TWI355005B - - Google Patents

Download PDF

Info

Publication number
TWI355005B
TWI355005B TW096106906A TW96106906A TWI355005B TW I355005 B TWI355005 B TW I355005B TW 096106906 A TW096106906 A TW 096106906A TW 96106906 A TW96106906 A TW 96106906A TW I355005 B TWI355005 B TW I355005B
Authority
TW
Taiwan
Prior art keywords
zinc oxide
type
nitrogen
zinc
transparent conductor
Prior art date
Application number
TW096106906A
Other languages
English (en)
Other versions
TW200746180A (en
Inventor
Masakatsu Ikisawa
Masataka Yahagi
Original Assignee
Jx Nippon Mining & Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx Nippon Mining & Metals Corp filed Critical Jx Nippon Mining & Metals Corp
Publication of TW200746180A publication Critical patent/TW200746180A/zh
Application granted granted Critical
Publication of TWI355005B publication Critical patent/TWI355005B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

1355005 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種以氧化鋅作為主成分之氧化辞系透 明導電體及該透明導電體形成用濺鍍靶。又,在此所使用 之透明導電體一詞包含透明導電膜。 【先前技術】 現在,最常作為平面顯示器等透明電極所使用的材料, 係於氧化銦中掺雜適量的錫之IT〇(Indium Tin 〇xide)。 ITO成為透明導電體之主要材料的理由,係由於ιτ〇 的電阻率低、於可見光區域的穿透率高等透明導電體所要 炙的諸特性,相較於其他材料系的透明導電體較為優異之 故。 然而,於ΙΤΟ中所使用之原料Ιη(姻),存在因高價而 使最終製品之成本上升、及因伴隨稀少資源之資源枯蝎而 產生材料供給上的問題。為了代t ΙΤ0,以氧化鋅作為主 成分之氧化鋅系透明導電體正熱烈進行 電阻率遠高於ΙΤΟ之缺點。 仍有 口不=二為至今的氧化鋅系透明導電材料之開發方針, :::探索最適當的單一摻雜物由週 找藉由摻雜於母材之氧化鋅h可放 2 之元素,具體而言,例如大多 ^雜物 具有較鋅之2價價數大之原 “圍摻雜 # 1貝的候補70素’以其瀹缺Λ、 膜後,評價膜之電阻率。 、· X成 此開發方針之結果,雖然進行了具有3價(參以以 5 1355005 補摻雜物之探 獻1)或4價(參照專利文獻2)之原子價的候 索,但實際情況是電阻率遠不及IT〇 ^ ,取近提出有藉由應用所謂C。——ing(共摻雜) :論,開發出低電阻率之氧化鋅系透明導電體之報告(表昭 專利文獻3),其内容僅規定較p型摻雜物多包含具有、 浪度以上的η型換雜物。 成功製作 體的其他 至今為止,僅有滿足此規定,而並無實際上
