TW344101B - High aspect ratio low resistivity lines/vias by surface diffusion - Google Patents
High aspect ratio low resistivity lines/vias by surface diffusionInfo
- Publication number
- TW344101B TW344101B TW084108376A TW84108376A TW344101B TW 344101 B TW344101 B TW 344101B TW 084108376 A TW084108376 A TW 084108376A TW 84108376 A TW84108376 A TW 84108376A TW 344101 B TW344101 B TW 344101B
- Authority
- TW
- Taiwan
- Prior art keywords
- vias
- aspect ratio
- germanium
- high aspect
- low resistivity
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 title 1
- 229910052732 germanium Inorganic materials 0.000 abstract 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 abstract 4
- 229910001092 metal group alloy Inorganic materials 0.000 abstract 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 abstract 1
- 239000000956 alloy Substances 0.000 abstract 1
- 229910052782 aluminium Inorganic materials 0.000 abstract 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract 1
- 229910052737 gold Inorganic materials 0.000 abstract 1
- 239000010931 gold Substances 0.000 abstract 1
- 229910052709 silver Inorganic materials 0.000 abstract 1
- 239000004332 silver Substances 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
- H01L21/76849—Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
- H01L21/3212—Planarisation by chemical mechanical polishing [CMP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76807—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76867—Barrier, adhesion or liner layers characterized by methods of formation other than PVD, CVD or deposition from a liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76886—Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5226—Via connections in a multilevel interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53214—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
- H01L23/53219—Aluminium alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53242—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a noble metal, e.g. gold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53242—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a noble metal, e.g. gold
- H01L23/53247—Noble-metal alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/095—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
- H01L2924/097—Glass-ceramics, e.g. devitrified glass
- H01L2924/09701—Low temperature co-fired ceramic [LTCC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12486—Laterally noncoextensive components [e.g., embedded, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12528—Semiconductor component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12674—Ge- or Si-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
- Y10T428/1284—W-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12889—Au-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12896—Ag-base component
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electrodes Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28660594A | 1994-08-05 | 1994-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW344101B true TW344101B (en) | 1998-11-01 |
Family
ID=23099349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW084108376A TW344101B (en) | 1994-08-05 | 1995-08-11 | High aspect ratio low resistivity lines/vias by surface diffusion |
Country Status (6)
Country | Link |
---|---|
US (4) | US5856026A (zh) |
EP (2) | EP0697730B1 (zh) |
JP (1) | JP3083735B2 (zh) |
KR (1) | KR0177537B1 (zh) |
DE (2) | DE69513459T2 (zh) |
TW (1) | TW344101B (zh) |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE188863T1 (de) * | 1994-02-25 | 2000-02-15 | Fischell Robert | Stent |
EP0697730B1 (en) * | 1994-08-05 | 1999-11-24 | International Business Machines Corporation | Method of forming an Al-Ge alloy with WGe polishing stop |
US5789317A (en) * | 1996-04-12 | 1998-08-04 | Micron Technology, Inc. | Low temperature reflow method for filling high aspect ratio contacts |
US6429120B1 (en) | 2000-01-18 | 2002-08-06 | Micron Technology, Inc. | Methods and apparatus for making integrated-circuit wiring from copper, silver, gold, and other metals |
US6309971B1 (en) | 1996-08-01 | 2001-10-30 | Cypress Semiconductor Corporation | Hot metallization process |
US5916453A (en) * | 1996-09-20 | 1999-06-29 | Fujitsu Limited | Methods of planarizing structures on wafers and substrates by polishing |
JP3583562B2 (ja) | 1996-10-18 | 2004-11-04 | 株式会社東芝 | 半導体装置 |
KR100221656B1 (ko) * | 1996-10-23 | 1999-09-15 | 구본준 | 배선 형성 방법 |
US6171957B1 (en) * | 1997-07-16 | 2001-01-09 | Mitsubishi Denki Kabushiki Kaisha | Manufacturing method of semiconductor device having high pressure reflow process |
US6100184A (en) * | 1997-08-20 | 2000-08-08 | Sematech, Inc. | Method of making a dual damascene interconnect structure using low dielectric constant material for an inter-level dielectric layer |
US6140228A (en) | 1997-11-13 | 2000-10-31 | Cypress Semiconductor Corporation | Low temperature metallization process |
US6211073B1 (en) | 1998-02-27 | 2001-04-03 | Micron Technology, Inc. | Methods for making copper and other metal interconnections in integrated circuits |
US6015749A (en) * | 1998-05-04 | 2000-01-18 | Taiwan Semiconductor Manufacturing Company | Method to improve adhesion between copper and titanium nitride, for copper interconnect structures, via the use of an ion implantation procedure |
US6362097B1 (en) * | 1998-07-14 | 2002-03-26 | Applied Komatsu Technlology, Inc. | Collimated sputtering of semiconductor and other films |
KR100265772B1 (ko) * | 1998-07-22 | 2000-10-02 | 윤종용 | 반도체 장치의 배선구조 및 그 제조방법 |
US6287977B1 (en) | 1998-07-31 | 2001-09-11 | Applied Materials, Inc. | Method and apparatus for forming improved metal interconnects |
US6284656B1 (en) | 1998-08-04 | 2001-09-04 | Micron Technology, Inc. | Copper metallurgy in integrated circuits |
US6288442B1 (en) * | 1998-09-10 | 2001-09-11 | Micron Technology, Inc. | Integrated circuit with oxidation-resistant polymeric layer |
US6004188A (en) * | 1998-09-10 | 1999-12-21 | Chartered Semiconductor Manufacturing Ltd. | Method for forming copper damascene structures by using a dual CMP barrier layer |
US6051496A (en) * | 1998-09-17 | 2000-04-18 | Taiwan Semiconductor Manufacturing Company | Use of stop layer for chemical mechanical polishing of CU damascene |
US6180480B1 (en) | 1998-09-28 | 2001-01-30 | International Business Machines Corporation | Germanium or silicon-germanium deep trench fill by melt-flow process |
US6069082A (en) * | 1998-10-13 | 2000-05-30 | Chartered Semiconductor Manufacturing Ltd. | Method to prevent dishing in damascene CMP process |
US6274253B1 (en) * | 1998-11-13 | 2001-08-14 | Micron Technology, Inc. | Processing methods for providing metal-comprising materials within high aspect ratio openings |
US6143657A (en) * | 1999-01-04 | 2000-11-07 | Taiwan Semiconductor Manufacturing Company | Method of increasing the stability of a copper to copper interconnection process and structure manufactured thereby |
US6130162A (en) * | 1999-01-04 | 2000-10-10 | Taiwan Semiconductor Manufacturing Company | Method of preparing passivated copper line and device manufactured thereby |
US6174799B1 (en) * | 1999-01-05 | 2001-01-16 | Advanced Micro Devices, Inc. | Graded compound seed layers for semiconductors |
US6114246A (en) * | 1999-01-07 | 2000-09-05 | Vlsi Technology, Inc. | Method of using a polish stop film to control dishing during copper chemical mechanical polishing |
US20020127845A1 (en) * | 1999-03-01 | 2002-09-12 | Paul A. Farrar | Conductive structures in integrated circuits |
US6281127B1 (en) | 1999-04-15 | 2001-08-28 | Taiwan Semiconductor Manufacturing Company | Self-passivation procedure for a copper damascene structure |
US6194307B1 (en) | 1999-04-26 | 2001-02-27 | Taiwan Semiconductor Manufacturing Company | Elimination of copper line damages for damascene process |
US6071808A (en) * | 1999-06-23 | 2000-06-06 | Lucent Technologies Inc. | Method of passivating copper interconnects in a semiconductor |
US6046108A (en) | 1999-06-25 | 2000-04-04 | Taiwan Semiconductor Manufacturing Company | Method for selective growth of Cu3 Ge or Cu5 Si for passivation of damascene copper structures and device manufactured thereby |
US6387810B2 (en) * | 1999-06-28 | 2002-05-14 | International Business Machines Corporation | Method for homogenizing device parameters through photoresist planarization |
US6248665B1 (en) | 1999-07-06 | 2001-06-19 | Taiwan Semiconductor Manufacturing Company | Delamination improvement between Cu and dielectrics for damascene process |
US6391780B1 (en) | 1999-08-23 | 2002-05-21 | Taiwan Semiconductor Manufacturing Company | Method to prevent copper CMP dishing |
US6248002B1 (en) | 1999-10-20 | 2001-06-19 | Taiwan Semiconductor Manufacturing Company | Obtaining the better defect performance of the fuse CMP process by adding slurry polish on more soft pad after slurry polish |
US6114243A (en) * | 1999-11-15 | 2000-09-05 | Chartered Semiconductor Manufacturing Ltd | Method to avoid copper contamination on the sidewall of a via or a dual damascene structure |
US6344419B1 (en) | 1999-12-03 | 2002-02-05 | Applied Materials, Inc. | Pulsed-mode RF bias for sidewall coverage improvement |
US6627541B1 (en) * | 1999-12-15 | 2003-09-30 | Texas Instruments Incorporated | Reflow method for construction of conductive vias |
US6361880B1 (en) | 1999-12-22 | 2002-03-26 | International Business Machines Corporation | CVD/PVD/CVD/PVD fill process |
US6455427B1 (en) | 1999-12-30 | 2002-09-24 | Cypress Semiconductor Corp. | Method for forming void-free metallization in an integrated circuit |
US6969448B1 (en) | 1999-12-30 | 2005-11-29 | Cypress Semiconductor Corp. | Method for forming a metallization structure in an integrated circuit |
US7211512B1 (en) * | 2000-01-18 | 2007-05-01 | Micron Technology, Inc. | Selective electroless-plated copper metallization |
US7262130B1 (en) | 2000-01-18 | 2007-08-28 | Micron Technology, Inc. | Methods for making integrated-circuit wiring from copper, silver, gold, and other metals |
US6376370B1 (en) * | 2000-01-18 | 2002-04-23 | Micron Technology, Inc. | Process for providing seed layers for using aluminum, copper, gold and silver metallurgy process for providing seed layers for using aluminum, copper, gold and silver metallurgy |
US6420262B1 (en) | 2000-01-18 | 2002-07-16 | Micron Technology, Inc. | Structures and methods to enhance copper metallization |
US6339029B1 (en) | 2000-01-19 | 2002-01-15 | Taiwan Semiconductor Manufacturing Company | Method to form copper interconnects |
US6329290B1 (en) * | 2000-02-24 | 2001-12-11 | Conexant Systems, Inc. | Method for fabrication and structure for high aspect ratio vias |
US6423629B1 (en) * | 2000-05-31 | 2002-07-23 | Kie Y. Ahn | Multilevel copper interconnects with low-k dielectrics and air gaps |
US6335261B1 (en) | 2000-05-31 | 2002-01-01 | International Business Machines Corporation | Directional CVD process with optimized etchback |
US6674167B1 (en) * | 2000-05-31 | 2004-01-06 | Micron Technology, Inc. | Multilevel copper interconnect with double passivation |
US6554979B2 (en) | 2000-06-05 | 2003-04-29 | Applied Materials, Inc. | Method and apparatus for bias deposition in a modulating electric field |
DE10032792A1 (de) * | 2000-06-28 | 2002-01-17 | Infineon Technologies Ag | Verfahren zur Herstellung einer Verdrahtung für Kontaktlöcher |
US6429118B1 (en) | 2000-09-18 | 2002-08-06 | Taiwan Semiconductor Manufacturing Company | Elimination of electrochemical deposition copper line damage for damascene processing |
US6383935B1 (en) | 2000-10-16 | 2002-05-07 | Taiwan Semiconductor Manufacturing Company | Method of reducing dishing and erosion using a sacrificial layer |
US6433402B1 (en) * | 2000-11-16 | 2002-08-13 | Advanced Micro Devices, Inc. | Selective copper alloy deposition |
US7067440B1 (en) | 2001-08-24 | 2006-06-27 | Novellus Systems, Inc. | Gap fill for high aspect ratio structures |
US6746591B2 (en) | 2001-10-16 | 2004-06-08 | Applied Materials Inc. | ECP gap fill by modulating the voltate on the seed layer to increase copper concentration inside feature |
US6794290B1 (en) | 2001-12-03 | 2004-09-21 | Novellus Systems, Inc. | Method of chemical modification of structure topography |
US7138719B2 (en) * | 2002-08-29 | 2006-11-21 | Micron Technology, Inc. | Trench interconnect structure and formation method |
US7122485B1 (en) | 2002-12-09 | 2006-10-17 | Novellus Systems, Inc. | Deposition profile modification through process chemistry |
US7220665B2 (en) * | 2003-08-05 | 2007-05-22 | Micron Technology, Inc. | H2 plasma treatment |
US7078312B1 (en) | 2003-09-02 | 2006-07-18 | Novellus Systems, Inc. | Method for controlling etch process repeatability |
US7476621B1 (en) | 2003-12-10 | 2009-01-13 | Novellus Systems, Inc. | Halogen-free noble gas assisted H2 plasma etch process in deposition-etch-deposition gap fill |
US7344996B1 (en) | 2005-06-22 | 2008-03-18 | Novellus Systems, Inc. | Helium-based etch process in deposition-etch-deposition gap fill |
US7163896B1 (en) | 2003-12-10 | 2007-01-16 | Novellus Systems, Inc. | Biased H2 etch process in deposition-etch-deposition gap fill |
US7199045B2 (en) * | 2004-05-26 | 2007-04-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Metal-filled openings for submicron devices and methods of manufacture thereof |
US7217658B1 (en) | 2004-09-07 | 2007-05-15 | Novellus Systems, Inc. | Process modulation to prevent structure erosion during gap fill |
US7176039B1 (en) | 2004-09-21 | 2007-02-13 | Novellus Systems, Inc. | Dynamic modification of gap fill process characteristics |
US7381451B1 (en) | 2004-11-17 | 2008-06-03 | Novellus Systems, Inc. | Strain engineering—HDP thin film with tensile stress for FEOL and other applications |
US7211525B1 (en) | 2005-03-16 | 2007-05-01 | Novellus Systems, Inc. | Hydrogen treatment enhanced gap fill |
US20070052107A1 (en) * | 2005-09-05 | 2007-03-08 | Cheng-Ming Weng | Multi-layered structure and fabricating method thereof and dual damascene structure, interconnect structure and capacitor |
US7563714B2 (en) * | 2006-01-13 | 2009-07-21 | International Business Machines Corporation | Low resistance and inductance backside through vias and methods of fabricating same |
US7491643B2 (en) * | 2006-05-24 | 2009-02-17 | International Business Machines Corporation | Method and structure for reducing contact resistance between silicide contact and overlying metallization |
US7482245B1 (en) | 2006-06-20 | 2009-01-27 | Novellus Systems, Inc. | Stress profile modulation in STI gap fill |
US7648921B2 (en) * | 2006-09-22 | 2010-01-19 | Macronix International Co., Ltd. | Method of forming dielectric layer |
US7666781B2 (en) * | 2006-11-22 | 2010-02-23 | International Business Machines Corporation | Interconnect structures with improved electromigration resistance and methods for forming such interconnect structures |
US7629212B2 (en) * | 2007-03-19 | 2009-12-08 | Texas Instruments Incorporated | Doped WGe to form dual metal gates |
US7651939B2 (en) | 2007-05-01 | 2010-01-26 | Freescale Semiconductor, Inc | Method of blocking a void during contact formation |
US7994034B2 (en) * | 2008-03-10 | 2011-08-09 | Ovonyx, Inc. | Temperature and pressure control methods to fill features with programmable resistance and switching devices |
KR100905872B1 (ko) * | 2007-08-24 | 2009-07-03 | 주식회사 하이닉스반도체 | 반도체 소자의 금속배선 형성 방법 |
US8133797B2 (en) * | 2008-05-16 | 2012-03-13 | Novellus Systems, Inc. | Protective layer to enable damage free gap fill |
KR20120124634A (ko) * | 2011-05-04 | 2012-11-14 | 삼성전자주식회사 | 반도체 장치의 제조 방법 및 이를 포함하는 반도체 패키지의 제조 방법 |
US8697562B2 (en) | 2011-06-23 | 2014-04-15 | Richard L. McCreery | Metal contacts for molecular device junctions and surface-diffusion-mediated deposition |
US8575000B2 (en) * | 2011-07-19 | 2013-11-05 | SanDisk Technologies, Inc. | Copper interconnects separated by air gaps and method of making thereof |
