TWI306451B - Method for producing (meth) acrylic acid - Google Patents

Method for producing (meth) acrylic acid Download PDF

Info

Publication number
TWI306451B
TWI306451B TW094125440A TW94125440A TWI306451B TW I306451 B TWI306451 B TW I306451B TW 094125440 A TW094125440 A TW 094125440A TW 94125440 A TW94125440 A TW 94125440A TW I306451 B TWI306451 B TW I306451B
Authority
TW
Taiwan
Prior art keywords
acrylic acid
meth
aqueous
tower
quenching
Prior art date
Application number
TW094125440A
Other languages
English (en)
Other versions
TW200611892A (en
Inventor
Seong Pil Kang
Seok Hwan Choi
Kyoung Su Ha
Jun Seok Ko
Young Bae Kim
Boo Gon Woo
Min Jeong Park
Original Assignee
Lg Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Chemical Ltd filed Critical Lg Chemical Ltd
Publication of TW200611892A publication Critical patent/TW200611892A/zh
Application granted granted Critical
Publication of TWI306451B publication Critical patent/TWI306451B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

1306451 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種製造(甲基)丙烯酸((meth)acrylic acid)之方法’尤指一種利用一自含(歹基)丙烯酸之混合氣體 中回收一水性(曱基)丙烯酸溶液形式之(甲基)两烯酸,以製 造(甲基)丙稀酸之方法’其中此含(甲基)丙焊酸之混合氣體 係以至少一種選自由丙烷、丙烯、異丁烯、以及(甲基)丙烯 醛((meth)acr〇lein)之群組所組成之反應物,其經由催化氣相 氧化反應而製得。 【先前技術】 傳統上,(甲基)丙稀酸((meth)acrylic acid)之製造,係 ^丙燒、㈣、異丁烯、及/或(甲基)丙烯酸於水蒸氣之伴 Ik下藉由異相乳化觸媒而部分氧化而獲得。在這種製 15 &(甲基)丙稀酸之氧化方法中’會產生副產物不純物如水或 未反應之丙烧、丙烯、異丁烯及(甲基)丙烯越 '醋酸、甲酸、 _甲醛乙醛順丁稀二酸(maleic acid)、丙酸、嘴甲醛(furfural) 及其類似物。一含有上述不純物之含(甲基)丙烯酸混合氡 體’-般係經由接觸一吸收溶劑而以(曱基)丙稀酸溶液形式 20收集,且此溶劑係以蒸館等方法分離。接著,低沸點與高 沸點成分則被選擇性分離。 &知之利用—吸收溶劑而從含(甲基)丙烯酸混合氣體 中回收(曱基)丙烯酸之方法,可被粗分為利用一有機溶劑的 方法(例如美國專利第3,932,500號以及第6,498,272號)、 5 1306451 以及利用水或水性溶液作為溶劑之方法(例如日本專利公 開號第Sho51-25602號以及曰本早期公開專利第 Hei9-157213號)。根據先前技藝之此等回收方法,係如同 從含丙烯酸之氣體中回收丙烯酸溶液並具有高選擇性之方 5 法一般。在一回收溶液中,丙烯酸的濃度係隨著所使用之 特定方法不同而有所差異。 美國專利第3,932,500號揭露了一種製程其包括:從一 含丙烯酸產物氣體中’以一高沸點、疏水有機溶劑吸收丙 # 烯酸;從所吸收之丙烯酸溶液中回收丙烯酸;以及將此溶 10 劑回收至一吸收管柱(absorption column)中。在此製程中, 在此吸收管柱底部之丙烯酸濃度最低為6〜15%重量百分 比,而在所吸收之溶液中約有5%重量百分比的水,且從此 吸收管柱所排出的廢氣中丙烯酸之濃度約為1〇/〇。在吸收管 柱頂部所失去的丙烯酸(〜1% ),係與製程經濟效益直接相 15 關’並且以丙烯酸應該在後續製程中處理而無損失的觀點 下,此丙烯酸損失並不適宜。尤其是,在較大規模的製程 • 中,所損失的丙烯酸並不符合經濟效益。為了增加丙烯酸 的吸收度’則用以吸收丙烯酸之溶劑其流速需要增加。然 而在這種狀況下,從吸收管柱底部所獲得之溶液中的丙稀 20 酸濃度將會降低,使得在後續製程裡應從丙烯酸溶液中分 離之溶劑之流速增加,造成效率降低。 曰本公開專利第51-25602號揭露了一種製程其包括: 以水吸收一含丙烯酸反應產物氣體;以及將部分從吸收管 柱所排出之氮氣、氧氣、以及水再循環至一反應器,以調 6 1306451 整在催化氧化反應中所需要之氣體濃度(請參見圖4)。此 製程之優勢在於,可在反應器中再循環供應水,因為在吸 收管柱中丙烯酸已經被水所吸收。同時,在吸收管柱底部 之丙烯酸濃度係為40〜80%重量百分比,且一般係為60〜70% 5 重量百分比。此外,從吸收管柱排出而損失的丙烯酸量, 係比上述使用有機溶劑之吸收製程中所損失的丙烯酸量為 少〇 其他用以回收(曱基)丙烯酸之方法,包括將含丙烯酸 Φ 溶液驟冷、同時併用以水、水性溶液或有機溶劑之方法(例 10 如’歐洲專利第9,545號以及美國專利第4,554,054號與 6,498,272號)。例如’在溫度介於15〇〜2〇〇。〇高溫下以催化 氣相氧化反應所獲得之含丙烯氣體,以一溫度介於 60〜150°C之含丙烯酸溶液驟冷之/接著,未冷凝之氣體係 . 被排出,並在一後續步驟中以一溶劑吸收而回收之。歐洲 15 專利第9,545號揭露了一種在彼此分離而連續模式中、或在 一整合模式中完成之丙烯酸回收方法,其包括一將含丙稀 φ 酸氣體驟冷之步驟、以及一以水吸收之步驟。在此方法中, 在此回收系統之底部中的水性丙浠酸溶液中的丙烯酸含 量,係低至約60%重量百分比。 20 【發明内容】 仗催化氟相氧化反應的產物氣體中,以高濃度(甲基) 丙烯酸溶液之形式回收高產量的(甲基)丙烯酸,可降低副產 物之含量並減少在後續純化製程中所需處理之不純物,進 1306451 而改善此回收製程之經濟效益。考量到近來係以蒸顧製程 作為(甲基)丙稀酸之一般純化程序,減少在蒸顧製程中的副 產物以及不純物含量而消耗的大量能量,在改善此製程之 經濟效益之過程中松演了重要的角色。因此,本發明之一 5目的係在於提供-方法,以最大濃度回收(f基)丙烯酸。 同時,雖然-驟冷步驟可以提供相當高濃度的(甲基) 丙烯酸,其缺點在於所回收的(甲基)丙烯酸溶液之濃度,會 隨著驟冷溫度之不同而改變,1與使用一溶劑之吸收製程 _相較之下,驟冷製程所回收的(甲基)丙稀酸量相當低。此 10外’因為單-驟冷製程本身無法完成完全的(甲基)丙稀酸回 收程序,因而必須與一吸收製程共同進行。在這種情況下, 從一驟冷製程所獲得之高濃度(甲基)丙烯酸溶液,係與從一 吸收製程中所獲得之濃度相對低的(甲基)丙稀酸溶液混 合,造成整體而言丙烯酸溶液濃度的降低。 15 因此,本發明之另一目的係在於提供一回收(甲基)丙 稀酸之方法,其係藉由合併一驟冷製程與一蒸顧製程而達 • 成,其中(甲基)丙烯酸係以(甲基)丙烯酸溶液之形式回收, 且其濃度係高於傳統使用一有機溶劑或水之傳統(甲基)丙 烯酸回收製程所回收之(曱基)丙烯酸濃度,因此可以改^良在 20 純化製程中的能源以及經濟效益。 為了達到上述目的,在本發明之一方向中,其係提供 -種製造(甲基)丙烯酸之方法,其包括從—含(甲基)丙婦酸 之混合氣體中回收水性(甲基)丙烯酸溶液形式之(甲美)丙 烯酸之製程,此含(甲基)丙烯酸之混合氣體係以至少一種選 8 1306451 自由丙烧、丙烯、異丁烯、以及(甲基)丙烯醛之群組所組成 之反應物’經由催化氣相氧化反應而製得,其中此回收製 程包括下列步驟··(1)傳送此含(甲基)丙烯酸之混合氣體至 一驟冷塔(quenching tower)並在驟冷塔中冷凝之,以從驟冷 5塔之底部回收一水性(甲基)丙烯酸溶液,其中部分被回收之 水性(甲基)丙烯酸溶液係再循環至該驟冷塔之頂部以冷凝 含(甲基)丙烯酸之混合氣體;(2)將未冷凝之含(甲基)丙烯酸 混合氣體從此驟冷塔之頂部傳送至一蒸餾塔;以及(3)加熱 ® 蒸餾塔之底部以從這些未冷凝之含(曱基)丙烯酸混合氣體 1〇中,分離出含水不純成分並將其從蒸餾塔之頂部排出。 在本發明之另一方向中,其係提供一種回收水性(曱基) , 丙烯酸溶液形式之(甲基)丙烯酸之系統,其係由含(甲基)丙 烯酸之混合氣體以至少種選自由丙烷、丙烯、異丁烯、以 及(甲基)丙烯醛之群組所組成之反應物,經由催化氣相氧化 15反應而製得,該系統包括:-驟冷塔,其係藉由將一水性(甲 基)丙烯酸溶液再循環至此驟冷塔而冷凝含(甲基)丙烯酸之 籲此合乳體’此驟冷塔更包括一用以排出自驟冷塔底部所回 收之水性(曱基)丙烯酸溶&之管線、以及一用&將部分已回 之Xf生(曱基)丙烯酸溶液再循環至此驟冷塔頂部之管 20線;-將此驟冷塔中未冷凝部分之含(甲基)丙稀酸混合氣 體、’經由該此冷塔之頂部傳送至一蒸顧塔之管線;一蒸館 ° 乂藉由加熱此蒸1¾塔之底部而進行未冷凝之含(甲基)丙 稀酸混合氣體之蒸餾,以自混合氣體中分離含水不純成 1306451 分,以及一將自此蒸館塔底部所回收之—水性(甲基)丙烯酸 溶液傳送至一後續製程之管線。 5
10 15 此用以製造(甲基)丙烯酸之發明方法,在從以催化氣 相氧化反應所獲得之含(甲基)丙稀酸混合氣體中,回收水性 (曱基)丙稀酸溶液形式之(曱基)丙稀酸製程後,可更包括一 水分離製程、一用以分離低沸點成分/高沸點成分之製程、 一二聚物(dimer)分解製程及其類似製程。 【實施方式】 在此以下,將詳述本發明製造(甲基)丙烯酸之方法。 (a)丙烷、丙烯、異丁烯、及/或(甲基)丙烯醛之催化氣相 氧化反應製程 當丙烷、丙烯、異丁烯、及/或(甲基)丙烯醛 ((meth)acrolem)係與氧氣或一含氧分子氣體如空氣等進行 催化氧化時,可獲得一含(甲基)丙烯酸之產物。 此催化氧化反應傳統上係分為兩步驟進行。作為第一 階段反應的催化劑’係使用可使含丙稀或異丁埽之原料進 仃氣相氧化反應、並(甲基)丙烯醛為其主產物。作為第二階 段反應的催化劑,係使用可使含(甲基)丙烯醛之原料進行氣 相氧化反應、並(甲基)丙烯酸為其主產物。已知的第一階段 催化劑係為含鐵、13、鉍之氧化物,而已知的第二階段催 化劑以釩為必要成分之材料。催化氧化反應之溫度一般係 介於200〜40〇。(:之間。 20 1306451 在從丙烧製造丙稀酸的例子中,丙烧係轉化成丙稀、 丙烯轉化成丙醛、接著丙醛轉化成丙烯酸。此外,另有一 方法可從丙烷直接氧化成丙醛。 5 (b)驟冷塔製程 此製程包括:經由管線1而提供含(曱基)丙烯酸之混合 氣體至驟冷塔A ’並於此驟冷塔中冷凝此混合氣體,以在此 驟冷塔底部藉由管線2而回收水性(甲基)丙烯酸溶液。在此 φ 製程中’此水性(甲基)丙烯酸溶液之一部分係再循環至此驟 10 冷塔之頂部,並在此用以冷凝此含(甲基)丙烯酸混合氣體。 此含(曱基)丙稀酸混合氣體係含有大量水蒸氣,此水 蒸氣不僅來自於催化氧化反應之副產物,同時亦是與原料 一起進入反應器。因此,當含(甲基)丙烯酸之混合氣體在驟 - 冷塔中冷凝時,此混合氣體之一部分會依據如溫度與壓力 15 等熱力學性質而成為水性(甲基)丙烯酸溶液,而剩餘的部分 則離開此驟冷塔。較佳地,經回收的部分水性(甲基)丙烯酸 溶液係冷卻並再循環至驟冷塔,用以調整驟冷塔排出氣體 的溫度,並冷凝含(甲基)丙烯酸之混合氣體。在這一方面, 隨著驟冷塔溫度的升高,則在混合氣體中的水氣則較少冷 2〇 凝,因此較大含量的水可被蒸發,造成水性溶液中含有較 高濃度的(甲基)丙烯酸。若其係維持於低溫,則大量水氣會 凝結而少量的水會蒸發,造成水性溶液中(甲基)丙稀酸的濃 度較低。 被引入驟冷塔的含(甲基)丙烯酸混合氣體其係有一高 25溫介於160〜200°C之間,並因此可提高驟冷塔的溫度。由於 1306451 這個原因’較佳地,被再循環至驟冷塔之水性(甲基)丙稀酸 溶液係以熱交換方式冷卻,以維持驟冷塔之溫度。 在驟冷塔中所冷凝之液體溫度係維持於65〜8〇U 間’且較佳齡於7G〜抓之間。温度若低於饥則會造成 5冷卻負荷增大,並對於水的蒸發造成困難。而溫度若高於 8〇°C,則會造成(甲基)丙烯酸發生聚合反應的問題。 在副產物與不純物之中,(甲基)丙烯醛非常關鍵。主 要在第-階段反應中由丙烯或異丁婦氧化而生成的(甲基) 籲丙稀搭,非常容易進行聚合反應,因此即便其含量非常低, 1〇在後續蒸館製程中仍因為受熱而非常容易聚合,導致管線 阻塞因此,較佳地,從驟冷塔底部回收之水性(曱基)丙烯 酸办液中的(甲基)丙稀盤以及其他低沸點不純物,係藉由剝 除等步驟而移除。以最高可容許溫度運作之驟冷塔可使得 .(甲基)丙烯醛之含量維持於一低水平,但如上所述,亦對於 15 (甲基)丙烯酸的回收造成困難。在驟冷塔底底部之水性(甲 基)丙烯酸溶液中的(甲基)丙烯醛,其係以約7〇。〇之操作溫 φ度獲彳于,且濃度約為400 PPm,並可以剝除步驟而完全移 除。當(甲基)丙烯醛係經剝除步驟處理後,(甲基)丙烯醛以 及水、未反應之原料、以及氣態副產物等低沸點不純物, 20可被再循環至驟冷塔之頂部或蒸餾塔之氣體入口,因而最 終可經由蒸餾塔頂部而排放至系統之外。 (c)蒸餾製程 含有在驟冷塔中未冷凝之(曱基)丙烯酸、水、氮氣等 25惰性氣體的混合氣體,係經由管線3而排出驟冷塔之頂部, 12 1306451 接著供應至蒸餾塔。當蒸餾塔的底部受到加熱時,除了(甲 基)丙烯酸以及未冷凝成分以外之不純物,係在蒸顧塔的頂 部與含(甲基)丙烯酸之混合氣體分離。受到蒸餾塔底部所供 應之熱能影響’在未冷凝之含(甲基)丙烯酸混合氣體中的 5 水’其蒸汽壓係高出(甲基)丙稀酸不少’其係被優先蒸發, 因此而提高在蒸顧塔底部所回收之水性溶液中的(曱基)丙 烯酸濃度。
10 15 20 傳統上使用驟冷塔並結合吸收管柱(abs〇rpti〇n c〇lumnj 的製程,與本發明使用蒸餾塔的製程相異處在於,傳統製 程並無加熱吸收管柱以針對水進行蒸餾。 為了加熱蒸餾塔的底部,可在蒸餾塔底部使用釜 (kettle)或虹吸管(siph〇n)來直接加熱,或利用一外部方式 (例如熱交換器或再沸器)來間接加熱。 ^ 蒸餾塔底部之溫度係隨著所施加的熱能而定。一般而 言,蒸餾塔係以底部溫度介於68t〜85t»c之間而操作,較佳 係為70C或更高’更佳係介於饥〜抑之間。為了防止(甲 基)丙烯酸發生某難度㈣合反應 ,。然而,隨著溫度升高,無可避免二)二 與聚合物。因此,蒸解在—由實驗觀 ❹在=:度1&圍内操作。由於可使用的聚合反應抑制 =壬何抑制劑都可使用。在這-方面,熟習二: 所熟知之對苯二係足以發揮作用。支在者 13 1306451 一般而言,當(甲基)丙烯酸係經由吸收製程而回收, 且此吸收製程中係以水或一有機溶劑以一逆流方式與反應 產物氣體接觸時,在所回收的溶液中(曱基)丙烯酸的濃度係 為40-70%重量百分比(使用水)或ι〇〜35%重量百分比(使 5 用一有機溶劑)。相反地,利用本發明驟冷塔結合蒸餾塔 方式而回收的水性溶液中,(甲基)丙烯酸的濃度係為 75〜90%重量百分比。更特別地,其係可以水性(甲基)丙烯 酸溶液的形式回收高濃度(曱基)丙烯酸,此水性溶液中包括 Φ (曱基)丙烯酸75〜90%重量百分比、醋酸1〜4%重量百分比、 10 各種高沸點不純物0.2〜0.7%重量百分比、以及水8〜2〇%重量 百分比。根據本發明,由於在水性(甲基)丙烯酸溶液中,(甲 . 基)丙烯酸的濃度升咼了,因此在後續製程中被視為不純物 的水含量降低了,最終節省了在這些製程中所耗費的能 源。此外,亦可選用各種不同的純化製程。例如,當水性(甲 15基)丙烯酸溶液中僅含有少量水時,則可以直接藉由一結晶 製程來回收(甲基)丙烯酸,而非使用一傳統蒸餾製程,同時 φ 可選擇一使用薄膜分離技術之製程而消耗非常少能源。 同時,經由加熱蒸館塔之底部以增加蒸顧塔底部水性 溶液中(▼基)丙烯酸的濃度,在沸點比(甲基)丙烯酸低的水 2〇進行蒸發時’與水親和力相當高的(甲基)丙烯酸亦被期待與 水同時經由条餾塔頂部排出,導致(曱基)丙烯酸的損失。為 了從甲基)丙稀酸反應產物氣體中獲得高產率的(甲基) 丙$酸,則應減少與水共同排出的(甲基)丙烯酸。為達到此 目帖,較佳地,向上移動至蒸餾塔頂部的(甲基)丙烯酸蒸 1306451 =ϋ由足夠的氣—液接觸以及質量傳送而被導引移至液 恶水令,此液態水係被供應至蒸顧塔頂部並向下移動至菜 餾塔底部,使得(甲基)丙稀酸可在蒸館塔之底部以水性溶液 之形式而獲得。若沒有供應至蒸館塔頂部的液體,則僅藉 5由加^蒸顧塔底部、並從蒸潑塔底部向上傳送未冷凝氣體 唯方式,並無法藉由氣-液接觸而完成質量傳送。因 此,較佳地係提供少量水至蒸館塔頂部,作為構成蒸顧塔 之迴流,以使得進行蒸館的同時亦可進行逆流氣-液接觸。 此外,如日本公開專利第Sh〇51-25602號所揭*,從某館拔 頂部所排放之未冷凝氣體,其包括有氮氣、氧氣、綠應 之丙締、異丁婦與(甲基)丙烯藤、(甲基)丙稀酸以及水,可 '被再循環至反應11中。在這些成分中,氮氣與水相當重要。 -在—商f製造程序中,再循環使用大量氮氣是相當重要 的。此外,水是催化氧化反應中的重要成分,因此以水蒸 乳形式直接單向供應至反應器並不符合經濟效益。在此情 况下,較佳係調整從蒸餾塔頂部排出之氣體中的水含量至 _ 5 30%體積百分比,以提供足夠的水供給來源。為了滿足 此條件,則供應水至蒸館塔頂部,以藉由使用蒸館塔所提 供之熱量,而補償不足的供給水。 2〇 冑然供應至蒸顧塔頂部的水實質上係回歸至反應器中 ^調整了水含量,但是再循環使用的水量不應過高^計 异了增加與損耗的能源之後,用以將供應至蒸潑塔頂部的 水蒸發的熱量,最終係來自於置於蒸潑塔底部之再濟器、 以及供應至再沸器的蒸汽消耗量。因此,為了降低蒸汽消 15 1306451 耗量,則應供應適量的水。我們觀察到,適量的水約 蒸館塔頂部排出之氣體流量之15〜鳩體積百分比。從經濟 效盈上而言’較佳地,水量係佔從蒸顧塔頂部排出之氣體 流量以9〜25%體積百分比。此外,蒸館塔頂部溫度係介於 5 55〜68 C之間,以滿足此水含量。 從蒸館塔底部以及驟冷塔底部所回收之水性溶液中的 水’係藉由其通過一後續纟分離程序而回收。回收水的一 部份係送至傳統的廢水處理、或部分再循環至蒸顧塔。較 馨佳地’供應至蒸料頂料供給水係被控制,以使得供給 U)水、新鮮處理水、以及再循環水之總量係落於上述水的體 積百分比含量中。 在操作後蒸餾塔底部的溫度係為75〇c,頂部溫度係為 60〜68 C,在廢氣中的水含量係為2〇〜25%體積百分比且 廢氣中的(甲基)丙稀酸含量係為〇.5〜〇 9%體積百分比,其中 15 頂部溫度係隨著水含量的不同而變化。 可使用的蒸餾塔包括傳統的板式塔(platet〇wer)、濕壁 _ 塔(wetted_wa11 tower)、填充塔(packing t〇wer)等。一般而 言,較佳係使用板式塔或填充塔,更佳係使用填充塔。 為了獲得充分的氣-液接觸,較佳係使用高效能填料。 20為了獲得充足的氣-液接觸,可使用各種不同的填料,可使 用的範例包括但不限於’薄片填料如紗網式填料或梅拉配 (Mellapak) ’格狀填料如弗雷克伊基(Flexigid),任意填料如 臘希格環(Rachsig ring)、鮑爾環(Pall ring)、或串接迷你環 (Cascade mini ring)等。較佳地,填料的選擇係考量質量傳 1306451 的壓力差等。我們發現結構型填 送、蒸餾塔頂冑與底部間 料可提供最佳結果。 了(曱基i而按^ _ π的水性(甲基)丙烯酸溶液,實質上包括 酸)’土而且酸*、水、以及少量的副產物不純物(例如醋 且特定的組成物係視底部溫度而定。當蒗
10 15
20 ㈣㈣溫度_⑽料4造成管線堵塞之(甲°基) 丙稀駿大部分係從蒸料頂部排出。從蒸ϋ塔底部所獲得 之欠佳(甲基)丙稀酸溶液中的(甲基)丙婦酸含量係_啊 或更低,附帶條件是蒸顧塔的底部溫度係為75。(:。在此狀 則不茜要對於低沸點材料進行處理(例如以一剝除 劑處理從蒸餘塔底部回收之水性溶液)。為了依照不同的 操作條件而進行彈性操作程序,可根據分析後所獲得之(甲 基)丙烯醛濃度而選擇性使用或不使用剝除劑。 接著,從蒸餾塔底部所回收之水性溶液、以及從驟冷 塔底部回收並經一剝除劑處理後之水性溶液,可經由後續 (曱基)丙烯酸純化製程,其包括水分離、輕與重館分分離 (cuts separation)、以及熱分解,後而提供經純化之(甲基) 丙烯酸。這些純化製程一般可藉由傳統方法而完成。 在此以下,將參照圖示而詳述本發明之實施例。 圖1係為一製程流程圖,示意本發明一實施例之一系 統’其係用以從催化氣相氧化反應之含(甲基)丙烯酸混合氣 體中,以水性(甲基)丙烯酸溶液之形式回收(曱基)丙烯酸。 首先,由丙烷、丙烯、異丁烯、及/或(甲基)丙烯醛與 氧分子經由催化氣相氧化反應所得到之反應產物氣體,係 17 1306451 經由管線1而被傳送至驟冷塔A。從驟冷塔底部所獲得之溶 液,係在一熱交換器中以強制循環方式冷卻,接著再循環 至驟冷塔之頂部使得熱的反應產物氣體可被冷卻。經由管 線2,從驟冷塔底部所獲得之一水性(曱基)丙烯酸溶液,係 5 被傳送至用以分離並在後續製程純化(甲基)丙烯酸之一單 元。後續製程中’可使用如蒸鶴、結晶以及薄膜分離法, 以脫除低 >弗點不純物如(甲基)丙稀搭、及/或路類,以及用 以純化(甲基)丙婦酸的分離方法。 • 包含有在驟冷塔中未被冷凝之(甲基)丙烯酸的氣體, 10 係經由管線3而被傳送至蒸餾塔B。水係經由管線6而供應至 蒸餾塔頂部,以控制在反應器中的水含量,同時從蒸餾塔 頂部排出、含有惰性與未冷凝氣體之混合物係經由管線4而 循環至反應器中或傳導至廢氣催化焚化系統(Wgcis)中。 藉著使用再沸器加熱蒸餾塔的底部,水係從蒸餾塔頂 15部排出,藉而增加在水性(曱基)丙烯酸溶液中的(甲基)丙烯 酸;辰度。因此而獲得的水性(甲基)丙烯酸溶液係經由管線5 φ 而排出並傳送至一後續的(曱基)丙烯酸純化製程。 圖2係為另一實施例,其藉由促進水在蒸餾塔中的蒸發 作用,而增加在水性(甲基)丙烯酸溶液中的(甲基)丙烯酸濃 20 其中部分從蒸德塔底部回收之水性(甲基)丙稀酸溶液係 部分排出,而剩餘部分則在熱供給的伴隨下,再循環至蒸 餾塔中的任一部份。 ’ 圖3係係又—實施例,其使用處理單元C以從驟冷塔中 所回收的水性(甲基)丙稀酸溶液中,移除如(甲基)丙烯搭等 18 1306451 低沸點材料。從處理單元C中所排出之氣體流係經由管線7 而再循環至驟冷塔之頂部,並經由管線8而排放至系統之 外0 在各圖示中的實施例圖解了相對應的方法,且這些方 5 法可彼此合併實行。在此以下,本發明將以實施例的方式 更加詳述’但應注意的是,以下實施例並不應限制本發明 之範疇。 φ 比較例1 10 以丙烯與含氧分子氣體經由催化氣相氧化反應之後所 獲得之反應產物氣體,係被引入一傳統吸收管柱中,如圖4 所示,且在吸收管柱中丙烯酸係被水所吸收且收集。反應 產物氧體的組成物係由未冷凝之氮氣+氧氣共重量 百分比,未反應之丙烯+丙烷共15%重量百分比,二氧化 15 碳+ 一氧化碳共2.8%重量百分比,水共9.5%重量百分比, 丙烯酸共14.5%,剩下的則為其他可冷凝成分所組成。 φ 作為吸收管柱單元,係使用一内徑為200mm之盤架管 柱(tray column),且反應產物氣體係以一置於一氧化反應器 之出口管線之熱交換器而冷卻至17〇〇c,接著傳送至吸收管 20柱之底部。從吸收管柱底部所獲得之含丙烯酸溶液,係經 由一管線而循環至從下往上數的第五個階段,其中用以冷 卻此循環溶液之外部熱交換器係置於此管線上。此管柱由 25段所組成,且溫度為乃^的水係傳送至管柱頂部。在壓 力為1050 mmHW下,此吸收管柱係以頂部溫度為的七操 25作。在吸收塔的頂部,以在反應產物氣體中所含之丙稀酸 1306451 重量為基礎,70%重量百分比的水係被引入以吸收丙烯酸。 在管柱底端以上述方式回收之水性丙烯酸溶液的成分,包 含有丙烯酸61.8%重量百分比,丙烯酸對管柱頂部的損失為 1.8%體積百分比,且水含量係為184%體積百分比。 5 實施例1 使用成分如比較例1中所獲得之丙烯酸反應產物氣 體。在驟冷塔中,係使用一内徑為3〇〇 111111且高度為8〇 mm 之SUS環填料鼓(sus ring-packed drum),且部分位於驟冷 着 塔底部之溶液係經由一管線而循環至驟冷塔之頂部,此管 10 線上設置有一熱交換器,使得在驟冷塔底部的溶液溫度達 到72°C。從驟冷塔頂部排出的氣體成分包括氮氣+氧氣共 82.5%重量百分比、丙烯酸共12.5%重量百分比、水共9.8% 重里百力比、剩餘的則為其他不純物’且其溫度係為61$ C。從驟冷塔頂部排出的氣體,係經由一絕緣管線而傳送 15 至一蒸顧塔。此蒸館塔’係使用一内徑為200 mm且高度為 1350 mm、與比較例1中所使用者相似的紗網填料管柱 魯 (gauze-Packed column)。水係以551而供應至蒸餾塔之頂 部。特別地,供給水係經控制以使得從蒸餾塔頂部所排出 的氣體中,在蒸餾塔操作中經過收集與分析後,其水含量 20可達24%體積百分比。蒸餾塔中的頂部溫度與壓力係分別設 定為65C以及1〇5〇 將一 3公升燒瓶置於蒸餾塔的 底部,且加熱此燒瓶以調整蒸餾塔底部之溫度至75。(:。從 驟冷塔底部所回收之水性丙烯酸溶液係包括有丙烯酸79 2 %重量百分比,而從蒸餾塔底部所回收之水性丙烯酸溶液係 20

