WO2008041382A1 - Film réfléchissant multicouche optique, film d'ensemble de microparticules métalliques et procédé de fabrication de celui-ci - Google Patents
Film réfléchissant multicouche optique, film d'ensemble de microparticules métalliques et procédé de fabrication de celui-ci Download PDFInfo
- Publication number
- WO2008041382A1 WO2008041382A1 PCT/JP2007/056987 JP2007056987W WO2008041382A1 WO 2008041382 A1 WO2008041382 A1 WO 2008041382A1 JP 2007056987 W JP2007056987 W JP 2007056987W WO 2008041382 A1 WO2008041382 A1 WO 2008041382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- metal
- layer
- light
- wavelength
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0816—Multilayer mirrors, i.e. having two or more reflecting layers
- G02B5/085—Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
- G02B5/0875—Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising two or more metallic layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3615—Coatings of the type glass/metal/other inorganic layers, at least one layer being non-metallic
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3639—Multilayers containing at least two functional metal layers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3644—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3657—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
- C03C17/3663—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties specially adapted for use as mirrors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/26—Reflecting filters
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/42—Coatings comprising at least one inhomogeneous layer consisting of particles only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
Definitions
- One embodiment of the present invention relates to an optical multilayer reflective film having a characteristic of selectively reflecting light of a specific wavelength. Further, a different aspect of the present invention relates to a method of arranging metal fine particles in an orderly manner, and more particularly to a method of arranging metal fine particles in a polymer film in a layered direction in a direction parallel to the film.
- optical communication has become an indispensable technology as a technology that supports the large-capacity communication.
- the number of wavelengths used has increased, and the number of optical components used with it has increased dramatically.
- an optical element using a reflection / transmission optical multilayer film having wavelength selectivity is an essential component.
- a multilayer dielectric optical thin film has been widely used as a functional thin film for controlling the reflection characteristics of light at a specific wavelength.
- These dielectric multilayer films are generally configured by alternately laminating high refractive index layers and low refractive index layers that are optically substantially transparent at a specific wavelength on the surface of a substrate.
- metal oxides such as TaO, TiO, SiO, and MgF
- optical properties such as transmission and reflection are realized by utilizing interference between reflection and transmitted light at the layer interface.
- the thickness of each layer is determined after selecting the material to be used and determining the layer structure over several layers. It is necessary to control the refractive index with high precision to form a film.
- an advanced film-forming technique is required, and the number of manufacturing processes tends to be high.
- Patent Documents 1 to 3 describe multilayer reflectors in which metal films are laminated. These are reflectors having wavelengths in the X-ray region, but also in the X-ray region. The refractive index is large, the layer and the refractive index are small, and the layers are laminated. Same as layer film.
- organic Z inorganic composites there have been many examples of research in recent years, and functional properties of polymers can be modified. Therefore, organic Z inorganic composite materials in which inorganic materials are combined with organic polymers are also actively developed. Has been. Among these, active research is being conducted on methods for dispersing metal fine particles in a polymer with a certain regularity. For example, when a metal complex is used as a precursor of metal fine particles, sublimated and contacted with a block copolymer having different metal reducing ability under nitrogen, the complex is selectively reduced only in one phase.
- Patent Document 1 Japanese Patent Laid-Open No. 5-346498
- Patent Document 2 JP-A-8-122498
- Patent Document 3 Japanese Patent Laid-Open No. 9-113697
- Patent Document 4 Japanese Unexamined Patent Publication No. 2000-89010
- Non-patent literature l Langmuir, 19, 2963 (2003)
- Non-Patent Document 2 Advanced Materials, No.12, p. 1507 (2000)
- Non-Patent Document 3 Nature, 414, 735 pages (2001)
- An object of one embodiment of the present invention is to provide an optical multilayer film that selectively reflects light of a predetermined wavelength with a simple structure.
- the present invention generally relates to an optical multilayer reflective film and a metal fine particle array film.
- the present application discloses the following matters.
- optical multilayer reflective film as described in 1 above which has an optical length substantially satisfying
- optical multilayer reflective film as described in 1 above which has an optical length substantially satisfying
- optical multilayer reflective film according to any one of 1 to 4, wherein the optical multilayer reflective film reflects light having a wavelength of 50% or more.
- the metal layer is made of silver, gold, aluminum, silicon, titanium, chromium, iron, cobalt, nickel, copper, zinc, germanium, zirconium, niobium, molybdenum, palladium, tin, antimony, tantalum, tungsten.
- the optical multilayer reflective film as described in any one of 1 to 7 above, which contains as a main component at least one selected from the group consisting of platinum, bismuth and stainless steel.
- the geometrical film thickness of the transparent thin film layer is 100 to 500 nm.
- the optical multilayer reflective film according to any one of Items 1 to 9.
- optical multilayer reflective film as described in any one of 1 to 12 above, wherein the optical film thickness d of the transparent thin film layer between the metal layers is in the range of ⁇ 15% centering on ⁇ 2. .
- optical multilayer reflective film according to any one of 1 to 13, wherein the transparent thin film layer has a refractive index of 1.2 to 4.0.
- an optical multilayer film that selectively reflects a predetermined wavelength with a simple structure. That is, in the present invention, the design of the layer structure is simple and the degree of freedom in selecting the material to be used is large. Therefore, the manufacturing process can be simplified, and the manufacturing cost can be reduced as compared with a conventional multilayer reflective film having wavelength selectivity.
- the optical multilayer film of the present invention is preferably used as a reflective film that selectively reflects a specific wavelength in the wavelength range of the ultraviolet to near-infrared light region.
- the present application discloses the following matters.
- a polymer solution containing a metal component is used as a reflective substrate. It has a sub-process for forming a film on top and a sub-process for distilling off the solvent.
- the method Prior to the step (A), the method includes a step of providing, on the reflective substrate, a release layer that transmits light having a wavelength irradiated in the later step (B).
- step (A) a polymer film containing a metal component is formed on the release layer, and after the step (B), the polymer film after being irradiated with light is released from the reflective substrate.
- step of peeling the polymer film from the reflective substrate includes the step of removing the release layer.
- the polymer is at least one selected from the group consisting of polymethacrylic acid, polyacrylic acid, methacrylic acid or a copolymer containing acrylic acid monomer units, and polyvinyl alcohol.
- the manufacturing method according to any one of 1 to LO above.
- the repetition distance of the metal fine particle layer in the metal fine particle array film is adjusted by changing the wavelength of the light to be irradiated.
- the manufacturing method of crab is adjusted.
- the repetition distance of the metal fine particle layer in the metal fine particle array film is adjusted by changing the angle of the irradiated light with respect to the reflective substrate. The production method according to any one of 11 above.
- a metal fine particle array film having a structure in which a layer in which metal fine particles are densely present in a polymer film periodically exists as a multilayer in the film thickness direction.
- [0044] 16 It comprises a step of producing a metal fine particle array film by the production method according to any one of 1 to 13, and a step of laminating a plurality of the obtained metal fine particle array films.
- the polymer film has a structure in which metal fine particles are densely present as a multilayer periodically in the film thickness direction, and is produced by the production method described in 16 above. Multi-layer laminate.
- a novel metal fine particle array film having a structure in which metal fine particle layers are periodically multilayered can be produced by a simple method.
- the obtained metal fine particle array film is lightweight and excellent in transportability, impact resistance, and mechanical flexibility, and thus can be used in various applications. Further, in order to selectively reflect light of a specific wavelength, the reflection film can be widely applied to various optical elements and optical components.
- FIG. 1 A diagram showing optical property prediction by the optical thin film design software Essential Macleod of Reference Example A-1.
- FIG. 2 is a diagram showing the results of TEM observation of the optical multilayer film produced in Example A-1.
- FIG. 3 is a graph showing the reflection characteristics of an optical multilayer film on soda lime glass of Example A-1
- FIG.4 Measured reflection characteristics of optical multilayer film in Example A-1 and optical meter in Reference Example A-1 It is the figure which compared the reflection characteristic prediction by calculation. Standardization is performed so that the peak of the reflection maximum is 1.
- FIG. 5 A diagram showing prediction of optical characteristics in the optical thin film design software Essential Macleod in Reference Example A-2.
- FIG. 6 A diagram showing prediction of optical characteristics in the optical thin film design software Essential Macleod in Reference Example A-3.
- FIG. 7 A diagram showing optical characteristic prediction in the optical thin film design software Essential Macleod in Reference Example A-4.
- FIG. 8 A diagram showing prediction of optical characteristics in the optical thin film design software Essential Macleod in Reference Example A-5.
- FIG. 10 is a TEM photograph of the metal-polymer composite of Comparative Example B-1. From the bottom, a glass substrate, an aluminum layer, a silica layer, and a metal-polymer composite layer are formed.
- Example B-2 A TEM photograph of the metal fine particle array film of Example B-2. The lower and upper parts are embedded resin for sample preparation.
- Example B-3 A TEM photograph of the metal fine particle array film produced in Example B-3. From the bottom, a glass substrate, an aluminum layer, a silica layer, and a silver fine particle array polymer layer are formed.
- FIG. 14 A diagram showing optical characteristic prediction by the optical thin film design software Essential Macleod in Reference Example B-1.
- Example B-5 A TEM photograph of the metal fine particle alignment film prepared in Example B-5. From the bottom, a glass substrate, an aluminum layer, a silica layer, and a silver fine particle array polymer layer are formed.
- Example B-6 A TEM photograph of the metal fine particle array film produced in Example B-6. From the bottom, it is an embedded resin for sample preparation and a gold fine particle array polymer layer.
- Example B-9 A TEM photograph of the metal fine particle array film produced in Example B-9. From the bottom, a glass substrate, an aluminum layer, a silica layer, and a silver fine particle array polymer layer are formed.
- FIG. 21 is a diagram showing optical property prediction by the optical thin film design software Essential Macleod in Reference Example B-2.
- FIG. 22 A diagram showing optical property prediction by the optical thin film design software Essential Macleod of Reference Example B-3.
- FIG. 23 is a diagram showing the reflection characteristics when an optical element is manufactured by sandwiching one metal fine particle array film of Example B-10 between quartz plates.
- FIG. 24 is a diagram showing the reflection characteristics when a plurality of metal fine particle array films of Example B-10 are prepared, a predetermined number of them are overlapped, and an optical element is manufactured by sandwiching them between quartz plates.
- FIG. 25 is a view showing a reflection characteristic of a metal fine particle array film of Example B-11.
- FIG. 26 is a conceptual diagram showing an estimation mechanism for obtaining a multilayer structure in which metal fine particle layers and polymer-only layers are alternately stacked in the production method of the present invention.
- the optical multilayer reflective film of the present invention has a periodic alternating laminated structure of a transparent thin film layer and a metal layer, and a wavelength that satisfies the optical condition of the periodic structure is selectively reflected.
- “selective” means that the reflection spectrum by the reflection film has the maximum value of the reflection peak with respect to the wavelength.
- the maximum value of the reflection peak is preferably 40% or more, more preferably 50% or more.
- the narrower the half-value width the better the selectivity, preferably 300 ⁇ m or less, more preferably 200 nm or less, particularly preferably 150 nm or less.
- a desired wavelength can be set as the wavelength ⁇ of the reflected light by setting the condition of the laminated structure of the transparent thin film layer and the metal layer constituting the multilayer reflective film.
- the transparent thin film layer is substantially transparent to wavelength light.
- substantially transparent means that when the entire thickness of the multilayer reflective film is formed of a transparent thin film layer, it indicates about 50% or more. With regard to this transparency, it is preferable that it is transparent, but when the entire thickness of the multilayer reflective film is formed of a transparent thin film layer, it can be used in a specific application if it exhibits a transmittance of 50% or more, preferably It is 70% or more, more preferably 80% or more, and particularly preferably 90% or more.
- one metal layer functions as a semi-transmissive / semi-reflective film that reflects part of incident light and transmits part of it.
- One metal layer itself need not have wavelength selectivity. Usually, it is preferable that the absorption of light is as small as possible, but there may be absorption of light at a wavelength other than the reflection wavelength.
- the number of metal layers is 2 or more, usually 5 or more, preferably 15 or more, and more preferably 20 or more. In general, the greater the number of layers, the better the wavelength selectivity and the narrower the half-value width. However, the number of layers of the metal layer is realistic because of the influence of absorption by the material of the metal layer and the ridge or the transparent thin film layer 300 or less is preferred. 200 or less is more preferred, particularly 100 or less.
- the repetition distance is the distance between the incident light side surface of one metal film and the incident light side surface of an adjacent metal film when the metal layer is a continuous metal film. Is the distance between the center of the high-density layer and the center of the adjacent high-density layer.
- the repetitive distance d between different metal layers fluctuates within a range of ⁇ 20%, preferably within ⁇ 15% around ⁇ 2!
- there may be some variations in film thickness from layer to layer and there may be intentional variations. For example, in applications such as displays, reflections of R (red), G (green), ⁇ (blue), etc. in the visible light region may be required. In this case, human visibility Therefore, a reflection characteristic having a width centered on the design wavelength is required.
- the multilayer structure there may be a layer in which the repetition distance d between adjacent metal layers does not satisfy ⁇ ⁇ 2.
- metal fine particles are densely integrated. It may be a layer (dense layer). In the case of a metal film, it is usually 0.5 to 15 nm (geometric length), preferably 1.5 to LOnm, more preferably 2 to 5 nm. In the case where the metal layer is a high-density layer of metal fine particles, it is only necessary that the distribution of the metal particles is periodically distributed. For example, about 50% or more of the particles have the above-mentioned thickness (geometric length). Being in the range is a preferred layer structure.
- the metal layer is made of silver, gold, aluminum, silicon, titanium, chromium, iron, cobalt, nickel, copper, zinc, germanium, zirconium, niobium, molybdenum, palladium, tin, antimony, tantalum, tungsten, platinum, It is preferable to contain as a main component at least one selected from the group consisting of bismuth and stainless steel (SUS) force.
- SUS stainless steel
- “contain at least one kind as a main component” means that an element other than these constituent elements may be contained in a range of less than 50 atm%.
- the metal layer may be composed of only one type of metal, or may be an alloy force in which two or more types are mixed.
- the metal layer preferably contains silver and Z or gold as main components.
- a silver layer in which silver atoms are densely arranged or a layer in which silver fine particles are formed at a high density is suitable.
- the transparent thin film layer only needs to be formed of a transparent material at least at the reflection wavelength.
- the transparent thin film layer may be transparent in other wavelength ranges (ultraviolet to visible light range).
- a transparent material is preferable in the visible light region.
- the refractive index is not particularly limited, but preferably has a refractive index of, for example, 1.2 to 4.0, or even 1.2 to 2.2!
- Examples of materials that can form the transparent thin film layer include various organic compounds (various polymers) and various inorganic compounds.
- organic compounds polyesters such as polycarbonate, polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, acrylic polymers such as polymethyl methacrylate, methyl styrene resin, acrylonitrile butadiene styrene (ABS) Oil, styrene resin such as acrylonitrile styrene (AS) resin, polyolefins such as polyethylene, polypropylene and polymethylpentene, polyethers such as polyoxetane, transparent polyamides such as nylon 6 and nylon 66 , Polystyrene, polychlorinated bur, polyethersulfone, polysulfone, polytalylate and cellulose triacetate, polybulualcohol, Polyacrylonitrile, polychlorinated butyl, cyclic polyo
- Copolymers and z or mixtures of these polymers can also be used.
- inorganic compounds include silica, quartz, glass, silicon nitride, titanium, alumina, aluminum nitride, zinc oxide, germanium oxide, germanium oxide, niobium oxide, molybdenum oxide, and oxide.
- examples thereof include indium, tin oxide, tantalum oxide, tungsten oxide, lead oxide, diamond, boron nitride, carbon nitride, aluminum oxynitride, and silicon oxynitride.
- the organic transparent thin film layer a material mainly composed of polyacrylic acid or polymethacrylic acid (containing 50% or more) is preferably used.
- polyacrylic acid is suitable.
- the transparent layer of the inorganic compound a material mainly containing silica and quartz (containing 50% or more) is preferably used.
- silica is suitable.
- the film thickness of the transparent thin film layer is set as described above, in one specific embodiment, for example, it is set in the range of 100 to 500 nm, preferably 100 to 350 nm, more preferably 110 to 250 nm.
- the outermost layer in contact with the air is preferably a transparent thin film layer. This is because when the outermost layer on the atmosphere side is a metal layer, the metal is oxidized and deteriorates.
- the film thickness of the outermost transparent thin film layer is not particularly limited, but it is generally preferable that the optical film thickness d is ⁇ 4.
- the metal layer and the transparent thin film layer may be prepared by a known method in accordance with the material.
- the metal layer and the transparent thin film layer made of an inorganic compound for example, vacuum deposition, sputtering, plasma
- transparent thin film layers made of organic compounds such as CVD, thermal CVD, and sol-gel include vacuum deposition, solution casting, spin coating, various other coating formation methods, and various printing methods.
- the wavelength of light selectively reflected by the optical multilayer reflective film is set to 365 nm
- the i-line of the mercury lamp can be selectively reflected in the ultraviolet region.
- the wavelength of light selectively reflected by the optical multilayer reflective film is set to 460 nm
- blue light can be selectively reflected in the visible light region.
- the wavelength of light selectively reflected by the optical multilayer reflective film is set to 530 nm, green light can be selectively reflected in the visible light region. Furthermore, when the wavelength of light selectively reflected by the optical multilayer reflective film is set to 680 nm, an optical multilayer reflective film that selectively reflects red light in the visible light region can be produced.
- the optical multilayer reflective film of the present invention can be used as an optical component for various applications in various forms.
- the optical multilayer reflective film itself is self-supporting, the optical multilayer reflective film can be used alone.
- the optical multilayer reflection film may be laminated or formed on the substrate, and the substrate may be a substrate for forming the multilayer film.
- the substrate may be transparent or opaque depending on the application.
- a metal fine particle array film, a manufacturing method thereof, and a use thereof which are the second main aspect of the present invention will be described.
- a polymer film containing a metal component is formed on a reflective substrate and irradiated with light having a specific wavelength.
- the present invention will be described in detail.
- the “reflective substrate” that can be used in the present invention is not particularly limited as long as the surface of the substrate can reflect light having a specific wavelength ⁇ .
- a reflecting mirror in which a single layer film or a multilayer film is formed on the surface of the substrate using a material selected from various metals such as aluminum and silver and metal oxides. .
- a film obtained by sequentially forming aluminum and silicon on a glass substrate is preferable. This is because aluminum can form a film having a stable and high reflectivity in the ultraviolet to visible region.
- the silica layer has the effect of preventing aluminum from oxidizing.
- the thickness (film thickness) of aluminum in the reflective substrate is, for example, about 100 to 2000 nm, preferably about 150 to 1000 nm, and more preferably about 200 to 800 nm. Also, silica thickness (film For example, 5 to: LOOnm, preferably 10 to 50 nm, more preferably about 10 to 30 nm.
- the “polymer film containing a metal component” contains a metal component in the polymer, and the type of metal element may be one type or two or more types.
- the metal component preferably contains at least one of a metal compound (including a complex and a salt; the same applies hereinafter) and metal fine particles.
