CN101405427A - 氧化锌系透明导体以及该透明导体形成用溅射靶 - Google Patents

氧化锌系透明导体以及该透明导体形成用溅射靶 Download PDF

Info

Publication number
CN101405427A
CN101405427A CNA2007800095851A CN200780009585A CN101405427A CN 101405427 A CN101405427 A CN 101405427A CN A2007800095851 A CNA2007800095851 A CN A2007800095851A CN 200780009585 A CN200780009585 A CN 200780009585A CN 101405427 A CN101405427 A CN 101405427A
Authority
CN
China
Prior art keywords
zinc oxide
transparent conductor
doping agent
type doping
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800095851A
Other languages
English (en)
Other versions
CN101405427B (zh
Inventor
生泽正克
矢作政隆
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Publication of CN101405427A publication Critical patent/CN101405427A/zh
Application granted granted Critical
Publication of CN101405427B publication Critical patent/CN101405427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Abstract

一种氧化锌系透明导体,其特征在于,以氧化锌为主要成分,含有比氧化锌中锌的离子半径小、相对于氧化锌成为n型掺杂剂的元素1~10原子%和相对于该n型掺杂剂的原子数比(氮/n型掺杂剂)为0.3~0.6的氮。在开发不具有价格高且有资源枯竭的担心的原料In的透明导体时,目的在于显示超过以往单一掺杂法的开发方法极限且能实现共掺杂理论的具体方法的掺杂剂的选择基准,提供低电阻率透明导体。