出如該報告之具有低電阻率之氧化鋅系透明導電 報告8 又,於該報告中,氧化鋅系透明導電體之製作方法, 雖然有提到有機金屬化學氣相成長法(MOCVD法)之實施例 及分子束磊晶法(MBE法),但皆非適合製作大面積透明導 電膜之方法。 專利文獻1 :日本特開昭61 — 205619號公報 專利文獻2 .日本特開昭62 — 1544丨1號公報 專利文獻3 :日本特開2〇〇2 - 5〇229號公報 【發明内容】 如前所述,在開發不具有In原料(高價且有資源枯竭 之虞)之ITO替代材料的氧化鋅系透明導電體時,探索最 適合的單一摻雜物已經達到極限,又,根據Co__ dopi叫理 論之開發,其内容模糊不清,而其製作方法目前亦並未達 到能製作出可適當利用於產業上之大面積透明導電體。 本發明係鑒於上述情況而完成者,其目的在於提供一 種具有與ITO匹敵之低電阻率,且可大面積化之氧化辞系 6 1355005 透明導電體。 本發明人等為解決上述問題,經心 藉由使n型及p型摻雜物之種類、濃度範圍、兩:果發現 值為適當範圍,並且使用適當的摻雜原料及摻雜=相對 成功實現低電阻率且矸士而接儿 P ’々决,可 电丨丰且了大面積化之氧化辞系透 終完成本發明。 導電體’
者,而各自之雜質位準因相互作 >雜物之兩 卞μ 1日立TF用變淺之效果, 討朝實現製作困難之ρ型氧化辞之適用。 檢 摻雜物之雜質位準變淺,可供仏 θ ρ型 J供,、·σ大量的電洞,使通常殘在 之η型摻雜物之效果上升’以實現Ρ型氧化鋅為目標。 另一方面,於本發明中,特徵在於著眼在η型雜質 即,亦使η型摻雜物之雜質位準變淺,將其效果適 化鋅系透明導電體係可實現本發明之理論根據。 、
Co-doping理論於η型氧化辞系透明導電體上為有效 之理由,係基於以下見解:藉由冑η型摻雜物及ρ型摻雜 :以2 . 1之比導入氧化鋅,形成兩摻雜物間之複合物, 藉由相互作用,η型雜質位準變得更淺,η型雜質之活化 率上升,因此可減少用以得到某一定載子濃度之η型雜質 摻雜量,可減少離子化雜質散亂。 然而,Co—doping理論到底是理論,為了計算雜質位 準’假設了與實際不同之理想狀態。即,如上所述,前提 為η型摻雜物及p型摻雜物分別與適當的原子置換,成為 規定的原子配置。 7 1355005 係二=言氮為氮時, 提,來計算雜質位準。置--置換之理想狀態為前 換,=二。;—理論只不過是顯示若進行如此置 何產生r 之計算結果,至於此種置換實際上如 述及啟示。 料的實現方法’目前並無任何論 實:上’本發明人等發現:依照導入的摻雜物種類及 的:換:入方法等㈣,掺雜物進入晶格間等上述理想 的置換有困難及較為容易之情形。 具體而言,適合作為P型摻雜物之氮的離子半徑由於 大於氧的離子半徑,故因氮的 、 晶格部分變大之方向變形的作用。會4氧化鋅文到朝 型摻雜物亦相,,若大於置換對象之辞的離 子+徑時,則氧化鋅會進-步受到朝晶格變大之方向的作 用’摻雜量增加時終於造成該等摻雜物無法朝晶格位 適當置換,而導致無法進入晶格間、無法實現 理論所假設的理想狀態。 因此,P型摻雜物為氮時,藉由使用具有較辞之離子 半徑小之離子半徑的元素料n型推雜物,緩和因導4 雜物所產生的晶格變形,藉此可使摻雜物置換於晶格位 置’成功實現Co — doping理論之效果。 進而,η型掺雜物與p型掺雜物之比,並不需要嚴密 地為Co—doping理論之最適值,亦即2:丨,發現於某程 8 1355005 度之範圍内亦可顯示出效果。 本發明係基於上述見解,提供如下發明。 1)-種氧化鋅系透明導電體’其特徵在於:以氧 作為主成分,含有小於氧化鋅中之鋅 夂蛘的離子半徑且對氧化 為η型摻雜物之元素^ 雜物及相對於該η型摻 ,、物之原子數比(氮八型摻雜物)為〇 3〜〇 6之氮。 再者’ η型摻雜物之原子%,係指η型摻雜物 數相對於材料中氧及H 夕卜 雜h人/ 構成疋素之鋅元素與η型摻 ’、 之。计原子數的比。以下同樣。又,氣彳目$ 雜抽^ m ^ 又,氮相對於n型摻 Γ: 係指氮之原子數除…摻雜物之原子 ’亦即若氮相對於η型摻雜物之原子數比為0.5,則氮 之原子數係η型摻雜物之原子數的一半。以下相同。· 又’本發明提供如下發明。 2) :上述”之氧化鋅系透明導電體,其… 物之70素在2原子%〜8原子%。 ” 3) 如上述〗)或2)之氧化 雜物係鎵及/或銘。 月導電體,其中η型摻 又,本發明提供如下發明。 4) -種氧化辞系透明導電體形成用錢餘 於:以氧化鋅作為主成分, ,、特徵在 半徑且對氧化鋅為„型推雜物之元素 :的:子 對於該η型摻雜物之原子數比為〇3〜〇6之氮原及相 5)如上述4)之氧化鋅系透明導 中““w ”边月導電體形成用濺鍍靶,其 中係以氮化鎵的形態含有氮。 9 ⑶)U〇5 6) 如上述4)或5)之氧 乾,其中,為η型摻雜物之元辛在電體形成用減鍍 m 之70素在2原子%〜8原子%。 7) 如上述4)〜6)中任一項之氧 用濺㈣,其中型摻雜物係鎵及…。電體形成 本發明㈣當濃度範_對氧㈣摻雜 辞:n型捧雜物及作為P型摻雜物之氣,藉此具有大^