- a method in which a polymer solution containing a metal compound and Z or metal fine particles is applied to the reflective substrate is preferred.
- a method in which a polymer solution in which the metal compound is dissolved is applied to the reflective substrate.
- the metal compound used in the present invention generates metal fine particles by irradiation with a specific wavelength ⁇ .
- a compound that absorbs light energy and generates metal fine particles (or a metal constituting the metal fine particles) by reduction that is, a metal compound having a positive oxidation number of metal atoms.
- metal compounds examples include metal oxides, metal hydroxides, metal halides (metal chlorides, etc.), metal acid salts [metal inorganic acid salts (sulfates, nitrates, phosphates). , Oxoacid salts such as perchlorate and hydrochloride), metal organic acid salts (such as acetate), and the like.
- the form of the metal salt may be a single salt, a double salt, or a complex salt (electrolyte complex or non-electrolyte complex, usually an electrolyte complex), or a multimer (eg, a dimer).
- the metal compound (metal salt) is, for example, a compound containing an acid component [hydrogen chloride (HC1), etc.], a base component (such as ammonia), water ( ⁇ ⁇ ), etc. (eg, a hydrogen halide compound).
- the metal compounds may be used alone or in combination of two or more.
- the metal element constituting the metal compound is not particularly limited! Specific metal elements that constitute metal compounds are Group 8-11 metals of the periodic table (ie, iron, ruthenium, osmium, rhodium, iridium, nickel, noradium, platinum, copper, silver, gold, etc.) In this embodiment, noble metals (silver, gold, platinum, ruthenium, etc.) are particularly preferable. The metal compound may contain one or more of these metal elements. [0077] Specific examples of the metal compound include Group 8-11 metal compounds (including metal salts) of the periodic table.
- an inorganic acid salt for example, a noble metal inorganic acid salt such as silver perchlorate (AgClO), silver nitrate (AgNO)
- an organic acid salt for example,
- palladium acetate such as Pd (CH CO)
- rhodium acetate such as [Rh (CH CO)]
- noble metal organic acid salts such as noble metal acetates.
- noble metal halides for example, salt-silver (AgCl), salt-gold (AuCl), platinum chloride (PtCl, PtCl, etc.), palladium chloride (PdCl, etc.)
- other precious metals for example, salt-silver (AgCl), salt-gold (AuCl), platinum chloride (PtCl, PtCl, etc.), palladium chloride (PdCl, etc.)
- Hydrogen chloride-containing noble metal halogens such as chloroplatinic acid (such as H PtCl)
- Gold compounds include gold halides (AuCl, AuCl, AuBr, Aul, Aul, AuCl (P
- gold oxide such as Au 2 O
- sulfur metallurgy such as Au S and Au S (III)
- Examples include various gold complexes such as thiothione (gold) ([Au (C F) (SC H)]).
- Silver compounds include inorganic salts [eg, silver halides such as AgF, AgCl, Agl, AgBr, silver oxides such as Ag O, Ag SO, AgS, AgCN, AgClO, Ag PO, AgSCN, A
- organic salts such as O
- organic salts or complexes
- p-sulfuric acid such as silver toluene sulfonate and silver trifluoromethane sulfonate (CF SO Ag)
- Copper compounds include inorganic salts [eg Cu 0, CuO, Cu (OH), CuF, CuCl, Cu
- Copper halides such as CI, CuBr, CuBr, Cul, CuCO, CuCN, Cu (NO), Cu
- organic salts [eg copper acetate (1), copper acetate (11), [C
- Platinum compounds include inorganic salts such as PtO, PtCl, PtCl, PtBr, PtBr, Ptl
- Platinum halides such as Ptl
- Halogenated platinic acids such as HPtCl 2 ⁇ , PtS, Pt
- Palladium compounds include inorganic salts such as PdO, PdCl, PdBr, Pdl, and the like.
- organic salts [eg Pd (CH 2 CO 3), propionic acid
- Rhodium compounds include inorganic salts [for example, Rh 2 O 3, RhO 2, RhCl, RhBr, Rhl
- a silver salt is a metal compound that is easily reduced by light with high photosensitivity, and silver perchlorate and silver nitrate are preferably used.
- the metal fine particles which means metal fine particles contained in the polymer film at the time of step (A)
- those that can move in the film by irradiation with a specific wavelength are preferable.
- metal particles of about lOnm or less, particularly preferably 2 nm or less, such as colloidal particles, are preferred.
- the above-mentioned metal compound force may be one in which metal fine particles are deposited.
- silver fine particles are preferable.
- it may be a mixture of a metal compound and metal fine particles.
- the ratio of the metal component contained in the polymer is, for example, 0.5 to 500 parts by weight, preferably 1 to 400 parts by weight, based on 100 parts by weight of the polymer based on the molecular weight of the polymer. Preferably it is about 5 to 200 parts by weight.
- the polymer a polymer that is transparent at a specific wavelength ⁇ and can contain a metal component uniformly dissolved or dispersed (particularly, a polymer that dissolves) is preferably used. In addition, in one embodiment, those that are uniformly dissolved in an organic solvent are preferably used.
- polyesters such as polycarbonate, polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, acrylic polymers such as polymethyl methacrylate, methylstyrene resin, acrylonitrile butadiene styrene (ABS) resin, acrylonitrile Styrene resin such as styrene (AS) resin, polyolefins such as polyethylene, polypropylene, and polymethylpentene, polyesters such as polyoxetane, transparent polyamides such as nylon 6 and nylon 66, polystyrene , Polyvinyl chloride, Polyethersulfone, Polysulfone, Polyacrylate, Cellulose triacetate, Polybulal alcohol, Polyacrylonitrile, Cyclic polyolefin, Acrylic resin, Epoxy resin , Kisajen polymers cyclohexane, amorphous polyester ⁇ , transparent polyimide, Toru Various transparent polymers
- copolymers of monomers that are constituents of these polymers, and z or mixtures of these polymers can also be used.
- a copolymer containing polymethacrylic acid, polyacrylic acid, methacrylic acid, or an acrylic acid monomer unit, and a polymer selected from polybutanol are preferably used.
- a solvent capable of dissolving or dispersing (particularly, dissolving) the polymer and the metal component can be appropriately selected according to the type of polymer and metal component, and includes, for example, water (which may be acidic, neutral or alkaline), alcohols (methanol, ethanol, propanol, isopropanol, butanol, isobutanol, etc.) Alkyl alcohols), ethers (chain ethers such as dimethyl ether and jetyl ether, cyclic ethers such as dioxane and tetrahydrofuran), esters (acetates such as methyl acetate, ethyl acetate, and butyl acetate) Etc.), ketones (dialkyl ketones such as acetone, ethylmethyl ketone, etc.), glycol ether esters (ethylene glycol monomethyl ether acetate, propylene glycol monomethyl methen
- the ratio of the solvent is determined based on the thickness (film thickness) of the polymer film containing a metal component intended for film formation on the reflective substrate.
- Solvent 10 ⁇ LOOOO parts by weight, preferably ⁇ is 30 to 5000 parts by weight, more preferably ⁇ is about 50 to 3000 parts by weight.
- the method for forming the metal component-containing polymer solution on the reflective substrate is not particularly limited as long as film formation is possible, and a conventional coating method such as spin coating (rotary coating), Roll coating method, curtain coating method, dip coating method, casting method, etc. can be used.
- a coating device a device corresponding to the above coating method, for example, a spin coater, a slit coater, a roll coater, a bar coater or the like can be used.
- the method for distilling off the solvent of the metal component-containing polymer solution formed on the substrate is not particularly limited, and examples thereof include conventional solvent distilling methods such as evaporation by heating and vacuum drying by various evaporators.
- the thickness of the polymer film containing the metal component formed on the reflective substrate is not particularly limited, and can be set as appropriate according to the application.
- 0.5 to 500 m preferably 0.5 to: LOO / z m More preferably, the thickness is about 1 to 20 / z m.
- a polymer film containing a metal component formed on the reflective substrate is irradiated with light having a specific wavelength ⁇ .
- a desired wavelength can be selected as the wavelength ⁇ , but when the above-described metal component receives light of this wavelength, any one of generation of metal fine particles, movement of metal fine particles, and growth of metal particles is performed.
- Set from a possible wavelength range Usually, it is selected from a wavelength region having sufficient energy to excite a metal compound and reduce it to fine metal particles, and an ultraviolet power visible light region is preferable.
- one wavelength is selected from a wavelength region of 200 to 600, preferably 300 to 500 nm, more preferably 350 to 500 nm. In such a wavelength range, various metal compounds can be efficiently photoreduced into metal fine particles.
- Examples of the light source to be irradiated include halogen lamps, mercury lamps (low pressure mercury lamps, high pressure mercury lamps, ultrahigh pressure mercury lamps, etc.), deuterium lamps, UV lamps, lasers (eg, helium-cadmium lasers, excimers). Laser etc.) can be used. In one embodiment, an ultra high pressure mercury lamp is preferred. Moreover, it is preferable to irradiate one wavelength with a narrow half width as much as possible. The half width of the irradiation wavelength is preferably 50 nm, more preferably 3 Onm or less, particularly preferably 20 nm or less, and most preferably lOnm or less.
- the light irradiation time largely depends on the ability of the irradiation light source (irradiation intensity), it is preferable to determine the light speed by considering the movement of the metal component together with the reaction speed and the diameter of the generated metal particles. .
- the irradiation time is 20 minutes to 6 hours, preferably 30 minutes to 3 hours, particularly preferably 30 minutes. ⁇ 2 hours.
- metal fine particles are generated from the metal compound in the metal component-containing polymer film, or the metal fine particles move and densely form a layer parallel to the film surface. It becomes a periodic multilayer structure. That is, when viewed in the cross-sectional direction of the film, it has a multilayer structure in which metal fine particle layers in which metals are densely packed and polymer-only layers are alternately laminated.
- FIG. 26 shows a conceptual diagram of an estimation mechanism that can obtain such a multilayer structure.
- incident light and reflected light interfere with each other to generate a standing wave having a periodic light intensity distribution, and metal fine particles are generated mainly in a portion where the light intensity is high.
- metal fine particles moved from the weak electric field part to the strong electric field part where the electric field intensity was large in the strong light part part, resulting in the formation of a multilayer structure.
- a standing electric field strength distribution is generated, and it is presumed that the metal fine particles move and a multilayer structure is formed by the same mechanism.
- the repetition distance (pitch) of the metal fine particle layer can be artificially adjusted.
- the repetition distance (pitch) of the metal fine particle layer is changed by adjusting the period of the light intensity generated in the thickness direction of the polymer film.
- it can be adjusted by changing the wavelength of the irradiation light.
- the repetition distance of the metal fine particle layer can be increased by making the wavelength of the irradiation light longer.
- the repetition distance (pitch) of the metal fine particle layer can also be adjusted by changing the angle of the irradiation light.
- the repetition distance of the metal fine particle layer can be increased by increasing the incident angle of the irradiation light.
- the change in the incident angle can be realized simply by tilting the substrate or making the irradiated light incident at a certain angle, and is a very simple method. Furthermore, in this method, the repetition distance of the metal fine particle layer can be adjusted independently from the wavelength of the irradiation light, so light with a wavelength suitable for the reaction is selected during manufacturing. can do. It is also easy to produce a film that selectively reflects light having a wavelength different from the wavelength of irradiation light. In the metal fine particle film of the present invention, the arrangement of the metal fine particle layer can be determined by artificial control as described above. Note that the film thickness may shrink or increase due to the treatment after the light irradiation, and in this case, the repetition distance (pitch) of the metal fine particle layer may also change.
- ⁇ is the wavelength of the irradiation light
- ⁇ ′ is the wavelength of the light in the thin film
- ⁇ is the refractive index of the polymer containing the metal component
- the interference point is determined by the distance from the reflective substrate, so that the interference point exists in layers in a direction parallel to the substrate, and the result in the embodiment of the present invention described later Can be explained theoretically.
- FIG. 27B shows a conceptual diagram that theoretically explains this phenomenon.
- the incident angle ⁇ in the thin film satisfies Snell's law shown in the figure.
- optical path difference OP + OQ
- the optical path difference can be expressed as 2d 'cos ⁇ by using the trigonometric theorem. For this reason, the geometric distance from the reflective substrate is d ',
- the incident angle in the thin film is 0, ⁇ is the wavelength of the irradiated light, ⁇ 'is the wavelength of the light in the thin film, and ⁇ is the metal component
- the interference point is determined by the distance from the reflective substrate, as in the case of vertical irradiation, and therefore there are interference points in layers in the direction parallel to the substrate.
- the metal fine particles in the metal fine particle layer are extremely small at the time of production, the particle diameter increases due to the aggregation and consolidation usually observed in the metal fine particles. There is a case where it can be regarded as a metal film substantially. On the other hand, in a polymer containing fine metal particles, increasing the light intensity increases the difference between the strong and small electric field generated as a standing wave. Becomes bigger.
- the force depending on the conditions as described above is usually 2 to: LOOnm.
- the majority of the microparticles eg, 80% or more
- the metal fine particle array film is expected to have various applications. Typically, it can be used as a reflective film as described later.
- the metal fine particle array film thus manufactured may be used in a state where it is formed on a reflective substrate, or may be used after being peeled off.
- the metal fine particle array film In the manufacturing method described above (referred to as the first embodiment), since the metal fine particle array film is formed on the reflective substrate, the metal fine particle array film cannot be peeled off depending on the selection of materials and the like. There are limited applications.
- the second embodiment a method for obtaining a metal fine particle array film as a self-supporting film will be described. In the description of the second embodiment, the matters (materials, conditions, preferred ranges, etc.) described in the first embodiment are adopted as long as there is no contradiction regarding matters not specifically mentioned. [0111]
- a release layer is first provided on a reflective substrate, rather than directly forming a polymer film containing a metal component on the reflective substrate.
- the release layer is a material that does not hinder irradiation at a specific wavelength, that is, a material that is transparent at that wavelength, and that can release the metal fine particle array film formed in the later process from the reflective substrate. If it is, it will not be specifically limited.
- the metal fine particle array film can be peeled off, and since the adhesive strength between the reflective substrate and the release layer is small, the metal fine particle array film can be peeled off later in the process. Examples thereof include a form in which the metal fine particle array film can be peeled off in a later step because the adhesion strength between the release layer and the metal fine particle array film is small.
- the release layer for this purpose is preferably formed of a polymer, for example, a polymer that is insoluble in the solvent of the metal component-containing polymer solution.
- Polyesters such as polycarbonate, polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, acrylic polymers such as polymethyl methacrylate, methylstyrene resin, acrylonitrile butadiene styrene (ABS) resin, acrylonitrile Styrene resin such as styrene (AS) resin, polyolefins such as polyethylene, polypropylene, and polymethylpentene, polyesters such as polyoxetane, transparent polyamides such as nylon 6 and nylon 66, polystyrene , Polyvinyl chloride, Polyethersulfone, Polysulfone, Polyathalylate and Cellulose triacetate, Polybutyl alcohol, Polyacrylonitrile, Polychlorinated butyl, Cyclic polyolefin, Acryl And various transparent polymers such as fat, epoxy resin, cyclohexagen polymer, amorphous polyester resin, transparent poly
- the thickness of this release layer is 0.01 mm to 50 m, preferably 0.75 mm, if the thickness is good, so that the arrangement of the metal fine particles in the polymer by light irradiation is not hindered. 0.01 ⁇ 20 m More preferably, it is about 0.01 to 5 / ⁇ ⁇ .
- the layer may be formed, for example, by applying a solution of these polymers and then removing the solvent, or by applying a monomer together with an initiator if necessary, followed by polymerization.
- a conventional coating method such as a spin coating method (rotary coating method), a roll coating method, a force ten coating method, a dip coating method, or a casting method can be used.
- a device corresponding to the above coating method for example, a spin coater, a slit coater, a ronor coater, a bar coater, or the like can be used.
- a polymer film containing a metal component is formed on the release layer in the same manner as in the first embodiment, and a specific layer is formed. Irradiates light of wavelength ⁇ .
- the polymer film is a metal fine particle array film in which metal fine particle layers are arranged in multiple layers.
- the polymer film after being irradiated with light that is, the metal fine particle array film is peeled from the reflective substrate.
- the peeling method depends on the material of the peeling layer. If the release layer is one that reduces the adhesive strength at the interface, it can be mechanically peeled off.
- the release layer is a removable material, particularly when the release layer is the above-described soluble material, the release layer is separated into a solvent in which the release layer is soluble and the metal fine particle array film is not dissolved. The release layer is dissolved and removed by immersing the layer. As a result, the metal fine particle array film can be peeled from the reflective substrate.
- the metal fine particle array film peeled from the reflective substrate thus obtained may be used as it is, or may be used after being attached to an appropriate substrate.
- a transparent or opaque film or sheet, particularly a resin (polymer) film or sheet is used as a substrate and a metal fine particle array film is pasted or laminated thereon, the metal fine particle array film of the present invention is used. It can be used in various applications because of its improved mechanical strength and handleability without sacrificing mechanical flexibility and lightness.
- the metal fine particle array film of the present invention described as the first embodiment and the second embodiment can be used for various purposes, but is particularly useful as a reflective film.
- this film has a maximum value of reflection at a wavelength position almost coincident with the wavelength ⁇ when irradiated with light, and is wavelength selective. Reflective film It became clear to function as.
- d is the optical distance
- d ' is the geometric distance
- ⁇ is the reflected wavelength
- ⁇ ' is the wavelength in the polymer
- ⁇ is the refractive index of the polymer
- the metal fine particle array film of the present invention peeled off from the reflective substrate is easily squeezed, it can be scattered by forming an element sandwiched between transparent substrates such as a quartz plate, a resin (polymer) film, or a sheet. By suppressing the light to be transmitted, it is possible to improve the characteristics as a wavelength selective reflection film.
- the metal fine particle array film peeled off from the reflective substrate can be formed into a stacked body by stacking a plurality of metal fine particle arrays in close contact with each other by a method such as stacking or folding a thin film.
- a method such as stacking or folding a thin film.
- the repetition distance of the metal fine particle layer is controlled by changing the wavelength and incident angle of the irradiation light, and light having a wavelength different from the wavelength of the irradiation light is selectively selected.
- the species A film that selectively reflects light of various wavelengths can be easily manufactured.
- the metal fine particle array film produced in the present invention can be used in place of the conventional optical multilayer reflective film made of an inorganic substance or an inorganic oxide. Therefore, weight reduction, transportability, impact resistance, mechanical flexibility, etc. are improved, and it can be widely applied to optical parts as optical materials.
- the film configuration that selectively reflects light at a wavelength of 457 nm using silver as the metal layer and silica as the transparent thin film layer was calculated by the optical thin film design software Essential Macleod. From the calculation results, it is predicted that a film that selectively reflects light with a wavelength of 457 ⁇ m with a high reflectance of 50% or more can be realized by realizing a multilayer film in which silica 140 nm and silver lOnm are alternately laminated. It was done.
- Figure 1 shows the reflection spectrum predicted by the calculation.
- a selective wavelength reflective film that selectively reflects light having a wavelength of 457 nm was formed by sputtering.
- a silica film is formed on soda-lime glass by a 13.56 MHz alternating current sputtering method, and then a silver film is laminated thereon by a direct current sputtering method. This is repeated, and finally a silica film is formed alternately. 41 layers were formed.
- the sputtering conditions were selected so that the silica film thickness and silver film thickness were 140 nm and lOnm, respectively.
- FIG 4 shows the measured values and the calculation results from Reference Example A-1 for comparison. From this result, it was clarified that after designing a wavelength-selective multilayer reflective film by optical calculation, the multilayer reflective film of the present invention can be produced in accordance with the design. [0134] (Reference Example A-2)
- the optical thin film design software Essential Macleod calculates the structure of a 41-layer multilayer film that reflects light with a wavelength of 365 nm corresponding to the i-line of the mercury lamp.
- Silica Z3nm 11 / 122.5 nm Silica Z3nm Silver ⁇ ⁇ ⁇ 122.5 nm Silica Z3nm Silver Z60.5 nm Silica Z Soda lime glass composition was obtained.
- the reflectivity at the design center wavelength of 365 nm was 75%, and the half-value width was 19 nm.
- Figure 5 shows the expected reflection characteristics.
- the optical thin film design software Essential Macleod found a 41-layer multilayer structure that reflects light with a wavelength of 530 nm corresponding to green light.
- 89 ⁇ m Silica Z3nm 11 / 179. 5nm Silica Z3nm Silver ⁇ ⁇ ⁇ 179.5 nm Silica Z 3nm Silver Z89nm Silica Z Soda lime glass composition was obtained.
- the reflectivity at the design center wavelength of 530 nm was 95%, and the half-value width was 48 nm.
- Figure 7 shows the expected reflection characteristics.
- a 200 nm aluminum film was formed on soda lime glass by a DC sputtering method, and then a lOnm silica film was formed by a 13.56 MHz AC sputtering method to form a reflective substrate. 10.
- a solution obtained by dissolving 63. lmg of silver perchlorate in Olg was spin-coated on a reflective substrate (1500rpm, 10 seconds) and then dried at room temperature for 3 hours.
- the ultra-high pressure mercury lamp manufactured by Usio Electric Co., Ltd., “Multi-light”
- a narrow bandpass filter are used to irradiate the thin film on the reflective substrate vertically for 365 hours at a wavelength of 365 nm. did.
- Fig. 9 shows a transmission electron microscope (TEM) photograph of the cross-section of the thin film on the obtained reflective substrate.
- Fig. 10 shows a transmission electron microscope (TEM) photograph of a cross-section of the thin film on the obtained reflective substrate.
- TEM transmission electron microscope
- a 10 wt% polystyrene toluene solution was spin-coated (1500 rpm, 10 seconds) on the reflective substrate prepared in Example B-1, and then dried at room temperature for 3 hours. Further, spin coating (1500 rpm, 40 ml) of a solution obtained by dripping 2.44 g of methanol solution of 71.7 mg of silver perchlorate into 2.51 g of methanol solution of 10 wt% polyacrylic acid on the thin film on the substrate. Seconds) Dry at room temperature for 3 hours.
- ultraviolet light with a wavelength of 365 nm is vertically applied to the thin film on the reflective substrate for 1 hour using an ultra-high pressure mercury lamp (manufactured by Usio Electric Co., Ltd., “Multi Light”) and a narrow bandpass filter. Irradiated.
- the obtained sample was impregnated with xylene to dissolve the styrene layer, and the metal fine particle array film was peeled from the reflective substrate.
- FIG. 11 shows a transmission electron microscope (TEM) photograph of the obtained thin film cross section. It was confirmed that silver was arranged in layers in the direction parallel to the substrate in the polyacrylic acid.
- Figure 12 shows the reflection spectrum of this thin film. The fact that it has a maximum value of reflection at the irradiation wavelength of 365 nm has become a component.
- a solution obtained by dissolving 61.8 mg of silver perchlorate in 02 g was spin-coated (1500 rpm, 10 seconds) and then dried at room temperature for 3 hours. Then, ultraviolet light with a wavelength of 436 nm is vertically applied to the thin film on the reflective substrate for 12 hours using an ultra-high pressure mercury lamp (manufactured by Usio Electric Co., Ltd., “Multi Light”) and a g-ray transmission filter. Irradiated.
- FIG. 13 shows a transmission electron microscope (TEM) photograph of a cross section of the thin film on the obtained reflective substrate.
- Silver fine particles are arranged in layers in the direction parallel to the substrate at intervals of approximately 1 lOnm (geometric distance) in polymethacrylic acid, and the repetitive distance of the metal fine particle layer compared to using 365 nm wavelength Confirmed that it was getting longer.
- most of the silver particles were observed to have a particle size of lOnm or less.
- the repetition distance (pitch) of the metal fine particle layer can be adjusted by changing the wavelength ⁇ of the irradiation light.
- Example B-1 On a reflective substrate prepared in Example 1, 10 wt% poly (methyl methacrylate) '75:25 random copolymer in tetrahydrofuran (THF) solution 4. 99 g of silver perchlorate 51.5 mg were dissolved. The solution thus obtained was spin-coated (1500 rpm, 10 seconds) and then dried at room temperature for 3 hours. After that, UV light with a wavelength of 365 nm is vertically applied to the thin film on the reflective substrate for 1 hour using an ultra-high pressure mercury lamp (manufactured by Usio Electric Co., Ltd., “Multi Light”) and a narrow band-pass filter. Irradiated.
- an ultra-high pressure mercury lamp manufactured by Usio Electric Co., Ltd., “Multi Light”
- FIG. 15 shows a transmission electron microscope (TEM) photograph of a cross-section of the thin film on the obtained reflective substrate. It was confirmed that silver fine particles were arranged in layers in the polymer in a direction parallel to the substrate at an interval of approximately 108 nm (geometric distance). It was also observed that most silver particles had a particle size of lOnm or less.
- TEM transmission electron microscope
- Omg of silver nitrate in 5.04 g of an aqueous solution of 10 wt% polybulal alcohol on the reflective substrate prepared in Example B-1 was spin-coated (3000 rpm, 30 seconds), and then at room temperature. Dried for 5 hours. After that, UV light with a wavelength of 365 nm is vertically applied to the thin film on the reflective substrate using an ultra-high pressure mercury lamp (manufactured by Usio Electric Co., Ltd., “Multi Light”) and a narrow bandpass filter. Irradiated for hours.
- FIG. 16 shows a transmission electron microscope (TEM) photograph of the cross-section of the thin film on the obtained reflective substrate. It was confirmed that the silver fine particles were arranged in a layer in the direction parallel to the substrate at intervals of about 120 nm (geometric distance) in the polyvinyl alcohol. In addition, most of the silver particles were observed to have a particle size of less than lOnm.
- TEM transmission electron microscope
- a 10 wt% polystyrene toluene solution was spin-coated (1500 rpm, 10 seconds) on the reflective substrate prepared in Example B-1, and then dried at room temperature for 3 hours. Furthermore, after spin-coating (1500 rpm, 10 seconds) a solution obtained by dropping 704 mg of a 17 wt% dilute hydrochloric acid aqueous solution into 10. Olg of a 5 wt% polyacrylic acid methanol solution on the thin film on the substrate, Dried at room temperature for 3 hours.
- the ultra-high pressure mercury lamp usi Using a multi-light manufactured by Eo Electric Co., Ltd.
- a narrow-band bandpass filter UV light with a wavelength of 365 nm was irradiated vertically for 3 hours.
- the obtained sample was impregnated with xylene to dissolve the styrene layer, and the metal fine particle array film was peeled from the reflective substrate.
- FIG. 17 shows a transmission electron microscope (TEM) photograph of the obtained thin film cross section. It was confirmed that the gold fine particles were arranged in layers in the direction parallel to the substrate at intervals of about 130 nm (geometric distance) in the polyacrylic acid. It was also observed that many of the gold particles have a particle size of about lOnm.
- TEM transmission electron microscope
- a solution obtained by dissolving 64.3 mg of silver perchlorate in 02 g was spin-coated (1500 rpm, 10 seconds) on a reflective substrate, and then dried at room temperature for 3 hours. After that, using a super high pressure mercury lamp (manufactured by Usio Electric Co., Ltd., “Multi Light”) and a narrow-band bandpass filter, the 365 nm wavelength ultraviolet light is applied to the thin film on the reflective substrate at 30 °. Irradiated for 1 hour at an incident angle.
- a super high pressure mercury lamp manufactured by Usio Electric Co., Ltd., “Multi Light”
- FIG. 18 shows a transmission electron microscope (TEM) photograph of a cross section of the thin film on the obtained reflective substrate.
- TEM transmission electron microscope
- a solution obtained by dissolving 64.3 mg of silver perchlorate in 02 g was spin-coated (1500 rpm, 10 seconds) and then dried at room temperature for 3 hours. After that, ultraviolet light with a wavelength of 365 nm is incident on the thin film on the reflective substrate at a 45 ° wavelength using an ultra-high pressure mercury lamp (manufactured by Usio Electric Co., Ltd., “Multi Light”) and a narrow band-pass filter. Irradiated at the corner for 1 hour.
- an ultra-high pressure mercury lamp manufactured by Usio Electric Co., Ltd., “Multi Light”
- FIG. 19 shows a transmission electron microscope (TEM) photograph of the cross section of the thin film on the obtained reflective substrate.
- TEM transmission electron microscope
- Example B-9 On the reflective substrate prepared in Example B-1
- Omg of silver perchlorate in OOg was spin-coated (1500 rpm, 10 seconds) and then dried at room temperature for 3 hours. Then, ultraviolet light with a wavelength of 365 nm is incident on the thin film on the reflective substrate at an angle of 60 ° using an ultra-high pressure mercury lamp (manufactured by Usio Electric Co., Ltd., “Multi Light”) and a narrow-band bandpass filter. Irradiated at the corner for 1 hour.
- FIG. 20 shows a transmission electron microscope (TEM) photograph of a cross section of the thin film on the obtained reflective substrate.
- TEM transmission electron microscope
- the repetition distance of the metal fine particle layer can be increased by increasing the incident angle of the irradiation light. That is, when arraying at the same wavelength, the optical path difference between the incident light and the reflected light can be controlled by changing the incident angle of the irradiated light, and the repetition distance (pitch) of the metal fine particle layer can be controlled. It is possible to adjust.
- Example B Based on a TEM photograph at 7 (incident angle 30 °), 100. Onm polymethacrylic acid ZlOnm 11/95. Onm polymethacrylic acid ZlOnm silver ⁇ ⁇ ⁇ . Reflecting properties were predicted by the optical thin film design software Essential Macleod using physical properties corresponding to all 28 layers of the multilayer structure. The result is expected to have a maximum reflection wavelength at 326 nm, as shown in FIG.
- FIG. 21 shows the results of prediction of reflection characteristics based on TEM photographs in Examples B-8 (incident angle 45 °) and 9 (incident angle 60 °). Also in Examples B-8 and 9, the above relational expression holds, and it was confirmed that the maximum reflection wavelength can be controlled by changing the incident angle. That is, it is presumed that the selectivity of the reflection wavelength can be changed by adjusting the repetition distance (pitch) of the metal fine particle layer by changing the angle of the irradiation light.
- Example B A 10 wt% poly (methyl methacrylate) methacrylic acid 75:25 random copolymer in tetrahydrofuran (THF) solution on a reflective substrate prepared in Example B 1. Dissolve 5 0.1 mg of silver perchlorate in OOg. The solution thus obtained was spin-coated (1500 rpm, 10 seconds) and then dried at room temperature for 3 hours. After that, UV light with a wavelength of 365 nm is vertically applied to the thin film on the reflective substrate for 2 hours using an ultra-high pressure mercury lamp (manufactured by Usio Electric Co., Ltd., “Multi Light”) and a narrow bandpass filter. Irradiated. As for the reflection substrate force of the obtained sample, after peeling the metal fine particle array film, an optical element was fabricated by sandwiching the thin film between two quartz plates.
- THF tetrahydrofuran
- FIG. 23 shows the reflection spectrum of the obtained optical element. As predicted based on the interference theory shown in Reference Example B-3, it was found that it had a reflection maximum of 24.1% at 360 nm, which is very close to the irradiation wavelength.
- FIG. 24 shows a reflection spectrum when a plurality of metal fine particle array films are prepared by the same method, and a predetermined number of these are laminated to form an optical element sandwiched between quartz plates.
- the reflection maximum value 3 sheets; 27.6, 9 sheets; 27.1%
- Example B A 10 wt% poly (methyl methacrylate) methacrylic acid 75:25 random copolymer in tetrahydrofuran (THF) solution on a reflective substrate prepared in Example B 1. Dissolve 5 0.1 mg of silver perchlorate in OOg. The solution thus obtained was spin-coated (1500 rpm, 10 seconds) and then dried at room temperature for 3 hours. Then, ultraviolet light with a wavelength of 365 nm is incident on the thin film on the reflective substrate at an angle of 60 ° using an ultra-high pressure mercury lamp (manufactured by Usio Electric Co., Ltd., “Multi Light”) and a narrow-band bandpass filter.
- THF tetrahydrofuran
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Laminated Bodies (AREA)
- Optical Filters (AREA)
Description
明 細 書
光学多層反射膜、並びに金属微粒子配列膜およびその製造方法 技術分野
[0001] 本発明の 1態様は、特定の波長の光を選択的に反射する特性を有する光学多層 反射膜に関する。さらに、本発明の異なる態様は、金属微粒子を秩序だって配列す る方法に関し、詳しくはポリマー膜中に金属微粒子を膜と平行方向に層状に配列さ せる方法に関する。
背景技術
[0002] 近年、インターネットの急速な普及に伴 、、その大容量通信を支える技術として、光 通信は必須の技術となっている。さらに、高密度波長多重通信の普及により、使用さ れる波長が増加し、それと共に用いられる光学部品の数は飛躍的に増加している。 その中でも波長選択性を具備した、反射 ·透過光学多層膜を用いた光学素子は必須 の構成要素となっている。
[0003] 従来、光の特定波長における反射特性を制御する機能性薄膜としては、多層誘電 体光学薄膜が多用されている。これら誘電体多層膜は、一般的に、基板の表面に特 定波長において光学的に実質的に透明な高屈折率層と低屈折率層を交互に積層し て構成されている。具体的には、 Ta O、 TiO、 SiO、 MgFなどの金属酸化物や
2 5 2 2 2
弗化物などを積層し、その層界面での反射と透過光の干渉を利用して透過や反射な どの光学特性を実現するものである。
[0004] し力しながら、このような特性を持つ多層誘電体光学薄膜を作製するためには、使 用する材料の選択と何層にも渡る層構造を決定した上で、各層の厚みと屈折率を高 精度で制御して製膜することが必要である。特に、半値幅の極狭い光を選択的に反 射する反射膜を作製するためには高度な製膜技術が必要であり、製造工程も多ぐ コストが高くなる傾向がある。
[0005] 一方、特許文献 1〜3には、金属膜を積層した多層膜反射鏡が記載されているが、 これらは X線領域の波長の反射鏡であることに加え、 X線領域の波長に対する屈折 率の大き 、層と屈折率の小さ 、層とを積層したのものであり、原理は前述の光学多
層膜と同じである。
[0006] 一方有機 Z無機複合体に関しては、近年多くの研究例があり、高分子の機能特性 を改変できることから、有機高分子に無機材料を複合化させた有機 Z無機複合材料 も盛んに開発されている。その中でも、高分子中に金属微粒子を一定の規則性を持 つて分散させる方法については、活発に研究が行われている。例えば、金属微粒子 の前駆体として金属錯体を用い、これを昇華させ、金属の還元能力が異なるブロック 共重合ポリマーに窒素下で接触させると、錯体が一方の相でのみ選択的に還元され
、金属微粒子のナノレベルでの配列が実現されている(例えば非特許文献 1〜3参照
) o
[0007] し力しながら、報告されている高分子中の金属微粒子の配列に関しては、共重合 体の各ポリマーの分布 (配列形態)は自己組織的に決定されており、金属微粒子の 配列を完全に制御した例は報告されていない。特に、金属微粒子をポリマー膜中に 膜と平行方向に層状に配列させる方法は知られて 、なかった。
特許文献 1:特開平 5— 346498号公報
特許文献 2:特開平 8 - 122498号公報
特許文献 3:特開平 9 - 113697号公報
特許文献 4:特開 2000— 89010号公報
非特許文献 l :Langmuir、 19号、 2963頁(2003年)
非特許文献 2 : Advanced Materials, 12号、 1507頁(2000年)
非特許文献 3 :Nature、 414号、 735頁(2001年)
発明の開示
発明が解決しょうとする課題
[0008] 本発明の 1態様は、単純な構造により、所定の波長の光を選択的に反射する光学 多層膜を提供することを目的とする。
[0009] さらに、本発明の他の 1態様は、金属微粒子の新規な配列膜を、簡便な方法により 製造する方法を提供することを目的とする。また、本発明のさらに他の 1態様の目的 は、金属微粒子の新規な配列膜を提供することである。
課題を解決するための手段
[0010] 本発明は、概略的には光学多層反射膜と金属微粒子配列膜に関する。まず、本発 明の主要な 1態様の光学反射膜に関して、本出願は以下の事項を開示している。
[0011] 1. 波長えの光に実質的に透明な透明薄膜層と金属層との周期的な交互積層構 造を有し、前記波長 λの光を選択的に反射することを特徴とする光学多層反射膜。
[0012] 2. 隣接する金属層同士の繰り返し距離 dの少なくとも一部は、
ά= λ /2
を、実質的に満足する光学長を有していることを特徴とする上記 1記載の光学多層反 射膜。
[0013] 3. 隣接する金属層同士の繰り返し距離 dのすべてが、
ά= λ /2
を、実質的に満足する光学長を有していることを特徴とする上記 1記載の光学多層反 射膜。
[0014] 4. 前記金属層が、金属膜または金属微粒子の凝集層であることを特徴とする上 記 1〜3のいずれかに記載の光学多層反射膜。
[0015] 5. 前記光学多層反射膜は、波長えの光を 50%以上反射することを特徴とする上 記 1〜4のいずれかに記載の光学多層反射膜。
[0016] 6. 前記金属層の層数力 少なくとも 15層であることを特徴とする上記 1〜5のい ずれかに記載の光学多層反射膜。
[0017] 7. 大気側の最外層が前記透明薄膜層であることを特徴とする上記 1〜6のいず れかに記載の光学多層反射膜。
[0018] 8. 前記金属層は、銀、金、アルミニウム、シリコン、チタン、クロム、鉄、コバルト、 ニッケル、銅、亜鉛、ゲルマニウム、ジルコニウム、ニオブ、モリブデン、パラジウム、ス ズ、アンチモン、タンタル、タングステン、白金、ビスマスおよびステンレス鋼からなる 群より選ばれる少なくとも 1種類を主成分とすることを特徴とする上記 1〜7のいずれ 力に記載の光学多層反射膜。
[0019] 9. 前記金属層の幾何学的膜厚が 0. 5〜15nmであることを特徴とする上記 1〜8 の!、ずれかに記載の光学多層反射膜。
[0020] 10. 前記透明薄膜層の幾何学的膜厚が 100〜500nmであることを特徴とする上
記 1〜9のいずれかに記載の光学多層反射膜。
[0021] 11. 前記波長 λが、紫外から近赤外光領域の波長範囲にあることを特徴とする上 記 1〜10のいずれかに記載の光学多層反射膜。
[0022] 12. 水銀ランプの i線(λ = 365nm)、青色の光(λ =460nm)、緑色の光(λ =
530nm)および赤色の光( λ =680nm)力もなる群より選ばれる光を選択的に反射 することを特徴とする上記 1〜11の 、ずれかに記載の光学多層反射膜。
[0023] 13. 前記金属層間の透明薄膜層の光学膜厚 dは、 λ Ζ2を中心として ± 15%の 範囲であることを特徴とする上記 1〜12のいずれかに記載の光学多層反射膜。
[0024] 14. 前記透明薄膜層の屈折率が 1. 2〜4. 0である上記 1〜13のいずれかに記 載の光学多層反射膜。
[0025] この態様によれば、単純な構造により、所定の波長を選択的に反射する光学的多 層膜を提供することができる。即ち、本発明では、層構成の設計が簡単であり、また 使用する材料の選択の自由度も大きい。このため、製造工程を簡略ィ匕することが可 能であり、従来の波長選択性のある多層反射膜と比較して、製造コストを削減するこ とがでさる。
[0026] 本発明の光学多層膜は、特に紫外から近赤外光領域の波長範囲の特定の波長を 選択的に反射する反射膜として好ましく使用される。
[0027] さらに、ポリマーと金属を積層した構造では、軽量化、輸送性と耐衝撃性、および機 械的な柔軟性を向上させることができる。
[0028] さらに本発明のもう 1つの主要な 1態様の金属微粒子配列膜に関して、本出願は以 下の事項を開示している。
[0029] 1. 反射基板上に金属成分を含有するポリマー膜を製膜する工程 (Α)と、
前記ポリマー膜に、特定の波長の光を照射する工程 (Β)と
を有することを特徴とする金属微粒子配列膜の製造方法。
[0030] 2. 前記金属微粒子配列膜の構造が、金属微粒子が密集した層がポリマー膜の 膜厚方向に周期的に多層として存在する構造である上記 1または 2記載の製造方法
[0031] 3. 前記ポリマー膜の製膜工程 (Α)は、金属成分を含むポリマー溶液を反射基板
上に製膜するサブ工程と、溶媒を留去するサブ工程とを有することを特徴とする上記
1記載の製造方法。
[0032] 4. 前記工程 (A)に先立ち、反射基板上に、後の工程 (B)で照射する波長の光を 透過する剥離層を設ける工程を有し、
工程 (A)において、前記剥離層の上に金属成分を含有するポリマー膜を製膜し、 さらに、前記工程 (B)の後に、光が照射された後の前記ポリマー膜を前記反射基板 から剥離する工程とを有することを特徴とする上記 1〜3のいずれかに記載の製造方 法。
[0033] 5. 前記ポリマー膜を前記反射基板から剥離する工程が、前記剥離層を除去する 工程を含むことを特徴とする上記 4記載の方法。
[0034] 6. 前記剥離層の除去が、前記剥離層の溶解により行われることを特徴とする上 記 5記載の方法。
[0035] 7. 前記金属成分が、前記特定の波長の光によって還元されて金属微粒子を生 成する金属化合物を含むことを特徴とする上記 1〜6のいずれかに記載の製造方法
[0036] 8. 前記金属成分力 金属微粒子を含むことを特徴とする上記 1〜6のいずれかに 記載の製造方法。
[0037] 9. 前記金属化合物が、過塩素酸銀、硝酸銀および塩化金酸から選ばれる少なく とも 1種であることを特徴とする上記 7記載の製造方法。
[0038] 10. 前記ポリマー膜を構成するポリマーが、少なくとも前記特定の波長において 透明であることを特徴とする上記 1〜9のいずれかに記載の製造方法。
[0039] 11. 前記ポリマーが、ポリメタクリル酸、ポリアクリル酸、メタクリル酸またはアタリ ル酸モノマーユニットを含有する共重合体、およびポリビニルアルコール力 なる群よ り選ばれる少なくとも 1種であることを特徴とする上記 1〜: LOのいずれかに記載の製 造方法。
[0040] 12. 前記工程 (B)において、照射する光の波長を変えることにより、金属微粒子 配列膜中の金属微粒子層の繰り返し距離を調節することを特徴とする上記 1〜11の V、ずれかに記載の製造方法。
[0041] 13. 前記工程 (B)において、照射する光の前記反射基板に対する角度を変える ことにより、金属微粒子配列膜中の金属微粒子層の繰り返し距離を調節することを特 徴とする上記 1〜11のいずれかに記載の製造方法。
[0042] 14. ポリマー膜中に、金属微粒子が密集した層が、膜厚方向に周期的に多層とし て存在する構造を有する金属微粒子配列膜。
[0043] 15. 上記 1〜13のいずれかに記載の方法によって製造され、ポリマー膜中に、金 属微粒子が密集した層が、膜厚方向に周期的に多層として存在して ヽる構造を有す る金属微粒子配列膜。
[0044] 16. 上記 1〜13のいずれかに記載の製造方法により金属微粒子配列膜を製造 する工程と、得られた金属微粒子配列膜の複数枚を積層する工程とを有することを 特徴とする金属微粒子配列膜の多層積層体の製造方法。
[0045] 17. ポリマー膜中に、金属微粒子が密集した層が、膜厚方向に周期的に多層とし て存在する構造を有し、上記 16記載の製造方法で製造されたことを特徴とする多層 積層体。
[0046] 18. 上記 14もしくは 15に記載の金属微粒子配列膜、または上記 17に記載の多 層積層体を用いた波長選択性の反射膜。
[0047] この態様によれば、金属微粒子の層が周期的に多層積層された構造を有する新規 な金属微粒子配列膜を簡便な方法で作製することができる。得られる金属微粒子配 列膜は、軽量で輸送性と耐衝撃性、および機械的な柔軟性に優れるため、種々の用 途で利用可能である。また特定の波長の光を選択的に反射するために、反射膜とし て、種々の光学素子、光学部品等に広く応用することができる。
図面の簡単な説明
[0048] [図 1]参考例 A—1の光学薄膜設計ソフト Essential Macleodでの光学特性予測を 示す図である。
[図 2]実施例 A—1で作製した光学多層膜の TEM観察結果を示す図である。
[図 3]実施例 A— 1のソーダライムガラス上の光学多層膜の反射特性を示す図である
[図 4]実施例 A— 1における光学多層膜の実測の反射特性と参考例 A— 1の光学計
算による反射特性予測を比較した図である。反射極大のピークを 1となるように規格 化を行っている。
[図 5]参考例 A— 2における光学薄膜設計ソフト Essential Macleodでの光学特性 予測を示す図である。
[図 6]参考例 A— 3における光学薄膜設計ソフト Essential Macleodでの光学特性 予測を示す図である。
[図 7]参考例 A— 4における光学薄膜設計ソフト Essential Macleodでの光学特性 予測を示す図である。
[図 8]参考例 A— 5における光学薄膜設計ソフト Essential Macleodでの光学特性 予測を示す図である。
圆 9]実施例 B—1で作製された金属微粒子配列膜の TEM写真である。下部より、ガ ラス基板、アルミニウム層、シリカ層、銀微粒子配列ポリマー層となっている。
[図 10]比較例 B—1の金属—ポリマー複合体の TEM写真である。下部より、ガラス基 板、アルミニウム層、シリカ層、金属—ポリマー複合体層となっている。
圆 11]実施例 B— 2の金属微粒子配列膜の TEM写真である。尚、下部と上部は試料 作製のための包埋榭脂である。
圆 12]実施例 B— 2の金属微粒子配列膜の反射特性を示す図である。
圆 13]実施例 B— 3で作製された金属微粒子配列膜の TEM写真である。下部より、 ガラス基板、アルミニウム層、シリカ層、銀微粒子配列ポリマー層となっている。
[図 14]参考例 B— 1の光学薄膜設計ソフト Essential Macleodでの光学特性予測を 示す図である。
圆 15]実施例 B— 4で作製された金属微粒子配列膜の TEM写真である。下部より、 ガラス基板、アルミニウム層、シリカ層、銀微粒子配列ポリマー層となっている。
圆 16]実施例 B— 5で作製された金属微粒子配列膜の TEM写真である。下部より、 ガラス基板、アルミニウム層、シリカ層、銀微粒子配列ポリマー層となっている。
圆 17]実施例 B— 6で作製された金属微粒子配列膜の TEM写真である。なお下部よ り、試料作製のための包埋榭脂、金微粒子配列ポリマー層となっている。
圆 18]実施例 B— 7で作製された金属微粒子配列膜の TEM写真である。下部より、
ガラス基板、アルミニウム層、シリカ層、銀微粒子配列ポリマー層となっている。
圆 19]実施例 B— 8で作製された金属微粒子配列膜の TEM写真である。下部より、 ガラス基板、アルミニウム層、シリカ層、銀微粒子配列ポリマー層となっている。
圆 20]実施例 B— 9で作製された金属微粒子配列膜の TEM写真である。下部より、 ガラス基板、アルミニウム層、シリカ層、銀微粒子配列ポリマー層となっている。
[図 21]参考例 B— 2の光学薄膜設計ソフト Essential Macleodでの光学特性予測を 示す図である。
[図 22]参考例 B— 3の光学薄膜設計ソフト Essential Macleodでの光学特性予測を 示す図である。
圆 23]実施例 B— 10の金属微粒子配列膜 1枚を石英板に挟んで光学素子を作製し た際の反射特性を示す図である。
[図 24]実施例 B— 10の金属微粒子配列膜を複数枚作製し、これを所定の枚数重ね 合わせ、石英板に挟んで光学素子を作製した際の反射特性を示す図である。
[図 25]実施例 B— 11の金属微粒子配列膜の反射特性を示す図である。
[図 26]本発明の製造方法において、金属微粒子層とポリマーのみの層とが交互に積 層された多層構造が得られる推定機構を示した概念図である。
圆 27A]入射光を垂直に照射した場合にぉ ヽて、入射光と基板からの反射光が干渉 する条件を理論的に説明する概念図である。
圆 27B]ある入射角 Θ で薄膜に光照射した場合において、入射光と基板力もの反射 光が干渉する条件を理論的に説明する概念図である。
発明を実施するための最良の形態
<パート A>
まず、本発明の第 1の主要な態様である光学多層反射膜を詳細に説明する。本発 明の光学多層反射膜は、透明薄膜層と金属層との周期的な交互積層構造を有して おり、その周期構造の光学条件を満たす波長えが選択的に反射される。ここで選択 的とは、反射膜による反射スペクトルにおいて、波長えに、反射ピークの最大値を有 することを意味する。反射ピークの最大値は、好ましくは 40%以上、より好ましくは 50 %以上である。また、半値幅が狭い程、選択性が良いことを意味し、好ましくは 300η
m以下、より好ましくは 200nm以下、特に好ましくは 150nm以下である。
[0050] 本発明では、多層反射膜を構成する透明薄膜層と金属層の積層構造の条件を設 定することで、反射光の波長 λとして所望の波長を設定することができる。まず、透明 薄膜層は、波長えの光に対して実質的に透明である。ここで、実質的に透明とは、多 層反射膜の全膜厚を透明薄膜層で形成した場合に、 50%程度以上を示すことを意 味する。この透明性に関しては、透明であるほど好ましいが、多層反射膜の全膜厚を 透明薄膜層で形成した場合に、 50%以上の透過率を示せば特定の用途では使用 可能であり、好ましくは 70%以上、より好ましくは 80%以上、特に好ましくは 90%以 上である。
[0051] 通常、 1層の金属層は、入射光の一部を反射し一部を透過する半透過 ·半反射膜 の機能を有している。 1層の金属層それ自身が、波長選択性を有する必要はない。 通常、光の吸収はできるだけ小さい方が好ましいが、反射波長え以外の波長で光吸 収があってもよい。 1層の金属層が有する反射率および透過率と共に、積層構造中 の金属層の層数を調節することで、波長えにおける反射率と波長選択性を制御する ことができる。
[0052] 金属層の層数は、 2以上、通常は 5以上、好ましくは 15以上、さらに好ましくは 20以 上である。一般に層数が多いほど波長選択性が向上し、波長半値幅が狭くなるが、 金属層および Ζまたは透明薄膜層の材料による吸収の影響を受けるため、金属層の 層数は、現実的には 300以下が好ましぐ 200以下がより好ましぐ特に 100以下が 好ましい。
[0053] 反射光の波長を、所望の波長えとするためには、隣接する金属層同士の繰り返し 距離 dのうちの少なくとも一部が、
ά= λ /2
を、実質的に満足する光学長を有している必要がある。繰り返し距離は、金属層が連 続した金属膜であるときは、 1つの金属膜の入射光側表面と隣接する金属膜の入射 光側表面との距離であり、また、金属層が、金属微粒子が高密度で集積した層(以下 、高密度層という。)であるときは、高密度層の中心と隣接する高密度層の中心との距 離である。
[0054] ここで、金属膜は透明薄膜層の厚さに比べて非常に薄ぐまた金属微粒子の高密 度層では透明薄膜層中に微粒子が分散していることになるので、例えば透明薄膜層 の厚さのみを考慮し、繰り返し距離の幾何学長を d'として、透明薄膜層の屈折率を n とすると、 d=nd'の関係にあり、幾何学長としては、 d' = λ / {2η)となる。例えば、 光学多層反射膜が選択的に反射する光の波長が λ = 365nm、その波長における 透明薄膜層の屈折率が n= l. 6の場合、金属層間の透明薄膜層の幾何学長は、 d' = 365/ (2 X 1. 6) = 114 (nm)となる。
[0055] また、「d= λ Ζ2を実質的に満足する光学長を有する」とは、 dが λ Ζ2からの多少 の揺らぎを有していることを許容することを意味する。具体的には、異なる金属層間 の繰り返し距離 dが、 λ Ζ2を中心として、 ± 20%以内、好ましくは ± 15%以内の範 囲で揺ら!/ヽで ヽることが許容される。実際に光学多層反射膜を作製するにあたって は、層ごとに膜厚の多少のばらつきが出る場合もあり、また意図的にばらつきを持た せる場合もある。例えば、ディスプレイなどの用途への応用においては、可視光領域 にある R (赤)、 G (緑)、 Β (青)などの反射が求められることがあり、この場合において は、人の視感度の特性に合わせて、設計波長を中心として幅を持った反射特性が求 められる。この場合、金属層の繰り返し距離 (または透明薄膜層の光学膜厚)に意図 的にばらつきを持たせることが有効である。この場合には、人の視感度の分布から、 金属層の繰り返し距離の光学長を、 λ Ζ2を中心として、 ±20%以内、あるいは、士 15 %程度にばらつ力せることにより対応できる。
[0056] また、多層構造の中で、隣接する金属層間の繰り返し距離 dが λ Ζ2を満たさない 層が存在していてもよいが、その層は
d=m /2
(mは、 2〜5の整数であり、好ましくは 2である。 )
を満足する光学長を有して 、ることが好ま 、。
[0057] また、金属層の繰り返し距離のうち、 d= λ Ζ2を満たす層の割合が 50%以上であ ることが好ましぐさらに好ましくは 70%、特に好ましくは 90%であり、最も好ましくは 1 00%、即ち金属層間の透明薄膜層のすべてが d= λ Ζ2を満たす場合である。
[0058] 金属層は、前述のとおり、連続した金属膜であっても、金属微粒子が高密度で集積
した層(高密度層)であってもよい。金属膜である場合には、通常 0. 5〜15nm (幾何 学長)であり、好ましくは 1. 5〜: LOnm、より好ましくは 2〜5nmである。金属層が金属 微粒子の高密度層である場合には、金属粒子の分布の疎密が、周期的に現れてい ればよいが、例えば 50%程度以上の粒子が上記の厚さ(幾何学長)の範囲にあるこ とは好ましい層構造である。
[0059] 金属層は、銀、金、アルミニウム、シリコン、チタン、クロム、鉄、コバルト、ニッケル、 銅、亜鉛、ゲルマニウム、ジルコニウム、ニオブ、モリブデン、パラジウム、スズ、アンチ モン、タンタル、タングステン、白金、ビスマス、およびステンレス鋼(SUS)力もなる群 より選ばれる少なくとも 1種類を主成分として含有することが好ましい。ここで、「少なく とも 1種類を主成分として含有する」とは、これらの構成元素以外の元素を 50atm% 未満の範囲で含んでもよいことを意味する。また、金属層は、 1種類の金属のみから なっても、 2種類以上が混合した合金力 なって 、てもよ 、。
[0060] 金属層としては、銀および Zまたは金を主成分とすることが好ましい。特に、銀原子 が緻密に並んだ銀層、または銀の微粒子が高密度で層を形成したものが好適である
[0061] 透明薄膜層は、少なくとも反射波長において透明な材料で形成されていればよい 力 その他の波長域 (紫外〜可視光領域)で透明であってもよい。特に可視光領域 で透明の材料が好ましい。また、屈折率は、特に限定されないが、例えば 1. 2〜4. 0 、更には 1. 2〜2. 2を有して!/ヽること力好まし!/ヽ。
[0062] 透明薄膜層を構成しうる材料としては、各種有機化合物 (各種のポリマー)、および 各種無機化合物などを挙げることができる。例えば、有機化合物として、ポリカーボネ ート、ポリエチレンテレフタレート、ポリブチレンテレフタレートおよびポリエチレンナフ タレートのようなポリエステル類、ポリメチルメタタリレートのようなアクリルポリマー類、メ チルスチレン榭脂、アクリロニトリルブタジエンスチレン (ABS)榭脂、アクリロニトリルス チレン (AS)榭脂のようなスチレン榭脂、ポリエチレン、ポリプロピレン、ポリメチルペン テンのようなポリオレフイン類、ポリオキセタンのようなポリエーテル類、ナイロン 6、ナ ィロン 66のような透明ポリアミド類、ポリスチレン、ポリ塩化ビュル、ポリエーテルスル ホン、ポリスルホン、ポリアタリレートおよび三酢酸セルロース、ポリビュルアルコール、
ポリアクリロニトリル、ポリ塩化ビュル、環状ポリオレフイン、アクリル榭脂、エポキシ榭 脂、シクロへキサジェン系ポリマー、非晶ポリエステル榭脂、透明ポリイミド、透明ポリ ウレタン、透明フッ素榭脂、熱可塑性エラストマ一、ポリ乳酸を始めとする各種の透明 ポリマーなどを挙げることができる。これらポリマーのコポリマーおよび zまたは混合 物も使用することができる。また、無機化合物としては、シリカ、石英、ガラス、窒化シリ コン、チタ-ァ、アルミナ、窒化アルミニウム、酸化亜鉛、酸ィ匕ゲルマニウム、酸ィ匕ジ ルコ-ゥム、酸化ニオブ、酸化モリブデン、酸化インジウム、酸化スズ、酸化タンタル、 酸化タングステン、酸化鉛、ダイヤモンド、窒化ホウ素、窒化炭素、アルミ酸窒化物、 シリコン酸窒化物等を挙げることができる。
[0063] 有機物の透明薄膜層としてはポリアクリル酸、ポリメタクリル酸を主成分(50%以上 含有)とする物質が好適に用いられる。特に、ポリアクリル酸が好適である。無機化合 物の透明層としては、シリカ、石英を主成分(50%以上含有)とする物質が好適に用 いられる。特に、シリカが好適である。
[0064] 透明薄膜層の膜厚は、前述のとおりに設定されるが、具体的な 1態様において、例 えば 100〜500nmの範囲で設定され、好ましくは 100〜350nm、より好ましくは 11 0〜250nmである。
[0065] 本発明の光学多層反射膜は、大気と接触する最外層は透明薄膜層であることが好 ましい。これは、大気側の最外層が金属層である場合、金属が酸化して劣化するた めである。最外層の透明薄膜層の膜厚は、特に限定されないが、おおむね、光学膜 厚 dが λ Ζ4となる膜厚とすることが好ましい。
[0066] 本発明において、金属層および透明薄膜層は、材料に合わせて公知の方法により 作製すればよぐ金属層および無機化合物による透明薄膜層については、例えば真 空蒸着法、スパッタ法、プラズマ CVD法、熱 CVD法、ゾルゲル法など、有機化合物 による透明薄膜層については、真空蒸着法、溶液キャスト法、スピンコート、その他各 種の塗膜形成方法、各種印刷法等を挙げることができる。
[0067] 以上のように、選択的に反射する光の波長における透明薄膜層の屈折率を考慮し 、 nd' = λ Ζ2の関係が成立するように光学多層反射膜を設計'作製すれば、種々 の波長域で、波長選択性のある反射膜を得ることができる。
[0068] 具体例としては、光学多層反射膜が選択的に反射する光の波長をえ = 365nmと した場合、紫外光領域において、水銀ランプの i線を選択的に反射することができる。 光学多層反射膜が選択的に反射する光の波長をえ =460nmとした場合、可視光領 域において、青色の光を選択的に反射することができる。光学多層反射膜が選択的 に反射する光の波長をえ = 530nmとした場合、可視光領域において、緑色の光を 選択的に反射することができる。さらに、光学多層反射膜が選択的に反射する光の 波長をえ =680nmとした場合、可視光領域において、赤色の光を選択的に反射す る光学多層反射膜を作製することができる。
[0069] 本発明の光学多層反射膜は、種々の形態にて種々の用途に光学部品として使用 することができる。形態的には、光学多層反射膜自身が自立性があれば、光学多層 反射膜を単独で使用することが可能である。光学多層反射膜が基体に積層または成 膜されていてもよぐこの場合、基体は多層膜を形成する際の基板であってよい。基 体は用途に合わせて、透明であってもまたは不透明であってもよい。
[0070] <パート B >
次に、本発明の第 2の主要な態様である金属微粒子配列膜、その製造方法および その用途について説明する。本発明の製造方法では、反射基板上に金属成分を含 有するポリマー膜を製膜し、特定の波長えの光を照射する。以下、本発明を詳細に 説明する。
[0071] <反射基板 >
本発明で使用できる「反射基板」は、基板の表面が、特定の波長 λの光を反射でき るものであれば特に限定されない。例えば、基板の表面に、アルミニウム、銀等の種 々の金属および金属酸ィ匕物等カゝら選ばれる材料を用いて、単層膜または多層膜を 形成した反射鏡 (ミラー)が挙げられる。その中でもガラス基板上にアルミニウム、シリ 力を順に製膜したものが好適である。これは、アルミニウムが紫外から可視領域にお V、て安定して高 、反射率を持つ膜を形成できるためである。シリカ層はアルミニウム が酸ィ匕するのを防止する効果がある。
[0072] 反射基板中のアルミニウムの厚み (膜厚)は、例えば、 100〜2000nm、好ましくは 150〜1000nm、さらに好ましくは 200〜800nm程度である。また、シリカの厚み(膜
厚)はアルミニウムの反射特性を低下させないため薄い方が良ぐ例えば、 5〜: LOOn m、好ましくは 10〜50nm、さらに好ましくは 10〜30nm程度である。
[0073] <金属成分を含有するポリマー膜の製膜 >
「金属成分を含有するポリマー膜」は、ポリマー中に金属成分を含有し、金属元素 の種類は 1種類であっても 2種類以上であっても良い。金属成分は、好ましくは金属 化合物 (錯体および塩を含む。以下同じ。)および金属微粒子の少なくとも一方を含 むことが好ましい。一般には、金属化合物および Zまたは金属微粒子を含むポリマ 一溶液を反射基板に塗布する方法が好ましぐ特に、金属化合物が溶解したポリマ 一溶液を反射基板に塗布する方法が好まし ヽ。
[0074] 本発明で用いられる金属化合物は、特定の波長 λの照射によって金属微粒子を 生成するものである。このような材料としては、光のエネルギーを吸収し、還元によつ て金属微粒子 (または金属微粒子を構成する金属)を生成する化合物 (すなわち、金 属原子の酸化数が正である金属化合物)が知られており、通常、金属塩である場合 が多い。
[0075] このような金属化合物としては、例えば、金属酸化物、金属水酸化物、金属ハロゲ ン化物 (金属塩化物など)、金属酸塩 [金属無機酸塩 (硫酸塩、硝酸塩、リン酸塩、過 塩素酸塩、塩酸塩などのォキソ酸塩など)、金属有機酸塩 (酢酸塩など)など]が挙げ られる。金属塩の形態は、単塩、複塩、または錯塩 (電解質錯体または非電解質錯 体、通常、電解質錯体)であっても、多量体 (例えば、 2量体)などであってもよい。ま た、金属化合物 (金属塩)は、例えば、酸成分 [塩化水素 (HC1)など]、塩基成分 (ァ ンモユアなど)、水 (Η Ο)などを含有する化合物(例えば、含ハロゲン化水素化合物
2
、含水物、水和物など)であってもよい。金属化合物は、単独でまたは 2種以上組み 合わせてもよい。
[0076] また、金属化合物を構成する金属元素も特に限定されな!、。金属化合物を構成す る金属元素としては、周期表第 8〜11族金属 (すなわち、鉄、ルテニウム、オスミウム 、ロジウム、イリジウム、ニッケル、ノラジウム、白金、銅、銀、金など)が好ましぐ特定 の実施形態においては、貴金属 (銀、金、白金、ルテニウムなど)が特に好ましい。金 属化合物は、これらの金属元素を単独でまたは 2種以上含んで 、てもよ 、。
[0077] 具体的な金属化合物としては、周期表第 8〜 11族金属化合物 (金属塩を含む)が 挙げられる。例えば、周期表第 8〜11族金属酸塩として、無機酸塩 [例えば、過塩素 酸銀 (AgClO )、硝酸銀 (AgNO )などの貴金属無機酸塩]、および有機酸塩 [例え
4 3
ば、酢酸パラジウム(Pd (CH CO ) など)、酢酸ロジウム([Rh (CH CO ) ] など)な
3 2 2 3 2 2 2 どの貴金属酢酸塩などの貴金属有機酸塩]などが挙げられる。また、周期第 8〜11 族金属ハロゲンィ匕物として、貴金属ハロゲン化物 [例えば、塩ィ匕銀 (AgCl)、塩ィ匕金( AuCl )、塩化白金(PtCl、 PtClなど)、塩化パラジウム(PdClなど)などの貴金属
3 2 4 2
塩化物など]、酸成分含有金属ハロゲンィ匕物 [例えば、塩ィ匕金酸 (HAuClなど)、塩
4 化白金酸 (H PtClなど)などの塩化貴金属酸などの塩化水素含有貴金属ハロゲン
2 6
化物]、およびこれらの水和物などが挙げられる。
[0078] 以下に、周期表第 11族金属のうち、金、銀、銅、白金、ノ ラジウム、ロジウムについ て、代表的な金属化合物を例示する。
[0079] 金化合物としては、金ハロゲン化物(AuCl、 AuCl、 AuBr、 Aul、 Aul、 AuCl (P
3 3 3
Ph ) , AuCKSC H )など)、ハロゲン化金酸またはその塩(HAuCl、 HAuCl ·4Η
3 4 8 4 4
0、 NaAuCl ·4Η 0、 KAuCl ·4Η Οなど)、水酸化金(AuOH)、シアン化金(Au
2 4 2 4 2
CN)、酸化金 (Au Oなど)、硫ィ匕金 (Au S、 Au S (III)など)などの無機塩、又は、
2 3 2 2 3
トリメチル金(III) (Au (CH ) )、メチル(トリフ ニルホスフィン)金(I) (Au CH (PP
2 3 6 2 3 h ) )、 4—ェチルベンゼンチォラト金(I) (Au{S (C H ) C H })、 { — 1, 8—ビス( ジフエ-ルホスフイノ)一 3, 6—ジォキサオクタン }ビス {クロ口金(I) } ( (AuCl) (
2
Ph P (CH ) O CCH ) O CCH ) PPh })、(ペンタフルォロフエ-ル)(テトラヒドロチ
2 2 2 2 2 2 2 2
オフ ン)金(I) ( [Au (C F ) (SC H ) ])、トリス(ペンタフルオロフヱニル)(テトラヒド
6 5 4 8
ロチオフ ン)金 (ΠΙ) ( [Au(C F ) (SC H ) ])などの各種金錯体が挙げられる。
6 5 3 4 8
[0080] 銀化合物としては、無機塩 [例えば、 AgF、 AgCl、 Agl、 AgBrなどの銀ハロゲン化 物、 Ag Oなどの酸化銀、 Ag SO、 AgS、 AgCN、 AgClO、 Ag PO、 AgSCN、 A
2 2 4 4 3 4 gNO、 Ag SO、 Ag CO、 Ag CrO、 Ag Seゝ AgReO、 AgBF、 AgW O 、 Ag
3 2 3 2 3 2 4 2 4 4 4 16
AsO、 AgSbF、 AgPF、 AgHF、 AglO、 AgBrO、 AgOCNゝ AgMnO、 AgV
3 4 6 6 2 3 3 4
Oなどの無機酸塩など]、有機塩 (または錯体) [例えば、 C H CO Ag、 C H (CH
3 6 5 2 6 11
) CO Agゝ CH CH (OH) CO Ag、トリフルォロ酢酸銀(CF CO Ag)ゝ C F CO A
g、 C F CO Ag、 AgO CCH C (OH) (CO Ag) CH CO Agなどのカルボン酸塩、
3 7 2 2 2 2 2 2
p—トルエンスルホン酸銀、トリフルォロメタンスルホン酸銀(CF SO Ag)などのスル
3 3
ホン酸塩、(CH COCH = C (0-) CH )Agゝ (C H ) NCS Agゝフエ-ル銀(1)、
3 3 2 5 2 2 テトラメシチル四銀 (I)、プチルァセチリド銀 (I)、クロ口 (イソシァノシクロへキサン)銀、 (シクロペンタジェ -ル)トリフエ-ルホスフィン銀 (I)、ビスピリジン銀 (I)過塩素酸塩、 ( 7? 4—1、 5—シクロオタタジェン) (1, 1, 1, 5, 5, 5—へキサフルォロ— 2, 4—ペン タンジォナト)銀 (I)、ブロモ(トリー n—ブチルホスフィン)銀 (I)、ビスイミダゾール銀 (I )硝酸塩、ビス(1, 10—フエナント口リン)銀 (I)過塩素酸塩および硝酸塩、 1, 4, 8, 11—テトラァザシクロテトラデカン銀 (Π)過塩素酸塩、 (1, 1, 1, 5, 5, 5—へキサフ ルォ口一 2, 4—ペンタンジォナト) (N, N, N,一トリメチルエチレンジァミン)銀(I)な ど]などが挙げられる。
[0081] 銅化合物としては、無機塩 [例えば、 Cu 0、 CuO、 Cu(OH) 、 CuF 、 CuCl、 Cu
2 2 2
CI 、 CuBr、 CuBr 、 Culなどの銅ハロゲン化物、 CuCO 、 CuCN、 Cu (NO ) 、 Cu
2 2 3 3 2
(CIO ) 、 Cu P O 、 Cu Se、 CuSe、 CuSeO 、 CuSO 、 Cu S、 CuS、 Cu(BF )
4 2 2 2 7 2 3 4 2 4 2
、 Cu Hgl 、 CuSCN、 (CF CO ) Cu、 (CF SO ) Cu、 CuWO 、 Cu (OH) PO
2 4 3 2 2 3 3 2 4 2 4 などの無機酸塩など]、有機塩 (または錯体) [例えば、酢酸銅 (1)、酢酸銅 (11)、 [C
6
H (CH ) CO ] Cu、 [CH (CH ) CH (C H ) CO ] Cu、(HCO ) Cu、 [HOC
11 2 3 2 2 3 2 3 2 5 2 2 2 2
H [CH (OH) ] CO ] Cuなどのカルボン酸塩、(CH COCH = C (0— ) CH ) Cuゝ
2 4 2 2 3 3
CH (CH ) SCu、 (CH O) Cuなど]などが挙げられる。
3 2 3 3 2
[0082] 白金化合物としては、無機塩 [例えば、 PtO 、 PtCl 、 PtCl 、 PtBr 、 PtBr 、 Ptl
2 2 4 2 4 2
、 Ptlなどの白金ハロゲン化物、 HPtCl · 2Η Οなどのハロゲン化白金酸、 PtS 、 Pt
5 6 2 2
(CN) など]、有機塩 (または錯体) [例えば、(CH COCH = C (0—) CH ) Pt、 (C
2 3 3 6
H CN) PtClなど]などが挙げられる。
5 2 2
[0083] パラジウム化合物としては、無機塩 [例えば、 PdO、 PdCl 、 PdBr 、 Pdl、などのハ
2 2 2 ロゲン化パラジウム、 PdCN 、 Pd(NO ) 、 PdSゝ PdSO 、 K Pd(S Ο ) ·Η Ο、塩
2 3 2 4 2 2 3 2 2 ィ匕パラジウム酸など]、有機塩 (または錯体) [例えば、 Pd (CH CO )、プロピオン酸
3 2
パラジウム(11)、 (CF CO ) Pdなどのカルボン酸塩、(CH COCH = C (0-) CH )
3 2 2 3 3
Pd、 (C H CN) PdClなど]などが例示できる。
6 5 2 2
[0084] ロジウム化合物としては、無機塩 [例えば、 Rh O 、 RhO 、 RhCl、 RhBr、 Rhlな
2 3 3 3 3 3 どのロジウムハロゲン化物、 RhPO 、 Rh SOなど]、有機塩(または錯体) [例えば、
4 2 4
Rh(CH CO ) 、 (CF CO ) Rh、 { [CH (CH ) CO ] Rh} 、 [ (CF CF CF CO
3 2 2 3 2 2 3 2 6 2 2 2 3 2 2 2
) Rh] 、 { [ (CH ) CCO ] Rh}などのカルボン酸塩、(CH COCH = C (0— ) CH
2 2 3 3 2 2 2 3
) Rhなど]などが挙げられる。
3
[0085] これらの金属化合物のうち、特に、銀塩は光感受性が高ぐ光によって還元されや す ヽ金属化合物であり、過塩素酸銀や硝酸銀が好適に用いられる。
[0086] また、金属微粒子 (ここでは、工程 (A)の時点でポリマー膜に含まれる金属微粒子 を意味する。)としては、特定の波長えの照射によって膜中を移動できるようなものが 好ましぐ特にコロイド状粒子などの、 lOnm程度以下、特に好ましくは 2nm以下の金 属粒子が好まし 、。例えば上記の金属化合物力 金属微粒子が析出したものが挙 げられる。例えば、銀の微粒子が好ましい。また、金属化合物と金属微粒子の混合物 であってもよい。
[0087] ポリマー中に含有させる金属成分の割合は、ポリマーの分子量などにもよる力 ポリ マー 100重量部に対して、例えば、 0. 5〜500重量部、好ましくは 1〜400重量部、 さらに好ましくは 5〜200重量部程度である。
[0088] ポリマーは、特定の波長 λにおいて透明であり、金属成分を均一に溶解または分 散して含有することができるもの(特に溶解するもの)が好ましく使用される。加えて、 一実施形態においては、有機溶媒に均一に溶解するものが好ましく使用される。
[0089] 例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート およびポリエチレンナフタレートのようなポリエステル類、ポリメチルメタタリレートのよう なアクリルポリマー類、メチルスチレン榭脂、アクリロニトリルブタジエンスチレン (ABS )榭脂、アクリロニトリルスチレン (AS)榭脂のようなスチレン榭脂、ポリエチレン、ポリプ ロピレン、ポリメチルペンテンのようなポリオレフイン類、ポリオキセタンのようなポリエ 一テル類、ナイロン 6、ナイロン 66のような透明ポリアミド類、ポリスチレン、ポリ塩化ビ -ル、ポリエーテルスルホン、ポリスルホン、ポリアタリレートおよび三酢酸セルロース 、ポリビュルアルコール、ポリアクリロニトリル、環状ポリオレフイン、アクリル榭脂、ェポ キシ榭脂、シクロへキサジェン系ポリマー、非晶ポリエステル榭脂、透明ポリイミド、透
明ポリウレタン、透明フッ素榭脂、熱可塑性エラストマ一、ポリ乳酸を始めとする各種 の透明ポリマーなどを挙げることが出来る。さらに、これらポリマーの構成要素である モノマーのコポリマー、および zまたはこれらポリマーの混合物も使用することができ る。この中でも、ポリメタクリル酸、ポリアクリル酸、メタクリル酸またはアクリル酸モノマ 一ユニットを含有する共重合体、およびポリビュルアルコール力 選ばれるポリマー が好適に用いられる。
[0090] 溶媒としては、通常、ポリマーおよび金属成分を溶解または分散可能 (特に溶解可 能)な溶媒を使用することができる。このような溶媒としては、ポリマーおよび金属成分 の種類に応じて適宜選択でき、例えば、水(酸性でも中性でもアルカリ性でも良い)、 アルコール類(メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、 イソブタノールなどのアルキルアルコール類など)、エーテル類(ジメチルエーテル、 ジェチルエーテルなどの鎖状エーテル類、ジォキサン、テトラヒドロフランなどの環状 エーテル類など)、エステル類(酢酸メチル、酢酸ェチル、酢酸ブチルなどの酢酸ェ ステル類など)、ケトン類(アセトン、ェチルメチルケトンなどのジアルキルケトン類など )、グリコールエーテルエステル類(エチレングリコールモノメチルエーテルアセテート 、プロピレングリコーノレモノメチノレエーテノレアセテート、セロソノレブアセテート、ブトキシ カルビトールアセテートなど)、セロソルブ類(メチルセ口ソルブ、ェチルセ口ソルブ、ブ チルセ口ソルブなど)、カルビトール類(カルビトールなど)、ハロゲン化炭化水素類( 塩化メチレン、クロ口ホルムなど)、ァセタール類(ァセタール、メチラールなど)、アミド 類(ジメチルホルムアミドなど)、スルホキシド類(ジメチルスルホキシドなど)、二トリル 類 (ァセトニトリル、ベンゾ-トリルなど)などが挙げられる。これらの溶媒は、単独でま たは二種以上組み合わせて用いてもょ 、。
[0091] 溶媒の割合は、反射基板上に製膜を意図する金属成分を含有するポリマー膜の厚 み (膜厚)なども考慮して決められる力 前記ポリマー 100重量部に対して、例えば、 溶媒 10〜: LOOOO重量部、好まし <は 30〜5000重量部、さらに好まし <は 50〜300 0重量部程度である。
[0092] さらに、金属成分含有ポリマー溶液の反射基板への製膜法は、膜形成が可能であ れば特に限定されず、慣用の塗布法、例えば、スピンコーティング法(回転塗布法)、
ロールコーティング法、カーテンコーティング法、ディップコーティング法、キャスト法 などが利用できる。塗布装置としては、上記塗布方法に対応する装置、例えば、スピ ンコーター、スリットコーター、ロールコーター、バーコ一ターなどを使用できる。
[0093] また、基板に製膜した金属成分含有ポリマー溶液の溶媒の留去方法も特に限定さ れず、慣用の溶媒留去法、例えば、加熱による蒸発や各種ェボパレーターによる真 空乾燥が挙げられる。
[0094] このようにして、反射基板上に製膜された金属成分を含有するポリマー膜の厚さは 、特に限定されず、用途に応じて適宜設定することができる。例えば、 0. 5〜500 m、好ましくは 0. 5〜: LOO /z m さらに好ましくは l〜20 /z m程度の厚さに形成するこ とがでさる。
[0095] <光照射 >
本発明の製造方法では、次に、反射基板上に製膜された金属成分を含有するポリ マー膜に、特定の波長 λの光を照射する。波長 λは、所望の波長を選ぶことができ るが、前述の金属成分がこの波長の光を受けたときに、金属微粒子の生成、金属微 粒子の移動、および金属粒子の成長のいずれかが起こりうるような波長領域の中から 設定する。通常、金属化合物を励起して金属微粒子へ還元するのに十分なェネル ギーを有する波長領域から選ばれ、紫外力 可視光領域が好ましい。具体的には、 200〜600應、好ましくは 300〜500nm、より好ましくは 350〜500nmの波長領域 から 1波長が選ばれることが好ましい。このような波長範囲では、各種金属化合物を 効率良く金属微粒子へ光還元することができる。
[0096] 照射する光源としては、例えば、ハロゲンランプ、水銀ランプ (低圧水銀ランプ、高 圧水銀ランプ、超高圧水銀ランプなど)、重水素ランプ、 UVランプ、レーザ (例えば、 ヘリウム—カドミウムレーザー、エキシマーレーザーなど)等が使用できる。一実施形 態においては、超高圧水銀ランプが好適である。また、なるべく半値幅の狭い 1波長 を照射することが好ましい。照射波長の半値幅は、好ましくは 50nm、より好ましくは 3 Onm以下、特に好ましくは 20nm以下、最も好ましくは lOnm以下である。半値幅を 狭くするためには、市販の狭帯域バンドパスフィルターを組み合わせるのが好ましい
[0097] 光照射時間は、照射光源の能力(照射強度)に大きく依存するが、反応速度と共に 金属成分の移動を考慮し、生成する金属粒子の径等も考慮して決めることが好まし い。限定はされないが、 1例として、 500Wの超高圧水銀ランプ(照射強度; 165WZ cm2以上)を用いる場合、照射時間は 20分〜 6時間、好ましくは 30分〜 3時間、特に 好ましくは 30分〜 2時間である。
[0098] <金属微粒子配列膜 >
前記光照射工程により、金属成分含有ポリマー膜中で、金属化合物から金属微粒 子が生成し、あるいは金属微粒子が移動し、密集して膜面に平行な層を形成し、さら にこの層が、周期的な多層構造となる。即ち、膜の断面方向で見ると、金属が密集し た金属微粒子層と、ポリマーのみの層とが交互に積層された多層構造となっている。
[0099] 図 26に、このような多層構造が得られる推定機構の概念図を示す。この図に示すよ うに、入射光と反射光が干渉して、周期的な光強度分布を持つ定在波が生じ、主に 光強度の大きな部分で金属微粒子の生成が起こる。また、光は、電磁波であることか ら、光強度の強い部分では電場強度が大きぐ電場の弱い部分から強い部分へ金属 微粒子が移動し、その結果、多層構造が形成されたものと推定される。一方、金属微 粒子を含有したポリマー内においても、定在的な電場の強度分布が生じ、同様な機 構により、金属微粒子が移動し、多層構造が形成されたものと推定される。
[0100] また、本発明の製造方法では、金属微粒子層の繰り返し距離 (ピッチ)を人為的に 調節することができる。上記の理論に従い、ポリマー膜の厚み方向に生じる光強度の 周期を変化させるように調節することで、金属微粒子層の繰り返し距離 (ピッチ)が変 化する。代表的には、照射光の波長えを変えることにより調節することができる。例え ば、照射光の波長を長波長とすることで金属微粒子層の繰り返し距離を長くすること ができる。さらに、照射光の角度を変化させることでも、金属微粒子層の繰り返し距離 (ピッチ)を調節することができる。例えば、照射光の入射角を、大きくすることで金属 微粒子層の繰り返し距離を長くすることができる。入射角の変化は、基板を傾ける、も しくは照射光をある角度で入射させるだけで実現できることから、非常に簡便な方法 である。さらにこの方法では、金属微粒子層の繰り返し距離を、照射光の波長から独 立して調節することができるので、製造時にあっては、反応に適した波長の光を選択
することができる。そして、照射光の波長とは異なる波長の光を選択的に反射する膜 を作製することも容易である。本発明の金属微粒子膜では、このようにして人為的制 御によって、金属微粒子層の配列を決定することができる。尚、光照射後の処理等に より、膜厚の収縮または増加が生じることがあり、その場合には、金属微粒子層の繰り 返し距離 (ピッチ)も変化することがある。
[0101] 干渉は、 1つの光源力 発し、 2つの異なる経路を通って伝播した光に起こりやすく 、干渉による強めぁ ヽ ·弱めあ!、が観測される位置は 2つの光の光路差によって決定 されるため、より詳細には、以下のような理論的説明が可能である。
[0102] 例えば、本発明において、入射光を垂直に照射した場合、反射基板からの幾何学 的距離が d'である 1点 Pにて光源力もの波長えを持つ入射光と基板力もの反射光が 干渉すると考える。図 27Aに、この現象を理論的に説明する概念図を示す。本発明 において、薄膜の屈折率は、反射基板よりも大きいため、屈折率の大きい物質から小 さい物質への入射による反射となり、点 Oでの反射によって光の位相が反転すること はない。即ち、入射光と反射光がこの点で干渉するためには、入射光と反射光の光 路差 = 2 X OPが薄膜中の入射波長の整数倍になることが必要である。
[0103] 即ち、反射基板力 の幾何学的距離を d'、 λを照射光の波長、 λ 'を薄膜中の光 の波長、 ηを金属成分含有ポリマーの屈折率とすると、
2d' = l ' =m l /n (m= 0, 1 , 2 · · · )
を満たす d'において干渉が起きる。
[0104] 薄膜全体について考えると、干渉点は反射基板からの距離によって決定されること から、基板と平行方向に層状に干渉点が存在することになり、後述する本発明の実 施例における結果を理論的に説明できる。
[0105] 同様にして、ある入射角 Θ で薄膜に光照射した場合は以下のように考えられる。図 27Bに、この現象を理論的に説明する概念図を示す。垂直照射の場合と同様、入射 光と反射光がこの点で干渉するためには、入射光と反射光の光路差 = OP + OQが 薄膜中の入射波長の整数倍になることが必要である。入射角 Θ で薄膜に入射した 場合、薄膜中の入射角 Θ は、図中で示したスネルの法則を満たす値となる。薄膜の
2
屈折率を用いることで薄膜中の入射角 Θ を算出することが可能である。
[0106] また、光路差 = OP + OQについて考えると、三角定理を利用することにより、光路 差は 2d' cos Θ と表すことが出来る。このため、反射基板からの幾何学的距離を d'、
2
薄膜中の入射角を 0 、 λを照射光の波長、 λ 'は薄膜中の光の波長、 ηを金属成分
2
含有ポリマーの屈折率として、
2α cos Θ = m = X / n (m= 0, 1, 2, · · · )
2
を満たす d'において干渉が起きる。
[0107] 薄膜全体について考えると、干渉点は垂直照射の場合と同様に、反射基板からの 距離によって決定されることから、基板と平行方向に層状に干渉点が存在すること〖こ なり、後述する本発明の実施例における結果を理論的に説明できる。
[0108] 金属微粒子層中の金属微粒子は、その生成時においては、極めて小さいものであ るが、金属微粒子において通常に観察される凝集 '固結により、その粒径が大きくな り、また、実質的に金属膜と見なせる態様を取ることもある。一方、金属微粒子を含有 したポリマーにおいても、光強度を大きくすることにより、定在波として生じる電場の強 度の大きい部分と小さい部分の差が大きくなり、これにより、移動できる金属微粒子の 大ささは大さくなる。
[0109] このように条件にも依存する力 通常 2〜: LOOnmである。特定の態様においては、 微粒子の大部分 (例えば 80%以上)が 50nm以下のナノレベルの粒子径を有してい る。金属微粒子層の周期的な多層構造を利用して、金属微粒子配列膜は種々の応 用が期待される。代表的には、後述するように反射膜として利用することができる。こ のように製造された金属微粒子配列膜は、反射基板に形成された状態で使用しても 、また剥離して使用してもよい。
[0110] {本発明の第 2の実施形態 }
以上説明した製造方法 (第 1の実施形態とする。)では、金属微粒子配列膜が反射 基板上に形成されるため、材料などの選択によっては、金属微粒子配列膜を反射基 板力 剥離できない場合があり、用途が制限される。第 2の実施形態では、金属微粒 子配列膜を、自立膜として得る方法について説明する。尚、第 2の実施形態の説明 中で、特に言及していない事項に関しては、矛盾のない限り第 1の実施形態で説明 した事項 (材料、条件、好ましい範囲等)が採用される。
[0111] 第 2の実施形態では、反射基板上に、金属成分を含有するポリマー膜を直接製膜 するのではなぐ最初に反射基板上に剥離層を設ける。剥離層は、特定の波長えの 照射を阻害しないような材料、即ち、その波長において透明な材料であって、後のェ 程で形成される金属微粒子配列膜を反射基板から剥離できるようなものであれば特 に限定されない。例えば、剥離層自身が後の工程で除去されることにより、金属微粒 子配列膜が剥離できる形態、反射基板と剥離層の接着強度が小さいために後のェ 程で金属微粒子配列膜と共に剥離できる形態、剥離層と金属微粒子配列膜との接 着強度が小さいために後の工程で金属微粒子配列膜を剥離できる形態等が挙げら れる。
[0112] 安定的な剥離を達成するためには、剥離層自身を後の工程で除去する形態が好 ましぐ特に剥離層が溶媒に溶解することで除去される形態が好ましい。このための 剥離層としては、ポリマーにより形成されることが好ましぐ例えば、金属成分含有ポリ マー溶液の溶媒に溶けないポリマーが挙げられる。
[0113] 例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート およびポリエチレンナフタレートのようなポリエステル類、ポリメチルメタタリレートのよう なアクリルポリマー類、メチルスチレン榭脂、アクリロニトリルブタジエンスチレン (ABS )榭脂、アクリロニトリルスチレン (AS)榭脂のようなスチレン榭脂、ポリエチレン、ポリプ ロピレン、ポリメチルペンテンのようなポリオレフイン類、ポリオキセタンのようなポリエ 一テル類、ナイロン 6、ナイロン 66のような透明ポリアミド類、ポリスチレン、ポリ塩化ビ -ル、ポリエーテルスルホン、ポリスルホン、ポリアタリレートおよび三酢酸セルロース 、ポリビュルアルコール、ポリアクリロニトリル、ポリ塩化ビュル、環状ポリオレフイン、ァ クリル樹脂、エポキシ榭脂、シクロへキサジェン系ポリマー、非晶ポリエステル榭脂、 透明ポリイミド、透明ポリウレタン、透明フッ素榭脂、熱可塑性エラストマ一、ポリ乳酸 を始めとする各種の透明ポリマーなどを挙げることが出来る。さらに、これらポリマー の構成要素であるモノマーのコポリマー、および Zまたはこれらポリマーの混合物も 使用することができる。この中でもスチレンが好適に用いられる。
[0114] この剥離層の厚みは、光照射によるポリマー中の金属微粒子の配列を阻害しない ようにするため、薄 ヽ方力 S良く、 ί列えば、、 0. 01〜50 m、好ましく ίま 0. 01〜20 m
、さらに好ましくは 0. 01〜5 /ζ πι程度である。
[0115] 層の形成は、例えばこれらのポリマーの溶液を塗布後、溶媒を除去する方法、ある いはモノマーを必要により開始剤と共に塗布後、重合させてもよい。塗布法補は、慣 用の塗布法、例えば、スピンコーティング法(回転塗布法)、ロールコーティング法、力 一テンコーティング法、ディップコーティング法、キャスト法などが利用できる。塗布装 置としては、上記塗布方法に対応する装置、例えば、スピンコーター、スリットコータ 一、ローノレコーター、バーコ一ターなどを使用できる。
[0116] このようにして、反射基板上に剥離層を形成した後、剥離層の上に、第 1の実施形 態と同様にして、金属成分を含有するポリマー膜を製膜し、特定の波長 λの光を照 射する。ポリマー膜は、金属微粒子層が多層に配列した金属微粒子配列膜となる。
[0117] 次に、光が照射された後の前記ポリマー膜、即ち金属微粒子配列膜を反射基板か ら剥離する。剥離方法は、剥離層の材料に依存する。剥離層が界面での接着強度を 小さくする物である場合には、機械的に引きはがすことができる。
[0118] 剥離層が除去可能な材料である場合、特に上述の溶解可能な材料である場合に は、剥離層が溶解可能であって、金属微粒子配列膜が溶解しないような溶媒に、剥 離層を浸漬することにより、剥離層を溶解除去する。その結果、金属微粒子配列膜を 反射基板から剥離することができる。
[0119] このようにして得られた、反射基板から剥離された金属微粒子配列膜は、そのまま 使用してもよいし、また適当な基材に貼付して使用することもできる。例えば基材とし て透明または不透明のフィルムまたはシート、特に榭脂製 (ポリマー製)フィルムまた はシートを使用し、これに金属微粒子配列膜を貼付または積層すると、本発明の金 属微粒子配列膜の機械的柔軟性および軽量性が損なわれることなぐ機械的強度 および取り扱い性が向上するために、種々の用途に使用できる。
[0120] <反射膜としての応用 >
第 1の実施形態および第 2の実施形態として説明した本発明の金属微粒子配列膜 は、種々の用途が考えられるが、特に反射膜として有用である。金属微粒子配列膜 の反射特性を測定すると、後述する実施例で示されるように、この膜は、光照射した 際の波長 λとほぼ一致する波長位置に反射の極大値を有し、波長選択性の反射膜
として機能することが明らかになった。
[0121] そこで、シミュレーションにより、透明層中に、金属層(部分反射'部分透過性)が光 学距離 dの周期で多層が積層されている形態を計算すると、
ά= λ /2
即ち、(1, = λ,Ζ2= λ Ζ (2η)
(ここで、 dは光学距離、 d'は幾何学的距離、 λは反射波長、 λ 'はポリマー中の波 長、 ηはポリマーの屈折率)
を満たす波長 λが選択的に反射されることが示された。
[0122] 本発明で得られる金属微粒子配列膜は、金属微粒子の層が、ほぼ等間隔のピッチ で積層されて ヽるために、金属微粒子層が部分反射 ·部分透過性の層と類似の機能 を果たしていると推定される。金属粒子層の周期 (層の中央から中央までの距離)を 光学距離 d (幾何学的距離 d' =dZn、 nはポリマーの屈折率)で表すと、反射スぺタト ルの極大位置は、上記式を満たす波長えに対応していると考えられる。しかしながら 、金属微粒子の分布、密度等により、ピークの半値幅、他波長の反射抑制等の選択 性が影響を受けると考えられる。
[0123] 反射基板から剥離された本発明の金属微粒子配列膜は、橈みやすいため、石英 板、榭脂製 (ポリマー製)フィルムまたはシートなどのような透明な基材に挟む素子化 により、散乱する光を抑制することで、波長選択性の反射膜としての特性を向上させ ることが可能である。
[0124] また、反射基板から剥離された金属微粒子配列膜は、複数枚重ね合わせる、また は薄膜を折りたたむなどの方法によって、互いに密接した形で積層することにより積 層体とすることができる。積層体とすることで、その反射特性を向上させることが可能 である。重ね合わせによる積層の反射特性の向上効果は飽和する傾向があるため、 2 /z m程度の金属微粒子配列膜を重ね合わせて積層する場合には、例えば、 2〜20 枚、好ましくは 2〜15枚、さらに好ましくは 2〜10枚程度重ねて使用するのが良い。
[0125] さらに、後述する実施例で示されるように、照射光の波長や入射角を変化すること で金属微粒子層の繰り返し距離を制御し、照射光の波長とは異なる波長の光を選択 的に反射する膜を作製できることが明ら力となった。このように、本発明によって、種
々の波長の光を選択的に反射する膜を容易に作製することが出来る。
[0126] 本発明で製造される金属微粒子配列膜は、従来の、無機物や無機酸ィ匕物よりなる 光学多層反射膜の代わりに使用することができる。そのため、軽量化、輸送性、耐衝 撃性、機械的な柔軟性等が改良され、光学材料として光学部品等への幅広い応用 が可能である。
実施例
[0127] 以下、実施例に基づいて、本発明をさらに詳細に説明するが、本発明は本実施例 に限定されるものではない。
[0128] 最初に <パート A>の光学多層反射膜の実施例を示す。
[0129] (参考例 A— 1)
金属層として銀、透明薄膜層としてシリカを用い、 457nmの波長の光を選択的に 反射する膜構成を光学薄膜設計ソフト Essential Macleodにて計算した。計算結 果より、シリカ 140nm、銀 lOnmが交互に積層された多層膜を実現することで、 457η mの波長の光を 50%以上と高い反射率で選択的に反射する膜が実現できると予測 された。計算により予測された反射スペクトルを図 1に示す。
[0130] (実施例 A— 1)
参考例 A— 1の光学計算の結果に従い、 457nmの波長の光を選択的に反射する 選択波長反射膜をスパッタ法にて作製した。ソーダライムガラス上に、まず 13. 56M Hzの交流スパッタ法によりシリカ膜を成膜し、その上に直流スパッタ法により銀膜を 積層し、これを繰り返して、最後にシリカ膜になるように交互に 41層成膜した。シリカ 膜厚、銀膜厚は、それぞれ 140nm、 lOnmとなるようにスパッタ時の条件を選んだ。
[0131] 得られた多層膜を、透過型電子顕微鏡 (TEM)により観察した。これを図 2に示す。
[0132] さらに、得られたソーダライムガラス上の光学多層膜の反射特性を測定したところ、 得られた薄膜は波長 457nmに反射極大を持ち、その反射率が 56. 1%であり、所望 の波長に反射が得られることが判明した。反射測定の結果を図 3に示す。
[0133] 実測値と参考例 A— 1による計算結果を比較のために重ねて図 4に示す。この結果 から、光学計算によって波長選択性の多層反射膜を設計したのち、その設計に合わ せて本発明の多層反射膜を作製することができることが明らかになった。
[0134] (参考例 A— 2)
参考例 A— 1と同様にして、光学薄膜設計ソフト Essential Macleodにて、水銀ラ ンプの i線に対応する 365nmの波長の光を反射する 41層の多層膜の構成を求める と、 60. 5nm シリカ Z3nm 11/122. 5nm シリカ Z3nm 銀 Ζ· · ·Ζ122. 5nm シリカ Z3nm 銀 Z60. 5nm シリカ Zソーダライムガラスの構成が得られた。設計 中心波長である 365nmにおける反射率は 75%、波長半値幅は 19nmであった。予 想される反射特性を図 5に示す。
[0135] (参考例 A— 3)
参考例 A—1と同様にして、光学薄膜設計ソフト Essential Macleodにて、青色の 光に対応する 460nmの波長の光を反射する 41層の多層膜の構成を求めると、 77. 5nm シリカ Z3nm 11/156. 5nm シリカ Z3nm 銀 Ζ· · ·Ζ156. 5nm シリカ /3nm 銀 Z77. 5nm シリカ Zソーダライムガラスの構成が得られた。設計中心波 長である 460nmにおける反射率は 92%、波長半値幅は 36nmであった。予想され る反射特性を図 6に示す。
[0136] (参考例 A— 4)
参考例 A—1と同様にして、光学薄膜設計ソフト Essential Macleodにて、緑色の 光に対応する 530nmの波長の光を反射する 41層の多層膜の構成を求めると、 89η m シリカ Z3nm 11/179. 5nm シリカ Z3nm 銀 Ζ· · ·Ζ179. 5nm シリカ Z 3nm 銀 Z89nm シリカ Zソーダライムガラスの構成が得られた。設計中心波長で ある 530nmにおける反射率は 95%、波長半値幅は 48nmであった。予想される反 射特性を図 7に示す。
[0137] (参考例 A— 5)
参考例 A—1と同様にして、光学薄膜設計ソフト Essential Macleodにて、赤色の 光に対応する 680nmの波長の光を反射する 41層の多層膜の構成を求めると、 165 nm シリカ Z3nm 11/231. 5nm シリカ Z3nm 銀 Ζ· · ·Ζ231. 5nm シリカ /3nm 銀 Zl65nm シリカ Zソーダライムガラスの構成が得られた。設計中心波 長である 680nmにおける反射率は 97%、波長半値幅は 76nmであった。予想され る反射特性を図 8に示す。
[0138] 次にくパート B >の金属微粒子配列膜の実施例を示す。
[0139] (実施例 B— 1)
ソーダライムガラス上に、直流スパッタ法により 200nmのアルミニウムを成膜し、さら に、 13. 56MHzの交流スパッタ法により lOnmのシリカを成膜し、反射基板とした。 1 0 %ポリメタクリル酸のメタノール溶液 5. Olgに過塩素酸銀 63. lmgを溶解させて 得られた溶液を反射基板にスピンコート(1500rpm、 10秒間)した後、室温で 3時間 乾燥した。その後、反射基板上の薄膜に対して、超高圧水銀ランプ (ゥシォ電機 (株) 製、「マルチライト」)と狭帯域バンドパスフィルターを用いて、 365nmの波長の紫外 光を垂直に 1時間照射した。
[0140] 得られた反射基板上の薄膜断面の透過型電子顕微鏡 (TEM)写真を図 9に示す。
ポリメタクリル酸中に銀微粒子がおよそ 90nm (幾何学的距離)の間隔で基板と平行 方向に層状に配列していることを確認した。また、銀粒子の多くは lOnm以下の粒径 を持つことが観察された。
[0141] (比較例 B— 1)
10wt。/(^°リメタクリル酸のメタノール溶液 5. Olgに過塩素酸銀 63. lmgを溶解さ せた。得られた溶液をソーダライムガラスにスピンコート(1500rpm、 10秒間)した後 、室温で 3時間乾燥した。その後、ソーダライムガラス上の薄膜に対して、超高圧水銀 ランプ (ゥシォ電機 (株)製、「マルチライト」 )と狭帯域バンドパスフィルターを用いて、 365nmの波長の紫外光を垂直に照射した。
[0142] 得られた反射基板上の薄膜断面の透過型電子顕微鏡 (TEM)写真を図 10に示す 。ポリメタクリル酸中に析出した銀微粒子の粒径は不規則であり、反射基板を用いた 際に観察された、銀粒子が基板と平行方向に層状に配列した構造は見られなカゝつた
[0143] (実施例 B— 2)
実施例 B—1で作製した反射基板上に 10wt%ポリスチレンのトルエン溶液をスピン コート(1500rpm、 10秒間)した後、室温で 3時間乾燥した。さらに、基板上の薄膜の 上に、 10wt%ポリアクリル酸のメタノール溶液 2. 51gに過塩素酸銀 71. 7mgのメタ ノール溶液 2. 44gを滴下して得た溶液をスピンコート(1500rpm、 40秒間)した後、
室温で 3時間乾燥した。その後、反射基板上の薄膜に対して、超高圧水銀ランプ (ゥ シォ電機 (株)製、「マルチライト」)と狭帯域バンドパスフィルターを用いて、 365nm の波長の紫外光を垂直に 1時間照射した。得られた試料をキシレンに含浸させてス チレン層を溶解させ、反射基板から金属微粒子配列膜を剥離した。
[0144] 得られた薄膜断面の透過型電子顕微鏡 (TEM)写真を図 11に示す。ポリアクリル 酸中に銀が基板と平行方向に層状に配列していることを確認した。さらに、この薄膜 の反射スペクトルを図 12に示す。照射波長である 365nmに反射の極大値を持つこ とが分力つた。
[0145] (実施例 B— 3)
02gに過塩素酸銀 61. 8mgを溶解させて得られた溶液をスピンコート(1500rpm、 1 0秒間)した後、室温で 3時間乾燥した。その後、反射基板上の薄膜に対して、超高 圧水銀ランプ (ゥシォ電機 (株)製、「マルチライト」)と g線透過フィルターを用いて、 4 36nmの波長の紫外光を垂直に 12時間照射した。
[0146] 得られた反射基板上の薄膜断面の透過型電子顕微鏡 (TEM)写真を図 13に示す 。ポリメタクリル酸中に銀微粒子がおよそ 1 lOnm (幾何学的距離)の間隔で基板と平 行方向に層状に配列しており、 365nmの波長を用いた場合と比較して金属微粒子 層の繰り返し距離が長くなつていることを確認した。また、銀粒子の多くは lOnm以下 の粒径を持つことが観察された。
[0147] このように、金属微粒子層の繰り返し距離 (ピッチ)は、照射光の波長 λを変えること により調節することができる。
[0148] (参考例 Β— 1)
60. 5nm シリカ Z3nm 11/122. 5nm シリカ Z3nm 銀 Ζ· · · Ζ122. 5nm シリカ Z3nm 銀 Z60. 5nm シリカの構成を有する全 41層の多層膜に相当する物 性値を採用して、光学薄膜設計ソフト Essential Macleodにて、反射特性を予想し た。結果は図 14に示すとおり、 365nmに最大反射波長を有することが予想される。 ここで、金属層間の間隔 d (光学長)は、 ά= λ /2 ( λ = 365nm)を満たしている。 この結果から、実施例 B— 2の金属微粒子配列膜においても同様の原理により反射
波長の選択性が起きて 、ると推定される。
[0149] (実施例 B— 4)
実施例 B— 1で作製した反射基板上に 10wt%ポリ (メチルメタタリレート'メタクリル 酸) 75: 25ランダムコポリマーのテトラヒドロフラン (THF)溶液 4. 99gに過塩素酸銀 5 1. 5mgを溶解させて得られた溶液をスピンコート(1500rpm、 10秒間)した後、室温 で 3時間乾燥した。その後、反射基板上の薄膜に対して、超高圧水銀ランプ (ゥシォ 電機 (株)製、「マルチライト」)と狭帯域バンドパスフィルターを用いて、 365nmの波 長の紫外光を垂直に 1時間照射した。
[0150] 得られた反射基板上の薄膜断面の透過型電子顕微鏡 (TEM)写真を図 15に示す 。ポリマー中に銀微粒子がおよそ 108nm (幾何学的距離)の間隔で基板と平行方向 に層状に配列していることを確認した。また、銀粒子の多くは lOnm以下の粒径を持 つことが観察された。
[0151] (実施例 B— 5)
実施例 B— 1で作製した反射基板上に 10wt%ポリビュルアルコールの水溶液 5. 04 gに硝酸銀 98. Omgを溶解させて得られた溶液をスピンコート(3000rpm、 30秒間) した後、室温で 5時間乾燥した。その後、反射基板上の薄膜に対して、超高圧水銀ラ ンプ (ゥシォ電機 (株)製、「マルチライト」)と狭帯域バンドパスフィルターを用いて、 3 65nmの波長の紫外光を垂直に 2時間照射した。
[0152] 得られた反射基板上の薄膜断面の透過型電子顕微鏡 (TEM)写真を図 16に示す 。ポリビニルアルコール中に銀微粒子がおよそ 120nm (幾何学的距離)の間隔で基 板と平行方向に層状に配列していることを確認した。また、銀粒子の多くは lOnm以 下の粒径を持つことが観察された。
[0153] (実施例 B— 6)
実施例 B—1で作製した反射基板上に 10wt%ポリスチレンのトルエン溶液をスピン コート(1500rpm、 10秒間)した後、室温で 3時間乾燥した。さらに、基板上の薄膜の 上に、 5wt%ポリアクリル酸のメタノール溶液 10. Olgに 17wt%塩化金酸の希塩酸 水溶液 704mgを滴下して得た溶液をスピンコート(1500rpm、 10秒間)した後、室 温で 3時間乾燥した。その後、反射基板上の薄膜に対して、超高圧水銀ランプ (ゥシ
ォ電機 (株)製、「マルチライト」)と狭帯域バンドパスフィルターを用いて、 365nmの 波長の紫外光を垂直に 3時間照射した。得られた試料をキシレンに含浸させてスチレ ン層を溶解させ、反射基板から金属微粒子配列膜を剥離した。
[0154] 得られた薄膜断面の透過型電子顕微鏡 (TEM)写真を図 17に示す。ポリアクリル 酸中に金微粒子がおよそ 130nm (幾何学的距離)の間隔で基板と平行方向に層状 に配列していることを確認した。また、金粒子の多くは lOnm程度の粒径を持つことが 観察された。
[0155] (実施例 B— 7)
02gに過塩素酸銀 64. 3mgを溶解させて得られた溶液を反射基板にスピンコート(1 500rpm、 10秒間)した後、室温で 3時間乾燥した。その後、反射基板上の薄膜に対 して、超高圧水銀ランプ (ゥシォ電機 (株)製、「マルチライト」)と狭帯域バンドパスフィ ルターを用いて、 365nmの波長の紫外光を 30° の入射角で 1時間照射した。
[0156] 得られた反射基板上の薄膜断面の透過型電子顕微鏡 (TEM)写真を図 18に示す 。ポリメタクリル酸中に銀微粒子がおよそ 105nm (幾何学的距離)の間隔で基板と平 行方向に層状に配列していることを確認した。また、銀粒子の多くは lOnm以下の粒 径を持つことが観察された。
[0157] (実施例 B— 8)
02gに過塩素酸銀 64. 3mgを溶解させて得られた溶液をスピンコート(1500rpm、 1 0秒間)した後、室温で 3時間乾燥した。その後、反射基板上の薄膜に対して、超高 圧水銀ランプ (ゥシォ電機 (株)製、「マルチライト」 )と狭帯域バンドパスフィルターを 用いて、 365nmの波長の紫外光を 45° の入射角で 1時間照射した。
[0158] 得られた反射基板上の薄膜断面の透過型電子顕微鏡 (TEM)写真を図 19に示す 。ポリメタクリル酸中に銀微粒子がおよそ 109nm (幾何学的距離)の間隔で基板と平 行方向に層状に配列していることを確認した。また、銀粒子の多くは lOnm以下の粒 径を持つことが観察された。
OOgに過塩素酸銀 52. Omgを溶解させて得られた溶液をスピンコート(1500rpm、 1 0秒間)した後、室温で 3時間乾燥した。その後、反射基板上の薄膜に対して、超高 圧水銀ランプ (ゥシォ電機 (株)製、「マルチライト」 )と狭帯域バンドパスフィルターを 用いて、 365nmの波長の紫外光を 60° の入射角で 1時間照射した。
[0160] 得られた反射基板上の薄膜断面の透過型電子顕微鏡 (TEM)写真を図 20に示す 。ポリメタクリル酸中に銀微粒子がおよそ 122nm (幾何学的距離)の間隔で基板と平 行方向に層状に配列していることを確認した。また、銀粒子の多くは lOnm以下の粒 径を持つことが観察された。
[0161] このように、照射光の入射角を大きくすることで金属微粒子層の繰り返し距離を長く することができる。即ち、同一の波長えにて配列を行う場合、照射光の入射角を変化 させることで、入射光と反射光の光路差を制御することが出来、金属微粒子層の繰り 返し距離 (ピッチ)を調節することが可能である。
[0162] (参考例 B— 2)
実施例 B— 7 (入射角 30° )での TEM写真を基にして、 100. Onm ポリメタクリル 酸 ZlOnm 11/95. Onm ポリメタクリル酸 ZlOnm 銀 Ζ · · · ΖΐΟΟ. Onm ポリメ タクリル酸 ZlOnm 銀の構成を有する全 28層の多層膜に相当する物性値を採用し て、光学薄膜設計ソフト Essential Macleodにて、反射特性を予想した。結果は図 21〖こ示すとおり、 326nmに極大反射波長を有することが予想される。ここで、 326η mにおけるポリマーの屈折率は、分光エリプソメトリーによる測定より、おおよそ 1. 55 であるから、金属層間の間隔 d (光学長)は、 d=nd, = λ /2 ( λ = 326nm、幾何 学的距離 d' = 105nm)を満たしている。同様に、実施例 B— 8 (入射角 45° )および 9 (入射角 60° )での TEM写真を基にして、反射特性を予想した結果を合わせて図 21に示す。実施例 B— 8および 9においても、上記の関係式は成り立っており、入射 角を変化させることで極大反射波長を制御できることを確認した。即ち、照射光の角 度を変化することで、金属微粒子層の繰り返し距離 (ピッチ)を調節し、反射波長の選 択性を変化することが出来ると推定される。
[0163] (参考例 B— 3)
一方、図 27Aを用いて説明した干渉理論に基づいて、 λ = 365nmの光を垂直に 照射した場合の金属微粒子配列膜の構成を推定することが可能であり、 116. Onm ポリメタクリル酸 Z3nm 11/116. Onm ポリメタクリル酸 Z3nm 銀 Ζ· · ·Ζ116 . Onm ポリメタクリル酸 Z3nm 銀の構成を有する全 38層の多層膜に相当する物 性値を採用して、光学薄膜設計ソフト Essential Macleodにて、反射特性を予想し た。結果を図 22に示す。
[0164] さらに、同様にして = 365nmの光を 60° の角度で照射した場合の金属微粒子 配列膜の構成を推定することが可能であり、 141. Onm ポリメタクリル酸 Z3nm 銀 /141. Onm ポリメタクリル酸 Z3nm 銀 Ζ· · ·Ζ141. Onm ポリメタクリル酸 Z3n m 銀の構成を有する全 38層の多層膜に相当する物性値を採用して、光学薄膜設 計ソフト Essential Macleodにて、反射特性を予想した。結果を図 22に示す。
[0165] (実施例 B— 10)
実施例 B— 1で作製した反射基板上に 10wt%ポリ (メチルメタタリレート'メタクリル 酸) 75: 25ランダムコポリマーのテトラヒドロフラン (THF)溶液 5. OOgに過塩素酸銀 5 0. lmgを溶解させて得られた溶液をスピンコート(1500rpm、 10秒間)した後、室温 で 3時間乾燥した。その後、反射基板上の薄膜に対して、超高圧水銀ランプ (ゥシォ 電機 (株)製、「マルチライト」)と狭帯域バンドパスフィルターを用いて、 365nmの波 長の紫外光を垂直に 2時間照射した。得られた試料の反射基板力も金属微粒子配 列膜を剥離した後、薄膜を 2枚の石英板に挟んで光学素子を作製した。
[0166] 得られた光学素子の反射スペクトルを図 23に示す。ほぼ参考例 B— 3で示した干 渉理論に基づく予測通りに、照射波長のごく近傍である 360nmにおいて、反射の極 大値 24. 1%を持つことが分力つた。
[0167] さら〖こ、同一の方法で金属微粒子配列膜を複数枚作製し、これを所定の枚数重ね 合わせて石英板に挟んだ光学素子を作製した際の反射スペクトルを図 24に示す。 3 枚及び 9枚積層した場合にぉ ヽては、 1枚よりもそれぞれ高!ヽ反射極大値(3枚; 27. 6、 9枚; 27. 1%)を示すことが分力 た。このように、金属微粒子配列膜を複数枚積 層することで反射特性を向上させることが可能である。
[0168] (実施例 B— 11)
実施例 B— 1で作製した反射基板上に 10wt%ポリ (メチルメタタリレート'メタクリル 酸) 75: 25ランダムコポリマーのテトラヒドロフラン (THF)溶液 5. OOgに過塩素酸銀 5 0. lmgを溶解させて得られた溶液をスピンコート(1500rpm、 10秒間)した後、室温 で 3時間乾燥した。その後、反射基板上の薄膜に対して、超高圧水銀ランプ (ゥシォ 電機 (株)製、「マルチライト」)と狭帯域バンドパスフィルターを用いて、 365nmの波 長の紫外光を 60° の入射角で 3時間照射した。得られた試料の反射基板から金属 微粒子配列膜を剥離した後、薄膜を 2枚の石英板に挟んで光学素子を作製した。 得られた光学素子の反射スペクトルを図 25に示す。反射極大となる波長が 430nm にシフトし、反射極大値 30. 5%を持つことが分力つた。このように、照射光の角度を 変化することで、金属微粒子層の繰り返し距離 (ピッチ)を調節し、ほぼ参考例 B— 3 で示した干渉理論に基づく予測通りに反射波長の選択性を変化することが出来るこ とを確認した。
Claims
請求の範囲
[I] 反射基板上に金属成分を含有するポリマー膜を製膜する工程 (A)と、
前記ポリマー膜に、特定の波長の光を照射する工程 (B)と
を有することを特徴とする金属微粒子配列膜の製造方法。
[2] 前記金属微粒子配列膜の構造が、金属微粒子が密集した層がポリマー膜の膜厚 方向に周期的に多層として存在する構造である請求項 1記載の製造方法。
[3] 前記ポリマー膜の製膜工程 (A)は、金属成分を含むポリマー溶液を反射基板上に 製膜するサブ工程と、溶媒を留去するサブ工程とを有することを特徴とする請求項 1 または 2記載の製造方法。
[4] 前記工程 (A)に先立ち、反射基板上に、後の工程 (B)で照射する波長の光を透過 する剥離層を設ける工程を有し、
工程 (A)において、前記剥離層の上に金属成分を含有するポリマー膜を製膜し、 さらに、前記工程 (B)の後に、光が照射された後の前記ポリマー膜を前記反射基板 から剥離する工程とを有することを特徴とする請求項 1〜3のいずれかに記載の製造 方法。
[5] 前記ポリマー膜を前記反射基板力も剥離する工程が、前記剥離層を除去する工程 を含むことを特徴とする請求項 4記載の方法。
[6] 前記剥離層の除去が、前記剥離層の溶解により行われることを特徴とする請求項 5 記載の方法。
[7] 前記金属成分が、前記特定の波長の光によって還元されて金属微粒子を生成する 金属化合物を含むことを特徴とする請求項 1〜6のいずれかに記載の製造方法。
[8] 前記金属成分が、金属微粒子を含むことを特徴とする請求項 1〜6のいずれかに記 載の製造方法。
[9] 前記金属化合物が、過塩素酸銀、硝酸銀および塩化金酸から選ばれる少なくとも 1 種であることを特徴とする請求項 7記載の製造方法。
[10] 前記ポリマー膜を構成するポリマーが、少なくとも前記特定の波長において透明で あることを特徴とする請求項 1〜9のいずれかに記載の製造方法。
[I I] 前記ポリマーが、ポリメタクリル酸、ポリアクリル酸、メタクリル酸またはアクリル酸モノ
マーユニットを含有する共重合体、およびポリビニルアルコール力 なる群より選ばれ る少なくとも 1種であることを特徴とする請求項 1〜10のいずれかに記載の製造方法
[12] 前記工程 (B)において、照射する光の波長を変えることにより、金属微粒子配列膜 中の金属微粒子層の繰り返し距離を調節することを特徴とする請求項 1〜11のいず れかに記載の製造方法。
[13] 前記工程 (B)において、照射する光の前記反射基板に対する角度を変えることに より、金属微粒子配列膜中の金属微粒子層の繰り返し距離を調節することを特徴と する請求項 1〜11のいずれかに記載の製造方法。
[14] ポリマー膜中に、金属微粒子が密集した層が、膜厚方向に周期的に多層として存 在する構造を有する金属微粒子配列膜。
[15] 請求項 1〜13のいずれかに記載の方法によって製造され、ポリマー膜中に、金属 微粒子が密集した層が、膜厚方向に周期的に多層として存在して 、る構造を有する 金属微粒子配列膜。
[16] 請求項 1〜13のいずれかに記載の製造方法により金属微粒子配列膜を製造する 工程と、得られた金属微粒子配列膜の複数枚を積層する工程とを有することを特徴 とする金属微粒子配列膜の多層積層体の製造方法。
[17] ポリマー膜中に、金属微粒子が密集した層が、膜厚方向に周期的に多層として存 在する構造を有し、請求項 16記載の製造方法で製造されたことを特徴とする多層積 層体。
[18] 請求項 14もしくは 15に記載の金属微粒子配列膜、または請求項 17に記載の多層 積層体を用いた波長選択性の反射膜。
[19] 波長 λの光に実質的に透明な透明薄膜層と金属層との周期的な交互積層構造を 有し、前記波長 λの光を選択的に反射することを特徴とする光学多層反射膜。
[20] 隣接する金属層同士の繰り返し距離 dの少なくとも一部は、
ά= λ /2
を、実質的に満足する光学長を有していることを特徴とする請求項 19記載の光学多 層反射膜。
[21] 隣接する金属層同士の繰り返し距離 dのすべてが、
ά= λ /2
を、実質的に満足する光学長を有していることを特徴とする請求項 19記載の光学多 層反射膜。
[22] 前記金属層が、金属膜または金属微粒子の凝集層であることを特徴とする請求項
19〜21のいずれかに記載の光学多層反射膜。
[23] 前記光学多層反射膜は、波長 λの光を 50%以上反射することを特徴とする請求項
19〜22のいずれかに記載の光学多層反射膜。
[24] 前記金属層の層数が、少なくとも 15層であることを特徴とする請求項 19〜23のい ずれかに記載の光学多層反射膜。
[25] 大気側の最外層が前記透明薄膜層であることを特徴とする請求項 19〜24のいず れかに記載の光学多層反射膜。
[26] 前記金属層は、銀、金、アルミニウム、シリコン、チタン、クロム、鉄、コバルト、ニッケ ル、銅、亜鉛、ゲルマニウム、ジルコニウム、ニオブ、モリブデン、パラジウム、スズ、ァ ンチモン、タンタノレ、タングステン、白金、ビスマスおよびステンレスま岡からなる群より 選ばれる少なくとも 1種類を主成分とすることを特徴とする請求項 19〜25のいずれか に記載の光学多層反射膜。
[27] 前記金属層の幾何学的膜厚が 0. 5〜15nmであることを特徴とする請求項 19〜2
6の 、ずれかに記載の光学多層反射膜。
[28] 前記透明薄膜層の幾何学的膜厚が 100〜500nmであることを特徴とする請求項 1
9〜27の 、ずれかに記載の光学多層反射膜。
[29] 前記波長 λが、紫外から近赤外光領域の波長範囲にあることを特徴とする請求項
19〜28のいずれかに記載の光学多層反射膜。
[30] 水銀ランプの i線(λ = 365nm)、青色の光(λ =460nm)、緑色の光(λ = 530η m)および赤色の光( λ = 680nm)からなる群より選ばれる光を選択的に反射するこ とを特徴とする請求項 19〜29のいずれかに記載の光学多層反射膜。
[31] 前記金属層間の透明薄膜層の光学膜厚 dは、 λ Ζ2を中心として ± 15%の範囲で あることを特徴とする請求項 19〜30のいずれかに記載の光学多層反射膜。
前記透明薄膜層の屈折率が 1. 2〜4. 0である請求項 19〜31のいずれかに記載 の光学多層反射膜。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020097008472A KR101135407B1 (ko) | 2006-09-29 | 2007-03-29 | 광학 다층 반사막 및 금속 미립자 배열막, 그리고 그 제조 방법 |
EP07740425A EP2072245A4 (en) | 2006-09-29 | 2007-03-29 | OPTICAL MULTILAYER REFLECTIVE FILM, METAL MICROPARTICLE ASSEMBLY FILM, AND MANUFACTURING METHOD THEREOF |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006268912A JP5061386B2 (ja) | 2006-09-29 | 2006-09-29 | 光学多層反射膜 |
JP2006268911 | 2006-09-29 | ||
JP2006-268911 | 2006-09-29 | ||
JP2006-268912 | 2006-09-29 | ||
JP2006330579 | 2006-12-07 | ||
JP2006-330579 | 2006-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008041382A1 true WO2008041382A1 (fr) | 2008-04-10 |
Family
ID=39261502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/056987 WO2008041382A1 (fr) | 2006-09-29 | 2007-03-29 | Film réfléchissant multicouche optique, film d'ensemble de microparticules métalliques et procédé de fabrication de celui-ci |
Country Status (5)
Country | Link |
---|---|
US (1) | US7955662B2 (ja) |
EP (1) | EP2072245A4 (ja) |
KR (1) | KR101135407B1 (ja) |
TW (1) | TWI418856B (ja) |
WO (1) | WO2008041382A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009210605A (ja) * | 2008-02-29 | 2009-09-17 | Ube Ind Ltd | 金属微粒子配列膜の製造方法および金属微粒子配列膜 |
JP2009270144A (ja) * | 2008-05-02 | 2009-11-19 | Ube Ind Ltd | 配列した金属微粒子を含有する無機酸化物膜およびその製造方法 |
US9551817B2 (en) | 2009-12-23 | 2017-01-24 | Rohm And Haas Company | Composite particles for optical bandpass filters |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI382552B (zh) * | 2009-02-13 | 2013-01-11 | Nexpower Technology Corp | 具有不透明高反射粒子之薄膜太陽能電池與其製作方法 |
EP2354716A1 (de) * | 2010-02-03 | 2011-08-10 | Kuraray Europe GmbH | Spiegel für solarthermische Kraftwerke enthaltend weichmacherhaltige Polyvinylacetalfolien |
TWI447441B (zh) * | 2010-11-08 | 2014-08-01 | Ind Tech Res Inst | 紅外光阻隔多層膜結構 |
US20140170333A1 (en) * | 2011-01-21 | 2014-06-19 | President & Fellows Of Harvard College | Micro-and nano-fabrication of connected and disconnected metallic structures in three-dimensions using ultrafast laser pulses |
DE102011003641B4 (de) * | 2011-02-04 | 2024-10-31 | Pictiva Displays International Limited | Verfahren zur Herstellung eines optoelektronischen Bauteils |
RU2485063C2 (ru) * | 2011-06-16 | 2013-06-20 | Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология" | Способ получения многофункционального покрытия на органическом стекле |
CN102905473B (zh) * | 2011-07-29 | 2017-06-06 | 富泰华工业(深圳)有限公司 | 电路板及电路板的制作方法 |
JP5938189B2 (ja) * | 2011-10-12 | 2016-06-22 | デクセリアルズ株式会社 | 光学体、窓材、建具および日射遮蔽装置 |
KR101774041B1 (ko) * | 2014-09-17 | 2017-09-01 | 주식회사 엘지화학 | 도전성 패턴 형성용 조성물 및 도전성 패턴을 가지는 수지 구조체 |
JP6809222B2 (ja) * | 2015-03-17 | 2021-01-06 | 東レ株式会社 | 積層フィルム、それを用いた液晶ディスプレイ、タッチパネルおよび有機elディスプレイ |
DE102018204364A1 (de) * | 2018-03-22 | 2019-09-26 | Carl Zeiss Smt Gmbh | Optische Anordnung für die EUV-Lithographie |
CN108906099A (zh) * | 2018-05-30 | 2018-11-30 | 常州科力尔环保科技有限公司 | Cu2S/g-C3N4异质结光催化剂的制备方法 |
US11525945B2 (en) | 2018-06-22 | 2022-12-13 | Lawrence Livermore National Security, Llc | System and method for ablation assisted nanostructure formation for graded index surfaces for optics |
US11118061B2 (en) * | 2018-12-17 | 2021-09-14 | Viavi Solutions Inc. | Article including at least one metal portion |
US11740532B2 (en) | 2018-12-17 | 2023-08-29 | Viavi Solutions Inc. | Article including light valves |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05346498A (ja) | 1992-06-16 | 1993-12-27 | Nkk Corp | ミラ−装置 |
JPH08122498A (ja) | 1994-10-21 | 1996-05-17 | Nikon Corp | 多層膜反射鏡 |
JPH09113697A (ja) | 1995-10-20 | 1997-05-02 | Nikon Corp | 多層膜反射鏡 |
JP2000089010A (ja) | 1998-09-10 | 2000-03-31 | Nikon Corp | 多層膜反射鏡 |
WO2005054819A1 (en) * | 2003-12-04 | 2005-06-16 | Commissariat A L'energie Atomique | Particle concentration method |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2922089C2 (de) * | 1979-05-31 | 1984-05-30 | Dynamit Nobel Ag, 5210 Troisdorf | Verfahren zur Herstellung partiell vernetzter Folien aus einem EPDM- oder EPM-Kunststoff |
US4512855A (en) * | 1984-07-23 | 1985-04-23 | E. I. Du Pont De Nemours And Company | Deposition of metals as interlayers within organic polymeric films |
US5716679A (en) * | 1991-09-13 | 1998-02-10 | Institut Fur Neue Materialien Gemeinnutzige Gmbh | Optical elements containing nanoscaled particles and having an embossed surface and process for their preparation |
JPH06174906A (ja) | 1992-02-04 | 1994-06-24 | Komii Kogei Kk | フレネルミラー |
JPH05346496A (ja) | 1992-06-15 | 1993-12-27 | Nitto Denko Corp | 多層膜反射鏡 |
US5851644A (en) * | 1995-08-01 | 1998-12-22 | Loctite (Ireland) Limited | Films and coatings having anisotropic conductive pathways therein |
US5661042A (en) * | 1995-08-28 | 1997-08-26 | Motorola, Inc. | Process for electrically connecting electrical devices using a conductive anisotropic material |
US5900098A (en) * | 1996-10-11 | 1999-05-04 | Wea Manufacturing Inc. | Methods for bonding structurally dissimilar optical discs |
US5968664A (en) * | 1997-11-11 | 1999-10-19 | Mitsubishi Polyester Film, Llc | Polymeric coated substrates for producing optically variable products |
JP2002151551A (ja) * | 2000-11-10 | 2002-05-24 | Hitachi Ltd | フリップチップ実装構造、その実装構造を有する半導体装置及び実装方法 |
KR100379250B1 (ko) * | 2000-12-04 | 2003-04-08 | 한국과학기술연구원 | 나노 단위 크기의 금속 입자가 함유된 고분자 복합 소재및 그 제조 방법 |
US7515336B2 (en) * | 2001-12-21 | 2009-04-07 | Bose Corporation | Selective reflecting |
US6844975B2 (en) * | 2002-10-09 | 2005-01-18 | Jds Uniphase Corporation | Etalon devices employing multiple materials |
US20050119390A1 (en) * | 2003-12-02 | 2005-06-02 | Usa As Represented By The Administrator Of The National Aeronautics And Space Administration | Process for the simultaneous formation of surface and sub-surface metallic layers in polymer films |
-
2007
- 2007-03-20 US US11/725,732 patent/US7955662B2/en not_active Expired - Fee Related
- 2007-03-29 WO PCT/JP2007/056987 patent/WO2008041382A1/ja active Application Filing
- 2007-03-29 EP EP07740425A patent/EP2072245A4/en not_active Withdrawn
- 2007-03-29 KR KR1020097008472A patent/KR101135407B1/ko not_active IP Right Cessation
- 2007-04-10 TW TW096112494A patent/TWI418856B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05346498A (ja) | 1992-06-16 | 1993-12-27 | Nkk Corp | ミラ−装置 |
JPH08122498A (ja) | 1994-10-21 | 1996-05-17 | Nikon Corp | 多層膜反射鏡 |
JPH09113697A (ja) | 1995-10-20 | 1997-05-02 | Nikon Corp | 多層膜反射鏡 |
JP2000089010A (ja) | 1998-09-10 | 2000-03-31 | Nikon Corp | 多層膜反射鏡 |
WO2005054819A1 (en) * | 2003-12-04 | 2005-06-16 | Commissariat A L'energie Atomique | Particle concentration method |
Non-Patent Citations (6)
Title |
---|
ADVANCED MATERIALS, vol. 12, 2000, pages 1507 |
LANGMUIR, vol. 19, 2003, pages 2963 |
NATURE, vol. 414, 2001, pages 735 |
SAITO M. AND IMANISHI Y.: "Host-guest composites containing ultrasonically arranged particles", JOURNAL OF MATERIALS SCIENCE, vol. 35, no. 10, 15 May 2000 (2000-05-15), pages 2373 - 2377, XP003022017 * |
SAITO M. ET AL.: "Fabrication of a polymer composite with periodic structure by the use of ultrasonic waves", JOURNAL OF APPLIED PHYSICS, vol. 83, no. 7, 1 April 1998 (1998-04-01), pages 3490 - 3494, XP012044902 * |
See also references of EP2072245A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009210605A (ja) * | 2008-02-29 | 2009-09-17 | Ube Ind Ltd | 金属微粒子配列膜の製造方法および金属微粒子配列膜 |
JP2009270144A (ja) * | 2008-05-02 | 2009-11-19 | Ube Ind Ltd | 配列した金属微粒子を含有する無機酸化物膜およびその製造方法 |
US9551817B2 (en) | 2009-12-23 | 2017-01-24 | Rohm And Haas Company | Composite particles for optical bandpass filters |
Also Published As
Publication number | Publication date |
---|---|
US7955662B2 (en) | 2011-06-07 |
EP2072245A4 (en) | 2010-04-14 |
EP2072245A1 (en) | 2009-06-24 |
TWI418856B (zh) | 2013-12-11 |
KR101135407B1 (ko) | 2012-04-20 |
KR20090073207A (ko) | 2009-07-02 |
TW200815796A (en) | 2008-04-01 |
US20080081207A1 (en) | 2008-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008041382A1 (fr) | Film réfléchissant multicouche optique, film d'ensemble de microparticules métalliques et procédé de fabrication de celui-ci | |
JP6657336B2 (ja) | 融着金属ナノ構造化ネットワーク、および還元剤を有する融着溶液 | |
Zhang et al. | Thin‐metal‐film‐based transparent conductors: Material preparation, optical design, and device applications | |
JP6021030B2 (ja) | 構造体、タッチパネル及びディスプレイ | |
JP5214284B2 (ja) | 発光装置用光取り出し層、およびそれを用いた有機エレクトロルミネッセンス素子 | |
US8809201B2 (en) | Method of forming metal oxide film and metal oxide film | |
CN110407152B (zh) | 具有滑动介电膜的基板及其制造方法 | |
KR20110060945A (ko) | 오버그리드로 코팅된 서브밀리미터 전기전도성 그리드의 제조 방법 및 오버그리드로 코팅된 서브밀리미터 전기전도성 그리드 | |
JP2014085516A (ja) | ワイヤグリッド偏光板及びその製造方法 | |
WO2019239312A1 (en) | Coated article having metamaterial-inclusive layer, coating having metamaterial-inclusive layer, and/or method of making the same | |
WO2015053529A1 (en) | Laminate for light emitting device and process of preparing same | |
JP5041360B2 (ja) | 金属微粒子配列膜およびその製造方法 | |
CN108291988A (zh) | 纳米双材料电磁频谱移频器 | |
JP5061386B2 (ja) | 光学多層反射膜 | |
KR20180077160A (ko) | 광투과성 도전 필름, 그 제조 방법, 조광 필름 및 그 제조 방법 | |
JP2002323606A (ja) | 光学的電気的特性を有する機能性薄膜 | |
JP5493276B2 (ja) | 金属微粒子配列膜の製造方法および金属微粒子配列膜 | |
US20090213367A1 (en) | Transmissive element | |
JP4993129B2 (ja) | 金属微粒子配列膜の製造方法および金属微粒子配列膜 | |
US11422288B2 (en) | Laminated film and method for producing laminated film | |
JP2019181730A (ja) | 機能性細線付き基材の製造方法、及び、インクと基材のセット | |
Rumsby et al. | Enhanced Durability and Antireflective Performance of Ag-Based Transparent Conductors Achieved via Controlled N-Doping | |
KR101862763B1 (ko) | 투광성 기판 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07740425 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007740425 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097008472 Country of ref document: KR |