TW202212021A - 拉絲模 - Google Patents

拉絲模 Download PDF

Info

Publication number
TW202212021A
TW202212021A TW110130299A TW110130299A TW202212021A TW 202212021 A TW202212021 A TW 202212021A TW 110130299 A TW110130299 A TW 110130299A TW 110130299 A TW110130299 A TW 110130299A TW 202212021 A TW202212021 A TW 202212021A
Authority
TW
Taiwan
Prior art keywords
die
area
wire
wire drawing
die hole
Prior art date
Application number
TW110130299A
Other languages
English (en)
Inventor
倉本康平
木下卓哉
小林豊
湯川実
木村公一朗
城健太郎
Original Assignee
日商聯合材料股份有限公司
日商住友電氣工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商聯合材料股份有限公司, 日商住友電氣工業股份有限公司 filed Critical 日商聯合材料股份有限公司
Publication of TW202212021A publication Critical patent/TW202212021A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • B21C3/04Dies; Selection of material therefor; Cleaning thereof with non-adjustable section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/02Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Extraction Processes (AREA)

Abstract

本發明係一種拉絲模1,其由非金剛石材料構成,設置有模孔1h,具有壓縮區(reduction)1c及位於壓縮區1c之下游側之定徑區(bearing)1d;且壓縮區1c中之模孔1h之開口角度即壓縮區角度γ為17°以下,於垂直於拉絲方向之模孔1h之圓周方向上,從定徑區1d內之特定位置起算±20 μm之範圍中之模孔1h的表面粗糙度Ra為0.025 μm以下。

Description

拉絲模
本發明係關於一種拉絲模。本申請主張以2020年8月24日申請之日本專利申請即特願2020-140863號為基礎之優先權。該日本專利申請所記載之全部內容藉由參照而引用至本說明書中。
先前,拉絲模例如揭示於日本特開平2-6011號公報(專利文獻1)、日本特開平2-127912號公報(專利文獻2)、日本特開平4-147713號公報(專利文獻3)、國際公開第2013/031681號公報(專利文獻4)、日本特開2014-34487號公報(專利文獻5)、及日本特開昭56-98405號公報(專利文獻6)中。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開平2-6011號公報 [專利文獻2]日本特開平2-127912號公報 [專利文獻3]日本特開平4-147713號公報 [專利文獻4]國際公開第2013/031681號公報 [專利文獻5]日本特開2014-34487號公報 [專利文獻6]日本特開昭56-98405號公報
本發明之拉絲模係由非金剛石材料構成,設置有模孔,具有壓縮區(reduction)及位於上述壓縮區之下游側之定徑區(bearing);且壓縮區之上述模孔之開口角度即壓縮區角度為17°以下,於垂直於拉絲方向之上述模孔之圓周方向上,從上述定徑區內之特定位置起算±20 μm之範圍中之上述模孔的表面粗糙度Ra為0.025 μm以下。
[發明所欲解決之課題]
對於習知之拉絲模,要求提高壽命。
[本發明之實施方式之說明] 首先列舉本發明之實施方式並進行說明。
本發明之拉絲模係由非金剛石材料構成,設置有模孔,具有壓縮區及位於上述壓縮區之下游側之定徑區;且壓縮區之上述模孔之開口角度即壓縮區角度為17°以下,於垂直於拉絲方向之上述模孔之圓周方向上,從上述定徑區內之特定位置起算±20 μm之範圍(總計40 μm之範圍)中之上述模孔的表面粗糙度Ra為0.025 μm以下。
作為非金剛石材料,有CBN、或者選自由鈦、矽、鋁及鉻所組成之群中之至少一種之氮化物或碳化物。
CBN可為無結合材料之無黏合劑CBN,亦可為有黏合劑之CBN。作為非金剛石材料,亦可為CBN與壓縮型hBN(六方晶氮化硼)之混合物。此處,所謂「壓縮型六方晶氮化硼」,表示如下所述者,即,結晶構造與通常之六方晶氮化硼類似,c軸方向之晶面間距較通常之六方晶氮化硼之晶面間距(0.333 nm)小。
通常,模孔之垂直於拉絲方向之截面為圓形。然而,該截面亦可為矩形。
拉絲模從上游側起依序具有鐘形口區(bell)、進場區(approach)、壓縮區、定徑區、後釋放區(back relief)及出口區(exit)。
壓縮區之模孔之開口角度即壓縮區角度為17°以下。於平行於拉絲方向之模孔之剖視圖中,在壓縮區之直徑RD為1.050D之部分,於兩側面繪製2條第一切線,將2條第一切線所成之角度設為壓縮區角度。若壓縮區角度超過17°,則拉絲模之壽命會變短。更佳為壓縮區角度為6°以上15°以下。
於垂直於拉絲方向之模孔之圓周方向上,從定徑區內之特定位置起算±20 μm之範圍中之表面粗糙度Ra為0.025 μm以下。若該表面粗糙度超過0.025 μm,則線材之表面粗糙度變差,壽命變短。較佳為表面粗糙度Ra為0.005 μm以上0.025 μm以下。
較佳為,將定徑區之直徑設為D時,定徑區之長度為200%D以下。若定徑區之長度為200%D以上,則有定徑區變長,壽命下降之擔憂。再者,所謂「有擔憂」係表示發生該情況之可能性很低,並非意味著會高概率地發生該情況。
較佳為,縮面率為5%以上。若縮面率超過5%,則有定徑區容易磨耗之擔憂。縮面率可利用(拉絲前之線材之截面面積-拉絲後之線材之截面面積)/(拉絲前之線材之截面面積)×100而求得。
較佳為,模於壓縮區與母線材初次接觸,於包含定徑區之50%D以上之長度內與線材接觸。於該情形時,能夠更確實地於定徑區中加工線材。
較佳為,拉絲模之熱導率為100至300 W/(m∙K)。於該情形時,可容易地使拉絲模中因其與線材之摩擦而產生之熱逸散至外部。
CBN模若形狀規格設定不當,則模壽命會因機械磨耗而顯著縮短。CBN有如下弱點,即努氏硬度為40-50 GPa,僅為金剛石(70-130 GPa)之一半,不利於機械磨耗。因此,藉由將壓縮區形狀等設定為適當之範圍,而防止模表面壓力變得過高,從而抑制機械磨耗。
CBN模與金剛石模相比,模內表面容易產生瑕疵,影響拉絲後之線品質。CBN如上所述,因硬度較低,故進行內表面研磨時模內表面會產生瑕疵,對拉絲後之線材品質影響較大。
本發明之拉絲模藉由解決上述問題而延長壽命。 圖1係依據實施方式之拉絲模之剖視圖。如圖1所示,依據實施方式1之拉絲用模1具有模孔1h。模1從上游側起依序具有鐘形口區1a、進場區1b、壓縮區1c、定徑區1d、後釋放區1e及出口區1f。
鐘形口區1a位於模孔1h之最上游側。界定鐘形口區1a之模孔1h之側面之切線12a、13a所成之角度α為鐘形口區角。鐘形口區1a相當於要被拉絲之線材及潤滑材料之入口。
進場區1b設置於鐘形口區1a之下游。於鐘形口區1a與進場區1b之分界處,模孔1h之斜率可連續地變化,亦可非連續地變化。界定進場區1b之模孔1h之側面之切線12b、13b所成之角度β為進場區角。
壓縮區1c設置於進場區1b之下游。於進場區1b與壓縮區1c之分界處,模孔1h之斜率可連續地變化,亦可非連續地變化。界定壓縮區1c之模孔1h之側面之角度γ為壓縮區角。
定徑區1d設置於壓縮區1c之下游。於壓縮區1c與定徑區1d之分界處,模孔1h之斜率可連續地變化,亦可非連續地變化。界定定徑區1d之模孔1h之直徑D係固定的。定徑區1d為圓筒形狀。定徑區1d係模孔1h中孔徑最小之部分。
後釋放區1e設置於定徑區1d之下游。於定徑區1d與後釋放區1e之分界處,模孔1h之斜率可連續地變化,亦可非連續地變化。界定後釋放區1e之模孔1h之側面之角度θ為後釋放區角。
出口區1f設置於後釋放區1e之下游。於定徑區1d與後釋放區1e之分界處,模孔1h之斜率可連續地變化,亦可非連續地變化。界定後釋放區1e之模孔1h之側面之角度ϕ為出口區角。
若將壓縮區1c之直徑設為RD,則RD與D之間,D<RD≦1.050D之關係成立。因此,具有上述關係之直徑RD之部分為壓縮區1c。壓縮區1c之截面面積超過定徑區1d之截面面積之100%且不高於110%。
定徑區1d之長度為L。L與D之間,0<L≦200%D之關係成立。
為了測定鐘形口區1a、進場區1b、壓縮區1c、定徑區1d、後釋放區1e及出口區1f之形狀,於模孔1h中填充轉印材料(例如司特爾(Struers)股份有限公司製造,RepliSet),製作轉印有模孔1h之形狀之複製品。將該複製品沿包含中心線1p之平面切斷,獲得如圖1之模孔1h這樣的模孔1h之剖視圖。基於該剖視圖可測定各部位之形狀。於定徑區1d之直徑足夠大之情形時,可藉由使轉印有模孔1h之複製品彈性變形而將其從模孔1h中拉拔出。於定徑區1d之直徑較小,即便使複製品彈性變形也無法將其從模孔1h中拉拔出之情形時,於出口區1f附近將複製品切斷,使用複製品令出口區1f以外之部分之形狀再生。進而,於模孔1h中填充轉印材料而製作複製品,將該複製品於鐘形口區1a附近切斷,使用複製品令鐘形口區1a以外之部分之形狀再生。藉由將其等合為一體,可獲得模孔1h之截面。
測定壓縮區角γ時,於模孔1h之剖視圖中,於壓縮區1c之基準點11c(RD=1.050D之部分)處,在兩側面繪製切線12c、13c,將2條切線12c、13c所成之角度設為壓縮區角γ。
[本發明之實施方式之詳情] (實施例1) (BL(無黏合劑)CBN模之基礎拉絲評價) 為了確認因模素材而異之性能,準備下述3種形狀相同之模並進行評價。
模素材 準備A.單晶金剛石模、B.無黏合劑PCD模、C.CBN模這三種模。CBN模含有99質量%以上之CBN及未達1質量%之hBN。該組成係藉由以下方法測定。CBN模中之立方晶氮化硼、壓縮型六方晶氮化硼及纖鋅礦型氮化硼之含有率(體積%)可藉由X射線繞射法測定。具體測定方法如下所述。用金剛石磨石電著線將CBN模切斷,將切斷面作為觀察面。
使用X射線繞射裝置(日本理學(Rigaku)公司製造,「MiniFlex600」(商品名))獲得CBN模之切斷面之X射線光譜。此時之X射線繞射裝置之條件例如設定如下。
特性X射線:Cu-Kα(波長0.154 nm) X射線管電壓:45 kV X射線管電流:40 mA 濾光器:多層鏡 光學系統:集中法 X射線繞射法:θ-2θ法。
於所得之X射線光譜中,測定下述峰強度A、峰強度B及峰強度C。
峰強度A:從繞射角2θ=28.5°附近之峰強度(X射線光譜之繞射角2θ=28.5°之峰強度)中去除背景後之壓縮型六方晶氮化硼之峰強度。
峰強度B:從繞射角2θ=40.8°附近之峰強度(X射線光譜之繞射角40.8°之峰強度)中去除背景後之纖鋅礦型氮化硼之峰強度。
峰強度C:從繞射角2θ=43.5°附近之峰強度(X射線光譜之繞射角2θ=43.5°之峰強度)中去除背景後之立方晶氮化硼之峰強度。
壓縮型六方晶氮化硼之含有率可藉由算出峰強度A/(峰強度A+峰強度B+峰強度C)之值而獲得。纖鋅礦型氮化硼之含有率可藉由算出峰強度B/(峰強度A+峰強度B+峰強度C)之值而獲得。立方晶氮化硼多晶體之含有率可藉由算出峰強度C/(峰強度A+峰強度B+峰強度C)之值而獲得。因壓縮型六方晶氮化硼、纖鋅礦型氮化硼及立方晶氮化硼均具有相同程度之電子重量,故可將上述X射線峰強度比視為CBN模中之體積比。若知曉各自之體積比,則可根據壓縮型六方晶氮化硼之密度(2.1 g/cm 3)、纖鋅礦型氮化硼之密度(3.48 g/cm 3)、及立方晶氮化硼之密度(3.45 g/cm 3)算出其等之質量比。
CBN之結晶粒徑D50為200至300 μm。D50係指將粒子從某粒徑分成2個部分時,較大一側與較小一側個數相等時之直徑。
以如下方式測定D50。藉由線放電加工及金剛石磨石電著線等將CBN模切斷,於切斷面進行離子研磨(ion milling)。使用SEM(日本電子股份有限公司製造,「JSM-7500F」(商品名))觀察CP加工面上之測定部位,獲得SEM影像。將測定視野之尺寸設為12 μm×15 μm,觀察倍率設為10000倍。在將測定視野內所觀察到之結晶粒之晶界分離之狀態下,使用影像處理軟體(Win Roof ver.7.4.5)算出各結晶粒之長寬比及各結晶粒之面積、以及結晶粒之圓相當徑之分佈。利用該結果算出D50。
模形狀:(模A~C均相同) 壓縮區角度γ:13度(開口角:以下將壓縮區之角度均記載為開口角) 定徑區1d長度L:30%D 模孔1h直徑D:0.18 mm(將縮面率設定為16%) 定徑區1d之圓周方向長度40 μm之範圍中之表面粗糙度Ra:0.015 μm 以如下方式測定定徑區1d之表面粗糙度Ra。
已知定徑區1d之表面粗糙度Ra係由研磨定徑區1d之工具及研磨條件決定。準備相同材質及尺寸之第一及第二模。以相同研磨工具及研磨條件來研磨第一及第二模。藉此,第一及第二模之定徑區1d具有相同之表面粗糙度Ra。再者,作為研磨方法,有使用研磨針及游離研磨粒之超音波研磨、及藉由雷射加工之研磨等。
為了觀察第一模之模孔1h之截面形狀,藉由平面磨床從側面側對模1進行研削,將模孔直徑D之50%以上研削。
圖2係沿著圖1中之II-II線所得之剖視圖。於圖2中用虛線表示研削前之模之形狀。模孔1h之研削量為從點501至中心線1p之距離50%D以上。從中心線1p至點502之距離為50%D以下。
用醇等將露出之模孔1h進行脫脂、洗淨,去除定徑區1d之污垢。測定中使用以下裝置。 測定裝置:奧林巴斯製造 MEASURING LASER MICROSCOPE OLS4000 影像尺寸(像素):1024×1024 影像尺寸:258×258 μm 掃描模式:XYZ高精度+彩色 物鏡:MPLAPONLEXT×50倍 DIC:關閉 變焦:×1 評價長度:40 μm 截止λc:8 μm 濾光器:高斯 解析參數:粗糙度參數 倍率:×100 截止:8 μm 使用上述測定裝置,根據上述拍攝條件來拍攝包含表面粗糙度測定部之影像。此時,於因瑕疵等而導致影像不反射之範圍內取得儘可能明亮之影像。拍攝影像時,以與顯微鏡平行之方式設置模研削面1z。
圖3係用以說明定徑區1d內之表面粗糙度之測定方法之圖。於畫面中示出拍攝所得之影像,於圖3之距模孔1h之兩端之壁面31、41等距離之位置繪製線1y。該線1y與模孔1h之中心線1p大致一致。
示出與線1y垂直之方向之線101。線101之位置上之模孔1h之內周面(構成垂直於中心線1p且包含線101之平面之圓)的形狀表示為圓弧曲線201。
使線101例如朝箭頭110所示之上方向平行移動至線102之位置。伴隨於此,將線102之位置上之模孔1h之內周面(構成垂直於中心線1p且包含線102之平面之圓)的形狀表示為圓弧曲線202。圓弧曲線202之半徑大於圓弧曲線201之半徑。
使線101例如朝箭頭120所示之下方向平行移動至線103之位置。伴隨於此,將線103之位置上之模孔1h之內周面(構成垂直於中心線1p且包含線103之平面之圓)的形狀表示為圓弧曲線203。圓弧曲線203之半徑小於圓弧曲線201之半徑。如此,使線101朝箭頭110所示之上方向及箭頭120所示之下方向移動,示出各位置之內周面,找出圓弧曲線之半徑最小之位置即圓弧曲線最高之位置。該位置為定徑區1d。
與定徑區1d之線104相對應之圓弧曲線204表示定徑區之內周面之形狀。
以圓弧曲線204之底部(圖2中,104與線1y之交點210)為基準,將左右20 μm(總計40 μm)之範圍設定為粗糙度測定範圍,將該範圍中之表面粗糙度Ra設為定徑區1d之表面粗糙度。
第一模與第二模具有相同之定徑區1d之表面粗糙度Ra,使用第二模進行拉絲加工。
拉絲條件 線材:SUS316L 線速度:500 m/min 潤滑:油性 拉絲距離:30 km 將結果示於表1中。
[表1]
表1 壽命 環磨耗 線徑變化量(μm) 偏磨耗 拉拔力(15-30 km) 線材表面粗糙度Ra(μm)
單晶金剛石 20km 0.6 無變化 0.106
無黏合劑PCD 30km 以上 增加10% 0.82
CBN 30km 以上 無變化 0.86
於表1中之「壽命」之判斷中,將拉絲後之線材之表面粗糙度Ra成為0.100 μm以上之時間點判斷為壽命。
所謂「環磨耗」係表示模之內周面之壓縮區1c附近呈環狀產生磨耗。
環磨耗之大小係藉由以下方法特定出。於模孔1h中填充轉印材料(例如司特爾股份有限公司製造,RepliSet),製作轉印有模孔1h之形狀之複製品。將該複製品沿包含中心線1p之平面切斷,獲得如圖1之模孔1h這樣的模孔1h之剖視圖。圖4係表示模孔1h及填充於模孔1h之複製品300之剖視圖。如圖4所示,複製品300具有依照模孔1h之形狀。於複製品300之外表面轉印有模孔1h之內表面之形狀。於壓縮區1c形成有環磨耗304a、304b。利用穿透顯微鏡拍攝複製品300,使用影像解析軟體(WinRoof、ImageJ等)算出環磨耗304a、304b之面積,將較大一方之面積作為環磨耗之結果。於圖4中,於複製品300之左右形成有環磨耗304a、304b,算出環磨耗304a、304b之面積,將面積較大一方作為結果。將由連結環磨耗304a之上端301及下端302之直線與稜線303所包圍之部分的面積作為環磨耗304a之面積。於該面積為50 μm 2以上之情形時將環磨耗設為大。於該面積未達10 μm 2之情形時將環磨耗設為小。再者,於該面積為10 μm 2以上50 μm 2以下之情形時將環磨耗設為中。
「線徑變化量」係表示拉絲開始時之拉絲後線材線徑、與先達到壽命或拉絲30 km後之任一者之拉絲後線材線徑的差。
所謂「偏磨耗」係表示定徑區1d變形為圓形以外之形狀。單晶金剛石之磨耗取決於單晶金剛石之面方位。因此,於某方向上容易磨耗,於其他方向上不易磨耗。結果發生偏磨耗。因無黏合劑PCD及CBN為多晶體,故於所有方向上均以相同方式磨耗,因此不會產生偏磨耗。
「拉拔力」對無黏合劑PCD及CBN而言係拉絲30 km時之拉拔力相對於拉絲15 km時之拉拔力之增加比率。對單晶金剛石而言係拉絲20 km時之拉拔力相對於拉絲15 km時之拉拔力之增加比率。
「線材表面粗糙度Ra」係表示先達到壽命或拉絲30 km後之任一者之線材表面之粗糙度Ra。Ra係由JIS B 0601(2001)定義者,藉由奧林巴斯製造之MEASURING LASER MICROSCOPE OLS4000進行測定。
單晶金剛石模於拉絲20 km之時間點,線材表面粗糙度變差,達到其壽命。觀察拉絲後之模時,可推測出發生激烈之偏磨耗與環磨耗,於模內表面上產生凹凸,該凹凸被轉印至線材上,模已達到壽命。
無黏合劑PCD之模於拉絲15 km之時間點產生環磨耗。於拉絲30 km之時間點,3種模中環磨耗為最深。又,亦能確認因環磨耗進行而導致拉拔力增加10%左右,推測線材容易斷線。
CBN模即使拉絲30 km,環磨耗也明顯少於其他模,且幾乎未發現線徑或拉拔力之變化,拉絲性能良好。
(實施例2) (無黏合劑CBN模形狀依存性之基礎評價) 為了比較因模素材而異之形狀依存性,準備下述模並進行評價。拉絲評價條件及壓縮區角度以外之規格與實施例1相同。
模素材 準備與實施例1相同之A.單晶金剛石模、B.無黏合劑PCD模、C.CBN模這三種模。CBN模含有99質量%以上之CBN及未達1質量%之hBN。CBN之結晶粒徑D50為200至300 μm。
模形狀:(模A~C均相同) 壓縮區角度:18度 定徑區1d長度:30%D 定徑區1d之圓周方向長度40 μm之範圍中之表面粗糙度Ra:0.015 μm 模孔1h直徑D:0.18 mm(將縮面率設定為16%) 拉絲條件 線材:SUS316L 線速度:500 m/min 潤滑:油性 將結果示於表2中。
[表2]
表2 拉絲距離 環磨耗 線徑變化量(μm) 線材表面粗糙度Ra(μm)
單晶金剛石 13 km 0.2 0.106
無黏合劑PCD 13 km 0.2 0.82
CBN 13 km 0.6 0.86
因CBN模於13 km達到壽命,故於該時間點中斷評價。與壓縮區角度13°時不同,CBN模壽命最短。
可確認,單晶金剛石與無黏合劑PCD模產生環磨耗。另一方面,CBN模雖無環磨耗,但從壓縮區1c到定徑區1d,內表面非常粗糙,且與其他金剛石模相比線徑擴大量亦較大。因此,認為雖不論形狀如何均具有抑制環磨耗之效果,但因與金剛石相比硬度相對較低,故表面壓力容易上升之高角度之模無法充分發揮性能。
(實施例3) 調查使壓縮區角度發生變化之情形時之CBN模之性能。
拉絲條件 模孔尺寸:80 μm 線材:SUS316L 拉絲距離:60 km 線速度:500 m/min 逆張力:5 cN 模規格:參照表3 模素材:僅CBN模。CBN模含有99質量%以上之CBN及未達1質量%之hBN。CBN之結晶粒徑D50為200至300 μm。
進行與實施例1相同之測定。將結果示於表3中。
[表3]
表3模 編號 壓縮區 角度 (°) 定徑區 長度 (%D) 定徑區表面粗糙度Ra (μm) 拉絲結果
線徑 變化量 (μm) 線材表面粗糙度Ra (μm) 真圓度 (μm) 壽命 備註
1 11 30 0.010 0.1 0.038 0.1 A -
2 13 30 0.010 0.2 0.041 0.2 A -
3 15 30 0.010 0.1 0.040 0.1 A -
4 17 30 0.010 0.3 0.045 0.2 A -
5 18 30 0.010 0.5 0.060 0.2 B -
6 19 30 0.010 0.8 0.086 0.4 C -
關於壽命,將編號4之模之壽命設為1,壽命為1以上設為A,壽命為0.8以上未達1設為B,壽命未達0.8設為C。
與實施例1及2相同,「定徑區表面粗糙度Ra」係定徑區1d之圓周方向長度40 μm之範圍中之表面粗糙度Ra。
關於拉絲結果,線形變化量為0.5 μm以下設為合格,線材粗糙度Ra為0.05 μm以下設為合格,真圓度為0.3 μm以下設為合格,壽命若為A或B則設為合格,綜合而言該等4項目若均合格,則作為拉絲模,評價為良品(合格)。
為了鑑定因CBN模之形狀而異之拉絲性能,對壓縮區角度,設定5種條件進行實驗,結果顯示,於壓縮區角度為17度以下之情形時,不易產生環狀之模磨耗,線材表面粗糙度或真圓度、線徑變化量有變小之趨勢。
另一方面,於壓縮區角度超過17度之情形時,環磨耗與定徑區磨耗急遽進行,產生線材表面粗糙度變差或線徑擴大等問題。根據以上結果,關於CBN模,建議合適之壓縮區角度為17度以下。
(實施例4) 調查使定徑區長度發生變化時之CBN模之性能。
準備表4所示之定徑區長度之CBN模,於與實施例3相同之條件下進行拉絲試驗。將其結果示於表4中。
[表4]
表4 模 編號 壓縮區 角度 (°) 定徑區 長度 (%D) 定徑區表面粗糙度Ra (μm) 拉絲結果
線徑 變化量 (μm) 線材表面粗糙度Ra (μm) 真圓度 (μm) 壽命 備註
7 13 10 0.010 0.2 0.046 0.2 A -
2 13 30 0.010 0.2 0.041 0.2 A -
8 13 50 0.010 0.2 0.043 0.1 A -
9 13 100 0.010 0.1 0.045 0.2 B -
10 13 200 0.010 0.2 0.047 0.2 B -
11 13 400 0.010 0.1 0.050 0.3 B 斷線多
關於壽命,將編號4之模之壽命設為1,壽命為1以上設為A,壽命為0.8以上未達1設為B,壽命未達0.8設為C。
合格基準設為與實施例3相同。 於定徑區長度未達400%D之情形時,即使進行拉絲,亦幾乎不會產生環磨耗,線材品質(線徑變化、粗糙度、真圓度)亦保持良好狀態。
於定徑區長度400%D之情形時,線材品質良好,但稍顯易發生斷線等之趨勢。但,藉由降低線速度可實現良好拉絲性(無斷線)。根據以上之結果,於CBN模之定徑區為200%D以下之情形時發揮最佳性能。
(實施例5) 調查CBN模之模孔1h之初始表面粗糙度對拉絲性能之影響。調查使定徑區長度發生變化時之CBN模之性能。
準備表5所示之定徑區長度之CBN模,於與實施例3相同之條件下進行拉絲試驗。將其結果示於表5中。
[表5]
表5 模 編號 壓縮區 角度 (°) 定徑區 長度 (%D) 定徑區表面粗糙度Ra (μm) 拉絲結果
線徑 變化量 (μm) 線材表面粗糙度Ra (μm) 真圓度 (μm) 壽命 備註
2 13 30 0.010 0.2 0.041 0.2 A -
12 13 30 0.025 0.2 0.049 0.1 B -
13 13 30 0.050 0.1 0.082 0.3 C -
關於壽命,將編號4之模之壽命設為1,壽命為1以上設為A,壽命為0.8以上未達1設為B,壽命未達0.8設為C。合格基準設為與實施例3相同。
初始模內表面粗糙度對拉絲時之線徑變化量及真圓度無較大影響。另一方面,明瞭初始模粗糙度對線品質影響較大。根據以上所述,模內表面粗糙度Ra較理想的是0.025 μm以下。
此次所揭示之實施方式及實施例於所有方面均為例示,並無限制性。本發明之範圍並非由上述實施方式表示,而是由申請專利範圍表示,與申請專利範圍均等之意義及範圍內之所有變更都包含在內。
1:模 1a:鐘形口區 1b:進場區 1c:壓縮區 1d:定徑區 1e:後釋放區 1f:出口區 1h:模孔 1p,1y:中心線 1z:模研削面 11a,11b,11c:基準點 12a,12b,12c,13a,13b,13c:切線 101,102,103,104:線 110,120:箭頭 201,202,203,204:圓弧曲線 210:交點 31,41:壁面 501,502:點
[圖1]係依據實施方式之拉絲模之剖視圖。 [圖2]係沿著圖1中之II-II線所得之剖視圖。 [圖3]係用以說明定徑區1d內之表面粗糙度之測定方法之圖。 [圖4]係表示模孔1h及填充於模孔1h中之複製品300之剖視圖。
1:模
1a:鐘形口區(bell)
1b:進場區(approach)
1c:壓縮區
1d:定徑區
1e:後釋放區(back relief)
1f:出口區(exit)
1h:模孔
1p:中心線
11a,11b,11c:基準點
12a,12b,12c,13a,13b,13c:切線
D:模孔直徑
L:定徑區長度
RD:壓縮區直徑
α:鐘形口區角度
β:進場區角度
γ:壓縮區角度
θ:後釋放區角度
Φ:出口區角度

Claims (6)

  1. 一種拉絲模,其由非金剛石材料構成,設置有模孔,具有壓縮區(reduction)及位於上述壓縮區之下游側之定徑區(bearing);且 上述壓縮區之上述模孔之開口角度即壓縮區角度為17°以下,於垂直於拉絲方向之上述模孔之圓周方向上,從上述定徑區內之特定位置起算±20 μm之範圍中之上述模孔的表面粗糙度Ra為0.025 μm以下。
  2. 如請求項1之拉絲模,其中,上述非金剛石材料包含CBN、或者選自由鈦、矽、鋁及鉻所組成之群中至少一種之氮化物或碳化物。
  3. 如請求項1或2之拉絲模,其中,將上述定徑區之直徑設為D時,上述定徑區之長度L為200%D以下。
  4. 如請求項1或2之拉絲模,其縮面率為5%以上。
  5. 如請求項1或2之拉絲模,其中,模於上述壓縮區與母線材初次接觸,於包含上述定徑區之50%D以上之長度內與線材接觸。
  6. 如請求項1或2之拉絲模,其熱導率為100至300 W/(m∙K)。
TW110130299A 2020-08-24 2021-08-17 拉絲模 TW202212021A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP2020-140863 2020-08-24
JP2020140863 2020-08-24

Publications (1)

Publication Number Publication Date
TW202212021A true TW202212021A (zh) 2022-04-01

Family

ID=80353123

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110130299A TW202212021A (zh) 2020-08-24 2021-08-17 拉絲模

Country Status (7)

Country Link
US (1) US20230321704A1 (zh)
EP (1) EP4173735A1 (zh)
JP (1) JPWO2022044802A1 (zh)
KR (1) KR20230055400A (zh)
CN (1) CN115989096A (zh)
TW (1) TW202212021A (zh)
WO (1) WO2022044802A1 (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698405A (en) 1980-01-10 1981-08-07 Sumitomo Electric Ind Ltd Sintered body for wire drawing die and preparation thereof
JPH026011A (ja) 1988-06-24 1990-01-10 Kobe Steel Ltd 線引用ダイス
JPH02127912A (ja) 1988-11-07 1990-05-16 Kobe Steel Ltd 線引きダイス
JPH038518A (ja) * 1989-06-02 1991-01-16 Kobe Steel Ltd 線引用ダイス
JPH04147713A (ja) 1990-10-12 1992-05-21 Osaka Diamond Ind Co Ltd 伸線用ダイスの製作法並びに伸線用ダイス
JP4270515B2 (ja) * 2005-09-27 2009-06-03 住友電工ハードメタル株式会社 伸線ダイス用素材及び伸線ダイス
EP2752398B1 (en) 2011-08-30 2019-02-06 Sumitomo Electric Industries, Ltd. Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
JP6159064B2 (ja) 2012-08-08 2017-07-05 住友電気工業株式会社 立方晶窒化ホウ素複合多結晶体及び切削工具、線引きダイス、ならびに研削工具
KR101379361B1 (ko) 2012-09-12 2014-03-28 인천대학교 산학협력단 술폰산 기를 갖는 이온성 액체가 함유된 고분자 전해질 막 및 이의 제조방법
EP3536414B1 (en) * 2016-12-26 2023-02-01 A.L.M.T. Corp. Atypically-shaped diamond die
JP2020140863A (ja) 2019-02-28 2020-09-03 株式会社Gsユアサ 蓄電素子

Also Published As

Publication number Publication date
US20230321704A1 (en) 2023-10-12
EP4173735A1 (en) 2023-05-03
JPWO2022044802A1 (zh) 2022-03-03
CN115989096A (zh) 2023-04-18
WO2022044802A1 (ja) 2022-03-03
KR20230055400A (ko) 2023-04-25

Similar Documents

Publication Publication Date Title
US7828628B2 (en) Method of polishing hard crystal substrate
KR101719175B1 (ko) 스크라이빙 휠 및 그의 제조 방법
Huang et al. Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping
Chen et al. Relationship between mechanical properties and processing performance of agglomerated diamond abrasive compared with single diamond abrasive
CN112513348B (zh) SiC晶片和SiC晶片的制造方法
WO2005122225A1 (ja) シリコンウエハの製造方法
CN103158060A (zh) 研磨刷、玻璃基板的端面研磨方法、及玻璃基板的制造方法
JP2020017627A (ja) SiCウェハ及びSiCウェハの製造方法
JP6800160B2 (ja) 伸線ダイス
TWI704105B (zh) 鑽石多晶體及具備其之工具
TW202212021A (zh) 拉絲模
JP6687231B2 (ja) 研磨工具及びその製造方法並びに研磨物の製造方法
JP6293856B2 (ja) スクライビングホイール
CN107848002B (zh) 金刚石拉丝模
CN110933945B (zh) 金刚石多晶体及包含该金刚石多晶体的工具
KR101311346B1 (ko) 소우 와이어
KR102665048B1 (ko) 성형 몰드 및 그 제조 방법
JP7300248B2 (ja) SiCウェハ及びSiCウェハの製造方法
US6984167B2 (en) Polishing agent and lapping method
US20070281183A1 (en) Film formation method, die, and method of manufacturing the same
Ichida Profile grinding of high-speed steel using ultrafine-crystalline cBN wheels
WO2023084988A1 (ja) 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法
WO2023084987A1 (ja) 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法
US20240135970A1 (en) Magnetic disk substrate, magnetic disk, annular-shaped substrate, and method for manufacturing magnetic disk substrate
JP2001009625A (ja) 仕上げ用ボールエンドミル