Description

氧化锌系透明导体以及该透明导体形成用溅射靶
技术领域
本发明涉及以氧化锌为主要成分的氧化锌系透明导体、该透明导体形成用溅射靶。而且,此处使用的透明导体的表述是指含有透明导电膜的透明导体。
背景技术
目前,作为平板显示器等透明电极,最常使用的材料是将适量的锡掺杂到氧化铟中而得到的ITO(Indium Tin Oxide,氧化铟锡)。
ITO成为透明导体的主要材料的理由在于,ITO的电阻率低、在可见光区域的透过率高等透明导体所要求的各特性比其他材料系的透明导体优良。
但是,ITO中使用的原料In(铟)存在如下问题:由于价格高,因而最终产品的成本高,由于是稀少资源,因而材料供给伴随着资源枯竭。作为ITO替代材料的开发,以氧化锌为主要成分的氧化锌系透明导体的开发正在进行,但仍然存在电阻率比ITO高很多的缺点。
其原因在于,目前的氧化锌系透明导体材料的开发方针不过是对最佳的单一掺杂剂的探索。即,该方针是通过在作为母材的氧化锌中掺杂而从周期表中找出放出电子成为n型掺杂剂的元素,具体而言,例如,大多制作以适当浓度范围掺杂具有比锌的价数2价高的化合价的候补元素而得到的靶,将其溅射成膜,评价膜的电阻率。
该开发方针的结果是具有3价(参考专利文献1)、4价(参考专利文献2)的化合价的候补掺杂剂的探索正在进行,但实情是电阻率远远不如ITO。
而且,近来有通过所谓Co-doping(共掺杂)理论的应用来开发低电阻率的氧化锌系透明导体的报道(参考专利文献3)。其内容只是规定了使一定浓度以上的n型掺杂剂的含量比p型掺杂剂多。
实际情况是,到目前为止,除了上述报道,还没有仅满足上述规定、如上述报道那样实际成功地制作了具有低电阻率的氧化锌系透明导体的报道。
而且,在上述报道中,作为制作氧化锌系透明导体的方法,提到了有机金属化学气相沉积法(MOCVD法)的实施例和分子束外延法(MBE法),但都不适合制作大面积透明导体。
专利文献1:日本特开昭61-205619号公报
专利文献2:日本特开昭62-154411号公报
专利文献3:日本特开2002-50229号公报
发明内容
如上所述,在开发作为不具有价格高且有资源枯竭的担心的In原料的ITO替代材料的氧化锌系透明导体时,现状是最佳的单一掺杂剂的探索已达到极限,而且利用共掺杂理论的开发中,其内容空泛,而且其制作方法不是能制作适合产业上利用的大面积透明导体的方法。
本发明鉴于上述情况而完成,其目的在于,提供具有与ITO相匹敌的低电阻率、能大面积化的氧化锌系透明导电膜。
本发明人为了解决上述问题而进行了深入的研究,结果通过将n型和p型掺杂剂的种类、浓度范围、两浓度比设定在适当范围内、并且使用适当的掺杂原料和掺杂方法,成功地得到了低电阻率且能大面积化的氧化锌系透明导电膜,从而完成了本发明。
共掺杂理论是通过掺杂n型和p型掺杂剂两者、从而利用由于各自的杂质能级相互作用而产生的变浅效果的理论,特别探讨了对得到制作困难的p型氧化锌的应用。即,目标是通过使p型掺杂剂的杂质能级变浅,提供大量的孔,提高通常残留的n型掺杂剂的效果,得到p型氧化锌。
另一方面,本发明在着眼于n型杂质方面有特征。即,杂质能级变浅是指即使n型掺杂剂也一样,将该效果应用于氧化锌系透明导体是能实现本发明的理论依据。
共掺杂理论对n型氧化锌系透明导体有效的理由以如下见解为基础,通过将n型掺杂剂与p型掺杂剂以2∶1的比导入氧化锌,由于两掺杂剂间形成复合物并相互作用,因而n型杂质能级变得更浅,n型杂质的活化率提高,因此能减少用于得到一定载流子浓度的n型杂质掺杂量,能使离子化杂质散射减少。
但是,共掺杂理论是原则上的理论,为了计算杂质能级,假设了与实际不同的理想状态。即,如上所述,其前提是n型掺杂剂和p型掺杂剂分别置换适当的原子而成为规定的原子排列。
具体而言,例如,当n型掺杂剂为镓、p型掺杂剂为氮时,以镓在晶格位置完全地置换锌、氮在晶格位置完全地置换氧的理想状态为前提,计算杂质能级。
而且,现状是,共掺杂理论如果能进行上述置换,也不过是显示杂质能级变得如何的计算结果,关于上述置换实际上能否进行、用怎样的方法进行置换等实现方法没有任何公开及启示。
实际上,本发明人研究发现:根据导入的掺杂剂种类和组合、导入方法等,有与掺杂剂进入晶格之间等上述理想的置换困难的方法相比容易的方法。
具体而言,由于适合作为p型掺杂剂的氮的离子半径比氧的离子半径大,因此氧化锌由于氮的导入而在晶格部分变大的方向上受到应变作用。
而且,n型掺杂剂也同样比作为置换对象的锌的离子半径大时,氧化锌进一步受到晶格变大的方向的作用,掺杂量增加时,这些掺杂剂变得不能适当置换晶格位置,不能实现进入晶格之间的共掺杂理论所假设的理想状态。
因此,p型掺杂剂为氮时,通过使用具有比锌的离子半径小的离子半径的元素作为n型掺杂剂,利用导入掺杂剂带来的晶格变形的缓和作用,使掺杂剂置换晶格位置,成功地实现共掺杂理论的效果。