,:效果’可得到與習知-同等程度之電阻:、 又,藉由以氮化鎵之形態推雜氮之供給 作適合用於大面積透明導電體製造上线制效有果可製 糟此,即使不使用高價且有資源枯竭之虞 亦可提供習知方法無法實現之具有作為低電阻率等透 電體所必需之特性的新穎透明導電體。 【實施方式】 :發明之透明導電體,係添加適當濃度之氧化辞及成 :摻!物之化合物,並加以燒結,藉此製作濺料,並藉 測疋減錄此濺餘所獲得之透明導電體之膜的電阻率, 求得適當之透明導電體的濃度範圍。 添加於氧化鋅之n型摻雜物的濃度若未滿丨原子%時, 則從摻雜物放出之電子濃度無法成為充0阻车 不會變低。 i電阻车 另一方面,若η型摻雜物之濃度超過1〇原子%時則 因添加的摻雜物所產生的離子化雜質散亂效果、及未離子 化而直接保持中性,無助於電子放出地存在於氧化鋅中的 不良影響’導致膜之電阻率變高。 1355005 又,氮對該η型摻雜物之原子數比未滿〇 3時則幾 乎看不到藉由添加p型摻雜物所產生的使n型雜質位準變 淺之效果’相對地,氮對該n型摻雜物之原子數比超過〇 6 時,則藉由添加ρ型摻雜物所產生的η型摻雜物之補償效 果變大1而使有助於傳導之電子數減少,且使電阻率變 高0 因此,藉由製成如下氧化辞系透明導電體,即:以氧 化鋅作為主成分,小於氧化鋅中之辞的離子半徑且對氧化 辞為11型摻雜物之元素佔1〜原子%、及氮相對於該η 型摻雜物之原子數比為〇3 ’3 〇·6 ’可得到具有穩定低電阻 率之透明導電體。 :為嶋使用之乾的製造,例如η型摻雜物為鎵時, 可糟由適當秤量Ga2〇3粉、Γτ ^ , ^ GaN柘、Ζη〇粉,使各元素之 2成為規定之值’並加以混合,藉熱壓法於溫度喊、 壓力30〇kgf/em2T保持2小時來進行製作。 作為其他的π型換雜私 „ , 雜物,例如使用ai2〇3時,可藉由 取代上述Ga203或進一步追 .m 迢加添加αιζο3粉來進行製造。 使用上述靶濺鍍進行淹 與乾相同組成之膜,因复二’所形成之膜亦成為具有 有低電阻率之透明導電膜乾圍為適當範圍’故成為具 又,靶亦可為一體型 乾或獨立形成配置氧化鋅、可組合鑲嵌上的 後之結果的膜組成最终成 ㉟、氮化鎵各靶’使濺鍍 、 、战為規定的範圍。 進而’氮之添加方沐 ,亦可採取以下方法,即:不使 1355005 ‘用氮化㈣或由氮化鎵粉所形成之n使用氧化辞、氧 氧化㈣且環境氣體使用含有ν2〇等之氮之氣體, 藉此藉由一種反應性濺鍍使膜含有氮。 進而亦可藉由稱之為供給氮基(nitrogen radical)之方 法來供給氮。本發明包含此等全部方法。 實施例 =下基於實施例說明本發明。以下所示之實施例,係 φ 為了谷易理解,但並不能以此等實施例限制本發明。即, 基於本發明之技術思想之變形&其他實施<列,當然包含於 本發明。 • [實施例1] 以 ZnO : Ga203 : GaN= 98.0 : 〇.5 : 1_〇(分子數比,合 計不一定為1〇〇)之方式,秤量各原料粉,使用直徑3mm分 氧化鍅球,以研磨機進行約丨小時之原料粉的微粉碎,對 平均粒徑Ιμιη以下之漿料狀原料以篩目33〇之篩進行筛選 • 後,於乾燥烘箱中以120它保持24小時,使水分蒸發。 對乾燥之原料粉進一步以篩目60之篩進行篩選,再以 攪拌摻合機將原料充份混合至均勻。 接著,於85 0小型模具中以填充量25〇g安置原料粉, 一面吹送Ar’ 一面以1(TC/min之升溫速度,使溫度從室 溫升至900°C,再以5°C/min之升溫速度使溫度從9〇〇<)(: 升至9 5 0 C,使溫度持續上升,於9 5 0 °C保持3 0分鐘後, 將壓力於10分鐘内由〇上升至300kgf//cm2,進行加壓。 然後’於950°C、300kgf/ cm2之狀態下保持2小時後, 12 !355〇〇5 停止爐的加熱,自然冷卻。下降至1 t以下之溫度後, 於10分鐘内使壓力返回〇,由爐中取出靶。將取出之靶進 行加工成直徑50mm、厚度7mm,製成錢鍍把。 將所製得之靶於Ar環境氣氛〇.5Pa、Ar流量12scem 下’以Corning#1737玻璃作為基板,基板溫度2〇〇°c、基 板與靶之間的距離為80mm,調整成膜時間後進行濺鍍成 膜,使膜厚成為約150nm,測定所得之膜的膜厚,由電洞 測定評價膜電阻率。結果顯示於表1。 [實施例2]至[實施例6]
實施例2〜實施例6 ’不同點僅在Zn〇 :以2〇3 : GaN 之分子數比,分別為 95.0: 1.75: 1.5、95.0: 1.5: 2.〇、95(): 1.25 : 2.5、95.0 : i.O : 3.0、92.〇 : 2 〇 : 4 〇,其他靶製作 及濺鍍條件等,與實施例1相同。所獲得之結果同樣顯示 於表1。 [實施例7]至[實施例12] 實施例7〜實施例12,原料粉係使用Zn〇、Ai2〇3、GaN, ZnO:Al2〇3:GaN 之分子數比,分別為 98.0:0.5: 1〇、95 〇 : 1-75 : 1.5 ^ 95.0 : 1.5 : 2.0 ^ 95.0 : 1.25 : 2.5 > 95.0 : 1>〇 : 3.0、92.0 : 2.0 : 4.0。 其他靶製作及濺鍍條件等與實施例丨相同。所獲得之 結果同樣顯示於表1。 [比較例1]至[比較例6] 比較例1〜比較例6,原料粉係使用Zn〇 : In2〇3: , 其他條件等則與實施例丨相同。所獲得之結果同樣顯示於 13 1355005 表1。於此比較例所使用之材料之In係離子半徑大於Zn 者0 [表1】
試料No η型摻雜物元素 濃度 (原子%) Ga+Al (原子數比) 電阻率 (mQcm) 實施例1 Ga 2 0.5 0.68 實施例2 Ga 5 0.3 0.29 實施例3 Ga 5 0.4 0.21 實施例4 Ga 5 0.5 0.18 實施例5 Ga 5 0.6 0.35 實施例6 Ga 8 0.5 0.85 實施例7 A1 及 Ga 2 0.5 0.65 實施例8 A1 及 Ga 5 0.3 0.26 實施例9 Al 及 Ga 5 0.4 0.19 實施例10 A1 及 Ga 5 0.5 0.17 實施例11 Al 及 Ga 5 0.6 0.33 實施例12 Al 及 Ga 8 0.5 0.83 比較例1 In 2 0.5 2.58 比較例2 In 5 0.3 1.55 比較例3 In 5 0.4 1.23 比較例4 In 5 0.5 0.98 比較例5 In 5 0.6 2.83 比較例6 In 8 0.5 3.88 [實施例與比較例之歸納] 如上所示,實施例i〜實施例6,係含有鎵2〜8原子 0作為π型摻雜物’及含有N/Ga(原子數比)在〇.3〜0_6 範圍内之氮的氧化辞系透明導電(賤鑛膜)。 14 1355005 此膜之電阻率於018〜〇 85mQcm的範圍,係導電性 優Ά膜X ’無論任者的穿透率皆在可見光區域之 以上的範圍’為優異的氧化鋅系透明導電膜。 實施例7〜實施例12、係含有銘及鎵卜8原子 η型摻雜物,及含右 /Ga(原子數比)在〇3〜〇6範圍内 之氮的氧化鋅系透明導電(濺鍍膜)。
此膜之電阻率在〇.17〜〇 83mQcm的範圍,係導電性 優異之膜。又’無論任者的穿透率皆在可見光區域之㈣ 以上的範圍,為優異的氧化鋅系透明導電膜。 相對於此,比較例卜6係摻雜離子半徑大於辞的姻。 然令銦的含量與實施例為同等之範圍,丨亦含有Μ _子數比)在〇·3〜〇·6範圍内的氮,但電阻率卻為〇,98 〜3‘88niQem,導電性皆比實施例差。 為透日由二可知,本發明之實施例可提高導電率,可適用作 马透明導電體。 ..^ …〜〜與叼屌料In,但亦可 糟由氧化鋅系靶的濺鍍成膜,實現習知 雷阳法。. 々古無法實現之低 电j且率且大面積的透明導 體。 非常相作為透明導電 【圖式簡單說明】 (無) 【主要元件符號說明】 (無) 15