US8652951B2 (en) * | 2012-02-13 | 2014-02-18 | Applied Materials, Inc. | Selective epitaxial germanium growth on silicon-trench fill and in situ doping |
US9997458B2 (en) | 2012-05-14 | 2018-06-12 | Imec Vzw | Method for manufacturing germamde interconnect structures and corresponding interconnect structures |
CN106463358B (zh) * | 2014-06-16 | 2020-04-24 | 英特尔公司 | 金属互连件的接缝愈合 |
US9953940B2 (en) | 2015-06-26 | 2018-04-24 | International Business Machines Corporation | Corrosion resistant aluminum bond pad structure |
KR102383369B1 (ko) * | 2016-06-17 | 2022-04-05 | 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 | 텅스텐과 게르마늄의 화합물막 및 반도체 장치 |
US11183443B2 (en) * | 2019-06-13 | 2021-11-23 | Nanya Technology Corporation | Semiconductor structure and method for manufacturing the same |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL278654A (zh) * | 1961-06-08 | |||
US3222630A (en) * | 1961-06-26 | 1965-12-07 | Texas Instruments Inc | Aluminum-germanium contact |
US3501829A (en) * | 1966-07-18 | 1970-03-24 | United Aircraft Corp | Method of applying contacts to a microcircuit |
US4022625A (en) * | 1974-12-24 | 1977-05-10 | Nl Industries, Inc. | Polishing composition and method of polishing |
US4188710A (en) * | 1978-08-11 | 1980-02-19 | The United States Of America As Represented By The Secretary Of The Navy | Ohmic contacts for group III-V n-type semiconductors using epitaxial germanium films |
US4207546A (en) * | 1978-12-07 | 1980-06-10 | United Technologies Corporation | Phase and amplitude programmable internal mixing SAW signal processor |
US4301188A (en) * | 1979-10-01 | 1981-11-17 | Bell Telephone Laboratories, Incorporated | Process for producing contact to GaAs active region |
US4321099A (en) * | 1979-11-13 | 1982-03-23 | Nasa | Method of fabricating Schottky barrier solar cell |
JPH01107558A (ja) * | 1987-10-20 | 1989-04-25 | Matsushita Electric Ind Co Ltd | 金属薄膜配線の製造方法 |
US5121174A (en) * | 1987-10-23 | 1992-06-09 | Vitesse Semiconductor Corporation | Gate-to-ohmic metal contact scheme for III-V devices |
DE68927116T2 (de) * | 1988-01-19 | 1997-02-06 | Fujimi Inc | Poliermasse |
US4908182A (en) * | 1988-04-11 | 1990-03-13 | Polytechnic University | Rapidly solidified high strength, ductile dispersion-hardened tungsten-rich alloys |
JPH02257640A (ja) * | 1989-03-30 | 1990-10-18 | Oki Electric Ind Co Ltd | 半導体素子の製造方法 |
JPH03122273A (ja) * | 1989-10-06 | 1991-05-24 | Hitachi Ltd | マイクロ波を用いた成膜装置 |
KR960001601B1 (ko) * | 1992-01-23 | 1996-02-02 | 삼성전자주식회사 | 반도체 장치의 접촉구 매몰방법 및 구조 |
JP2841976B2 (ja) * | 1990-11-28 | 1998-12-24 | 日本電気株式会社 | 半導体装置およびその製造方法 |
US5143867A (en) * | 1991-02-13 | 1992-09-01 | International Business Machines Corporation | Method for depositing interconnection metallurgy using low temperature alloy processes |
JPH04334019A (ja) * | 1991-05-09 | 1992-11-20 | Hitachi Ltd | 化合物半導体装置の製造方法 |
US5171412A (en) * | 1991-08-23 | 1992-12-15 | Applied Materials, Inc. | Material deposition method for integrated circuit manufacturing |
US5262354A (en) * | 1992-02-26 | 1993-11-16 | International Business Machines Corporation | Refractory metal capped low resistivity metal conductor lines and vias |
US5300813A (en) * | 1992-02-26 | 1994-04-05 | International Business Machines Corporation | Refractory metal capped low resistivity metal conductor lines and vias |
JP2547935B2 (ja) * | 1992-04-30 | 1996-10-30 | インターナショナル・ビジネス・マシーンズ・コーポレイション | 半導体集積回路の相互接続構造の形成方法 |
US5314840A (en) * | 1992-12-18 | 1994-05-24 | International Business Machines Corporation | Method for forming an antifuse element with electrical or optical programming |
US5356513A (en) * | 1993-04-22 | 1994-10-18 | International Business Machines Corporation | Polishstop planarization method and structure |
US5300130A (en) * | 1993-07-26 | 1994-04-05 | Saint Gobain/Norton Industrial Ceramics Corp. | Polishing material |