而且,n型掺杂剂与p型掺杂剂的比没有必要严格地为共掺杂理论的最佳值2∶1,在某程度的范围内都显示效果。
本发明基于上述见解,提供以下的发明。
1)一种氧化锌系透明导体,其特征在于,以氧化锌为主要成分,含有比氧化锌中锌的离子半径小、相对于氧化锌成为n型掺杂剂的元素1~10原子%和相对于该n型掺杂剂的原子数比(氮/n型掺杂剂)为0.3~0.6的氮。
而且,n型掺杂剂的原子%是指该n型掺杂剂相对于除材料中的氧和氮以外的构成元素锌和n型掺杂剂的总原子数的比。以下相同。另外,氮相对于n型掺杂剂的原子数比是指氮的原子数除以n型掺杂剂的原子数的值,氮相对于n型掺杂剂的原子数比为0.5是指氮的原子数是n型掺杂剂的原子数的一半。以下相同。
另外,本发明提供以下的发明。
2)如上述1)所述的氧化锌系透明导体,其特征在于,成为n型掺杂剂的元素为2原子%~8原子%。
3)如上述1)或2)所述的氧化锌系透明导体,其特征在于,n型掺杂剂为镓和/或铝。
另外,本发明提供以下的发明。
4)一种氧化锌系透明导体形成用溅射靶,其特征在于,以氧化锌为主要成分,含有比氧化锌中锌的离子半径小、相对于氧化锌成为n型掺杂剂的元素1~10原子%、相对于该n型掺杂剂的原子数比(氮/n型掺杂剂)为0.3~0.6的氮。
5)如上述4)所述的氧化锌系透明导体形成用溅射靶,其特征在于,以氮化镓的形式含有氮。
6)如上述4)或5)所述的氧化锌系透明导体形成用溅射靶,其特征在于,成为n型掺杂剂的元素为2原子%~8原子%。
7)如上述4)~6)中任一项所述的氧化锌系透明导体形成用溅射靶,其特征在于,n型掺杂剂为镓和/或铝。
发明效果
本发明相对于氧化锌在适当浓度范围内掺杂离子半径比锌小的n型掺杂剂和作为p型掺杂剂的氮,由此,具有显著提高导电性的效果,得到与以往的ITO相同程度的电阻率。
另外,通过使氮的供给以氮化镓的形式掺杂,也具有能制作适合制作大面积透明导体的溅射用靶。
由此,可以提供不使用价格高且有资源枯竭的担心的原料In、具有以往的方法不能实现的低电阻率等透明导体需要的特性的新型透明导体。
具体实施方式
本发明的透明导体通过添加适量浓度的氧化锌和成为掺杂剂的化合物并进行烧结而制作溅射靶,测量将其进行溅射而得到的透明导体的膜的电阻率,由此求出适当的透明导体的浓度范围。
如果添加在氧化锌中的n型掺杂剂的浓度小于1原子%,则由掺杂剂放出的电子浓度达不到充分高的值,电阻率不变低。
另一方面,如果n型掺杂剂的浓度超过10原子%,则由于添加的掺杂剂所带来的离子化杂质散射的效果、或未离子化而以中性且未放出电子的状态存在于氧化锌中的不良影响,膜的电阻率变高。
另外,如果氮相对于该n型掺杂剂的原子数比小于0.3,则几乎没有发现由于添加p型掺杂剂而使n型杂质能级变浅的效果,反之,如果氮相对于该n型掺杂剂的原子数比大于0.6,则由于添加p型,n型掺杂剂的补偿效果变大,进行传导的电子数减少,因而电阻率升高。
因此,通过制成以氧化锌为主要成分,含有比氧化锌中锌的离子半径小、相对于氧化锌成为n型掺杂剂的元素1~10原子%和相对于该n型掺杂剂的原子数比为0.3~0.6的氮的氧化锌系透明导体,能得到具有稳定的低电阻率的透明导体。
对于作为溅射靶使用的靶的制造,例如,n型掺杂剂为镓时,适当称量、混合Ga2O3粉末、GaN粉末、ZnO粉末,使各元素的浓度达到规定的值,通过热压法,在温度950℃、压力300kgf/cm2下保持2小时,从而能够制造。
作为其他的n型掺杂剂,例如使用Al2O3时,能通过添加Al2O3粉末代替上述Ga2O3或追加添加Al2O3粉末进行制造。
使用上述靶进行溅射时,形成的膜也成为与靶具有相同组成的膜,其组成范围为适当的范围,由此得到具有低电阻率的透明导电膜。
另外,靶可以是一体型的溅射靶,也可以镶嵌式地组合靶,或者将氧化锌、氧化铝、氮化镓的各自的靶独立地形成并配置,从而使溅射结果的膜组成最终达到规定的范围。
而且,作为氮的添加方法,不使用氮化镓靶或由氮化镓粉末形成的的靶,而使用氧化锌、氧化铝、氧化镓靶,并使用含有N2O等氮的气体作为气氛气体,也能得到一种利用反应性溅射使膜含有氮的方法。
另外,也可以通过提供氮自由基的方法供给氮。本发明包括所有的这些方法。
实施例
接着,基于实施例说明本发明。下面所示的实施例是为了使理解变得容易的实施例,本发明不受这些实施例的限制。即,基于本发明的技术思想的变形和其他的实施例当然也包括在本发明内。
[实施例1]
称量各原料粉末,使ZnO∶Ga2O3∶GaN=98.0∶0.5∶1.0(分子数之比,合计并不一定为100),使用直径3mmΦ的氧化锆球(zirconia ball),用磨碎机进行约1小时原料粉末的微粉碎,将平均粒径1μm以下的浆状原料用330目的筛子进行筛分后,在120℃的干燥炉中保持24小时,将水分蒸发。
将干燥的原料粉末进一步用60目的筛子进行筛分,用韦林氏掺合器(Waring blender)混合,使原料充分均匀。
接着,以填充量250g向85Φ小型模具中装入原料粉末,一边使Ar通过,一边以10℃/分钟的升温速度从室温升至900℃、以5℃/分钟的升温速度从900℃升至950℃地使温度上升,在950℃下保持30分钟后,用10分钟施加压力,使压力从0达到300kgf/cm2
然后在950℃下将300kgf/cm2的状态保持2小时,之后停止炉的加热,使其自然冷却。当温度降至100℃以下时,用10分钟使压力返回0,从炉中取出靶。加工取出的靶,使其直径为50mm、厚度为7mm,制成溅射靶。
将得到的靶在Ar气氛气体0.5Pa、Ar流量12sccm、以コ一ニング#1737玻璃为基板、基板温度200℃、基板与靶之间的距离为80mm的条件下,调整成膜时间进行溅射成膜,使膜厚为约150nm,测量所得膜的膜厚,由孔测定来评价膜电阻率。得到的结果如表1所示。
[实施例2]~[实施例6]
对于实施例2~实施例6,ZnO∶Ga2O3∶GaN的分子数之比分别为95.0∶1.75∶1.5、95.0∶1.5∶2.0、95.0∶1.25∶2.5、95.0∶1.0∶3.0、92.0∶2.0∶4.0,除了这点不同,其他的靶制作、溅射条件等与实施例1相同。得到的结果同样如表1所示。
[实施例7]~[实施例12]
对于实施例7~实施例12,使用ZnO、Al2O3、GaN作为原料粉末,使ZnO∶Al2O3∶GaN的分子数之比为98.0∶0.5∶1.0、95.0∶1.75∶1.5、95.0∶1.5∶2.0、95.0∶1.25∶2.5、95.0∶1.0∶3.0、92.0∶2.0∶4.0。
其他的靶制作、溅射条件等与实施例1相同。得到的结果同样如表1所示。
[比较例1]~[比较例6]
对于比较例1~比较例6,使用ZnO、In2O3、GaN作为原料粉末,其他的条件等与实施例1相同。得到的结果同样如表1所示。该比较例中使用的材料In是比Zn的离子半径大的元素。
表1
  试料No.   n型掺杂元素     浓度(原子%)     氮/Ga+Al(原子数比)    电阻率(mΩcm)
  实施例1     Ga     2     0.5     0.68
  实施例2     Ga     5     0.3     0.29
  实施例3     Ga     5     0.4     0.21
  实施例4     Ga     5     0.5     0.18
  实施例5     Ga     5     0.6     0.35
  实施例6     Ga     8     0.5     0.85
  实施例7     Al和Ga     2     0.5     0.65
  实施例8     Al和Ga     5     0.3     0.26
  实施例9     Al和Ga     5     0.4     0.19
  实施例10     Al和Ga     5     0.5     0.17
  实施例11     Al和Ga     5     0.6     0.33
  实施例12     Al和Ga     8     0.5     0.83
  比较例1     In     2     0.5     2.58
  比较例2     In     5     0.3     1.55
  比较例3     In     5     0.4     1.23
  比较例4     In     5     0.5     0.98
  比较例5     In     5     0.6     2.83
  比较例6     In     8     0.5     3.88
[实施例与比较例的总结]
如上所示,实施例1~实施例6是含有2~8原子%的镓作为n型掺杂剂、以N/Ga(原子数比)为0.3~0.6的范围含有氮的氧化锌系透明导电(溅射)膜。
该膜的电阻率为0.18~0.85mΩcm的范围,是导电性优良的膜。而且,透过率在可见光区域内均在90%以上的范围,得到优选的氧化锌系透明导电膜。
实施例7~实施例12是含有2~8原子%的铝和镓作为n型掺杂剂、以N/Ga(原子数比)为0.3~0.6的范围含有氮的氧化锌系透明导电(溅射)膜。
该膜的电阻率为0.17~0.83mΩcm的范围,是导电性优良的膜。而且,透过率在可见光区域内均在90%以上的范围,得到优选的氧化锌系透明导电膜。
与此相对,比较例1~6掺杂离子半径比锌大的铟。使铟的含量与实施例为相同的范围,而且氮也以N/Ga(原子数比)为0.3~0.6的范围含有,但电阻率为0.98~3.88mΩcm,结果与实施例相比导电性均变差。
由此可知,本发明的实施例提高导电性,作为透明导体有用。
产业上的利用可能性
通过氧化锌系靶的溅射成膜,能得到不使用价格高且有资源枯竭的担心的原料In、用以往的方法不能实现的低电阻率且大面积的透明导体,在这方面,作为透明导体非常有用。