Claims (1)

1306451
十、申請專利範圍: 1. 一種製造(甲基)丙烯酸之方法,其包括從一含(甲基) 丙烯酸之混合氣體中回收水性(甲基)丙烯酸溶液形式之(甲 基)丙烯酸之製程’該含(甲基)丙烯酸之混合氣體係以至少 5 一種選自由丙烷、丙烯、異丁烯、以及(甲基)丙稀駿 ((meth)acrolein)之群組所組成之反應物,經由催化氣相氧化 反應而製得,其中,該回收製程包括下列步驟: • (1)傳送該含(曱基)丙烯酸之混合氣體至一驟冷塔 (quenching tower)並在該驟冷塔中冷凝之,以從該驟冷塔之 10 底部回收一水性(曱基)丙烯酸溶液,其中部分該被回收之水 性(甲基)丙烯酸溶液係再循環至該驟冷塔之頂部以冷凝該 含(甲基)丙稀酸之混合氣體; (2)將該些未冷凝之含(甲基)丙烯酸混合氣體從該驟 冷塔之頂部傳送至一蒸餾塔;以及 15 (3)加熱該蒸傑塔之底部以從該些未冷凝之含(甲基) 丙晞酸混合氣體中,》離出含水不純之成分並將其從該蒸 Φ 餾塔之頂部排出。 2. 如申請專利範圍第1項所述之方法,其中該驟冷塔 中冷凝之溶液其溫度係介於“它至“它之間。 20 3·如申請專利範圍第1項所述之方法,其中該蒸餾塔 底部之溫度係介於68。(:至85X:之間。 4.如申請專利範圍第1項所述之方法,其中一少量之 水係供應至該蒸餾塔之頂部作為迴流(灿㈣,以製造逆流 之氣-液接觸,進而使該蒸餾塔巾進行蒸顧。 23 1306451 * 如申凊專利範圍第4項所述之方法,其中供應至該 1、餾塔之頂部之水量,係以使該蒸餾塔頂部排出之氣體 中,水含量係介於15〜30%體積百分比之方式控制。 6.如申請專利範圍第1項所述之方法,其中自該蒸潑 5塔底部所排出之該水性(甲基)丙婦酸溶液之一部份,係經加 熱並再循環至該蒸餾塔中之任一處。 ^ 7.如申请專利範圍第1項所述之方法,其中自該驟冷 :中所獲得之該水性(甲基)丙稀酸溶液中之(甲基)丙稀酸 _濃度係為75%或更高,且自該蒸館塔中所獲得之該水性(甲 1〇基)丙稀酸溶液中之(甲基)丙烯酸濃度係為65%或更高。 8. 如申請專利範圍第i項所述之方法,其中該蒸顧塔 頂部之溫度係介於55°C至68°C之間。 9. 如申請專利範圍第1項所述之方法,其中於該步驟 ⑴中再循環至該驟冷塔之該水性(甲基)丙烯酸溶液,係以 15 熱交換方式冷卻。 10. 如申請專利範圍第i項所述之方法,其中該驟冷塔 • 之底部液體、以及該蒸镏塔之底部液體中,二者之一戈_ 者皆經過一剝除劑處理,以分離(甲基)丙烯醛。 11_如申請專利範圍第H)項所述之方法,其中經該剝除 2〇劑處理並排出之氣體,係以-冷凝態或未冷凝態提供 驟冷塔或蒸餾塔。 〃 12. —種回收水性(曱基)丙稀酸溶液形式之(曱基)丙烯 酸之系統,其係由含(甲基)丙烯酸之混合氣體以时 一種選 24 1306451 自由丙燒、丙烯、異丁烯、以及(曱基)丙烯醛之群組所組成 之反應物’經由催化氣相氧化反應而製得,該系統包括: 一驟冷塔’其係藉由將一水性(曱基)丙烯酸溶液再循 王衣至该驟冷塔而冷凝該含(甲基)丙烯酸之混合氣體,該驟冷 5 塔更包括用以排出自該驟冷塔底部所回收之水性(甲基)丙 烯酸溶液之一管線、以及用以將部分已回收之水性(甲基) 丙烯酸溶液再循環至該驟冷塔頂部之一管線; 一將該驟冷塔中未冷凝部分之含(曱基)丙烯酸混合氣 • 體,經由該驟冷塔之頂部傳送至一蒸餾塔之管線; 10 一蒸餾塔,其係藉由加熱該蒸餾塔之底部而進行未冷 凝之含(甲基)丙浠酸混合氣體之蒸餾,以自該混合氣體中分 離含水不純成分;以及 一將自該蒸餾塔底部所回收之一水性(甲基)丙烯酸溶 ^ 液傳送至一後續製程之管線。 15
25
TW094125440A 2004-08-02 2005-07-27 Method for producing (meth) acrylic acid TWI306451B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20040060909 2004-08-02

Publications (2)

Publication Number Publication Date
TW200611892A TW200611892A (en) 2006-04-16
TWI306451B true TWI306451B (en) 2009-02-21

Family

ID=35733258

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094125440A TWI306451B (en) 2004-08-02 2005-07-27 Method for producing (meth) acrylic acid

Country Status (9)

Country Link
US (1) US7632968B2 (zh)
EP (1) EP1773748B1 (zh)
JP (2) JP4732366B2 (zh)
KR (1) KR100634678B1 (zh)
CN (1) CN1930108B (zh)
AT (1) ATE468315T1 (zh)
DE (1) DE602005021361D1 (zh)
TW (1) TWI306451B (zh)
WO (1) WO2006014053A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634678B1 (ko) 2004-08-02 2006-10-13 주식회사 엘지화학 (메타)아크릴산의 제조 방법
KR101477491B1 (ko) 2006-09-15 2014-12-31 알케마 인코포레이티드 아크릴산의 제조방법
US8246790B2 (en) * 2007-10-23 2012-08-21 Lg Chem, Ltd. Method for collecting (meth)acrylic acid and apparatus for collecting (meth)acrylic acid
JP5507111B2 (ja) * 2008-05-30 2014-05-28 ローム アンド ハース カンパニー 水性(メタ)アクリル酸の製造方法
FR2948365B1 (fr) * 2009-07-22 2011-09-09 Arkema France Procede de fabrication d'acide acrylique bio-ressource a partir de glycerol
BR112013022304B1 (pt) 2011-03-11 2020-01-28 Lg Chemical Ltd método de recuperação contínua de ácido (met)acrílico
JP5821672B2 (ja) * 2012-02-07 2015-11-24 三菱化学株式会社 アクリル酸の製造方法
CN103193618B (zh) * 2013-03-20 2015-11-25 中国石油集团东北炼化工程有限公司吉林设计院 丙烷一步法制丙烯酸生产中的丙烯酸洗涤改进工艺
US10093551B2 (en) * 2014-09-23 2018-10-09 Basf Se Process and plant for treatment of secondary components obtained in acrolein and/or (meth)acrylic acid production
US11976154B2 (en) 2020-01-21 2024-05-07 ExxonMobil Engineering & Technology Company Devolatilization apparatus and process
KR102690125B1 (ko) * 2020-12-03 2024-07-30 주식회사 엘지화학 아크릴산의 제조 공정
KR20220078233A (ko) * 2020-12-03 2022-06-10 주식회사 엘지화학 아크릴산 제조방법
FR3125040B1 (fr) 2021-07-09 2024-04-26 Snf Sa Procédé d’obtention de bio-monomère à partir de diméthylaminoethanol d’origine renouvelable
KR20230054258A (ko) 2021-10-15 2023-04-24 주식회사 엘지화학 아크릴산 제조방법
KR20230054198A (ko) 2021-10-15 2023-04-24 주식회사 엘지화학 아크릴산 제조방법

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1568925C3 (de) * 1966-08-09 1975-10-09 Hoechst Ag, 6000 Frankfurt Verfahren zur Abtrennung von Acrylsäure aus den Reaktionsgasen der Propylen- oder Acrolein-Oxydation
JPS4810452B1 (zh) * 1969-05-08 1973-04-03
BE786398A (fr) 1971-07-21 1973-01-18 Basf Ag Procede de preparation de l'acide acrylique anhydre
GB1458397A (en) 1972-12-27 1976-12-15 Degussa Process for obtaining pure acrylic acid
JPS5125602A (en) 1974-08-19 1976-03-02 Mitsubishi Heavy Ind Ltd Hakuyoboira oyobi sonojokiondochosetsuhoho
US3921150A (en) 1974-09-12 1975-11-18 Sperry Rand Corp Three-rank priority select register system for fail-safe priority determination
AR206439A1 (es) * 1974-10-07 1976-07-23 Celanese Corp Un metodo para la recuperacion de un acido acrilico crudo
IN151108B (zh) * 1978-09-13 1983-02-19 Standard Oil Co
GB2146636B (en) * 1983-08-11 1987-02-04 Nippon Catalytic Chem Ind Process for producing acrylic acid
US4554054A (en) 1983-12-09 1985-11-19 Rohm And Haas Company Methacrylic acid separation
JPS60186197U (ja) 1984-05-17 1985-12-10 徳山内燃機株式会社 熱可塑性材料からなる素材のチツプ化装置
JPS61218556A (ja) * 1985-03-25 1986-09-29 Nippon Shokubai Kagaku Kogyo Co Ltd アクリル酸の精製方法
JPH0615497B2 (ja) * 1985-10-24 1994-03-02 日本化薬株式会社 メタクリル酸の回収方法
JPH062700B2 (ja) 1985-10-29 1994-01-12 三井東圧化学株式会社 メタクロレインの分離法
CA1316545C (en) 1987-06-27 1993-04-20 Morimasa Kuragano Quenching process of reaction product gas containing methacrylic acid and treatment method of quenched liquid
JPH0759532B2 (ja) * 1987-06-27 1995-06-28 三井東圧化学株式会社 メタクリル酸生成ガスの急冷方法
JP2504777B2 (ja) * 1987-06-27 1996-06-05 三井東圧化学株式会社 反応ガスの急冷方法
JPH0441066Y2 (zh) 1987-06-29 1992-09-28
JP3028925B2 (ja) 1995-12-05 2000-04-04 株式会社日本触媒 アクリル酸の製造方法
DE19814387A1 (de) * 1998-03-31 1999-10-07 Basf Ag Verfahren zur Herstellung von Acrylsäure und Acrylsäureestern
DE19814421A1 (de) * 1998-03-31 1999-10-07 Basf Ag Verfahren zur Herstellung von Acrylsäure und Acrylsäureestern
DE19838817A1 (de) * 1998-08-26 2000-03-02 Basf Ag Verfahren zur kontinuierlichen Gewinnung von (Meth)acrylsäure
EP1026145B1 (en) * 1999-01-29 2003-04-02 Mitsubishi Chemical Corporation Method for purifying acrylic acid
ES2206197T3 (es) * 1999-03-06 2004-05-16 Basf Aktiengesellschaft Procedimiento para la obtencion de acido acrilico.
JP2001226320A (ja) * 2000-02-14 2001-08-21 Nippon Shokubai Co Ltd アクリル酸の捕集方法およびアクリル酸の精製方法
JP2002128728A (ja) * 2000-10-19 2002-05-09 Mitsubishi Rayon Co Ltd メタクリル酸の精製方法
DE10063161A1 (de) * 2000-12-18 2002-06-20 Basf Ag Verfahren zum Abschrecken eines heißen (Meth)acrylsäure enthaltenden Gasgemisches
JP2003238485A (ja) * 2001-12-10 2003-08-27 Nippon Shokubai Co Ltd (メタ)アクリル酸の捕集方法および装置
JP2004217656A (ja) * 2003-01-14 2004-08-05 Solutia Inc アクリロニトリル精製プロセスにおける凝縮させた冷却オーバーヘッドの再循環
KR100634678B1 (ko) 2004-08-02 2006-10-13 주식회사 엘지화학 (메타)아크릴산의 제조 방법

Also Published As

Publication number Publication date
US7632968B2 (en) 2009-12-15
KR20060048785A (ko) 2006-05-18
CN1930108B (zh) 2010-12-29
JP5393713B2 (ja) 2014-01-22
KR100634678B1 (ko) 2006-10-13
EP1773748A4 (en) 2008-08-20
EP1773748B1 (en) 2010-05-19
JP2007522207A (ja) 2007-08-09
US20060025629A1 (en) 2006-02-02
TW200611892A (en) 2006-04-16
WO2006014053A1 (en) 2006-02-09
ATE468315T1 (de) 2010-06-15
JP4732366B2 (ja) 2011-07-27
DE602005021361D1 (de) 2010-07-01
EP1773748A1 (en) 2007-04-18
CN1930108A (zh) 2007-03-14
JP2011105776A (ja) 2011-06-02

Similar Documents

Publication Publication Date Title
TWI306451B (en) Method for producing (meth) acrylic acid
EP2066613B1 (en) Process for producing acrylic acid
JP3957298B2 (ja) アクリル酸の製造方法
TWI343374B (en) Method for production of (meth) acrylic acid
JP2001516737A (ja) 高い割合の非凝縮性成分を有するアクリル酸またはメタクリル酸含有の高温気体混合物を分別凝縮する方法
JP4182608B2 (ja) 塩化水素と水の分離回収方法
CN107235836A (zh) 改进的制备(甲基)丙烯酸的方法
JPS6251958B2 (zh)
TWI263635B (en) Method for producing (meth)acrylic acid
RU2494092C2 (ru) Улучшенный способ совместного получения акрилонитрила и циановодорода
JPH11508266A (ja) 3−(メチルチオ)プロパナールの製造法
KR101535496B1 (ko) (메트)아크릴산의 연속 회수 방법 및 회수 장치
JPH05246927A (ja) アクロレインの製造方法
JP2002518353A (ja) オレフィン系不飽和ニトリルの回収方法
JPH1180077A (ja) メタクリル酸メチルの製造方法
JPH0138775B2 (zh)
TW200427660A (en) Recycle of condensed quench overheads in a process for purifying acrylonitrile
JP4091766B2 (ja) メタクロレインの製造方法
JPH10120618A (ja) アクリル酸からの酢酸の分離方法
KR100744753B1 (ko) 부탄올을 이용한 공비증류에 의한 초산의 회수방법
TWI406844B (zh) Preparation of (meth) acrylic acid
JP2008162956A (ja) (メタ)アクリル酸溶液を得るためのシステムおよび(メタ)アクリル酸の製造方法
TWI307288B (en) Improved operation of heads column
JPH0291044A (ja) 酢酸/水/酢酸ビニル混合物の分離法
JP2002114734A (ja) アクロレインの製造方法