Claims (1)

1355005 於 、申請專利範圍··L種氧化鋅系透明導電 [ί 鮮 更
1〇〇年8月兮曰替換頁 體形成用濺鍍靶,其特徵在 以氧化鋅作為主成分,含有小 半徑且對氧化# & 、虱化鋅中之鋅的離子 牛仅且對減鋅為n㈣雜物之元素 對於該η型摻雜物之 原子%、及相 之氮。 原、子數比(氮/η型穆雜物)為0.3〜〇·6 2. 如申請專利範圍帛丨項之氧化鋅 用濺鍍靶,其中,為η型捭 '、冑電體形成 %。 3 1摻雜物之凡素在2原子%〜8原子 3. 如申請專利範圍第丨或2項之. Λ m # . 氧化鋅糸透明導電體形 成用錢^,其中,°型摻雜物係鎵及/或链。 4_如申請專利範圍第1或2 、之氧化鋅糸透明導電體形 成用滅㈣’其中,係以氮化鎵的形態含有氮。 5_如申請專利範圍第3 m ^ ^ 軋化鋅系透明導電體形成 用濺鍍靶,其中,係以氮化鎵的形態含有氮。 十一、圖式: 無 16
TW096106906A 2006-03-17 2007-03-01 Zinc oxide-based transparent conductor and sputtering target for forming the transparent conductor TW200746180A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073822 2006-03-17

Publications (2)

Publication Number Publication Date
TW200746180A TW200746180A (en) 2007-12-16
TWI355005B true TWI355005B (zh) 2011-12-21

Family

ID=38522302

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096106906A TW200746180A (en) 2006-03-17 2007-03-01 Zinc oxide-based transparent conductor and sputtering target for forming the transparent conductor

Country Status (7)

Country Link
US (1) US7699965B2 (zh)
EP (1) EP1997931B1 (zh)
JP (1) JP4850901B2 (zh)
KR (1) KR101028985B1 (zh)
CN (1) CN101405427B (zh)
TW (1) TW200746180A (zh)
WO (1) WO2007108266A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054054B2 (ja) * 2005-06-28 2008-02-27 日鉱金属株式会社 酸化ガリウム−酸化亜鉛系スパッタリングターゲット、透明導電膜の形成方法及び透明導電膜
US7682529B2 (en) * 2005-06-28 2010-03-23 Nippon Mining & Metals Co., Ltd. Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
CN101326304B (zh) * 2005-12-08 2011-05-04 Jx日矿日石金属株式会社 氧化镓-氧化锌类溅射靶、透明导电膜及其形成方法
JP5109418B2 (ja) * 2006-04-26 2012-12-26 三菱マテリアル株式会社 ZnO蒸着材及びその製造方法並びにZnO膜の形成方法
WO2008023482A1 (fr) * 2006-08-24 2008-02-28 Nippon Mining & Metals Co., Ltd. conducteur électrique transparent à base d'oxyde de zinc, cible de pulvérisation cathodique pour former le conducteur et processus de fabrication de la cible
US8747630B2 (en) 2007-01-16 2014-06-10 Alliance For Sustainable Energy, Llc Transparent conducting oxides and production thereof
WO2009001693A1 (ja) * 2007-06-26 2008-12-31 Nippon Mining & Metals Co., Ltd. アモルファス複合酸化膜、結晶質複合酸化膜、アモルファス複合酸化膜の製造方法、結晶質複合酸化膜の製造方法および複合酸化物焼結体
EP2172436A4 (en) 2007-07-13 2013-07-31 Jx Nippon Mining & Metals Corp VERBUNDOXIDSINTER, METHOD FOR THE PREPARATION OF AN AMORPHOUS VERBUNDOXIDFILMS, AMORPHER VERBUNDOXIDFILM, METHOD FOR THE PRODUCTION OF A CRYSTALLINE COMPOSITE OXIDE FILM AND CRYSTALLINE COMPOSITE OXIDE FILM
JP4808682B2 (ja) * 2007-08-03 2011-11-02 Jx日鉱日石金属株式会社 焼結体、透明導電膜の製造方法及び透明導電膜
WO2009116990A1 (en) * 2008-03-17 2009-09-24 Midwest Research Institute High quality transparent conducting oxide thin films
JP5202630B2 (ja) * 2008-06-10 2013-06-05 Jx日鉱日石金属株式会社 スパッタリング用酸化物焼結体ターゲット及びその製造方法
US9260779B2 (en) 2009-05-21 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-transmitting conductive film, display device, electronic device, and manufacturing method of light-transmitting conductive film
US9663405B2 (en) 2009-06-05 2017-05-30 Jx Nippon Mining & Metals Corporation Oxide sintered compact, its production method, and raw material powder for producing oxide sintered compact
JP2011109011A (ja) * 2009-11-20 2011-06-02 Mitsubishi Heavy Ind Ltd 光電変換装置
CN102452195A (zh) * 2010-10-27 2012-05-16 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
US20120104383A1 (en) * 2010-11-02 2012-05-03 Industrial Technology Research Institute Semiconductor device having zinc oxide thin film and manufacturing method thereof
US8894825B2 (en) 2010-12-17 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, manufacturing semiconductor device
KR101249262B1 (ko) * 2011-02-22 2013-04-02 한국과학기술연구원 투명도전 조성물 및 타겟, 이를 이용한 투명도전 박막 및 그 제조방법
WO2013119550A1 (en) 2012-02-10 2013-08-15 Alliance For Sustainable Energy, Llc Thin film photovoltaic devices with a minimally conductive buffer layer
US9885108B2 (en) * 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
WO2014077895A1 (en) 2012-11-19 2014-05-22 Alliance For Sustainable Energy, Llc Devices and methods featuring the addition of refractory metals to contact interface layers
KR102181436B1 (ko) * 2013-11-29 2020-11-23 삼성전자주식회사 투명 전도성 박막
EP3210952B1 (en) 2015-02-27 2019-05-01 JX Nippon Mining & Metals Corporation Oxide sintered compact, oxide sputtering target, and oxide thin film
KR101932369B1 (ko) 2015-02-27 2018-12-24 제이엑스금속주식회사 산화물 소결체 및 그 산화물 소결체로 이루어지는 스퍼터링 타깃
CN107428617B (zh) 2015-03-23 2020-11-03 捷客斯金属株式会社 氧化物烧结体以及包含该氧化物烧结体的溅射靶
JP6722361B2 (ja) 2018-03-01 2020-07-15 株式会社アルバック 窒化ガリウム薄膜の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205619A (ja) 1985-03-08 1986-09-11 Osaka Tokushu Gokin Kk 耐熱性酸化亜鉛透明導電膜
JPS62154411A (ja) 1985-12-26 1987-07-09 三井金属鉱業株式会社 透明導電膜
US5672427A (en) * 1993-08-31 1997-09-30 Mitsubishi Materials Corporation Zinc oxide powder having high dispersibility
JP3636914B2 (ja) * 1998-02-16 2005-04-06 株式会社日鉱マテリアルズ 高抵抗透明導電膜及び高抵抗透明導電膜の製造方法並びに高抵抗透明導電膜形成用スパッタリングターゲット
JP2001035252A (ja) 1999-07-19 2001-02-09 Asahi Glass Co Ltd 透明導電膜
JP3904378B2 (ja) * 2000-08-02 2007-04-11 ローム株式会社 酸化亜鉛透明導電膜
JP4198918B2 (ja) * 2002-02-14 2008-12-17 日鉱金属株式会社 硫化亜鉛を主成分とするスパッタリングターゲット及び該スパッタリングターゲットの製造方法
CN1206703C (zh) * 2002-07-17 2005-06-15 浙江大学 实时掺氮生长p型ZnO晶体薄膜的方法
CN1413947A (zh) * 2002-12-20 2003-04-30 清华大学 一种锌镓氧化物陶瓷靶材及其制备方法和应用
KR100753328B1 (ko) * 2003-03-04 2007-08-29 닛코킨조쿠 가부시키가이샤 스퍼터링 타겟트, 광 정보기록 매체용 박막 및 그 제조방법
US7510635B2 (en) * 2003-09-30 2009-03-31 Nippon Mining & Metals Co., Ltd. High purity zinc oxide powder and method for production thereof, and high purity zinc oxide target and thin film of high purity zinc oxide
US7682529B2 (en) 2005-06-28 2010-03-23 Nippon Mining & Metals Co., Ltd. Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
JP4054054B2 (ja) 2005-06-28 2008-02-27 日鉱金属株式会社 酸化ガリウム−酸化亜鉛系スパッタリングターゲット、透明導電膜の形成方法及び透明導電膜

Also Published As

Publication number Publication date
CN101405427A (zh) 2009-04-08
EP1997931A4 (en) 2011-12-21
CN101405427B (zh) 2012-07-18
JP4850901B2 (ja) 2012-01-11
KR20080095297A (ko) 2008-10-28
EP1997931A1 (en) 2008-12-03
EP1997931B1 (en) 2014-01-01
JPWO2007108266A1 (ja) 2009-08-06
TW200746180A (en) 2007-12-16
KR101028985B1 (ko) 2011-04-12
WO2007108266A1 (ja) 2007-09-27
US7699965B2 (en) 2010-04-20
US20090085014A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
TWI355005B (zh)
JP4760154B2 (ja) 酸化物焼結体、酸化物透明導電膜、およびこれらの製造方法
JP5005772B2 (ja) 導電性積層体およびその製造方法
Sui et al. Effects of (P, N) dual acceptor doping on band gap and p-type conduction behavior of ZnO films
WO2013042423A1 (ja) Zn-Si-O系酸化物焼結体とその製造方法および透明導電膜
Yan et al. Impacts of preparation conditions on photoelectric properties of the ZnO: Ge transparent conductive thin films fabricated by pulsed laser deposition
Zhou et al. GaN codoping and annealing on the optoelectronic properties of SnO2 thin films
Wu et al. Study of p-type AlN-doped SnO2 thin films and its transparent devices
JP6024545B2 (ja) 酸化亜鉛系焼結体とその製造方法およびスパッタリングターゲット
KR20090038853A (ko) 투명 도전막의 성막 방법
JP2007246318A (ja) 酸化物焼結体、その製造方法、酸化物透明導電膜の製造方法、および酸化物透明導電膜
Lim et al. Transparent Ti-In-Sn-O multicomponent anodes for highly efficient phosphorescent organic light emitting diodes
KR20090045150A (ko) 투명 도전막의 성막 방법
JP2008038234A (ja) 酸化ランタン含有酸化物ターゲット
TW201022457A (en) Transparent conductive zinc oxide display film and production method therefor
JP2017193755A (ja) 透明導電膜の製造方法、及び透明導電膜
Vaithianathan et al. Photoluminescence in phosphorous-implanted ZnO films
Shin et al. Effect of MoO3 doping power on the electrical, optical, and structural properties of MoO3-doped In2O3 anodes for organic solar cells
JP4960052B2 (ja) 酸化イッテルビウム含有酸化物ターゲット
JP2003239063A (ja) 透明導電性薄膜とその製造方法及びその製造に用いるスパッタリングターゲット
JP6740671B2 (ja) 珪化バリウムバルク多結晶体及びその用途
JP5689378B2 (ja) 透明導電膜
US20140202851A1 (en) Boron-doped zinc oxide sputtering target and its application
TWI477632B (zh) 硼鋅氧化物濺鍍靶材及其應用
Cruz et al. Electrical properties of ITO thin films deposited by activated reactive evaporation