Claims (7)

1.一种氧化锌系透明导体,其特征在于,以氧化锌为主要成分,含有比氧化锌中锌的离子半径小、相对于氧化锌成为n型掺杂剂的元素1~10原子%和相对于该n型掺杂剂的原子数比为0.3~0.6的氮,其中,所述原子数比即为氮/n型掺杂剂。
2.如权利要求1所述的氧化锌系透明导体,其特征在于,成为n型掺杂剂的元素为2原子%~8原子%。
3.如权利要求1或2所述的氧化锌系透明导体,其特征在于,n型掺杂剂为镓和/或铝。
4.一种氧化锌系透明导体形成用溅射靶,其特征在于,以氧化锌为主要成分,含有比氧化锌中锌的离子半径小、相对于氧化锌成为n型掺杂剂的元素1~10原子%、相对于该n型掺杂剂的原子数比(氮/n型掺杂剂)为0.3~0.6的氮。
5.如权利要求4所述的氧化锌系透明导体形成用溅射靶,其特征在于,以氮化镓的形式含有氮。
6.如权利要求4或5所述的氧化锌系透明导体形成用溅射靶,其特征在于,成为n型掺杂剂的元素为2原子%~8原子%。
7.如权利要求4~6中任一项所述的氧化锌系透明导体形成用溅射靶,其特征在于,n型掺杂剂为镓和/或铝。
CN2007800095851A 2006-03-17 2007-02-19 氧化锌系透明导体以及该透明导体形成用溅射靶 Active CN101405427B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006073822 2006-03-17
JP073822/2006 2006-03-17
PCT/JP2007/052928 WO2007108266A1 (ja) 2006-03-17 2007-02-19 酸化亜鉛系透明導電体及び同透明導電体形成用スパッタリングターゲット

Publications (2)

Publication Number Publication Date
CN101405427A true CN101405427A (zh) 2009-04-08
CN101405427B CN101405427B (zh) 2012-07-18

Family

ID=38522302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800095851A Active CN101405427B (zh) 2006-03-17 2007-02-19 氧化锌系透明导体以及该透明导体形成用溅射靶

Country Status (7)

Country Link
US (1) US7699965B2 (zh)
EP (1) EP1997931B1 (zh)
JP (1) JP4850901B2 (zh)
KR (1) KR101028985B1 (zh)
CN (1) CN101405427B (zh)
TW (1) TW200746180A (zh)
WO (1) WO2007108266A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452195A (zh) * 2010-10-27 2012-05-16 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1897969B1 (en) * 2005-06-28 2019-01-23 JX Nippon Mining & Metals Corporation Gallium oxide-zinc oxide sputtering target and method for forming a transparent conductive film using the target
JP4054054B2 (ja) * 2005-06-28 2008-02-27 日鉱金属株式会社 酸化ガリウム−酸化亜鉛系スパッタリングターゲット、透明導電膜の形成方法及び透明導電膜
US7674404B2 (en) * 2005-12-08 2010-03-09 Nippon Mining & Metals Co., Ltd. Gallium oxide/zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
JP5109418B2 (ja) * 2006-04-26 2012-12-26 三菱マテリアル株式会社 ZnO蒸着材及びその製造方法並びにZnO膜の形成方法
US8007693B2 (en) * 2006-08-24 2011-08-30 Jx Nippon Mining & Metals Corporation Zinc oxide based transparent electric conductor, sputtering target for forming of the conductor and process for producing the target
US8747630B2 (en) 2007-01-16 2014-06-10 Alliance For Sustainable Energy, Llc Transparent conducting oxides and production thereof
KR20120108062A (ko) * 2007-06-26 2012-10-04 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 아모르퍼스 복합 산화막, 결정질 복합 산화막, 아모르퍼스 복합 산화막의 제조 방법, 결정질 복합 산화막의 제조 방법 및 복합 산화물 소결체
US8277694B2 (en) * 2007-07-13 2012-10-02 Jx Nippon Mining & Metals Corporation Sintered compact of composite oxide, amorphous film of composite oxide, process for producing said film, crystalline film of composite oxide and process for producing said film
JP4808682B2 (ja) * 2007-08-03 2011-11-02 Jx日鉱日石金属株式会社 焼結体、透明導電膜の製造方法及び透明導電膜
US8253012B2 (en) * 2008-03-17 2012-08-28 Alliance For Sustainable Energy, Llc High quality transparent conducting oxide thin films
CN102016112B (zh) * 2008-06-10 2012-08-08 Jx日矿日石金属株式会社 溅射用氧化物烧结体靶及其制造方法
US9260779B2 (en) * 2009-05-21 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-transmitting conductive film, display device, electronic device, and manufacturing method of light-transmitting conductive film
CN102459122B (zh) 2009-06-05 2014-02-05 吉坤日矿日石金属株式会社 氧化物烧结体、其制造方法以及氧化物烧结体制造用原料粉末
JP2011109011A (ja) * 2009-11-20 2011-06-02 Mitsubishi Heavy Ind Ltd 光電変換装置
US20120104383A1 (en) * 2010-11-02 2012-05-03 Industrial Technology Research Institute Semiconductor device having zinc oxide thin film and manufacturing method thereof
US8894825B2 (en) 2010-12-17 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, manufacturing semiconductor device
KR101249262B1 (ko) * 2011-02-22 2013-04-02 한국과학기술연구원 투명도전 조성물 및 타겟, 이를 이용한 투명도전 박막 및 그 제조방법
WO2013119550A1 (en) 2012-02-10 2013-08-15 Alliance For Sustainable Energy, Llc Thin film photovoltaic devices with a minimally conductive buffer layer
US9885108B2 (en) * 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
WO2014077895A1 (en) 2012-11-19 2014-05-22 Alliance For Sustainable Energy, Llc Devices and methods featuring the addition of refractory metals to contact interface layers
KR102181436B1 (ko) * 2013-11-29 2020-11-23 삼성전자주식회사 투명 전도성 박막
JP6293359B2 (ja) 2015-02-27 2018-03-14 Jx金属株式会社 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット
KR102000856B1 (ko) 2015-02-27 2019-07-16 제이엑스금속주식회사 산화물 소결체, 산화물 스퍼터링 타깃 및 산화물 박막
JP6285076B2 (ja) 2015-03-23 2018-02-28 Jx金属株式会社 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット
JP6722361B2 (ja) 2018-03-01 2020-07-15 株式会社アルバック 窒化ガリウム薄膜の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205619A (ja) 1985-03-08 1986-09-11 Osaka Tokushu Gokin Kk 耐熱性酸化亜鉛透明導電膜
JPS62154411A (ja) 1985-12-26 1987-07-09 三井金属鉱業株式会社 透明導電膜
US5672427A (en) 1993-08-31 1997-09-30 Mitsubishi Materials Corporation Zinc oxide powder having high dispersibility
JP3636914B2 (ja) 1998-02-16 2005-04-06 株式会社日鉱マテリアルズ 高抵抗透明導電膜及び高抵抗透明導電膜の製造方法並びに高抵抗透明導電膜形成用スパッタリングターゲット
JP2001035252A (ja) * 1999-07-19 2001-02-09 Asahi Glass Co Ltd 透明導電膜
JP3904378B2 (ja) * 2000-08-02 2007-04-11 ローム株式会社 酸化亜鉛透明導電膜
JP4198918B2 (ja) 2002-02-14 2008-12-17 日鉱金属株式会社 硫化亜鉛を主成分とするスパッタリングターゲット及び該スパッタリングターゲットの製造方法
CN1206703C (zh) * 2002-07-17 2005-06-15 浙江大学 实时掺氮生长p型ZnO晶体薄膜的方法
CN1413947A (zh) * 2002-12-20 2003-04-30 清华大学 一种锌镓氧化物陶瓷靶材及其制备方法和应用
US7635440B2 (en) 2003-03-04 2009-12-22 Nippon Mining & Metals Co., Ltd. Sputtering target, thin film for optical information recording medium and process for producing the same
KR100753329B1 (ko) 2003-09-30 2007-08-29 닛코킨조쿠 가부시키가이샤 고순도 산화아연 분말 및 그 제조방법과 고순도 산화아연타겟트 및 고순도 산화아연 박막
JP4054054B2 (ja) 2005-06-28 2008-02-27 日鉱金属株式会社 酸化ガリウム−酸化亜鉛系スパッタリングターゲット、透明導電膜の形成方法及び透明導電膜
EP1897969B1 (en) 2005-06-28 2019-01-23 JX Nippon Mining & Metals Corporation Gallium oxide-zinc oxide sputtering target and method for forming a transparent conductive film using the target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452195A (zh) * 2010-10-27 2012-05-16 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法

