 具有滑动介电膜的基板及其制造方法 | |
JP6387021B2 (ja) | 融着金属ナノ構造化ネットワーク、および還元剤を有する融着溶液 | |
US9732427B2 (en) | Tunable nanoporous films on polymer substrates, and method for their manufacture | |
US10808138B2 (en) | Metal-polymer composite material | |
US8809201B2 (en) | Method of forming metal oxide film and metal oxide film | |
JP6514657B2 (ja) | 反射防止光学部材 | |
JP2009525891A (ja) | 超吸収ナノ粒子組成物 | |
JP5637196B2 (ja) | スーパーストレート型薄膜太陽電池用の複合膜及びその製造方法 | |
TW200829610A (en) | Electrode-forming composition and method for forming electrodes using the same | |
TW201245694A (en) | Metal particle assembly | |
JP6739628B2 (ja) | 高屈折率膜、及び、光学干渉膜 | |
KR20170047294A (ko) | 층상 조립된 다층 라미네이션 전사 필름 | |
JP5041360B2 (ja) | 金属微粒子配列膜およびその製造方法 | |
WO2006049306A1 (en) | Particle laminated substrate and method for manufacturing the same | |
JP2010087479A (ja) | サブストレート型太陽電池用の複合膜及びその製造方法 | |
JP5493276B2 (ja) | 金属微粒子配列膜の製造方法および金属微粒子配列膜 | |
JP2020508846A (ja) | 金属層を有する材料及びこの材料を調製するための工程 | |
TW201527542A (zh) | 複合基板及其製造方法、光學式感測器、局域型表面電漿共振感測器、其使用方法及檢測方法、以及水分選擇透過性過濾器及其製造方法、及具備其的感測器 | |
JP7073860B2 (ja) | 機能性細線付き基材の製造方法、及び、インクと基材のセット | |
JP4993129B2 (ja) | 金属微粒子配列膜の製造方法および金属微粒子配列膜 | |
JP2016102873A (ja) | 反射防止光学部材 | |
WO2019044444A1 (ja) | 積層膜および積層膜の製造方法 | |
Choi et al. | Preparation of gold nanoisland arrays from layer-by-layer assembled nanoparticle multilayer films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |