TWI405222B - 用來降低雷射感應熱電效應所致的電阻數值偏差之方法 - Google Patents

用來降低雷射感應熱電效應所致的電阻數值偏差之方法 Download PDF

Info

Publication number
TWI405222B
TWI405222B TW094130238A TW94130238A TWI405222B TW I405222 B TWI405222 B TW I405222B TW 094130238 A TW094130238 A TW 094130238A TW 94130238 A TW94130238 A TW 94130238A TW I405222 B TWI405222 B TW I405222B
Authority
TW
Taiwan
Prior art keywords
resistor
value
resistance value
pulse
resistors
Prior art date
Application number
TW094130238A
Other languages
English (en)
Other versions
TW200614282A (en
Inventor
Brandon Mccurry
Robert M Pailthorp
Original Assignee
Electro Scient Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Scient Ind Inc filed Critical Electro Scient Ind Inc
Publication of TW200614282A publication Critical patent/TW200614282A/zh
Application granted granted Critical
Publication of TWI405222B publication Critical patent/TWI405222B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/351Working by laser beam, e.g. welding, cutting or boring for trimming or tuning of electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/242Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

用來降低雷射感應熱電效應所致的電阻數值偏差之方法 相關申請案
本專利申請案主張2004年9月13日申請之美國臨時申請案第60/609,852號之優先權。
著作權注意事項
2005 Electro Scientific Industries Inc.本專利文件揭示之部分包含受著作權保護之內容。此著作權之擁有者對專利文件或者專利揭示內容任何一者之複寫複製並無異議,只要其出現在專利商標局之專利檔案或記錄中,否則保留所有著作權之權力。
本發明有關於雷射修整,且特別的是有關於解決因電阻器的雷射修整期間中所發生的熱電電位所造成之誤差。
電子工業係利用雷射系統來修整厚膜或者薄膜電阻器成為幾乎是所需的電阻數值。Albin等人所著作之文章,標題為“從量測觀點之雷射電阻修整”,IEEE構件、混合物與封裝期刊;第PHP-8冊第二號,1972年6月,其說明使用修整薄膜電阻器的固態雷射之測量議題與優點。Swenson等人所著作之文章,標題為“藉由最佳化YAG雷射輸出特性來降低薄膜電阻器之修整後的漂移”,IEEE構件、混合物與製造技術期刊;1978年12月,其說明使用綠色(532nm)固態雷射高斯輸出來修整薄膜電阻器,藉以降低熱影響區域(HAZ)與修整後的漂移。
Sun與Swenson之美國專利第5,569,398、5,685,995以及5,808,272號說明諸如1.3微米的非傳統雷射波長之使用,藉以修整薄膜或元件,在被動、作用、或者促動雷射修整技術期間中避免矽質基板之損壞及/或縮短驅穩(settling)時間。Swenson等人之美國專利第6,534,743號說明均勻雷射光點在一般燒蝕非熱波長上之使用,藉以降低微裂縫、HAZ以及電阻溫度係數(TCR)之改變。
某些電阻器修整技術利用一種測量/預測修整量測處理,此乃是要以非切削的雷射來測量電阻器之數值,並且之後預測要實施多少額外的雷射修整行為才能達到所需的數值。在電阻器修整操作之期間中,此預測修整程序可以僅執行一次,或者重複數次,而且由於必須容許電阻器穩定提供所需的量測準確度,因此相對較為緩慢。
某些電阻器修整技術利用一種尋跡修整或者連續修整處理。在典型的尋跡修整或連續修整的操作下,將電流或者電壓施加至電阻器待測元件(DUT),並且在進行此一電阻器之修整時監測其電阻值。某些尋跡或者類比修整與量測處理則會在每一個脈衝之後測量電阻器之數值。在這些技術中,一旦電阻器達到所需數值,雷射脈衝便會停止。由於有更多的時間用來從事量測,因此測量/預測修整能夠更為準確;然而,尋跡修整典型是更為快速,特別是當量測驅穩延遲最小化之時。然而,當未考慮到某些暫態偏差效應之時,此種技術之準確度便會受到限制。
雷射修整處理會使電阻器之溫度上升。此種額外附加的熱會因為電阻器的TCR、雷射感應熱電動勢(EMF)以及由諸如賽貝克(Seebeck)與珀爾帖(Peltier)效應所導致的電流而影響所測量的電阻值。典型能夠藉由使用自動歸零之量測來修正量測上固定的偏移量。要修正由實際雷射修整所致的偏移量更為困難,特別是針對低電阻數值而言。由於尋跡修整處理中加熱所致的暫態效應實際上並無法克服,因此這些誤差修正更為困難。此外,低數值電阻器之熱效應正比於用來測量跨於低數值電阻器的電阻值之電壓而變得更大。在高增益或臨界平衡電路、或者諸如具有小於或等於10歐姆的低歐姆電阻器下這些加熱效應可能更為明顯。低歐姆電阻器經常利用於電流感測應用並充當量測分流器,而其可能具有小於或者等於0.1歐姆之數值。
隨著所要修整的電阻器之歐姆數值更低,相較於電阻器之歐姆電壓,所感應的熱(亦即,熱耦合)電壓可以變得更大。已經觀測到了等效於0.1歐姆電阻器上由0.2安培所生成的電壓的數個百分比之熱電壓。
本發明之目的為藉由解決伴隨著雷射修整的熱電效應所相關之不準確性來輔助電阻器或者其它電氣組件之高速修整。
在其中之一實施例中,儘管沒有施加激勵源,然而因為雷射加熱所引起的電壓偏差之重要性可以由模擬雷射修整的雷射脈衝之施加前後從事電壓量測來判斷之。如果有明顯的熱電壓,則這些熱感應電壓便會用來判斷電阻器的相對熱中性之切削位置,在該位置的熱感應電壓會最小化或者接近零,以便在較為高速下執行修整至數值的操作。能夠在該相對熱中性之位置上,修整相同橫列、縱行、薄板、或者批次之所有具有相同配置與相同所需參數的電阻器成為所需數值,藉以在所修整的電阻器的最終、穩態、所需電阻數值上實現相對較高之準確度。可替代的是,能夠獨立地判斷相同橫列、縱行、薄板、或者批次中各個電阻器的相對熱中性位置,而且能夠單次執行其判斷與修整行為,或者以分次實施其判斷與修整行為。
在另一個實施例中,將電流以及在某些狀況下的平衡電壓設定為零或者參考數值。之後,便能夠在修整操作期間中之各個雷射脈衝前後立即個別地進行脈衝前(pre-pulse)以及脈衝後(post-pulse)之電壓量測。將脈衝前的電壓數值與上一個或者下一個脈衝前的電壓數值平均,藉以得到基線(baseline)電壓數值,之後則能夠將之從脈衝後的電壓數值減去,用以得到熱偏差電壓數值。同樣也能夠在每一個雷射脈衝之後從電阻器攫取所施加的電流下之測試電阻數值,並且將之與已經調整用以補償熱偏差電壓數值所需的最終電阻數值相比較。當測試電阻數值位於已調整所需的電阻數值範圍之內,則停止電阻器之雷射修整,並且在所要修整的下一個電阻器上重複其處理。此一實施例同樣也有助於得到在已修整電阻器最終、穩態、所需電阻數值上相對較高的準確度。
在另一個實施例中,能夠循序地修整橫列或縱行中的空間上遠離的電阻器,藉以最小化熱效應,否則可能會致使鄰接或鄰近電阻器上電阻數值之失真。
經由以下較佳實施例之細節說明,額外的觀點與優點將是顯見的,其參照附圖進行之。
熱電實驗
圖1描繪三種由一連串雷射脈衝光點12在位於一般電阻器20的兩個導電墊16a與16b之間的電阻性材質(典型為糊狀物或者薄膜)14上的不同區域或位置18a、18b以及18c(通稱為位置18)上所製成的可供選擇的直進切削10a、10b以及10c。請參照圖1與2A,典型地將電阻器20a-20j組裝成以橫列22相互連接。圖2A以縱行的方向來描繪橫列22。量測探棒24典型連接至一個探棒卡(並未顯示),並且典型地被定位而接觸導電墊16或者可替代的測試墊(並未顯示),其係提供跨於電阻器20之接觸點。
晶片電阻器典型以橫列及/或縱行之電阻器網路形成於薄板之上。典型以縱行或橫列、或者縱行或橫列群組來修整電阻器,藉以將整個單次修整流程的產出量最大化,特別是針對2個端點(2T)的修整配置而言。
通常以四端點來從事低歐姆電阻值之量測,除了兩個力或電流引線之外,還有兩個為感測引線。在固定點上附加額外的感測引線,故而有助於凱氏(Kelvin)連接,消除來自電流引線的電壓降誤差。
然而,當凱氏修整時,該薄板便可以轉動90度,藉以容納探棒的接觸,以為補償量測輸入/輸出能力之用。例如,對2T量測而言,57個電阻器(縱行)0603將需要114個探棒,而且相同方向上的凱氏量測將需要228個探棒。藉由轉動薄板90度,凱氏量測將僅需要78個探棒。
電阻器之修整絕大多數皆實施為一種縱行處理。在橫列方向修整之範例中,循序地處理鄰接橫列22中的電阻器20a。在縱行方向修整之範例中,循序地處理橫列22中的鄰接電阻器20a、20b以及20c等等。在範例的實際修整成數值之操作中,在可以測量初始電阻數值後,典型針對修整輪廓的任何一個給定的腳柱,監視一個截止比較器,當達到所需的電阻數值之時,便停止其修整行為。
雙直進切削是修整輪廓的一種常見之型式,其中第一個切削或者“腳柱”10a被製作於電阻器20上,藉以促使其電阻數值在低於所需的最終電阻數值之預定修整數值之內。之後則將第二個切削或者腳柱10c製作於電阻器20上,藉以促使其電阻數值成為最終電阻數值,而如果順利則會在於所需電阻數值可接受的偏差之內。產業上的實務是設計兩個直進切削10為位於電阻性材質14相反的末端上,致使切削10看似為對稱的,並且儘可能在視覺上美化。
圖2A同樣也描繪典型或者一般用來測量典型的電阻器20f之歐姆電阻數值之探棒位置。特別的是,將高強度(HF)與低強度(LF)探棒24f與24g定位於電阻器20f正對的側邊之上,藉以提供所施加的電流或者電壓之路徑,而高感測(HS)與低感測(LS)探棒24b與24j則定位於電阻器20f相反側邊上,而在末端與電阻器20f間隔開數個電阻器20。高感測(HS)與低感測(LS)探棒24b與24j提供遠離電阻器20f之遠端量測點。
圖2B描繪定位於電阻器20f相反側邊上,而在末端與電阻器20f間隔開數個電阻器20之HS與LS探棒24b以及24j,即如同用於與電阻器20f相關的熱電電壓之“遠端感測”量測。
圖2C描繪定位於電阻器20f正對的側邊上之可供選擇的HS與LS探棒24f與24g,即如同用於與電阻器20f相關的熱電電壓之“近端感測”量測。
請參照圖1、2B以及2C,在其中之一實驗中,基板上以55橫列及78縱行所排列的0402大小0.1歐姆之電阻器20在三個或者更多的修整位置10a、10b以及10c上分別以雷射將之加熱,即如圖1所示者。將雷射光點散焦,以便提供低於電阻性材質的修整臨界之強度。熟知此技術者所知悉的其它雷射加熱方法可能已經用來提供等效的結果。
就在熱施加之前以及在雷射射束傳播結束之前大約300微秒左右(或者在大多數明顯暫態非熱或光電效應減小之充分時間區間),測量各個電阻器20的HS與LS探棒之間的電壓。為方便起見,將電壓的改變表示為一種等同的電阻值改變百分比。在主體電阻器20從雷射加熱冷卻之後,進行另一項量測,藉以驗證電壓已經返回至加熱之前所具有的數值(通常為零)。以用來測量熱電電壓之遠端感測或者近端感測連接來實施個別的試驗。沒有電壓或者電流會透過探棒24而施加至電阻器20。所收集的資料指示放置最靠近於中間的位置18b的切削10b會提供電阻性材質14上最為多數的熱電電壓中性位置18。
在熱評估之前,同樣也以雷射被關閉的情形來實施評估,其中並沒有熱會施加至電阻器20。沒有熱之量測會顯露出系統中的雜訊,並且充當量測的可重複性之測試。將雜訊的量測平均,並且之後將之從雷射脈衝施加期間中所取得的量測值扣除。可替代的是,可以監視其雜訊,並且對於每一單獨的電阻器將之扣除。
在另一個實驗中,以相似於典型用於單一電阻器修整之雷射功率及速度,循序地從事諸如一個或者多個縱行之成組的電阻器20中之單一修整10。以截止比較器或者雷射距離限制來監視這些實際的修整10,藉以避免修整擴展到電阻性材質14之整個寬度而導致電阻器20發生故障。
圖2D敘述一組一般電阻器20a、20b、20c、20d...20n,顯示個別電阻器20不同區域上的直進切削。在所要修整的各個連串的電阻器20中從接觸點16a算起逐漸加大的距離上製作第一個或者單一個切削10之個別位置18。就在修整施加之前以及在雷射射束傳播結束之後大約300微秒時,測量各個電阻器20之LS與HS探棒間的電壓。為方便起見,將電壓的改變表示為一種等效之電阻值改變百分比。在主體電阻器20從雷射加熱而後冷卻之後,進行另一種量測,藉以驗證電壓已經返回至加熱之前所擁有的數值(標稱為零)。以被使用來測量熱電電壓之遠端感測或者近端感測連接來實施分離試驗。沒有電壓或者電流會透過探棒24施加至電阻器20。
圖3針對0402 0.1歐姆的晶片-R電阻器的電阻性材質14之中間,顯示10-mJ雷射能量尋跡(常態、連續)修整之雷射截止數值的熱電電壓平均效應為修整位置之函數。此效應之平均斜率為修整位置每微米變化0.017%。所測量到的最大與最小斜率是在於平均8%之內。熱電效應之差值在遠距感測與近距感測量測技術之間大約是9%。此相對較低百分比之差值會引導出一種推論,導致已觀察到的效應之熱電接面絕大多數是位於電阻器中,並且不會是在探棒至墊之連接中。
圖4顯示單一電阻器中以0402 0.1歐姆的晶片-R電阻器上的10mJ雷射能量響應於切削10a與10c所產生的熱電電壓時間響應。冷卻之電壓時間常數大約趨近於一毫秒。如同在雷射進行時能夠從電壓漣波所判斷的,雷射脈衝速率為3.3kHz。
請參照圖1-4,熱電實驗中所得到的資料清楚地顯示所感測到的熱電電壓會依據電阻器20上的加熱位置18以及感測探棒24之位置改變。電阻性材質14中間的不同側邊上之加熱或切削會生成相反極性的熱電電壓。針對各種不同電阻器型式與大小也發現相似的傾向。所以,推論出各個電阻器20在電阻性材質14上具有一個熱電電中性位置18,於此處可以執行修整10,以將影響各個電阻器20上要執行多少修整行為的電阻數值測定上之熱電電壓誤差最小化。然而,熟習技藝者將體認到各種型式、批次、及/或個別的電阻器20都可能具有偏離電阻性材質14的正中間之熱電電中性位置18。
有鑑於之前的實驗,能夠判斷用來執行電阻器20的修整10之最佳位置18將會最小化某TCR以及賽貝克(Seebeck)電熱效應。在電阻器DUT 20的整個長度上,執行或者模擬電阻器20之修整10能夠顯示熱電電壓之大小為修整位置18之函數。以如此之資訊,便能夠判斷出用以修整電阻器20或者批次的電阻器20之最佳化位置18,藉以最小化常態修整程序期間中之效應。
在範例之實施例中,諸如步進重複台或者如後所述其它實施例之工件定位系統會將電阻器工件40移動至測試探棒24將向下接觸墊16之位置。降低探棒24之位置(亦即連接)至電阻器20,並且啟動量測系統,如圖2F之初始化的處理步驟60所指示的,其為量測系統的設定之簡化流程圖。
請參照圖2F,基於使用者所輸入的標稱電阻數值來校正量測系統。經由此校正,量測機板將具有適當的修整特殊電阻器20所需的硬體設定及範圍,如處理步驟62所指示的。
將通過電阻器DUT 20之激勵源(電流及/或電壓)設定為零,致使沒有任何電流會受迫而經過電阻器20,即如處理步驟66所示。由於第一次關斷的量測會是一種無激勵源之電阻器20的量測,如圖2G的量測系統的測試處理程序簡化流程圖之處理步驟68所指示的,所以此設定係導致接近零伏特(或者基線數值)的數值。
因此,請參照圖2F,當如處理步驟78所指示地進行雷射切削或者加熱電阻器20時,便能夠藉由就在雷射啟動(處理步驟68)之前取得的電壓量測值以及在雷射截止(處理步驟84)之後立即取得的電壓量測值之間的差異量(處理步驟86)來判斷歸因於雷射加熱所導致之熱電電壓偏差。在短暫的時間之後,便可以進行另一次的量測(第二次關斷的量測),用以在修整開始之前,判斷電阻器20是否返回至其原來的電壓數值,藉以確保電阻器20並不會明顯地改變電阻及/或電壓數值。之後則在相同或者不同電阻器20之不同位置18上重複其處理,如處理步驟88以及返回箭號92所指示之後述者。
在某些實施例中,諸如雷射功率之雷射參數較佳地設定在不致產生電阻性材質14的顯著移除及/或不致產生穩態的模擬前電阻數值與穩態的模擬後電阻數值之間明顯改變的處理窗之內。然而,能夠以常態修整參數之雷射,諸如功率與速度,來執行評估求值。可以將雷射聚焦或不聚焦。較佳地是調整修整長度,故而待測電阻器20不會切穿或者成開路的。能夠使修整長度在熱飽和發生之前適當地終止,以及可以諸如是電阻性材質14寬度的四分之一或者大至一半。
能夠繪製熱感應電壓跨於電阻性材質14的表面區域所需的位置18。如在上述實驗中所論證的,根據修整10的實際位置18,其是否朝向電阻器20之上部或下部,或者根據縱行或橫列方向修整而為電阻器20之左邊或者右邊,便能夠判斷偏離原來數值之正與負電壓偏差量。因此能夠使用一系列從上至下具有不同位置18之模擬或實際修整10來判斷充分足夠的熱電壓偏差資訊,藉以從事電阻器20上的相對熱中性位置18之定位,此處能夠執行雷射修整至數值的操作,致使經由雷射所產生的熱效應最小化。
之後則能夠使用此一位置資訊適當地設定單一腳柱修整10之位置18、或是多直進切削或其它修整輪廓的第二個或者額外的腳柱修整10之位置18。能夠以某些方式來儲存位置資訊,諸如CAD檔案,並且將之直接或者間接傳送至適當的控制器或者雷射射束傳送的射束傳送部件以及工件定位系統。如此的射束傳送部件可以包含而不受限於誤差修正部件、諸如電流計或其它快速導鏡(steering mirror)之快速定位組件、或者一個或多個AOM裝置。能夠類似誤差修正或與原來射束傳送資料整合地處置所需的位置資訊。
能夠在所建立相對熱中性位置18上,將相同橫列22、縱行、薄板、或者批次中具有相同配置以及相同需求參數之所有電阻器20修整至數值,藉以實現所修整之電阻器20相對較高準確度之最終、穩態、所需的電阻數值。
在其中之一實施例中,多個模擬修整10,諸如3至50個模擬單一直進型式之修整10,能夠跨於電阻器20從事之,即如同圖1所描繪的。熟習技藝者將體認到所模擬的修整10能夠替代為雙直進切削之輪廓;L-、J-或U-切削輪廓、或者其變體;蛇紋切削輪廓;局部區域或掃瞄切削輪廓;表面燒蝕輪廓;或者任何其它雷射修整輪廓之型式或組合。在某些實施例中,所模擬的修整10可以執行於單一個電阻器20之上。
然而,所模擬的修整10可以執行於一個或者多個橫列22或縱行中的一組相類似之電阻器20上,例如,假定所模擬的修整10執行於成組的電阻器20之不同位置18上,諸如針對圖2D所展現的。例如,可以相同的模擬的修整輪廓來測試橫列22或縱行中各個電阻器20,而在些微不同的位置18上,則用以判斷薄板或者批次的所有電阻器20之最佳位置18。如此的組合其後可以是非鄰接的電阻器20,如同之後所要說明的。額外組合中的額外電阻器20同樣也能夠隨著需要測試額外不同位置18而進行求值。
在另外的實施例中,單一個由上至下的模擬線或者接點對接點之修整(垂直的直進切削輪廓)可以用來判斷較佳之修整位置。如此的範例模擬修整以及評估求值處理可以執行於縱行、薄板或者批次之相似電阻器20中的僅單一個電阻器20上。可替代的是,如此的範例模擬修整以及評估求值處理可以執行於每一個電阻器20之上、各縱行或薄板其中一個電阻器20之上、或者在適當時間或數值區間的電阻器20之上。當多數的電阻器20將被獨立評估求值時,在評估求值之運作中,於修整運作執行於縱行或薄板中所有電阻器20之前,首先可以對電阻器20整個縱行或薄板進行評估求值,致使於各個電阻器之間不需切換雷射功率以及其它參數。然而,熟習技藝者將會體認到的是,在其後的電阻器20進行評估求值以及處理之前,能夠對所給定的電阻器20評估求值以及處理。可預見的是,對各個電阻器20進行獨立評估求值用以最小化探棒布置而言,一個或者多個縱行之評估求值可能提供最快速的方案。如同上述的,能夠以軟體或者硬體儲存較佳的修整位置18。
熟習技藝者將進一步體認到的是,熱中性修整位置18之評估,不論是在單一個或者是在多數個電阻器上,都可藉由測試其中一個或者多個預定數目電阻器20上的預定數量位置18,便可以其方式徹底執行之。可替代的是,當資料正在收集時,可以進行評估,致使一旦熱中性位置18建立於所需的確定度之內,便結束評估。例如,當於單一個電阻器20上多個位置18(諸如從上方位置18a至下方位置18c)進行評估時,則一旦充分數目的下方位置18c已經評估完成,用以判斷熱中性位置18位於其上方時,即刻結束評估。類似的是,當在不同位置18(諸如從上方位置18a至下方位置18c)上進行多個電組器20之評估時,則在不同電阻器20上已經評估完成充分數目的下方位置18c,以判斷熱中性位置18位於先前所評估的下方位置18c之上方後,即刻結束額外的電阻器20之評估。
如同之前所探討的,同樣也可以關掉雷射來測量模擬的修整,藉以監視並且考慮量測系統之內的雜訊。測量系統之輸出可以是正比於電阻或導電度以及電荷之電壓,其中電壓的變化則為雜訊量測值。如果縮放率(亦即,增益)同於一般者,則其雜訊結果將具有相同於一般量測值之單位。此種方式的優點(相較於觀測電阻讀數之變化)為電阻數值之補償為自動的。可以收集雜訊數值並且個別利用之,或者可以收集、平均以及整體利用之。
請再次參照圖2B與2C,同樣也可能受到測試導線(亦即,量測探棒24以及連接至電阻器20之接線)的位置而影響量測數值。因而能夠調整探棒位置,藉以最小化雜訊與變動或者由暫態熱效應所產生的誤差。在晶片-R修整之某些實施例中,諸如端點對端點連接的橫列22中之電阻器22的橫列方位修整可能是較佳的,致使感測探棒的連接能夠移離受到雷射加熱的電阻器20。“高”連接同樣也可以設置於相同端上,諸如所有電阻器20之“上”端,致使熱電效應處於相同的方向,而且雷射加熱行為所導致的偏差能夠更為一致並為可修正的。然而,熟習技藝者將會體認到的是,能夠將高連接設置於“下”端,或者高連接能夠由上至下變動,特別是在倘若如此變動對增進產出量變得有用之狀況下。用於量測之探棒24同樣也可以位於探棒卡的同一側,藉以最小化因導線所致的雜訊拾訊回路之尺寸。
請再次參照圖2A,一般的修整操作係以縱行之方式對空間上連續的電阻器20進行修整,諸如55個晶片-R電阻器20。如果這些電阻器20以縱行方位之橫列22連接,則來自進行修整操作的電阻器20a之熱也可能使下一個電阻器20b變熱,進而影響其測試數值。類似的是,來自接受修整操作的電阻器20b之熱也可能使下一個電阻器20c變熱,等等諸如此類。
為了避免致使來自其中一個電阻器20a之熱因太過靠近其本身或者其探棒24而影響下一個電阻器20b之量測,將電阻器20分組成為集合,該些集合可以有相等或者幾乎相等的電阻器20之數目。按順序修整該些集合,但內含於各個集合中之電阻器20是處於縱行中不同或者非鄰接的位置。在某些實施例中,各個集合較佳地是包含接近橫列22或者縱行的上部、中間以及下部之電阻器20,致使例如將所要修整的集合中第一個電阻器20定位靠近上部,將所要修整的集合中第二個電阻器20定位靠近下部,而第三個電阻器則接近中間。該處理則以第二個集合第一個電阻器20在上部重複之,等等諸如此類。
圖2E敘述一組一般電阻器20a-20i之集合,以縱行中個別位置Ra-Ri循序設置之。請參照圖2E,用於如此九個電阻器20集合之範例處理順序可以位置Ra上的電阻器20a之處理開始。接著,可以按第二順序地處理位置Rd上的電阻器20d,可以按第三順序地處理位置Rg上的電阻器20g,可以按第四順序地處理位置Rb上的電阻器20b,可以按第五順序地處理位置Re上的電阻器20e,可以按第六順序地處理位置Rh上的電阻器20h,可以按第七順序地處理位置Rc上的電阻器20c,可以按第八順序地處理位置Rf上的電阻器20f,並且可以按第九順序地處理位置Ri上的電阻器20i。
熟習技藝者將會體認到的是,在雷射射束遞送與材質定位系統的觀測能力領域、或者其任何組件的觀測能力領域之內,能夠以一種將處理速度最大化之方式來決定集合的數目或者其中的電阻器20之數目。在其中之一範例實施例中,將電阻器20分組成為五個集合,致使電阻器20加熱或者修整之順序為1、34、12、45、23、2、35、13、46、24、3...,其中縱行方位的橫列22中的電阻器20是循序地設置為1、2、3...。
不同的間隔或者分組也能夠用來容納橫列22或者縱行中不同數目的電阻器20。熟習技藝者同樣也會體認到的是,非鄰接的電阻器之修整(或者序列跳躍的處理程序或1、4、2、5、3之處理程序)同樣也能夠用於橫列方位之處理,或者當多個橫列22或縱行同時處理時利用之。例如,在縱行方位處理上,在定位設置以及遞送系統的觀測領域之內,射束可以循序地處理可能位於不同橫列22之電阻器20。熟習技藝者將進一步體認到的是,非鄰接電阻器之修整處理能夠與在此所揭示的任何其它技術組合使用。
使用修整序列以及上述之連接方法,將電阻器20修整成為0.2%之標準偏差(對1%電阻器而言夠好)。使用雙直進修整,而第二個直進切削大約以電阻器20之位置18b為中心,而得到這些特定的結果。利用精確的熱中性位置18便能夠更進一步地改善這些結果。所使用的連接方法之另一個特徵為使得全凱氏連接之兩個感測導線在探棒卡的相同側邊上,藉以最小化感應耦合之雜訊。
請再次參照圖4,激勵被關斷下之讀數會隨著時間的函數出現變化,特別是倘若加熱行為是發生於遠離熱中性位置18之情況。此量測之變動可能會影響並且帶來誤差於所修整的電阻數值之計算中,而最終會降低最後的電阻數值之準確度,或者減少具有預定範圍內之電阻數值的電阻器20之產出。
傳統的自動歸零量測具有兩個階段。以激勵啟動來獲取其中一個量測值,並且就在激勵關斷之後,立即取得另一個量測值。之後則彼此相減這些量測值,藉以消去存在於量測機板上的任何偏移量。然而,基於圖4之發現,在激勵被關斷下之讀數會出現隨著時間(以及隨著距熱中性位置18之距離)而變化,所以量測數值會隨著時間增加或者減少。
為了修正這些誤差以及偏差,能夠實現一種稱為“奇循環”自動歸零測量之新程序。在“奇循環”自動歸零測量中係取得三個讀數。在修整(或者測試修整)執行之前取得以激勵關斷的第一個量測值;取得以激勵啟動(於修整期間中)的第二個量測值;以及再次取得以激勵關斷(於修整之後)的第三個量測值。由於各個量測之間的時間間隔為已知的,因此吾人能夠內插得到激勵關斷的量測數值應該在的位置,以正確提供自動歸零量測,亦即內插得到在激勵啟動下取得量測數值之時的基線數值。
在某些實施例中,能夠在最明顯的暫態(熱與非熱)效應縮小的充分時間區間後取得第三個量測值。如果實施如同前述的熱測試行為,則第三個量測值之前的延遲便能夠更為準確地縮短至最小的時間區間,諸如圖4的圖示中與接近零點相關連的時間,並且可以隨選地實施而不需確認完全驅穩。如果在熱中性位置18上實施修整行為,則在第三個量測值之前的時間區間同樣也能夠更進一步地最小化。
圖5展示此一程序之範例,其中這些量測值以時間函數均勻地間隔,亦即在第一個與第三個量測值之間的時間中點上取得第二個量測值。如果變化的偏移量為線性的,則第一個與第三個量測值之平均值係在沒有激勵脈衝下提供在第二個“啟動”量測時量測到(基線)的數值所應該是的一個接近的逼近。可替代的是,能夠使用指數或某些其它函數來外插得到此一基線數值,藉以適應例如是圖4中所見到的熱偏移之形狀。量測之時間區間會隨著不同的雷射參數以及電阻器20不同型式、材料與種類而變化,也外插函數也會變化。
之後則能夠在自動歸零量測循環週期中,從第二個量測數值減去外插得到的基線數值,藉以提供第二個或者“啟動”量測值更為準確的數值。由於能夠在雷射脈衝後較短的延遲之後完成所需的準確度量測值,故而如此的奇循環自動歸零測量程序允許修整處理以較為快速的速率進行,亦即傳統的驅穩時間能夠最小化。同樣也能夠使用所外插得到的數值來增強其準確度,諸如用來設定截止比較器之數值。
圖6為一種範例電阻器修整處理之簡化流程圖,包含測試以及測量。請參照圖6,在一般測試以及修整處理中,針對探棒之位置及/或射束定位來排列工件40,並且使得探棒24接觸電阻器20,如同處理步驟120所指示的。如果先前尚未完成,則將量測系統啟動初始化,如參照圖2F所探討的。
如同處理步驟122所指示的,設定諸如圖7中所說明的雷射系統50藉以產生所需的雷射輸出,並且實施測試行為,如同針對圖2D以及2G所探討的。修整測試可包含一種無脈衝模式,用以測試以及考慮系統之雜訊。如果多數個電阻器20進行測試,則針對圖2E所說明的序列跳躍的程序便可以在測試程序期間中利用之。
如同處理步驟124所指示的,將雷射系統設定為一種標準修整運作參數。諸如直進切削10(或者如果加熱測試利用實際的修整行為,則為第二個直進切削10)的修整輪廓係執行於電阻器20的一個子集合(諸如縱行或薄板之電阻器20)上所建立的中性位置18。同樣也可以利用針對圖2E所說明的序列跳躍的程序以及針對圖5所說明的奇循環週期自動測量程序。
如同處理步驟126所指示的,分析電阻器20的子集合之修整結果,藉以判斷其電阻數值是否在公差之內。如果此結果不符合產品之標準,則如同處理步驟128中所指示的,電阻器20係受到如同處理步驟124所述的後續的修整。如果此結果符合產品之標準,則修整薄板或者批次內所剩餘的電阻器20,如同處理步驟128所指示的。
請參照圖7,用於工件40上的電阻器修整(諸如包含厚膜與薄膜電阻器20的橫列22與縱行之晶圓)之雷射系統50的一個實施例係使用一種Q-開關、二極體幫浦(DP)、固態(SS)紫外線(UV)雷射52。範例的固態雷射包含而不受限於Nd:YAG、Nd:YLF、或者Nd:YVO4 。雷射52可以提供主要是TEM0 0 空間模式輪廓的諧波在諸如355nm(三倍頻率的Nd:YAG)、266nm(四倍頻率的Nd:YAG)、213nm(五倍頻率的Nd:YAG)波長所產生的雷射脈衝或者輸出54。熟習技藝者將會體認到的是,可從其它所列雷射得到其它波長及/或其諧波,並且能夠利用之,乃至於在大約0.2至12微米間的波長範圍內的任何雷射波長。
較佳的YLF波長包含349nm以及262nm。熟習技藝者同樣會體認到的是,大多數的雷射52並不會放射出理想的高斯輸出54;然而,就方便起見,在此自由地使用高斯來描述雷射輸出54之輻照(irradiance)輪廓。雷射空腔之安排、諧波之產生以及Q-開關之操作對熟習技藝者而言乃是眾所周知的。範例雷射52之細節說明於Sun與Swenson之國際刊物第WO99/40591號中。
雖然能夠利用其它的固態雷射波長,諸如綠光(例如,532nm)或紅光(IR)(例如,1.06μm或1.32μm),但由於UV雷射波長具有降低修整後的漂移之燒蝕且相對非熱之本質,因此對某些修整應用而言則UV雷射波長可能是較佳的。UV雷射波長同樣也固有地在工件40表面上提供較小於利用相同場深度的IR或綠色雷射波長所提供的光點尺寸。
雷射脈衝54可以傳遞通過多樣而已知的光學裝置,包含順著射束路徑64所定位的射束放大器及/或放大準直儀之透鏡組件56與58。雷射脈衝54可以隨選地指向穿過一種塑形及/或成像系統70,藉以產生均勻的脈衝或輸出72,此輸出之後則藉由一種射束定位系統74來指向之,致使輸出74之目標透過掃瞄透鏡80而朝向在於工件40的影像平面上所需的雷射目標位置82。雷射輸出72可以隨選地截去(削去)、聚焦與削去、塑形、或者塑形及削去。
成像系統70可以利用一種光圈遮罩98,其定位於光學構件90以及收集或準直透鏡112之間並且位於或靠近光學構件90所產生的射束中部之焦點。如此的光圈遮罩98可以隨選地用來阻隔射束中任何不需的旁波瓣,藉以呈現出圓形或其它形狀的光點輪廓,其隨後便會成像於工件表面上。再者,變化光圈之尺寸便能夠控制光點輪廓之邊緣清晰度,藉以產生較小、較清晰邊緣的強度輪廓,此能夠用來增強準直之準確度。此外,光圈形狀能夠是準確的圓形或者能夠改變成矩形、橢圓形、或者其它非圓形狀,此能夠有利地用於電阻器之修整行為。
遮罩98可以包含適用於雷射輸出54波長之材質。如果雷射輸出54為UV,則遮罩98便可以諸如包含一種UV反射或UV-吸收的材質,或者能夠由一種諸如UV-等級的熔融矽石或者塗敷著多層高UV-反射外層或其它抗UV外層的藍寶石之絕緣材質所製作。遮罩98之光圈可以隨選地向外閃光於其光線外出側。
光學構件90可以包含聚焦之光學裝置或者射束塑形組件,諸如非球面之光學裝置、折射二元光學裝置、偏向二元光學裝置、或者繞射光學裝置。此中的某些或者全部可需或者不需光圈遮罩98地利用之。在其中一個較佳實施例中,射束塑形組件包含一種繞射光學構件(DOE),此能夠執行具有高效率與準確度之複雜射束塑形行為。射束塑形組件不只會將高斯輻照輪廓變換成為一種接近均勻的輻照輪廓,而且同樣也會將已塑形之輸出94聚焦成為可判定或者特定的光點尺寸。設計已塑形的輻照輪廓94b以及規定的光點尺寸以便出現在光學構件90下游之設計距離Z0 上。雖然單一構件的DOE乃是較佳的,然而熟習技藝者將會體認到DOE可以包含多個分離的構件,諸如Dickey等人在美國專利第5,864,430號中所揭示的相位板以及變換構件。以上探討的塑形以及成像技術詳細地說明於Dunsky等人的美國專利第6,791,060號,其中適切的部分在此合併參考之。
射束傳遞以及材質定位系統74較佳地利用一種用於雷射修整系統之傳統定位器。如此的定位系統74典型地具有一個或者多個移動工件40之階段。定位系統74能夠以一種重疊方式用來移動已塑形輸出118之雷射光點,藉以順著所需修整路徑形成切口(kerf)10。能夠在伊雷克托科學工業股份有限公司之Model 2300、Model 4370、Model 2370、或者Model 2350雷射修整系統中找到較佳的射束定位系統,其可從奧勒岡州波特蘭之伊雷克托科學工業股份有限公司購得。其它的定位系統能夠替代之,並且對雷射習知技術之實施者而言乃是眾所周知的。
包含有諸多上述系統組件之較佳雷射系統50的其中一個範例係利用Model 5200雷射系統之UV雷射(355nm或者266nm)或者其它在奧勒岡州波特蘭的伊雷克托科學工業股份有限公司所製造的系列。然而,熟習技藝者將會體認到的是,任何一種其它的雷射型式,特別而不受限於具有高斯射束強度輪廓(在所揭示的成像或者塑形行為之前)、其它諸如IR的波長或者其它射束展開因數都能夠利用之。
射束傳遞以及材質定位系統74同樣也可以利用一個或者多個用於射束定位或者電力控制之腔內或者腔外AOM裝置100,此乃是透過美國專利申請案第11/138,662號中所說明的技術,且在此合併參考之。特別的是,隨選的AOM(s)100可以在所模擬的修整期間中用來降低雷射電力;進行射束位置之調整,特別是針對較佳的修整位置18;以及在適當的時候用以阻隔雷射脈衝。
雷射系統50能夠用來產生具有典型電阻器修整窗的較佳參數之雷射系統輸出114,其可以包含:較佳為大約180nm與400nm之間或者高到超過1.3μm的波長;大於100mW之平均功率密度,而大於300mW較佳;大約5μm乃至大於50μm左右之光點尺寸直徑或者空間主軸;大於1kHz左右之重複率,大於5kHz左右或者甚大於50kHz較佳;短於100ns之短暫脈衝寬度,從大約40ns至90ns或者更短為較佳,或者較佳地短於10ns、1ns或25ps,或者可能低至大約1000飛秒(femtosecond);大約1mm/sec至200mm/sec或者更快之掃描速度,大約10mm/sec至100mm/sec左右較佳’而大約10mm/sec至50mm/sec則最佳;以及大約0.1μm至20μm之適量大小,0.1μm至10μm為較佳,而0.1μm至5μm則為最佳。試圖針對防止熱或者其它非所要的損壞發生於支撐著電阻器20的基板上來選擇雷射系統輸出114的較佳參數。熟習技藝者將會體認到這些輸出脈衝參數乃是相依的,並且受所需的效能所支配。
熟習技藝者同樣也會體認到到雷射系統輸出114之光點區域較佳為圓形或者方形,但可用其它諸如橢圓以及矩形的簡單形狀,而若適當選擇與所期望的遮罩98光圈形狀共同運作之光學構件90,則更為複雜的射束形狀也是可行的。較佳的雷射修整光點面積,更特別是針對UV雷射修整,直徑小於大約40μm為較佳,直徑小於大約20μm更好,而直徑小於大約15μm則最佳。熟習技藝者將會體認到的是,由於UV雷射輸出的光點面積較小於傳統雷射修整輸出之光點尺寸,並且由於均勻的輸出72允許切口10具有筆直的均勻障壁或邊緣,因而有較小之HAZ,所以電阻器20便能夠修整至較傳統切口修整技術可能容許公差更嚴格之容許公差。
在此所揭示之修整技術能夠用於厚薄兩者之薄膜電阻器的處理應用,其包含部分深度之修整。針對厚膜電阻器而言,特別是包含具有小於約200μm釕質層高度或厚度的0402以及0201晶片電阻器之陶瓷上的釕氧化物,較佳的修整規範標準為移除切口10內的所有釕質,而極微量穿入於陶瓷基板之中。這些期望的切口10乃是整齊的,致使陶瓷材質均勻地暴露,而且切口10的底部為“白的”。如此的清除行為通常伴隨著陶瓷中故意的穿透至大約0.1μm至5μm左右的深度,而通常至少1μm。成像塑形的輸出118能夠提供這些的清除或者白的切口10,而不會產生明顯的細微裂縫。對在陶瓷上處理電阻器材質而言,UV特別良好;然而,仍可以利用其它的波長。
雖然可以利用UV波長,然對利用均勻光點經由矽質基板來修整諸如鎳鎘(NiCr)、矽鎘(SiCr)、或者鉭氮化物(TaN)之材質而言,特別是大約1.32μm左右的IR波長仍是較佳的波長,特別用來修整主動或者光電裝置以及在涵蓋功能性修整之應用中。
熟習技藝者將會體認到的是,在此所揭示的修整技術可以用於單一電阻器、電阻器陣列(包含在snapstrates上的電阻器陣列)、電壓調節器、電容器、電感器、或者其它需要修整操作的裝置。此外,修整技術能夠用於表面燒蝕修整或者其它之應用,其中已成像塑形之輸出118並不會穿入基板的應用,以及其中期望有基板穿入的應用亦然。
當從事常態追蹤(亦即,類比或者連續)修整之時,因熱電壓所致的分離誤差行為乃是困難的。藉由在前述的兩個零電流量測之間從事一個或者多個實際或者模擬雷射修整,便能夠簡易地對因熱電壓所致的誤差進行評估求值。上述熱測試之結果能夠用來輔助其後的修整布置。在此所說明的探棒定位、修整次序、電阻值量測技術都可以用來增強產量及/或收益。在此所說明的各種不同之技術同樣也可以有助於較高速追蹤修整之使用,而不是較低速測量預測修整。
對熟習技藝者而言明顯的是,可以針對上述實施例之細節從事諸多改變,而不違反本發明基本的原理。以下的申請專利範圍只是合適的典型範例,而且應該被視為揭示的部分。
10a...直進切削
10b...直進切削
10c...直進切削
12...串雷射脈衝光點
14...電阻性材質
16a...導電墊
16b...導電墊
16c...導電墊
18a...電阻性材質不同區域或者位置
18b...電阻性材質不同區域或者位置
18c...電阻性材質不同區域或者位置
20...電阻器
22...橫列
24...量測探棒
40...工件
50...雷射系統
52...固態(SS)紫外線(UV)雷射
54...固態雷射之雷射脈衝或者輸出
56...射束放大器及/或放大準直儀之透鏡組件
60、62、66、68、78、84、86、88...處理步驟
70...塑形及/或成像系統
72...均勻的脈衝或輸出
74...射束定位系統
80...掃描透鏡
82...雷射目標位置
90...光學構件
92...返回箭號
94...已塑形之輸出
98...光圈遮罩
112...收集或準直透鏡
114...雷射系統輸出
118...已塑形輸出
120、122、124、126、128、130...處理步驟
圖1係描繪一般電阻器,顯示電阻器不同區域上三個可供選擇的直進切削。
圖2A係描繪典型用來測量電阻器的電阻數值之探測位置。
圖2B係描繪用來測量與電阻器相關連的熱電壓之探測位置。
圖2C係描繪用來測量與電阻器相關連的熱電壓之可替代的探測位置。
圖2D係描繪一組一般電阻器,顯示在個別電阻器的不同區域上三個可供選擇的直進切削。
圖2E係描繪一組成縱行及其被處理的一個範例順序之一般電阻器。
圖2F為範例的量測器系統之建立的簡化流程圖。
圖2G為範例的量測器系統的測試例行工作之簡化流程圖。
圖3為平均熱EMF為電阻器上的雷射修整位置函數之範例圖。
圖4為熱電電壓為時間函數響應於高低區域施加至電阻器的雷射熱之範例圖。
圖5為在不同量測循環週期期間中熱電電壓為時間函數響應於施加至電阻器的雷射熱之範例圖。
圖6為包含測試與測量的範例電阻器修整處理之簡化流程圖。
圖7為能夠用來提供執行在此所述說的各種不同應用所需雷射輸出之範例雷射修整系統的概要圖示。
120、122、124、126、128、130...處理步驟

Claims (118)

  1. 一種用來降低雷射感應熱電效應所致的電阻數值偏差之方法,該方法利用雷射輸出來修整電阻器之電阻器材質藉以改變該電阻器的初始電阻數值成為標稱電阻數值之方法,其中該電阻器材質具有定位於電氣接點之間的表面區域,其並且支承於一基板之上,其中施加至該電阻器材質之雷射輸出係在該電阻器中感應出熱電效應,此熱電效應導致該電阻器呈現一種偏離在無雷射輸出期間中所測量到的電阻器真實及/或穩態電阻數值之錯誤及/或暫態電阻數值,致使所施加的雷射輸出妨礙就在所施加的雷射輸出之後真實及/或穩態電阻數值的準確量測值,該方法包含:將量測設備之探棒定位與單一個電阻器或者一組電阻器中個別的電阻器相互傳達訊息;設定該量測設備所施加的電流數值為一個參考或者零數值;導引雷射輸出的各組一個或者多個評估求值脈衝沿著個別的模擬路徑,藉以將熱施加至單一個電阻器或者個別電阻器之表面區域上不同的個別位置;在各組評估求值雷射脈衝之後,測量跨於單一個電阻器或者個別電阻器上的電壓數值,藉以得到各個不同個別位置之電壓偏差資訊;使用此電壓偏差資訊來判斷個別電阻器的個別表面區域上之較佳位置,其呈現最小之電壓偏差;將雷射輸出之修整脈衝導引沿著單一電阻器表面區域 的該較佳位置及/或電阻器組中的某些或全部電阻器的表面區域的該些較佳位置之修整路徑,用以移除其電阻器材質,進而改變其初始電阻數值成為標稱電阻數值,藉以降低因雷射輸出所感應的熱電電阻偏差。
  2. 如申請專利範圍第1項之方法,其中各組評估求值脈衝係包含單一雷射脈衝。
  3. 如申請專利範圍第1項之方法,其中的修整路徑係含一種直進切削輪廓、L切削輪廓、蛇紋切削輪廓、或者表面燒蝕輪廓。
  4. 如申請專利範圍第1項之方法,其中在該電阻材質表面區域的不同位置上所執行的模擬路徑乃是實質相同的。
  5. 如申請專利範圍第1項之方法,其中的模擬路徑係包含單一電阻器的一部份表面區域之光柵掃描。
  6. 如申請專利範圍第1項之方法,其中的評估求值雷射脈衝具有不足以致使電阻器材質明顯移除之參數。
  7. 如申請專利範圍第1項之方法,其中的修整雷射脈衝係施加於一種追蹤修整處理,其中在各個修整雷射脈衝之後得到電阻量測數值,並將之相較於所需的電阻數值,且當該電阻量測數值在於所需電阻數值的預定範圍之內時,便停止修整雷射脈衝之施加。
  8. 如申請專利範圍第1項之方法,其中的修整雷射脈衝係施加於一種預測修整處理中。
  9. 如申請專利範圍第1項之方法,其中的電阻器係包 含晶片-R電阻器。
  10. 如申請專利範圍第1項之方法,其中的電阻器係包含低歐姆值之電阻器。
  11. 如申請專利範圍第1項之方法,其中的電阻器係具有所需小於或者等於0.1歐姆之電阻數值。
  12. 如申請專利範圍第1項之方法,其中的電阻器係包含四條導線。
  13. 如申請專利範圍第1項之方法,其中的量測設備係利用一種凱氏量測技術。
  14. 如申請專利範圍第1項之方法,其中真實的電阻數值係在於所需的電阻數值0.1%之內。
  15. 如申請專利範圍第1項之方法,其中的較佳位置為接點之間相對熱平衡之處。
  16. 如申請專利範圍第1項之方法,其進一步地包含:在個別較佳位置處理具有相似配置與規格之個別電阻器的多個橫列或縱行。
  17. 如申請專利範圍第1項之方法,其中產生波長在200nm與2,000nm之間的雷射輸出。
  18. 如申請專利範圍第1項之方法,其中該電阻器係包含0402或者0201之晶片電阻器。
  19. 如申請專利範圍第1項之方法,其中的基板係包含一種陶瓷材質。
  20. 如申請專利範圍第1項之方法,其中的電阻器材質係包含一種厚膜電阻器材質,此材質則包含有釕氧化物。
  21. 如申請專利範圍第1項之方法,其中的電阻器材質係包含一種鎳鎘混合物或者鉭氮化混合物。
  22. 如申請專利範圍第1項之方法,其中的電阻器係由基板中所形成的預鑄標線所分離。
  23. 如申請專利範圍第1項之方法,其中的熱電效應係包含電阻效應之溫度係數。
  24. 如申請專利範圍第1項之方法,其中的熱電效應係包含賽貝克或emf效應。
  25. 如申請專利範圍第1項之方法,其進一步地包含:在判斷電阻器上較佳位置之後,設定來自該量測設備之所施加的電流數值成為在導引修整脈衝於單一電阻器及/或任何個別電阻器之前所需之非零數值。
  26. 如申請專利範圍第1項之方法,其中在導引評估求值脈衝於電阻器之前,將所施加的平衡電壓數值設定為零或者一參考數值。
  27. 如申請專利範圍第26項之方法,其中在導引修整脈衝於單一電阻器及/或任何個別電阻器之前,將所施加的平衡電壓數值設定為一個所需之數值。
  28. 如申請專利範圍第1項之方法,其中的評估求值雷射脈衝在雷射感應熱電效應已經平息之後會具有不足以致使單一電阻器及/或任何個別電阻器初始電阻數值明顯改變之參數。
  29. 如申請專利範圍第1項之方法,其中透過該量測設備探棒之中繼來測量電壓數值,此量測設備則是遠離於所 要測量的電阻器。
  30. 如申請專利範圍第1項之方法,其中各個電阻器針對其特定較佳位置進行獨立評估。
  31. 如申請專利範圍第30項之方法,其中在電阻器組之任何一者修整之前進行各個電阻器之獨立評估。
  32. 如申請專利範圍第30項之方法,其中在其後的電阻器進行評估之前進行各個電阻器之獨立評估以及修整。
  33. 如申請專利範圍第1項之方法,其中的循序評估電阻器乃是非鄰接的。
  34. 如申請專利範圍第1項之方法,其中個別電阻器組係包含一組某些或者全部連接之電阻器。
  35. 如申請專利範圍第1至8、10至34項中之任一項之方法,其中的電阻器係包含晶片-R電阻器。
  36. 如申請專利範圍第1至17、19至34項中之任一項之方法,其中的電阻器係包含0402或者0201之晶片電阻器。
  37. 如申請專利範圍第1至18、20至34項中之任一項之方法,其中的基板係包含一種陶瓷材質。
  38. 如申請專利範圍第1至19、21至34項中之任一項之方法,其中的電阻器材質係包含一種厚膜電阻器材質,此材質則包含有釕氧化物。
  39. 如申請專利範圍第1至20、22至34項中之任一項之方法,其中的電阻器材質係包含一種鎳鎘化合物或者氮化鉭化合物。
  40. 如申請專利範圍第1至9、11至34項中之任一項之方法,其中的電阻器係包含低歐姆值之電阻器。
  41. 如申請專利範圍第1至10、12至34項中之任一項之方法,其中的電阻器係具有所需小於或者等於0.1歐姆之電阻數值。
  42. 如申請專利範圍第1至11、13至34項中之任一項之方法,其中的電阻器係包含四條導線。
  43. 如申請專利範圍第1至12、14至34項中之任一項之方法,其中的量測設備係利用一種凱氏量測技術。
  44. 如申請專利範圍第1至13、15至34項中之任一項之方法,其中真實的電阻數值係在於所需電阻數值0.1%之內。
  45. 如申請專利範圍第1至16、18至34項中之任一項之方法,其中產生波長在200nm與2,000nm之間的雷射輸出。
  46. 如申請專利範圍第1至21、23至34項中之任一項之方法,其中的電阻器係由該基板中所形成的預鑄標線所分離。
  47. 如申請專利範圍第1項之方法,其中該評估求值脈衝移除不足的電阻材料以改變該初始電阻數值之真實或穩態電阻數值。
  48. 一種用來降低雷射感應熱電效應所致的電阻數值偏差之方法,該方法利用雷射輸出來修整電阻器之電阻器材質藉以改變該電阻器的初始電阻數值成為標稱電阻數值 之方法,其中該電阻器材質具有定位於電氣接點之間的表面區域,其並且支承於一基板之上,其中施加至該電阻器材質之雷射輸出係在該電阻器中感應出熱電效應,此熱電效應導致該電阻器呈現一種偏離在無雷射輸出期間中所測量到的電阻器真實及/或穩態電阻數值之錯誤及/或暫態電阻數值,致使所施加的雷射輸出妨礙就在所施加的雷射輸出之後真實及/或穩態電阻數值的準確量測值,該方法包含:將量測設備之探棒定位與一個電阻器相互傳達訊息;設定該量測設備所施加的電流數值為一個參考或者零數值;導引雷射輸出的低功率脈衝沿著一個模擬路徑,藉以循序地將熱施加至該電阻器材質表面區域上之多個位置;在個別循序之雷射脈衝組之後,重複測量跨於該電阻器上的電壓數值,藉以得到多個位置其中的某些或者全部之電壓偏差資訊;使用此電壓偏差資訊來判斷電阻器表面上呈現最小電壓偏差的較佳位置;以及將雷射輸出之高功率脈衝導引而沿著電阻器表面區域的該較佳位置或在相同基板上或者同批次電阻器的任何個別電阻器的該較佳位置之修整路徑,用以從個別電阻器移除電阻器材質,進而改變其初始電阻數值成為標稱電阻數值,藉以降低因雷射輸出所感應的熱電電阻偏差。
  49. 如申請專利範圍第48項之方法,其中的電阻器係 包含晶片-R電阻器。
  50. 如申請專利範圍第48項之方法,其中的電阻器係包含0402或者0201之晶片電阻器。
  51. 如申請專利範圍第48項之方法,其中的基板係包含一種陶瓷材質。
  52. 如申請專利範圍第48項之方法,其中的電阻器材質係包含一種厚膜電阻器材質,此材質則包含有釕氧化物。
  53. 如申請專利範圍第48項之方法,其中的電阻器材質係包含一種鎳鎘化合物或者氮化鉭化合物。
  54. 如申請專利範圍第48項之方法,其中的電阻器係包含低歐姆值之電阻器。
  55. 如申請專利範圍第48項之方法,其中的電阻器係具有所需小於或者等於0.1歐姆之電阻數值。
  56. 如申請專利範圍第48項之方法,其中的電阻器係包含四條導線。
  57. 如申請專利範圍第48項之方法,其中的量測設備係利用一種凱氏量測技術。
  58. 如申請專利範圍第48項之方法,其中真實的電阻數值係在於所需電阻數值0.1%之內。
  59. 如申請專利範圍第48項之方法,其中產生波長在200nm與2,000nm之間的雷射輸出。
  60. 如申請專利範圍第48項之方法,其中的電阻器係由該基板中所形成的預鑄標線所分離。
  61. 一種用來降低雷射感應熱電效應所致的電阻數值 偏差之方法,該方法利用雷射輸出來修整電阻器之電阻器材質藉以改變該電阻器的初始電阻數值成為標稱電阻數值之方法,其中該電阻器材質具有定位於電氣接點之間的表面區域,其並且支承於一基板之上,其中施加至該電阻器材質之雷射輸出係在該電阻器中感應出熱電效應,此熱電效應導致該電阻器呈現一種偏離在無雷射輸出期間中所測量到的電阻器真實及/或穩態電阻數值之錯誤及/或暫態電阻數值,致使所施加的雷射輸出妨礙就在所施加的雷射輸出之後真實及/或穩態電阻數值的準確量測值,該方法包含:將量測設備之探棒定位與一個電阻器相互傳達訊息;設定從該量測設備至電阻器所要施加的電流數值為零或者一個參考數值;測量跨於該電阻器之第一個脈衝前的電壓數值;將雷射輸出的一個或者多個脈衝導引於該電阻器之電阻器材質上;測量跨於該電阻器之脈衝後的電壓數值;測量跨於該電阻器之第二個脈衝前的電壓數值;比較此脈衝後的電壓數值以及該第一與第二脈衝前的電壓數值之函數,藉以建立熱電偏差資訊;以及利用此熱電偏差資訊來調整電阻數值之量測,藉以補償熱電偏差。
  62. 如申請專利範圍第61項之方法,其進一步包含:在測量脈衝後的電壓數值之後,設定該量測設備所要 施加的電流數值為所需的非零數值;在所施加的電流下測量電阻器之電阻數值;在測量第二個脈衝前的電壓數值之前,重新設定該量測設備所要施加的電流數值為零或者一參考數值;以及比較所調整的電阻數值量測以及所需的電阻數值,藉以判斷所調整的電阻量測數值是否在於所需電阻數值之預定範圍之內。
  63. 如申請專利範圍第62項之方法,其中的脈衝與量測循環週期包含:設定從該量測設備至電阻器所要施加的電流數值為零或者一參考數值;測量跨於該電阻器之一個脈衝前的電壓數值;將雷射輸出脈衝導引於該電阻器之電阻器材質上;測量跨於該電阻器之脈衝後的電壓數值;設定該量測設備所要施加的電流數值為一個所需的非零數值;在所施加的電流下測量該電阻器之電阻數值;比較此脈衝後的電壓數值以及脈衝前的電壓數值與之前的脈衝前的電壓數值之函數,藉以建立熱電偏差資訊;利用此熱電偏差資訊來調整電阻數值之量測,藉以補償熱電偏差;以及比較所調整的電阻數值量測以及所需的電阻數值,藉以判斷所調整的電阻量測數值是否在於所需電阻數值之預定範圍之內。
  64. 如申請專利範圍第62項之方法,其中的脈衝與量測循環週期係包含:針對此脈衝與量測循環週期,測量跨於該電阻器上的脈衝前的電壓數值;將雷射輸出脈衝導引於該電阻器之電阻器材質上;測量跨於該電阻器之脈衝後的電壓數值;設定該量測設備所要施加的電流數值為一個所需的非零數值;在所施加的電流下測量該電阻器之電阻數值;設定從該量測設備至電阻器所要施加的電流數值為零或者一參考數值;針對其後的脈衝與量測循環週期,測量跨於該電阻器上的脈衝前的電壓數值;比較此脈衝後的電壓數值以及脈衝前的電壓數值之函數,藉以建立熱電偏差資訊;利用此熱電偏差資訊來調整電阻數值之量測,藉以補償熱電偏差;以及比較所調整的電阻數值量測以及所需的電阻數值,藉以判斷所調整的電阻量測數值是否在於所需電阻數值之預定範圍之內。
  65. 如申請專利範圍第61項之方法,其進一步包含:每當所調整的電阻量測數值低於並且不在所需電阻數值之所需範圍之內,則施加額外的脈衝與量測循環週期;以及 每當所調整的電阻量測數值大於或者在於所需電阻數值之所需範圍之內,則制止額外的脈衝與量測循環週期。
  66. 如申請專利範圍第61項之方法,其中沿著修整路徑所施加的雷射脈衝係包含一種直進切削輪廓、L切削輪廓、蛇紋切削輪廓、或者表面燒蝕輪廓。
  67. 如申請專利範圍第61項之方法,其中的電阻器係包含晶片-R電阻器。
  68. 如申請專利範圍第61項之方法,其中電阻器係包含0402或者0201之晶片電阻器。
  69. 如申請專利範圍第61項之方法,其中的基板係包含一種陶瓷材質。
  70. 如申請專利範圍第61項之方法,其中的電阻器材質係包含一種厚膜電阻器材質,此材質則包含有釕氧化物。
  71. 如申請專利範圍第61項之方法,其中的電阻器材質係包含一種鎳鎘化合物或者氮化鉭化合物。
  72. 如申請專利範圍第61項之方法,其中的電阻器係包含低歐姆值之電阻器。
  73. 如申請專利範圍第61項之方法,其中的電阻器係具有所需小於或者等於0.1歐姆之電阻數值。
  74. 如申請專利範圍第61項之方法,其中的電阻器係包含四條導線。
  75. 如申請專利範圍第61項之方法,其中的量測設備係利用一種凱氏量測技術。
  76. 如申請專利範圍第61項之方法,其中真實的電阻 數值係在於所需電阻數值0.1%之內。
  77. 如申請專利範圍第61項之方法,其中產生波長在200nm與2,000nm之間的雷射輸出。
  78. 如申請專利範圍第61項之方法,其中的電阻器係由該基板中所形成的預鑄標線所分離。
  79. 如申請專利範圍第61項之方法,其中當所施加的電流數值設定為零或者一參考數值之時,便將所施加的平衡電壓數值設定為零或者一參考數值。
  80. 如申請專利範圍第79項之方法,其中當所施加的電流數值設定為一個所需的非零數值之時,便將所施加的平衡電壓數值設定為一個所需的非零數值。
  81. 如申請專利範圍第61項之方法,其中透過該量測設備的探棒之中繼來測量電壓數值,此量測設備則是遠離於所要測量的電阻器。
  82. 如申請專利範圍第61項之方法,其中的循序修整電阻器乃是非鄰接的。
  83. 如申請專利範圍第61至66、68至82項中之任一項方法,其中的電阻器係包含晶片-R電阻器。
  84. 如申請專利範圍第61至67、69至82項中之任一項方法,其中的電阻器係包含0402或者0201之晶片電阻器。
  85. 如申請專利範圍第61至68、70至82項中之任一項方法,其中的基板係包含一種陶瓷材質。
  86. 如申請專利範圍第61至69、71至82項中之任一 項之方法,其中的電阻器材質係包含一種厚膜電阻器材質,此材質則包含有釕氧化物。
  87. 如申請專利範圍第61至70、72至82項中之任一項之方法,其中的電阻器材質係包含一種鎳鎘化合物或者氮化鉭化合物。
  88. 如申請專利範圍第61至71、73至82項中之任一項之方法,其中的電阻器係包含低歐姆值之電阻器。
  89. 如申請專利範圍第61至72、74至82項中之任一項之方法,其中的電阻器係具有所需小於或者等於0.1歐姆之電阻數值。
  90. 如申請專利範圍第61至73、75至82項中之任一項之方法,其中的電阻器係包含四條導線。
  91. 如申請專利範圍第61至74、76至82項中之任一項之方法,其中的量測設備係利用一種凱氏量測技術。
  92. 如申請專利範圍第61至75、77至82項中之任一項之方法,其中真實的電阻數值係在於所需電阻數值0.1%之內。
  93. 如申請專利範圍第61至76、78至82項中之任一項之方法,其中產生波長在200nm與2,000nm之間的雷射輸出。
  94. 如申請專利範圍第61至77、79至82項中之任一項之方法,其中的電阻器係由該基板中所形成的預鑄標線所分離。
  95. 一種用來降低由雷射感應熱電效應所致的電阻數 值偏差之方法,該方法利用雷射輸出來修整相似的個別電阻器橫列或者縱行中的電阻器之電阻器材質藉以改變該電阻器的初始電阻數值成為標稱電阻數值之方法,其中該電阻器材質具有定位於電氣接點之間的表面區域,其並且支承於一基板之上,其中施加至該電阻器材質之雷射輸出會在鄰近電阻器中感應出熱電效應一段延長之時間區間,此則會導致鄰近電阻器呈現偏離在無雷射輸出期間中以及在所延長的時間區間之後所測量到的電阻器真實及/或穩態電阻數值之錯誤及/或暫態電阻數值,致使施加到該電阻器的雷射輸出會抑制在該延長的時間週期之真實及/或穩態電阻數值的準確量測,該方法包含:將量測設備之探棒定位與一個或多個橫列或縱行之電阻器相互傳達訊息;將雷射輸出之脈衝導引用以移除第一個電阻器之電阻器材質,藉以改變其初始電阻數值成為一個標稱電阻數值;以及在該延長的時間區間內,將雷射輸出之脈衝導引用以移除非鄰接於第一個電阻器的第二個電阻器之電阻器材質,藉以降低因施加至第一個電阻器的雷射輸出所感應之熱電電阻偏差。
  96. 如申請專利範圍第95項之方法,其中的第一個與第二個電阻器係位於相同之橫列或者縱行中。
  97. 如申請專利範圍第95項之方法,其中將橫列或者縱行中之電阻器分組成為空間上間隔的電阻器組,並且循 序地修整該些電阻器組。
  98. 如申請專利範圍第97項之方法,其中各組皆包含有至少三個的電阻器。
  99. 如申請專利範圍第98項之方法,其中的三個電阻器係包含來自橫列或縱行之個別起始、中間以及末端部分之電阻器。
  100. 如申請專利範圍第95項之方法,其中第一組中的初始電阻器鄰接於第二組中的初始電阻器。
  101. 如申請專利範圍第95項之方法,其中沿著包含直進切削輪廓、L切削輪廓、蛇紋切削輪廓或者表面燒蝕輪廓之修整路徑來施加雷射輸出。
  102. 如申請專利範圍第95項之方法,其中的雷射脈衝係施加於一種追蹤修整處理中,其中在各個雷射脈衝之後得到電阻量測數值,並將之相較於所需的電阻數值,且當該電阻量測數值在於所需電阻數值預定範圍之內時,便停止雷射脈衝之施加。
  103. 如申請專利範圍第95項之方法,其中的雷射脈衝係施加於一種預測修整處理中。
  104. 如申請專利範圍第95至103項中之任一項之方法,其中的電阻器係包含晶片-R電阻器。
  105. 如申請專利範圍第95至103項中之任一項之方法,其中的電阻器係包含0402或者0201之晶片電阻器。
  106. 如申請專利範圍第95至103項中之任一項之方法,其中的基板係包含一種陶瓷材質。
  107. 如申請專利範圍第95至103項中之任一項之方法,其中的電阻器材質係包含一種厚膜電阻器材質,此材質則包含有釕氧化物。
  108. 如申請專利範圍第95至103項中之任一項之方法,其中的電阻器材質係包含一種鎳鎘化合物或者氮化鉭化合物。
  109. 如申請專利範圍第95至103項中之任一項之方法,其中的電阻器係包含低歐姆值之電阻器。
  110. 如申請專利範圍95至103項中之任一項之方法,其中的電阻器係具有所需小於或者等於0.1歐姆之電阻數值。
  111. 如申請專利範圍第95至103項中之任一項之方法,其中的電阻器係包含四條導線。
  112. 如申請專利範圍第95至103項中之任一項之方法,其中的量測設備係利用一種凱氏量測技術。
  113. 如申請專利範圍第95至103項中之任一項之方法,其中真實的電阻數值係在於所需電阻數值0.1%之內。
  114. 如申請專利範圍第95至103項中之任一項之方法,其中產生波長在200nm與2,000nm之間的雷射輸出。
  115. 如申請專利範圍第95至103項中之任一項之方法,其中的電阻器係由該基板中所形成的預鑄標線所分離。
  116. 如申請專利範圍第95項之方法,其中雷射射束定位系統包含AOM射束定位組件,其具有觀測領域並且在其中該第一和第二電阻器係在與AOM射束定位組件之相同的 觀測領域之內。
  117. 如申請專利範圍第95項之方法,其中該第二電阻器係空間上遠離該第一電阻器,從而導引該第一雷射輸出脈衝以從該第一電阻器移除電阻材料,而並未造成在該第二電阻器中用於延長時間間隔的電阻量測誤差。
  118. 如申請專利範圍第95、116及117項中之任一項之方法,其中該等鄰近的電阻器包含一相鄰的電阻器,其需要電阻材料以被移除以使得其之初始電阻數值為標稱電阻數值;其中該相鄰電阻器係與該第二電阻器在相同的行或列中;其中該施加至該第一電阻器之脈衝在該相鄰電阻器中引起熱電效應用於延長時間間隔;並且其中在延長時間間隔之後,雷射輸出脈衝經導引以從該相鄰電阻器中移除電阻材料以改變其之初始電阻數值成為標稱電阻數值,從而減少由該雷射輸出施加至該第一電阻器所產生之熱電電阻誤差。
TW094130238A 2004-09-13 2005-09-05 用來降低雷射感應熱電效應所致的電阻數值偏差之方法 TWI405222B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US60985204P 2004-09-13 2004-09-13

Publications (2)

Publication Number Publication Date
TW200614282A TW200614282A (en) 2006-05-01
TWI405222B true TWI405222B (zh) 2013-08-11

Family

ID=35502498

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094130238A TWI405222B (zh) 2004-09-13 2005-09-05 用來降低雷射感應熱電效應所致的電阻數值偏差之方法

Country Status (8)

Country Link
US (2) US7667159B2 (zh)
JP (1) JP4785854B2 (zh)
KR (1) KR101225024B1 (zh)
CN (1) CN101023500B (zh)
DE (1) DE112005002164T5 (zh)
GB (1) GB2434253A (zh)
TW (1) TWI405222B (zh)
WO (1) WO2006031577A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244361A (ja) * 2007-03-28 2008-10-09 Hitachi Via Mechanics Ltd プリント基板のレーザ加工方法
US8076605B2 (en) * 2007-06-25 2011-12-13 Electro Scientific Industries, Inc. Systems and methods for adapting parameters to increase throughput during laser-based wafer processing
JP2009274104A (ja) * 2008-05-15 2009-11-26 Fujitsu Component Ltd 座標検出装置の製造装置
EP2409808A1 (de) * 2010-07-22 2012-01-25 Bystronic Laser AG Laserbearbeitungsmaschine
CN101997546B (zh) * 2010-11-10 2013-05-01 中国兵器工业集团第二一四研究所苏州研发中心 数模转换电路零位和量程参数高精度微调方法
EP2883647B1 (de) 2013-12-12 2019-05-29 Bystronic Laser AG Verfahren zur Konfiguration einer Laserbearbeitungsvorrichtung
KR101771817B1 (ko) * 2015-12-18 2017-08-25 삼성전기주식회사 칩 저항기
US10502550B2 (en) * 2016-12-21 2019-12-10 Kennametal Inc. Method of non-destructive testing a cutting insert to determine coating thickness
EP3456698B1 (en) * 2017-09-13 2022-11-16 Infineon Technologies AG Method for manufacturing metal-ceramic substrate with trimmed resistors
CN109087764A (zh) * 2018-08-30 2018-12-25 中国振华集团云科电子有限公司 一种镍制薄膜电阻调阻方法及镍制薄膜电阻
CN113826173B (zh) * 2019-05-15 2023-10-31 罗姆股份有限公司 电阻器
JP7443053B2 (ja) * 2019-12-26 2024-03-05 株式会社ディスコ レーザー加工装置
JP2021118281A (ja) * 2020-01-27 2021-08-10 Koa株式会社 抵抗器の製造方法及び抵抗器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114204A (ja) * 1989-09-28 1991-05-15 Kyocera Corp 超小型チップ抵抗器の製造方法
JPH04261058A (ja) * 1991-01-25 1992-09-17 Mitsubishi Electric Corp 半導体素子のトリミング方法
JPH09180917A (ja) * 1995-12-26 1997-07-11 Matsushita Electric Ind Co Ltd チップ抵抗器の抵抗値修正方法
JP2001066334A (ja) * 1999-08-27 2001-03-16 Hioki Ee Corp 低抵抗測定装置および回路基板検査装置
TW533467B (en) * 2001-03-29 2003-05-21 Gsi Lumonics Corp Methods and systems for processing a device, methods and systems for modeling same and the device
US20040009618A1 (en) * 2002-03-27 2004-01-15 Couch Bruce L. Method and system for high-speed, precise micromachining an array of devices

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539538B2 (zh) * 1972-06-13 1978-04-06
JPS56115960A (en) * 1980-02-19 1981-09-11 Shinku Riko Kk Electric resistance measuring apparatus
US4429298A (en) * 1982-02-22 1984-01-31 Western Electric Co., Inc. Methods of trimming film resistors
DE3319605A1 (de) * 1983-05-30 1984-12-06 Siemens AG, 1000 Berlin und 8000 München Sensor mit polykristallinen silicium-widerstaenden
JPS63207105A (ja) * 1987-02-24 1988-08-26 三菱電機株式会社 厚膜抵抗体の抵抗値調整方法
JPH01300592A (ja) * 1988-05-28 1989-12-05 Murata Mfg Co Ltd 厚膜多層配線基板
US4935694A (en) * 1988-09-20 1990-06-19 Electro Scientific Industries, Inc. Probe card fixture
JPH03131005A (ja) * 1989-10-17 1991-06-04 Nec Corp レーザトリミング装置
JPH05135911A (ja) * 1991-07-02 1993-06-01 Tateyama Kagaku Kogyo Kk サーミスタのトリミング方法
JP2570865Y2 (ja) * 1991-11-14 1998-05-13 菊水電子工業株式会社 電流検出用抵抗器
US5420515A (en) * 1992-08-28 1995-05-30 Hewlett-Packard Company Active circuit trimming with AC and DC response trims relative to a known response
US5685995A (en) * 1994-11-22 1997-11-11 Electro Scientific Industries, Inc. Method for laser functional trimming of films and devices
JPH09171911A (ja) * 1995-12-18 1997-06-30 Rohm Co Ltd 抵抗器におけるレーザートリミング方法
JP3165392B2 (ja) 1997-04-18 2001-05-14 アデックス株式会社 インピーダンス測定装置
US6100815A (en) * 1997-12-24 2000-08-08 Electro Scientific Industries, Inc. Compound switching matrix for probing and interconnecting devices under test to measurement equipment
US6664500B2 (en) * 2000-12-16 2003-12-16 Anadigics, Inc. Laser-trimmable digital resistor
US6534743B2 (en) 2001-02-01 2003-03-18 Electro Scientific Industries, Inc. Resistor trimming with small uniform spot from solid-state UV laser
US6452478B1 (en) * 2001-09-19 2002-09-17 California Micro Devices Voltage trimmable resistor
US6875950B2 (en) * 2002-03-22 2005-04-05 Gsi Lumonics Corporation Automated laser trimming of resistors
US6759892B2 (en) * 2002-03-25 2004-07-06 Texas Instruments Incorporated Temperature compensation trim method
DE10214885C1 (de) 2002-04-04 2003-11-20 Infineon Technologies Ag Verfahren und Teststruktur zur Bestimmung von Widerstandwerten an mehreren zusammengeschalteten Widerständen in einer integrierten Schaltung
US6674316B2 (en) * 2002-04-12 2004-01-06 Texas Instruments Incorporated Methods and apparatus for trimming electrical devices
US6686726B1 (en) * 2002-08-08 2004-02-03 Innoveta Technologies, Inc. Tracking or independent output voltage adjustment for multiple output supplies
US6664837B1 (en) * 2002-09-18 2003-12-16 Xilinx, Inc. Delay line trim unit having consistent performance under varying process and temperature conditions
US6972391B2 (en) * 2002-11-21 2005-12-06 Hadco Santa Clara, Inc. Laser trimming of annular passive components
JP5091406B2 (ja) * 2002-11-21 2012-12-05 ハドコ サンタ クララ,インコーポレイテッド レジスタのレーザトリミング
US6949449B2 (en) * 2003-07-11 2005-09-27 Electro Scientific Industries, Inc. Method of forming a scribe line on a ceramic substrate
JP4777817B2 (ja) * 2006-04-04 2011-09-21 釜屋電機株式会社 チップサーミスタの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114204A (ja) * 1989-09-28 1991-05-15 Kyocera Corp 超小型チップ抵抗器の製造方法
JPH04261058A (ja) * 1991-01-25 1992-09-17 Mitsubishi Electric Corp 半導体素子のトリミング方法
JPH09180917A (ja) * 1995-12-26 1997-07-11 Matsushita Electric Ind Co Ltd チップ抵抗器の抵抗値修正方法
JP2001066334A (ja) * 1999-08-27 2001-03-16 Hioki Ee Corp 低抵抗測定装置および回路基板検査装置
TW533467B (en) * 2001-03-29 2003-05-21 Gsi Lumonics Corp Methods and systems for processing a device, methods and systems for modeling same and the device
US20040009618A1 (en) * 2002-03-27 2004-01-15 Couch Bruce L. Method and system for high-speed, precise micromachining an array of devices

Also Published As

Publication number Publication date
GB0704317D0 (en) 2007-04-11
KR101225024B1 (ko) 2013-01-23
KR20070051896A (ko) 2007-05-18
WO2006031577A3 (en) 2006-06-01
CN101023500A (zh) 2007-08-22
DE112005002164T5 (de) 2007-08-16
US20060065646A1 (en) 2006-03-30
US7667159B2 (en) 2010-02-23
TW200614282A (en) 2006-05-01
JP2008512872A (ja) 2008-04-24
GB2434253A (en) 2007-07-18
CN101023500B (zh) 2011-12-07
GB2434253A8 (en) 2007-07-18
WO2006031577A2 (en) 2006-03-23
JP4785854B2 (ja) 2011-10-05
US20060055504A1 (en) 2006-03-16

Similar Documents

Publication Publication Date Title
TWI405222B (zh) 用來降低雷射感應熱電效應所致的電阻數值偏差之方法
US8329600B2 (en) Method and system for high-speed precise laser trimming and scan lens for use therein
US7358157B2 (en) Method and system for high-speed precise laser trimming, scan lens system for use therein and electrical device produced thereby
US20050233537A1 (en) Method and system for high-speed, precise micromachining an array of devices
TWI487222B (zh) 用於在一工作件上雷射加工不同類型之標的物的方法及系統
US20070117227A1 (en) Method And System for Iteratively, Selectively Tuning A Parameter Of A Doped Workpiece Using A Pulsed Laser
US20060199354A1 (en) Method and system for high-speed precise laser trimming and electrical device produced thereby
KR102646994B1 (ko) 어닐링장치 및 어닐링방법
CN110392618A (zh) 激光加工装置
JP6452564B2 (ja) レーザアニール装置及びレーザアニール方法
CN115552774A (zh) 用于在激光焊接含铜的弯曲棒型导体时监测附接面积的方法
JP4245294B2 (ja) 半導体集積デバイスのインピーダンスをチューニングする方法および装置
KR20080010380A (ko) 고속의 정확한 레이저 트리밍을 위한 장치와 방법, 그에사용하는 렌즈 및 그에 의해 산출된 전기 장치
TWI504963B (zh) 消色差掃描透鏡
KR100826633B1 (ko) 소자배열의 고속, 정밀한 마이크로머시닝을 위한 방법 및 시스템
JP6957099B2 (ja) レーザアニール装置及びシート抵抗算出装置
JPH03102803A (ja) 薄膜抵抗体のトリミング方法
CA2398166A1 (en) Method for modifying the impedance of semiconductor devices using a focused heating source