Also Published As

Publication number Publication date
KR101028985B1 (ko) 2011-04-12
JP4850901B2 (ja) 2012-01-11
WO2007108266A1 (ja) 2007-09-27
CN101405427B (zh) 2012-07-18
US20090085014A1 (en) 2009-04-02
TW200746180A (en) 2007-12-16
EP1997931B1 (en) 2014-01-01
EP1997931A4 (en) 2011-12-21
JPWO2007108266A1 (ja) 2009-08-06
EP1997931A1 (en) 2008-12-03
KR20080095297A (ko) 2008-10-28
US7699965B2 (en) 2010-04-20
TWI355005B (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
CN101405427B (zh) 氧化锌系透明导体以及该透明导体形成用溅射靶
Koida et al. In2O3‐based transparent conducting oxide films with high electron mobility fabricated at low process temperatures
EP1734150B1 (en) Oxide sintered body, oxide transparent conductive film and manufacturing method thereof
US9834838B2 (en) Zn—Sn—O based oxide sintered body and method for producing the same
US8636927B2 (en) ZnO deposition material and ZnO film formed of the same
JP4098345B2 (ja) 酸化ガリウム−酸化亜鉛系スパッタリングターゲット、透明導電膜の形成方法及び透明導電膜
US20090197757A1 (en) Zinc oxide ceramics and a manufacturing method for the same, a sputtering target
JPWO2007066490A1 (ja) 酸化ガリウム−酸化亜鉛系スパッタリングターゲット、透明導電膜の形成方法及び透明導電膜
JP5770323B2 (ja) 焼結体及びアモルファス膜
KR20120097451A (ko) 투명도전 조성물 및 타겟, 이를 이용한 투명도전 박막 및 그 제조방법
KR101841791B1 (ko) 소결체 및 아모르퍼스막
KR20110089143A (ko) 투명한 전도성 산화 아연 디스플레이 필름 및 이의 제조 방법
US8253012B2 (en) High quality transparent conducting oxide thin films
Luo et al. Optical and electrical properties of indium tin oxide thin films sputter-deposited in working gas containing hydrogen without heat treatments
Sun et al. Properties of indium molybdenum oxide films fabricated via high-density plasma evaporation at room temperature
JP2012197216A (ja) 酸化物焼結体、その製造方法およびそれを用いたターゲット
JP2003239063A (ja) 透明導電性薄膜とその製造方法及びその製造に用いるスパッタリングターゲット
CN107012435B (zh) 烧结体和包含该烧结体的溅射靶以及使用该溅射靶形成的薄膜
US20120049128A1 (en) Transparent conductive zinc oxide display film and production method therefor
JP2007284740A (ja) 酸化亜鉛系透明導電膜の形成方法
Noguchi et al. Electrical properties of Sn-doped In2O3 prepared by reactive evaporation
JP2013020846A (ja) 透明導電膜
KR20110035239A (ko) 도핑된 산화아연, 산화주석을 이용한 고밀도, 고전도성 산화인듐-산화아연-산화주석 타겟 조성물 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: JX NIPPON MINING + METALS CO., LTD.

Free format text: FORMER OWNER: NIPPON MINING + METALS CO., LTD.

Effective date: 20110104

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20110104

Address after: Tokyo, Japan, Japan

Applicant after: JX Nippon Mining & Metals Co., Ltd.

Address before: Tokyo, Japan, Japan

Applicant before: Nippon Mining & Metals Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan, Japan

Patentee after: JX NIPPON MINING & METALS CORPORATION

Address before: Tokyo, Japan, Japan

Patentee before: JX Nippon Mining & Metals Co., Ltd.

CP01 Change in the name or title of a patent holder
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: Tokyo, Japan

Patentee after: JKS Metal Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: JKS Metal Co.,Ltd.