US5332467A (en) * | 1993-09-20 | 1994-07-26 | Industrial Technology Research Institute | Chemical/mechanical polishing for ULSI planarization |
EP0697730B1 (en) * | 1994-08-05 | 1999-11-24 | International Business Machines Corporation | Method of forming an Al-Ge alloy with WGe polishing stop |
US5527423A (en) * | 1994-10-06 | 1996-06-18 | Cabot Corporation | Chemical mechanical polishing slurry for metal layers |
-
1995
- 1995-07-05 EP EP95110478A patent/EP0697730B1/en not_active Expired - Lifetime
- 1995-07-05 DE DE69513459T patent/DE69513459T2/de not_active Expired - Lifetime
- 1995-07-05 EP EP99101825A patent/EP0915501B1/en not_active Expired - Lifetime
- 1995-07-05 DE DE69529775T patent/DE69529775T2/de not_active Expired - Lifetime
- 1995-08-01 JP JP07196745A patent/JP3083735B2/ja not_active Expired - Fee Related
- 1995-08-04 KR KR1019950024042A patent/KR0177537B1/ko not_active IP Right Cessation
- 1995-08-11 TW TW084108376A patent/TW344101B/zh not_active IP Right Cessation
-
1996
- 1996-02-20 US US08/603,092 patent/US5856026A/en not_active Expired - Fee Related
- 1996-10-28 US US08/738,883 patent/US5897370A/en not_active Expired - Lifetime
- 1996-10-28 US US08/738,901 patent/US5731245A/en not_active Expired - Fee Related
-
1997
- 1997-09-30 US US08/941,062 patent/US5877084A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US5897370A (en) | 1999-04-27 |
EP0697730B1 (en) | 1999-11-24 |
JP3083735B2 (ja) | 2000-09-04 |
JPH0864599A (ja) | 1996-03-08 |
US5856026A (en) | 1999-01-05 |
DE69529775D1 (de) | 2003-04-03 |
DE69513459T2 (de) | 2000-10-26 |
US5731245A (en) | 1998-03-24 |
EP0697730A3 (en) | 1996-08-14 |
DE69529775T2 (de) | 2003-10-16 |
KR960009109A (ko) | 1996-03-22 |
EP0915501A1 (en) | 1999-05-12 |
US5877084A (en) | 1999-03-02 |
EP0915501B1 (en) | 2003-02-26 |
DE69513459D1 (de) | 1999-12-30 |
KR0177537B1 (ko) | 1999-04-15 |
EP0697730A2 (en) | 1996-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW344101B (en) | High aspect ratio low resistivity lines/vias by surface diffusion | |
TW350135B (en) | Semiconductor device and method of manufacturing the same the invention relates to a semiconductor device and method of manufacturing the same | |
HK84592A (en) | Integrated semiconductor circuit having an external aluminium or aluminium alloy contact interconnection layer | |
MY126479A (en) | Copper interconnection structure incorporating a metal seed layer | |
EP0798778A3 (en) | Method of manufacturing a semiconductor device of multilayer wire structure | |
EP2264758A3 (en) | Interconnection structure in semiconductor device | |
KR100310492B1 (en) | Semiconductor device and its manufacture | |
KR900007146B1 (en) | Manufacture of semiconductor device | |
KR980005138A (ko) | 평면상의 구리 야금에서 사용하기 위한 집적 패드 및 퓨즈 구조 | |
JPS6419763A (en) | Improved integrated circuit structure and method of forming improved integrated circuit structure | |
WO2002005298A3 (en) | Semiconductor inductor and methods for making the same | |
EP0898308A3 (en) | A method for forming a metal interconnection in a semiconductor device | |
EP1203654A3 (en) | Tin coated electrical connector | |
MY125124A (en) | Low resistivity tantalum | |
EP0315422A3 (en) | Semiconductor memory device having an ohmic contact between an aluminum-silicon alloy metallization film and a silicon substrate | |
KR920015590A (ko) | Ccd 촬상기 | |
KR920010875A (ko) | 다층배선의 단차를 완화시키는 방법 | |
EP0572214A3 (en) | Method for fabricating an interconnect structure in an integrated circuit | |
WO2002054484A3 (en) | Metal ion diffusion barrier layers | |
KR920010620A (ko) | 다층 상호접속선을 위한 알루미늄 적층 접점/통로 형성방법 | |
WO2002013233A3 (en) | Formation of self-aligned passivation for interconnect to minimize electromigration | |
IE852091L (en) | Diffusion barrier layer for integrated circuit devices | |
GB2298658B (en) | Methods of forming intermetallic insulating layers in semiconductor devices | |
EP0880179A3 (en) | Venting hole designs for multilayer conductor-dielectric structures | |
JPS57109373A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |