WO2023084988A1 - 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法 - Google Patents

接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法 Download PDF

Info

Publication number
WO2023084988A1
WO2023084988A1 PCT/JP2022/038211 JP2022038211W WO2023084988A1 WO 2023084988 A1 WO2023084988 A1 WO 2023084988A1 JP 2022038211 W JP2022038211 W JP 2022038211W WO 2023084988 A1 WO2023084988 A1 WO 2023084988A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
crystal diamond
wear
length
boundary
Prior art date
Application number
PCT/JP2022/038211
Other languages
English (en)
French (fr)
Inventor
均 角谷
真和 李
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023559497A priority Critical patent/JPWO2023084988A1/ja
Publication of WO2023084988A1 publication Critical patent/WO2023084988A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion

Definitions

  • the present disclosure relates to a contactor and a method for evaluating microwear characteristics of single crystal diamond using the contactor.
  • This application claims priority based on Japanese application No. 2021-183404 filed on November 10, 2021, and incorporates all the descriptions described in the Japanese application.
  • single-crystal diamond for industrial use, the distribution of nitrogen impurities and crystal defects varies from crystal to crystal, and even within the same crystal, the wear characteristics differ from region to region when viewed in minute regions. Therefore, when using single-crystal diamond as a tool material for precision machining, it is important to fully understand the difference in wear characteristics between minute regions within the same crystal.
  • Non-Patent Document 1 a method using a cast iron wheel having a small diameter and a V-shaped cutting edge or a metal-bonded diamond grinding wheel is known (Non-Patent Document 1, Non-Patent Document 2).
  • the contacts of the present disclosure are An annular contact made of polycrystalline diamond composed of a plurality of diamond particles, It is configured so that the rotation axis passes through the center, a first portion having a constant radial thickness and including an inner end; a second portion having a radially decreasing thickness and including an outer end; The second part is a first surface continuous with the top surface of the first portion; a second surface continuous with the bottom surface of the first portion; and a connection surface connecting the first surface and the second surface and including the outer end portion.
  • the plurality of diamond particles have an average particle size of 10 nm or more and 300 nm or less.
  • the evaluation method of the present disclosure is A method for evaluating wear characteristics in microregions of single crystal diamond, comprising: a first step of forming wear marks on the single-crystal diamond by pressing the single-crystal diamond against the outer end portion while rotating the contactor; and a second step of evaluating wear characteristics in a minute region of the single crystal diamond based on the length of the wear scar.
  • FIG. 1 is a photograph substitute view showing the appearance of an example of a contactor according to an embodiment of the present disclosure.
  • FIG. 2 is a top view of an example contact in accordance with an embodiment of the present disclosure; 3 is a cross-sectional view of the contact shown in FIG. 2, taken along line XI-XI. 4 is an enlarged view of the contact second portion shown in FIG. 3.
  • FIG. FIG. 5 is a cross-sectional view of a second portion according to another embodiment of the present disclosure;
  • FIG. 6 is an overview diagram of a wear test apparatus used in a method of evaluating wear characteristics in microregions of single crystal diamond according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram showing the ⁇ 100> direction and the ⁇ 110> direction of the (001) plane of single crystal diamond.
  • FIG. 8 is a diagram substituting for a photograph showing wear scars formed in Example 1.
  • FIG. 9 is a photograph-substitute drawing showing wear marks formed in Example 2.
  • FIG. 10 is a graph showing the relationship between test numbers and wear scar lengths in Examples 1 and 2;
  • FIG. 11 is a diagram in place of a photograph showing an ultraviolet-excited fluorescence image of the specimen A.
  • FIG. FIG. 12 is a graph showing the relationship between the test number and the wear scar length for the specimen A.
  • FIG. FIG. 13 is a photograph substitute view showing an ultraviolet-excited fluorescence image of the specimen B.
  • FIG. FIG. 14 is a graph showing the relationship between the test number and the wear scar length in test piece B.
  • Non-Patent Document 1 Since the cast iron wheel described in Non-Patent Document 1 is softer than the single crystal diamond, the cutting edge tends to lose its shape during the wear test, and wear marks are not left depending on the wear direction. In addition, the diamond powder of the abrasive is blown away, and the sharpness is quickly dulled. For this reason, it is difficult to quantitatively and appropriately evaluate wear characteristics in minute regions of single-crystal diamond.
  • an object of the present disclosure is to provide a contactor used in a method of evaluating wear characteristics in a minute region of single crystal diamond and a method of evaluating wear characteristics in a minute region of single crystal diamond using the same.
  • the contactor of the present disclosure is An annular contact made of polycrystalline diamond composed of a plurality of diamond particles, It is configured so that the rotation axis passes through the center, a first portion having a constant radial thickness and including an inner end; a second portion having a radially decreasing thickness and including an outer end; The second part is a first surface continuous with the top surface of the first portion; a second surface continuous with the bottom surface of the first portion; and a connection surface connecting the first surface and the second surface and including the outer end portion.
  • the plurality of diamond particles have an average particle size of 10 nm or more and 300 nm or less.
  • the Knoop hardness of the polycrystalline diamond may be 120 GPa or more. According to this, the accuracy of evaluation of microwear characteristics is improved.
  • a line of intersection between the connecting surface and the cross section including the rotating shaft may be a straight line. According to this, the evaluation results of microwear characteristics are stabilized.
  • the length from the rotating shaft to the outer end is longer than the length from the rotating shaft to the first boundary and is longer than the length from the rotating shaft to the second boundary. good. According to this, the evaluation results of microwear characteristics are stabilized.
  • the evaluation method of the present disclosure is A method for evaluating wear characteristics in microregions of single crystal diamond, comprising: a first step of forming wear marks on the single-crystal diamond by pressing the single-crystal diamond against the outer end portion while rotating the contactor; and a second step of evaluating wear characteristics in a minute region of the single crystal diamond based on the length of the wear scar.
  • the single crystal diamond has a flat surface;
  • the first step is A 1-1 step of arranging the single crystal diamond so that the plane faces the contact and is parallel to the rotation axis; and a step 1-2 of pressing the single crystal diamond against the outer end portion by applying a load in the direction normal to the third plane to the single crystal diamond.
  • the third plane may be the (001) plane, and the wear scar may be parallel to the ⁇ 100> direction of the (001) plane. According to this, the accuracy of evaluation of microwear characteristics is improved.
  • FIGS. 3, 4, and 5 are compressed in the vertical direction.
  • FIG. 1 A contact according to an embodiment of the present disclosure (hereinafter also referred to as "this embodiment") will be described with reference to FIGS. 1 to 5.
  • FIG. The contact 1 of the present embodiment is an annular contact 1 made of polycrystalline diamond composed of a plurality of diamond particles, configured so that the rotation axis R passes through the center, a first portion 2 having a constant thickness in the radial direction and including an inner end; comprising a second portion 3 having a radially decreasing thickness and including an outer end 3A;
  • the second part 3 is A first surface 31 continuous with the upper surface of the first portion 2, a second surface 32 continuous with the lower surface of the first portion 2, and a connection that connects the first surface 31 and the second surface 32 and includes the outer end portion 3A.
  • An angle ⁇ formed by a first line segment indicating the first surface 31 and a second line segment indicating the second surface 32 in a cross section along the rotation axis R is 100° or more and 150° or less,
  • the length between the first boundary portion 31A, which is the boundary between the first surface 31 and the connection surface 33, and the second boundary portion 32A, which is the boundary between the second surface 32 and the connection surface 33, is 1 ⁇ m or more and 10 ⁇ m or less.
  • the length from the rotation axis R to the outer end portion 3A is 0.5 mm or more and 5 mm or less,
  • the average particle size of the plurality of diamond particles is 10 nm or more and 300 nm or less.
  • the contactor of this embodiment is made of polycrystalline diamond made up of a plurality of diamond grains.
  • polycrystalline diamond composed of a plurality of diamond grains means polycrystalline diamond in which diamond grains are directly bonded to each other.
  • Polycrystalline diamond is a polycrystalline body consisting of a diamond single phase without including a binding phase (binder) formed by one or both of a sintering aid and a binding material generally used in diamond sintered bodies.
  • the above polycrystalline diamond can contain unavoidable impurities in addition to diamond components as long as the effects of the present disclosure are achieved.
  • the unavoidable impurities include hydrogen (H), oxygen (O), nitrogen (N), sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), and sulfur (S). , chlorine (Cl), potassium (K), calcium (Ca), titanium (Ti), iron (Fe), molybdenum (Mo) and the like.
  • the content of the diamond component in the polycrystalline diamond is preferably 99% by volume or more.
  • Polycrystalline diamond is composed of diamond components and inevitable impurities, and the content of diamond components in polycrystalline diamond is preferably 99% by volume or more. It can be confirmed by the X-ray diffraction method that the polycrystalline diamond contains 99% by volume or more of the diamond component. The fact that the polycrystalline diamond does not contain a binder phase can be confirmed by observing the surface of the polycrystalline diamond with an optical microscope or an electron microscope.
  • the average particle diameter of the plurality of diamond particles constituting the polycrystalline diamond (hereinafter also referred to as "average particle diameter of diamond particles”) is 10 nm or more and 300 nm or less. That is, the polycrystalline diamond is a nanopolycrystalline diamond (NPD: Nano Polycrystalline Diamond) in which fine diamond particles of several tens of nanometers level are strongly bonded.
  • NPD Nano Polycrystalline Diamond
  • the hardness of polycrystalline diamond has no orientation dependence, and the polycrystalline diamond has higher hardness and strength than single crystal diamond.
  • the lower limit of the average particle diameter of the diamond particles is 10 nm or more, may be 20 nm or more, or may be 30 nm or more, from the viewpoint of obtaining the mechanical strength peculiar to diamond.
  • the upper limit of the average particle size of the diamond particles is 300 nm or less, and even if it is 200 nm or less, from the viewpoint that the polycrystalline diamond 75 can exhibit isotropic hardness and wear resistance in all directions. It may be 100 nm or less.
  • the average particle size of the diamond particles is 10 nm or more and 300 nm or less, may be 20 nm or more and 200 nm or less, or may be 30 nm or more and 100 nm or less.
  • the average particle size of the diamond particles is obtained by a cutting method using a scanning electron microscope (SEM). Specifically, first, a scanning electron microscope is used to observe polycrystalline diamond at a magnification of 1,000 to 100,000 times to obtain an SEM image.
  • SEM scanning electron microscope
  • the number of crossings of the crystal grain boundaries of the diamond grains is counted for each of the above straight lines, and the average intercept length is obtained by dividing the length of the straight line by the number of crossings, and 1.128 is added to the average intercept length.
  • the numerical value obtained by multiplication be an average particle diameter.
  • the above measurements are performed on three SEM images, and the average particle size is obtained for each of the three SEM images.
  • the average value of the average particle diameters of three SEM images is defined as the average particle diameter of diamond particles in this specification.
  • the hardness of the polycrystalline diamond forming the contactor of this embodiment may be equal to or greater than the hardness of the single-crystal diamond 75 .
  • the hardness of the single crystal diamond 75 varies from 70 to 120 GPa depending on the plane orientation. Therefore, the Knoop hardness of the polycrystalline diamond may be 120 GPa or more, 125 GPa or more, or 130 GPa or more. Although the upper limit of the Knoop hardness of polycrystalline diamond is not particularly limited, it can be 160 GPa or less from the viewpoint of manufacturing. The Knoop hardness of the polycrystalline diamond may be 120 GPa or more and 160 GPa or less, 125 GPa or more and 155 GPa or less, or 130 GPa or more and 150 GPa or less.
  • the contactor 1 includes a first portion 2 and a second portion 3 that is continuous with the first portion 2 and surrounds the outer periphery of the first portion 2.
  • the length of the second portion 3 in the direction of the rotation axis R decreases toward the outer end portion 3A.
  • L1, L2, and L3 are set in order from the rotation axis, it means that the relationship L1>L2>L3 is shown.
  • the contactor 1 has a circular diameter when viewed from above.
  • the maximum length of the contactor 1 in the direction of the rotation axis R is not particularly limited, it can be, for example, 0.2 mm or more and 2 mm or less.
  • the length r1 in the direction perpendicular to the rotation axis R between the rotation axis R of the contactor 1 and the outer end portion 3A is 0.5 mm or more and 5 mm or less. According to this, the handling of the contactor 1 is easy, and a minute wear mark can be formed on the single-crystal diamond 75 .
  • the lower limit of the length r1 is 0.5 mm or more, may be 1 mm or more, or may be 1.5 mm or more, from the viewpoint of ease of handling of the contactor 1.
  • the upper limit of the length r1 is 5 mm or less, may be 3 mm or less, or may be 2 mm or less from the viewpoint of forming minute abrasion marks.
  • the length r1 is 0.5 mm or more and 5 mm or less, may be 1 mm or more and 3 mm or less, or may be 1.5 mm or more and 2 mm or less.
  • the angle ⁇ formed by the first surface 31 and the second surface 32 of the contactor 1 is 100° or more and 150° or less.
  • a length D in the direction of the rotation axis R between the second surface 32 and the second boundary portion 32A that is the boundary between the second surface 32 and the connection surface 33 is 1 ⁇ m or more and 10 ⁇ m or less.
  • the angle ⁇ formed between the first surface 31 and the second surface 32 is an angle formed between virtual planes obtained by enlarging the first surface 31 and the second surface 32, as indicated by the dotted line in FIG. means According to this, the wear marks formed on the single-crystal diamond 75 become clear, and a stable wear test becomes possible.
  • the step of forming wear scars on the single-crystal diamond 75 using the contactor 1, which is performed to evaluate the microwear characteristics of the single-crystal diamond 75 is also referred to as a wear test.
  • the lower limit of the angle ⁇ is 100° or more, and may be 110° or more.
  • the upper limit of the angle ⁇ is 150° or less, and may be 140° or less, from the viewpoint of forming clear wear marks.
  • the angle ⁇ is 100° or more and 150° or less, and may be 110° or more and 140° or less.
  • the lower limit of the length D is 1 ⁇ m or more, and may be 2 ⁇ m or more, from the viewpoint of maintaining the shape of the contactor outer end portion 3A during the wear test.
  • the upper limit of the length D is 10 ⁇ m or less, and may be 8 ⁇ m or less, from the viewpoint of forming a clear wear scar.
  • the length D is 1 ⁇ m or more and 10 ⁇ m or less, and may be 2 ⁇ m or more and 8 ⁇ m or less.
  • the line of intersection between the connecting surface 33 and the cross section including the rotation axis R may be a straight line. According to this, a stable wear test becomes possible. Therefore, variations in the evaluation results of microwear characteristics are suppressed, and the evaluation results are stabilized.
  • the length from the rotation axis R to the outer end 3A is greater than the length from the rotation axis R to the first boundary 31A, and the length from the rotation axis R to the second boundary 32A. It can be larger than the length. According to this, a stable wear test becomes possible. Therefore, variations in the evaluation results of microwear characteristics are suppressed, and the evaluation results are stabilized.
  • the radius of the arc may be 1 ⁇ m or more and 10 ⁇ m or less, or 2 ⁇ m or more and 8 ⁇ m or less.
  • the first portion 2 of the contactor 1 preferably includes a hole formed in a portion corresponding to the rotation axis R. According to this, a spindle can be inserted into the hole in a wear test.
  • the contact 1 can also comprise a shaft fixed to the first part 2 .
  • high-purity graphite (purity of 99.9% or more) is used as a starting material and sintered by a direct conversion method under ultrahigh pressure to synthesize polycrystalline diamond.
  • the sintering conditions can be, for example, a temperature of 2200 to 2300° C., a pressure of 15 to 16 GPa, and a sintering time of 10 to 30 minutes.
  • the obtained polycrystalline diamond is formed into the shape of the contactor of the present embodiment by laser processing and grinding and polishing processing with a diamond whetstone to obtain the contactor.
  • FIG. 6 is a general view of a wear tester used in the method for evaluating minute wear characteristics of this embodiment.
  • the wear test device includes a machining center 60 and a sample holder 70 .
  • the machining center 60 has a spindle 61 and a fixing screw 62 for fixing the contactor 1 to the spindle 61 .
  • the sample holder 70 includes a jig 76 for holding a single crystal diamond 75 , an air cylinder 71 for moving the jig 76 in the direction of the contactor 1 , and a linear guide 72 arranged around the air cylinder 71 .
  • the evaluation method of the wear characteristics in the minute region of the single crystal diamond of the present embodiment is as follows. A first step of forming wear marks on the single-crystal diamond 75 by pressing the single-crystal diamond 75 against the outer end portion 3A while rotating the contactor 1 according to Embodiment 1; and a second step of evaluating the wear characteristics in the minute region of the single-crystal diamond 75 based on the length of the wear scar.
  • a spindle 61 of a machining center 60 is inserted into the hole of the contactor 1 and fixed with a fixing screw 62 . Since the contactor 1 is fixed to the spindle 61, when the spindle 61 is rotated, the contactor 1 rotates in synchronization therewith.
  • the rotation speed is preferably 100 rpm or more and 1000 rpm or less and/or a peripheral speed of 1 m/min or more and 10 m/min or less from the viewpoint of suppressing thermal reaction wear.
  • the contactor 1 is fixed to the spindle 61 by the fixing screw 62 in FIG. 6, the method of fixing the contactor 1 and the spindle 61 is not limited to this.
  • contactor 1 and spindle 61 can be fixed using an adhesive.
  • a single crystal diamond 75 is fixed to the jig 76 of the sample holding part 70 .
  • An air cylinder 71 is installed in the direction opposite to the direction in which the single crystal diamond 75 is fixed to the jig 76 .
  • a load is applied to the air cylinder 71 in the direction of arrow b, causing the air cylinder 71 to move the contactor 1.
  • move in the direction of As a result, the single-crystal diamond 75 is pressed against the outer end portion 3A of the contactor 1, and a wear mark is formed on the single-crystal diamond 75.
  • the pressing pressure is preferably 0.1 MPa or more and 0.2 MPa or less.
  • the pressing time is preferably 60 seconds.
  • the single-crystal diamond 75 has a plane 77, and the first step is to arrange the single-crystal diamond 75 so that the plane 77 faces the contactor 1 and is parallel to the rotation axis R. 1-1 and a 1-2 step of pressing the single crystal diamond 75 against the outer end portion 3A of the contactor 1 by applying a load in the direction normal to the plane 77 to the single crystal diamond 75. . According to this, the accuracy of the microwear test is improved.
  • the plane 77 of the single-crystal diamond 75 is the (001) plane, and the wear marks may be parallel to the ⁇ 100> direction of the (001) plane. According to this, the accuracy of the microwear test is improved.
  • the plurality of wear marks may be substantially parallel, and the distance between the wear marks may be 0.05 mm or more and 0.1 mm or less.
  • the first surface 31 and the second surface 32 of the contactor 1 are directly connected to form a V-shape, and if the connection surface 33 does not exist, the wear trace for evaluation
  • the ⁇ 100> direction of the (001) plane of the single crystal diamond is pretreated 5 times or more under the above wear scar formation conditions (rotation speed, pressing pressure, pressing time).
  • the length D of the end portion 3A is adjusted to 1 ⁇ m or more and 10 ⁇ m or less.
  • ⁇ Second step> the wear characteristics of the single-crystal diamond 75 are evaluated based on the length of the wear marks formed on the single-crystal diamond 75 in the first step.
  • the wear characteristics can be evaluated by the amount of wear (amount removed), the area of the wear scar, or the length of the wear scar. In the present embodiment, evaluation is made based on the easily measurable wear scar length. The length of the wear scar is measured with an optical microscope at an observation magnification of 500 times.
  • the evaluation method for minute wear characteristics of the present embodiment can evaluate the wear characteristics (wear resistance) of minute regions of the single-crystal diamond 75 with high accuracy. As a result, the distribution state of the wear characteristics of the single-crystal diamond 75 due to non-uniform distribution of impurities and crystal defects can be investigated in detail. This evaluation method is useful for selection and quality evaluation of the single crystal diamond 75 when using the single crystal diamond 75 for precision cutting tools such as precision cutting tools and small-diameter end mills.
  • the contact is made of polycrystalline diamond made up of a plurality of diamond grains.
  • the average particle size of the plurality of diamond particles is 50 nm.
  • the Knoop hardness of the polycrystalline diamond is 130 GPa.
  • the conditions for forming wear scars were a contact rotation speed of 313 rpm (peripheral speed of 3.15 m/min), a pressing pressure of 0.1 MPa per wear scar, and a pressing time of 60 seconds.
  • the wear scar spacing on the specimen is 0.1 mm or 0.05 mm.
  • Example 1 Evaluation of microwear properties in ⁇ 100> direction of (001) plane of synthetic type IIa single crystal diamond
  • the contact has a V-shaped outer end (that is, the first surface 31 and the second surface 32 intersect to form an angle ⁇ , and the connecting surface 33 does not exist).
  • the length r1 is 1.6 mm (a circle with a diameter of ⁇ 3.2 mm when viewed from above, the circumference of the second portion is about 10 mm), the angle ⁇ is 120°, and the rotation axis R
  • the maximum length (thickness) in the direction is 0.6 mm.
  • the synthetic type IIa single crystal diamond was evaluated by forming wear marks parallel to the ⁇ 100> direction of the (001) plane.
  • the results are shown as solid lines in the graph of FIG.
  • the horizontal axis indicates the test number
  • the vertical axis indicates the length ( ⁇ m) of the wear scar.
  • the test number corresponds to the number of wear scar formations. For example, test number 5 means the formation of the fifth wear scar.
  • the length of the wear scar gradually shortens until the formation of the fifth wear scar indicated by test number 5.
  • the second portion of the contact before the wear test is in a V-shaped and sharp state, so wear marks are likely to be formed, and as the number of pretreatment tests increases, the tip of the second portion wears out. , it is presumed that wear scars are less likely to be formed.
  • the outer edge becomes flat and the length D of the outer edge becomes about 5 to 6 ⁇ m.
  • the length and width of the wear marks become substantially constant values. It is presumed that this is because the wear resistance of polycrystalline diamond is far superior to that of single crystal diamond in the ⁇ 100> direction of the (001) plane.
  • Example 2 Evaluation of microwear properties in ⁇ 110> direction of (001) plane of synthetic IIa single crystal diamond
  • wear marks were made on the synthetic type IIa single crystal diamond parallel to the ⁇ 110> direction of the (001) plane. formed and evaluated. The results are shown as the dotted line in the graph of FIG.
  • the wear scar becomes shorter as the test number (the number of times the wear scar is formed) increases. This is because the wear resistance of polycrystalline diamond is at the same level as the wear resistance in the ⁇ 110> direction of the (001) plane of single crystal diamond, so the outer end of the contact continues to wear out little by little. It is speculated that
  • Example 3 Comparison of wear characteristics in ⁇ 100> and ⁇ 110> directions of (001) plane of synthetic IIa single crystal diamond
  • the asymptotic value of the wear scar length in the ⁇ 100> direction of the (001) plane of the synthetic IIa single crystal diamond was about 145 to 150 ⁇ m.
  • the wear scar length in the ⁇ 110> direction of the (001) plane of the synthetic IIa single crystal diamond at the start of the test (hereinafter also referred to as " ⁇ 110> wear scar length”
  • ⁇ 110> wear scar length is about 110 to 120 ⁇ m. Therefore, the ⁇ 100> wear scar length is approximately 1.3 times the ⁇ 110> wear scar length, which is approximately 2.2 times the wear volume.
  • Example 4 Evaluation of the relationship between the growth sector of synthetic Ib single crystal diamond and microwear characteristics
  • the contactor has a cross-sectional shape shown in FIG. °, the length D is 5 ⁇ m, and the maximum length (thickness) in the direction of the rotation axis R is 0.6 mm.
  • FIG. 11 is a diagram in place of a photograph showing an ultraviolet-excited fluorescence image of the specimen A.
  • FIG. FIG. 13 is a photograph substitute view showing an ultraviolet-excited fluorescence image of the specimen B.
  • FIG. 13 shows an ultraviolet-excited fluorescence image superimposed with wear marks observed with an optical microscope.
  • FIG. 12 is a graph showing the relationship between the test number and the wear scar length for the specimen A.
  • test numbers 7 to 12 show wear marks formed in the (111) sector
  • test numbers 13 to 27 show wear marks formed in the (100) sector
  • test numbers 28 indicates a wear scar formed in the (110) sector.
  • FIG. 14 is a graph showing the relationship between the test number and the wear scar length for test piece B.
  • test number 5 indicates wear marks formed in the (110) sector
  • test numbers 6 to 26 indicate wear marks formed in the (100) sector
  • test number 27 indicates wear marks formed in the (110) sector.

Abstract

複数のダイヤモンド粒子で構成された多結晶ダイヤモンドからなる円環状の接触子であって、中心を回転軸が貫通するように構成され、径方向に一定の厚みを有し内端部を含む第1部分と、径方向に減少する厚みを有し外端部を含む第2部分を備え、前記第2部分は、前記第1部分の上面と連続する第1面と、前記第1部分の下面と連続する第2面と、前記第1面と前記第2面とを接続し前記外端部を含む接続面とを有し、前記回転軸に沿った断面において、前記第1面を示す第1線分と前記第2面を示す第2線分とが成す角度θは100°以上150°以下であり、前記第1面と前記接続面との境界である第1境界部と、前記第2面と前記接続面との境界である第2境界部との間の長さは1μm以上10μm以下であり、前記回転軸から前記外端部までの長さは0.5mm以上5mm以下であり、前記複数のダイヤモンド粒子の平均粒径は、10nm以上300nm以下である、接触子。

Description

接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法
 本開示は、接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法に関する。本出願は、2021年11月10日出願の日本出願2021‐183404号に基づく優先権を主張し、前記日本出願に記載されたすべての記載内容を援用するものである。
工業用の単結晶ダイヤモンドでは、窒素不純物や結晶欠陥の分布状態が結晶毎に異なったり、同一の結晶内でも、微小領域で見ると、領域毎に摩耗特性が異なる。
したがって、特に精密加工用の工具材料として単結晶ダイヤモンドを用いる場合は、同一結晶内での微小領域毎の摩耗特性の相違を十分に把握しておくことが重要である。
 単結晶ダイヤモンドの微小領域での摩耗特性を評価するために、小径でV字型刃先を有する鋳鉄ホイールやメタルボンドダイヤモンド砥石ホイールを用いた方法が知られている(非特許文献1、非特許文献2)。
Eileen M.Wilks&J.Wilks.(1959)."The Resistance of Diamond to Abrasion".Philosophical.Magazine,4:38,158-170. E M Wilks and J Wilks.(1972)."The resistance of diamond to abrasion".Journal of Physics D:Applied Physics,5,1902-1919.
 本開示の接触子は、
 複数のダイヤモンド粒子で構成された多結晶ダイヤモンドからなる円環状の接触子であって、
中心を回転軸が貫通するように構成され、
径方向に一定の厚みを有し内端部を含む第1部分と、
径方向に減少する厚みを有し外端部を含む第2部分を備え、
前記第2部分は、
前記第1部分の上面と連続する第1面と、前記第1部分の下面と連続する第2面と、前記第1面と前記第2面とを接続し前記外端部を含む接続面とを有し、
前記回転軸に沿った断面において
前記第1面を示す第1線分と前記第2面を示す第2線分とが成す角度θは100°以上150°以下であり、
前記第1面と前記接続面との境界である第1境界部と、前記第2面と前記接続面との境界である第2境界部との間の長さは1μm以上10μm以下であり、
 前記回転軸から前記外端部までの長さは0.5mm以上5mm以下であり、
前記複数のダイヤモンド粒子の平均粒径は、10nm以上300nm以下である、接触子である。
 本開示の評価方法は、
 単結晶ダイヤモンドの微小領域における摩耗特性の評価方法であって、
 上記の接触子を回転させながら、前記単結晶ダイヤモンドを前記外端部に押しつけることにより、前記単結晶ダイヤモンドに摩耗痕を形成する第1工程と、
 前記摩耗痕の長さに基づき、前記単結晶ダイヤモンドの微小領域における摩耗特性を評価する第2工程と、を備える、評価方法である。
図1は、本開示の一実施形態に係る接触子の一例の外観を示す写真代用図である。 図2は、本開示の一実施形態に係る接触子の一例の上面図である。 図3は、図2に示される接触子のXI-XI線断面図である。 図4は、図3に示される接触子第2部分の拡大図である。 図5は、本開示の他の実施形態に係る第2部分の断面図である。 図6は、本開示の一実施形態に係る単結晶ダイヤモンドの微小領域における摩耗特性の評価方法に用いられる摩耗試験装置の概観図である。 図7は、単結晶ダイヤモンドの(001)面の<100>方向及び<110>方向を示す図である。 図8は、実施例1で形成された摩耗痕を示す写真代用図である。 図9は、実施例2で形成された摩耗痕を示す写真代要図である。 図10は、実施例1及び実施例2における試験番号と摩耗痕長さとの関係を示すグラフである。 図11は、試験体Aの紫外線励起蛍光像を示す写真代用図である。 図12は、試験体Aにおける試験番号と摩耗痕長さとの関係を示すグラフである。 図13は、試験体Bの紫外線励起蛍光像を示す写真代用図である。 図14は、試験体Bにおける試験番号と摩耗痕長さとの関係を示すグラフである。
  [本開示が解決しようとする課題]
 非特許文献1に記載の鋳鉄ホイールは単結晶ダイヤモンドに対して柔らかいため、摩耗試験中に刃先が型崩れしやすく摩耗方向によっては摩耗痕が付かない。また、研磨材のダイヤモンド粉末が飛ばされ、切れ味がすぐに鈍化してしまう。このため、単結晶ダイヤモンドの微小領域における摩耗特性を定量的に、適切に評価することは難しい。
 特許文献2に記載のメタルボンドダイヤモンド砥石ホイールは、単結晶ダイヤモンド材料に対して用いた場合、ダイヤモンド砥粒が脱落しやすく、刃先形状が崩れやすい。加えて、ダイヤモンド砥粒の粒度や強度のバラツキにより、刃先の研削性能が安定しない。このため、単結晶ダイヤモンドの微小領域における摩耗特性を定量的に、適切に評価することは難しい。
 そこで、本開示は、単結晶ダイヤモンドの微小領域における摩耗特性の評価方法に用いられる接触子及びこれを用いた単結晶ダイヤモンドの微小領域における摩耗特性の評価方法を提供することを目的とする。
  [本開示の効果]
 本開示によれば、単結晶ダイヤモンドの微小領域における摩耗特性に用いられる接触子を提供することが可能となる。更に該接触子を用いて単結晶ダイヤモンドの微小領域における摩耗特性を評価することが可能となる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の接触子は、
 複数のダイヤモンド粒子で構成された多結晶ダイヤモンドからなる円環状の接触子であって、
中心を回転軸が貫通するように構成され、
径方向に一定の厚みを有し内端部を含む第1部分と、
径方向に減少する厚みを有し外端部を含む第2部分を備え、
前記第2部分は、
前記第1部分の上面と連続する第1面と、前記第1部分の下面と連続する第2面と、前記第1面と前記第2面とを接続し前記外端部を含む接続面とを有し、
前記回転軸に沿った断面において
前記第1面を示す第1線分と前記第2面を示す第2線分とが成す角度θは100°以上150°以下であり、
前記第1面と前記接続面との境界である第1境界部と、前記第2面と前記接続面との境界である第2境界部との間の長さは1μm以上10μm以下であり、
 前記回転軸から前記外端部までの長さは0.5mm以上5mm以下であり、
前記複数のダイヤモンド粒子の平均粒径は、10nm以上300nm以下である、接触子である。
 本開示によれば、単結晶ダイヤモンドの微小領域における摩耗特性(本明細書において、微小領域における摩耗特性を「微小摩耗特性」とも記す。)を評価することが可能となる。
 (2)前記多結晶ダイヤモンドのヌープ硬度は120GPa以上であってもよい。これによると、微小摩耗特性の評価の精度が向上する。
 (3)前記接続面と前記回転軸を含む断面との交線が直線であってもよい。これによると、微小摩耗特性の評価結果が安定する。
 (4)前記回転軸から前記外端部までの長さは、前記回転軸から前記第1境界部までの長さよりも大きく、かつ前記回転軸から第2境界部までの長さよりも大きくてもよい。これによると、微小摩耗特性の評価結果が安定する。
 (5)本開示の評価方法は、
 単結晶ダイヤモンドの微小領域における摩耗特性の評価方法であって、
 上記の接触子を回転させながら、前記単結晶ダイヤモンドを前記外端部に押しつけることにより、前記単結晶ダイヤモンドに摩耗痕を形成する第1工程と、
 前記摩耗痕の長さに基づき、前記単結晶ダイヤモンドの微小領域における摩耗特性を評価する第2工程と、を備える、評価方法である。
 本開示によれば、単結晶ダイヤモンドの微小領域における摩耗特性を評価することが可能となる。
 (6)前記単結晶ダイヤモンドは平面を有し、
 前記第1工程は、
  前記単結晶ダイヤモンドを、前記平面が、前記接触子と対向し、かつ、前記回転軸と平行になるように配置する第1-1工程と、
  前記単結晶ダイヤモンドに対して前記第3の平面の法線方向の荷重を加えることにより、前記単結晶ダイヤモンドを前記外端部に押しつける第1-2工程と、を含んでいてもよい。
 これによると、微小摩耗特性の評価の精度が向上する。
 (7)前記第3の平面は(001)面であり、前記摩耗痕は、前記(001)面の<100>方向に平行であってもよい。これによると、微小摩耗特性の評価の精度が向上する。
 [本開示の実施形態の詳細]
 本開示の接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法について、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。なお、説明の都合上、図3、図4、図5は縦方向に圧縮されている。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 [実施形態1:接触子]
 本開示の一実施形態(以下、「本実施形態」とも記す。)の接触子について、図1~図5を用いて説明する。本実施形態の接触子1は、複数のダイヤモンド粒子で構成された多結晶ダイヤモンドからなる円環状の接触子1であって、
中心を回転軸Rが貫通するように構成され、
径方向に一定の厚みを有し内端部を含む第1部分2と、
径方向に減少する厚みを有し外端部3Aを含む第2部分3を備え、
第2部分3は、
第1部分2の上面と連続する第1面31と、第1部分2の下面と連続する第2面32と、第1面31と第2面32とを接続し外端部3Aを含む接続面33とを有し、
回転軸Rに沿った断面において
第1面31を示す第1線分と第2面32を示す第2線分とが成す角度θは100°以上150°以下であり、
第1面31と接続面33との境界である第1境界部31Aと、第2面32と接続面33との境界である第2境界部32Aとの間の長さは1μm以上10μm以下であり、
回転軸Rから外端部3Aまでの長さは0.5mm以上5mm以下であり、
前記複数のダイヤモンド粒子の平均粒径は、10nm以上300nm以下である。
 本実施形態の接触子は、複数のダイヤモンド粒子からなる多結晶ダイヤモンドからなる。ここで、複数のダイヤモンド粒子からなる多結晶ダイヤモンドとは、ダイヤモンド粒子同士が直接結合した多結晶ダイヤモンドを意味する。多結晶ダイヤモンドは、ダイヤモンド焼結体に一般的に用いられる焼結助剤及び結合材の一方又は両方により形成される結合相(バインダー)を含まず、ダイヤモンド単相からなる多結晶体である。
 上記多結晶ダイヤモンドは、本開示の効果を奏する限り、ダイヤモンド成分以外に、不可避不純物を含むことができる。該不可避不純物としては、水素(H)、酸素(O)、窒素(N)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、珪素(Si)、リン(P)、硫黄(S)、塩素(Cl)、カリウム(K)、カルシウム(Ca)、チタン(Ti)、鉄(Fe)、モリブデン(Mo)等が挙げられる。
 上記多結晶ダイヤモンドのダイヤモンド成分の含有率は、99体積%以上が好ましい。
多結晶ダイヤモンドは、ダイヤモンド成分と、不可避不純物と、からなり、多結晶ダイヤモンドのダイヤモンド成分の含有率は99体積%以上が好ましい。多結晶ダイヤモンドがダイヤモンド成分を99体積%以上含むことは、X線回折法により確認することができる。多結晶ダイヤモンドが結合相を含まないことは、多結晶ダイヤモンドの表面を光学顕微鏡や電子顕微鏡で観察することにより確認することができる。
 上記多結晶ダイヤモンドを構成する複数のダイヤモンド粒子の平均粒径(以下、「ダイヤモンド粒子の平均粒径」とも記す。)は、10nm以上300nm以下である。すなわち、上記多結晶ダイヤモンドは、数十nmレベルの微細なダイヤモンド粒子が強固に結合したナノ多結晶ダイヤモンド(NPD:Nano Polycrystalline Diamond)である。多結晶ダイヤモンドの硬度には方位依存性がなく、上記多結晶ダイヤモンドは単結晶ダイヤモンドより高い硬度と強度を備えている。
 上記ダイヤモンド粒子の平均粒径の下限は、ダイヤモンド特有の機械的強度を得られるという観点から、10nm以上であり、20nm以上であってもよく、30nm以上であってもよい。上記ダイヤモンド粒子の平均粒径の上限は、多結晶ダイヤモンド75が全方位に対して等方的な硬度及び耐摩耗性を示すことができるという観点から、300nm以下であり、200nm以下であってもよく、100nm以下であってもよい。上記ダイヤモンド粒子の平均粒径は、10nm以上300nm以下であり、20nm以上200nm以下であってもよく、30nm以上100nm以下であってもよい。
 上記ダイヤモンド粒子の平均粒径は、走査電子顕微鏡(SEM)を用いた切断法により求められる。具体的には、まず走査電子顕微鏡を用いて多結晶ダイヤモンドを1000~100000倍の倍率で観察し、SEM画像を得る。
 次にそのSEM画像に円を描き、その円の中心から8本の直線を放射状(各直線間の交差角度がほぼ等しくなるよう)に円の外周まで引く。この場合、上記の観察倍率及び円の直径は、上記の直線1本あたりが横切るダイヤモンド粒子(結晶粒子)の個数が10~50個程度になるように設定する。
 次に、上記の各直線毎にダイヤモンド粒子の結晶粒界を横切る数を数え、直線の長さをその横切る数で割ることにより平均切片長さを求め、その平均切片長さに1.128をかけて得られる数値を平均粒径とする。上記の測定を3枚のSEM画像で行い、3枚のSEM画像毎に平均粒径を求める。3枚のSEM画像の平均粒径の平均値を、本明細書におけるダイヤモンド粒子の平均粒径とする。
 なお、同一の試料において測定する限りにおいては、測定視野の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 接触子1を用いて単結晶ダイヤモンド75の微小領域における摩耗特性を評価する際には、接触子1を回転軸Rを中心に回転させながら、接触子1の外端部3Aを単結晶ダイヤモンド75に接触させて、単結晶ダイヤモンド75に摩耗痕を形成する。よって、本実施形態の接触子を構成する多結晶ダイヤモンドの硬度は、単結晶ダイヤモンド75の硬度と同等でもよいし、またはそれより大きくてもよい。
 単結晶ダイヤモンド75の硬度は、面方位によって70-120GPaと変化する。従って、上記多結晶ダイヤモンドのヌープ硬度は、120GPa以上であってもよく、125GPa以上であってもよく、また、130GPa以上であってもよい。多結晶ダイヤモンドのヌープ硬度の上限は特に制限されないが、製造上の観点から、160GPa以下とすることができる。多結晶ダイヤモンドのヌープ硬度は、120GPa以上160GPa以下であってもよく、125GPa以上155GPa以下であってもよく、また、130GPa以上150GPa以下であってもよい。
 本明細書において、多結晶ダイヤモンドのヌープ硬度の測定は、JIS Z 2251:2009に規定される条件で行われる。具体的には、菱形のヌープ圧子を、多結晶ダイヤモンドの表面に押し込み、試験力4.9Nで10秒間負荷して圧痕をつける。試験温度は23℃±5℃とする。試験力を解除した後、多結晶ダイヤモンドの表面に残った圧痕の長い方の対角線長さa(μm)を測定し、下記式(1)よりヌープ硬度(HK)を算出する。
HK=14229×F/a  式(1)
 図1~図3に示されるように、接触子1は、第1部分2と、第1部分2と連続し、第1部分2の外周を取り囲む第2部分3とを備え、回転軸Rを含む断面において、第2部分3の回転軸R方向の長さは、外端部3Aに向かって減少する。ここで、第2部分3の回転軸R方向の長さは、外端部3Aに向かって減少するとは、図3に示されるように、第2部分3の回転軸R方向の長さを、回転軸から近い順にL1,L2,L3とした場合、L1>L2>L3の関係を示すことを意味する。図2に示されるように、接触子1は、上面視において円径である。接触子1の回転軸R方向の最大長さは特に限定されないが、例えば、0.2mm以上2mm以下とすることができる。
 接触子1の回転軸Rと外端部3Aとの間の回転軸Rに直交する方向の長さr1は、0.5mm以上5mm以下である。これによると、接触子1の取り扱いが容易であり、かつ、単結晶ダイヤモンド75に微小な摩耗痕を形成することができる。
 上記長さr1の下限は、接触子1の取り扱いの容易性の観点から、0.5mm以上であり、1mm以上であってもよく、1.5mm以上であってもよい。上記長さr1の上限は、微小な摩耗痕を形成する観点から、5mm以下であり、3mm以下であってもよく、2mm以下であってもよい。上記長さr1は、0.5mm以上5mm以下であり、1mm以上3mm以下であってもよく、1.5mm以上2mm以下であってもよい。
 接触子1の第1面31と第2面32とがなす角度θは、100°以上150°以下であり、第1面31と接続面33との境界である第1境界部31Aと、第2面32と接続面33との境界である第2境界部32Aとの間の回転軸R方向の長さDは、1μm以上10μm以下である。本明細書において、第1面31と第2面32とのなす角度θとは、図4の点線で示されるように、第1面31及び第2面32を拡大した仮想平面同士のなす角度を意味する。これによると、単結晶ダイヤモンド75に形成される摩耗痕が明瞭となり、かつ、安定した摩耗試験が可能となる。よって、微小摩耗特性の評価結果のバラツキが抑制され、評価結果が安定する。本明細書において、単結晶ダイヤモンド75の微小摩耗特性の評価のために行われる、接触子1を用いて単結晶ダイヤモンド75に摩耗痕を形成する工程を、摩耗試験とも記す。
 上記角度θの下限は、摩耗試験時の外端部3Aの形状の維持の観点から、100°以上であり、110°以上であってもよい。上記角度θの上限は、明瞭な摩耗痕を形成する観点から、150°以下であり、140°以下であってもよい。上記角度θは、100°以上150°以下であり、110°以上140°以下であってもよい。
 上記長さDの下限は、摩耗試験時の接触子外端部3Aの形状の維持の観点から、1μm以上であり、2μm以上であってもよい。上記長さDの上限は、明瞭な摩耗痕を形成する観点から、10μm以下であり、8μm以下であってもよい。上記長さDは、1μm以上10μm以下であり、2μm以上8μm以下であってもよい。
 図4に示されるように、接続面33と回転軸Rを含む断面との交線が直線であってもよい。これによると、安定した摩耗試験が可能となる。よって、微小摩耗特性の評価結果のバラツキが抑制され、評価結果が安定する。
 図5に示されるように、回転軸Rから外端部3Aまでの長さは、回転軸Rから第1境界部31Aまでの長さよりも大きく、かつ回転軸Rから第2境界部32Aまでの長さよりも大きくてもよい。これによると、安定した摩耗試験が可能となる。よって、微小摩耗特性の評価結果のバラツキが抑制され、評価結果が安定する。回転軸Rを含む断面において、接続面33は円弧である場合、該円弧の半径は1μm以上10μm以下であってもよく、2μm以上8μm以下であってもよい。
 図1~図3に示されるように、接触子1の第1部分2は、回転軸Rに相当する部分に形成された穴を含むことが好ましい。これによると、摩耗試験において、該穴にスピンドルを挿入することができる。また、接触子1は、第1部分2に固定された軸を備えることができる。
 本実施形態の接触子の製造方法の一例について説明する。まず、高純度グラファイト(純度99.9%以上)を出発物質として、超高圧下の直接変換法で焼結させて、多結晶ダイヤモンドを合成する。焼結条件は、例えば、温度2200~2300℃、圧力15~16GPa、焼結時間10~30分とすることができる。得られた多結晶ダイヤモンドをレーザー加工と、ダイヤモンド砥石による研削および研磨加工により、本実施形態の接触子の形状に成形して、接触子を得る。
 [実施形態2:単結晶ダイヤモンドの微小領域における摩耗特性の評価方法]
 本実施形態の単結晶ダイヤモンド75の微小領域における摩耗特性の評価方法について、図6を用いて説明する。図6は、本実施形態の微小摩耗特性の評価方法に用いられる摩耗試験装置の概観図である。摩耗試験装置は、マシニングセンタ60と、試料保持部70とを備える。マシニングセンタ60は、スピンドル61と、接触子1をスピンドル61に固定するための固定ネジ62とを備える。試料保持部70は、単結晶ダイヤモンド75を保持するための治具76と、治具76を接触子1方向へ移動させるエアシリンダ71と、エアシリンダ71の周囲に配置されるリニアガイド72とを備える。
 本実施形態の単結晶ダイヤモンドの微小領域における摩耗特性の評価方法は、
 実施形態1に記載の接触子1を回転させながら、単結晶ダイヤモンド75を外端部3Aに押しつけることにより、単結晶ダイヤモンド75に摩耗痕を形成する第1工程と、
 該摩耗痕の長さに基づき、単結晶ダイヤモンド75の微小領域における摩耗特性を評価する第2工程と、を備える、評価方法である。
 <第1工程>
 接触子1の穴にマシニングセンター60のスピンドル61を挿入し、固定ネジ62で固定する。接触子1はスピンドル61に固定されているため、スピンドル61を回転させると、これに同期して接触子1が回転する。回転速度は、熱的反応摩耗の抑制の観点から、100rpm以上1000rpm以下、及び/又は、周速1m/min以上10m/min以下が好ましい。図6では、接触子1は固定ネジ62によりスピンドル61に固定されているが、接触子1とスピンドル61との固定方法はこれに限定されない。例えば、接触子1とスピンドル61とを接着剤を用いて固定することができる。
 試料保持部70の治具76に単結晶ダイヤモンド75を固定する。治具76の単結晶ダイヤモンド75を固定した方向とは反対側の方向には、エアシリンダ71が設置されている。図6の矢印aの方向で示されるように、エアシリンダ71に向けて一定圧のエアーを送り込むことにより、エアシリンダ71に対して矢印bの方向に荷重が加わり、エアシリンダ71が接触子1の方向に移動する。これにより、単結晶ダイヤモンド75が接触子1の外端部3Aに押し付けられ、単結晶ダイヤモンド75に摩耗痕が形成される。押し付け圧は0.1MPa以上0.2MPa以下が好ましい。押し付け時間は60秒が好ましい。
 単結晶ダイヤモンド75は平面77を有し、上記第1工程は、単結晶ダイヤモンド75を、平面77が接触子1と対向し、かつ、回転軸Rと平行になるように配置する第1-1工程と、単結晶ダイヤモンド75に対し平面77の法線方向の荷重を加えることにより、単結晶ダイヤモンド75を接触子1の外端部3Aに押しつける第1-2工程と、を含んでいてもよい。これによると、微小摩耗試験の精度が向上する。単結晶ダイヤモンド75が平面77を有するように加工する際は、単結晶ダイヤモンド75の(100)面を、メタルボンドダイヤモンド砥石又はスカイフで平行研磨することが好ましい。
 単結晶ダイヤモンド75の平面77は(001)面であり、上記摩耗痕は、該(001)面の<100>方向に平行であってもよい。これによると、微小摩耗試験の精度が向上する。
 一つの単結晶ダイヤモンド75に複数の摩耗痕を形成する場合は、複数の摩耗痕は略平行であり、かつ、各摩耗痕の間隔は、0.05mm以上0.1mm以下とすることができる。
 なお、摩耗痕の形成開始前に、接触子1の第1面31と第2面32とが直接接続してV字形状を形成し、接続面33が存在しない場合は、評価用の摩耗痕を形成する前に、単結晶ダイヤモンドの(001)面の<100>方向に対して上記の摩耗痕の形成条件(回転速度、押し付け圧、押し付け時間)で5回以上の前処理を行い、外端部3Aの長さDが1μm以上10μm以下となるように調整する。
 <第2工程>
 第2工程では、第1工程において単結晶ダイヤモンド75に形成された摩耗痕の長さに基づき、単結晶ダイヤモンド75の摩耗特性を評価する。摩耗特性は、摩耗量(除去量)や摩耗痕の面積、あるいは摩耗痕の長さで評価することができる。本実施形態では、簡易に測定可能な摩耗痕の長さで評価する。摩耗痕の長さは、光学顕微鏡にて、観察倍率500倍で計測される。
 本実施形態の微小摩耗特性の評価方法は、単結晶ダイヤモンド75の微小領域の摩耗特性(耐摩耗性)を高精度に評価できる。これにより単結晶ダイヤモンド75の、不純物や結晶欠陥の不均一分布による摩耗特性の分布状態が詳細に調査できる。この評価方法は、単結晶ダイヤモンド75を精密バイトや小径エンドミルなどの精密切削工具に用いる際の、単結晶ダイヤモンド75の選定や品質評価に有用である。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 試験体として、不純物や結晶欠陥をほとんど含まない高純度で無色透明の合成単結晶ダイヤモンド(IIa型、不純物0.1ppm以下)および、通常工業用に生産されている黄色の合成単結晶ダイヤモンド(Ib型、百ppm前後の窒素を孤立置換型不純物として含む)を用いた。各試験体の(100)面を、メタルボンドダイヤモンド砥石あるいはスカイフ板で平行研磨して平面を形成し、該平面上で微小摩耗特性を評価した。
 単結晶ダイヤモンドの摩耗特性には、不純物や結晶欠陥が影響すると推察される。よって、まず、不純物や結晶欠陥をほとんど含まない合成単結晶ダイヤモンド(以下、「合成IIa型単結晶ダイヤモンド」とも記す。)からなる試験体において、本評価方法の妥当性の確認と、接触子の損耗状態及び安定性を調査した(後述の実施例1及び実施例2)。
更に、該合成IIa型単結晶ダイヤモンドの微小摩耗特性の方位による違いを評価した(後述の実施例3)。
 次に、通常工業用に生産されている合成単結晶ダイヤモンド(以下、「合成Ib型単結晶ダイヤモンド」とも記す。)からなる試験体において、成長セクターと微小摩耗特性との関係を調査した(後述の実施例4)。
 以下の全ての実施例において、接触子は複数のダイヤモンド粒子からなる多結晶ダイヤモンドからなる。上記複数のダイヤモンド粒子の平均粒径は50nmである。該多結晶ダイヤモンドのヌープ硬度は130GPaである。
 以下の全ての実施例において、摩耗痕の形成条件は、接触子の回転速度313rpm(周速3.15m/min)、1つの摩耗痕当たりの押し付け圧0.1MPa、押し付け時間60秒である。試験体上の摩耗痕の間隔は、0.1mm又は0.05mmである。
 [実施例1:合成IIa型単結晶ダイヤモンドの(001)面の<100>方向の微小摩耗特性の評価]
 接触子として、実施形態1に記載の接触子を準備した。該接触子は、外端部がV字形状である(すなわち、第1面31と第2面32とが交差して角度θを形成しており、接続面33は存在しない)こと以外は、図3に示される断面形状を有し、長さr1が1.6mm(上面視において、直径φ3.2mmの円状、第2部分の周長約10mm)、角度θは120°、回転軸R方向の最大長さ(厚さ)0.6mmである。
 図7及び図8に示されるように、合成IIa型単結晶ダイヤモンドに対して、(001)面の<100>方向に平行に摩耗痕を形成して評価を行った。その結果を、図10のグラフの実線として示す。図10の座標系において、横軸は試験番号を示し、縦軸は摩耗痕の長さ(μm)を示す。試験番号は、摩耗痕の形成回数に対応する。例えば、試験番号5とは、5回目の摩耗痕の形成を意味する。
 図10に示されるように、試験番号5で示される5回目の摩耗痕の形成までは、摩耗痕の長さが徐々に短くなる。これは、摩耗試験前の接触子の第2部分はV字形状で鋭利な状態であるため、摩耗痕が形成されやすく、前処理試験の回数の増加に伴い、第2部分の先端が摩耗し、摩耗痕が形成されにくくなるためと推察される。5回目の摩耗痕の形成後は、外端部が平坦となり、外端部の長さDが5~6μm程度となる。5回目以降の摩耗痕の形成では、外端部の摩耗がほぼ生じずに安定するため、摩耗痕の長さ及び幅がほぼ一定の値となる。これは、多結晶ダイヤモンドの耐摩耗性は、単結晶ダイヤモンドの(001)面の<100>方向の耐摩耗性に比べてはるかに優れているためと推察される。
 上記より、前処理として5回以上の摩耗痕の形成を行うことで、その後は安定した微小摩耗評価が可能となることが確認された。また、単結晶ダイヤモンドからなる試験体に対して安定した摩耗試験が可能であることが確認された。
 [実施例2:合成IIa単結晶ダイヤモンドの(001)面の<110>方向の微小摩耗特性の評価]
 その後、実施例1と同一の接触子を用いて、図7及び図9に示されるように、合成IIa型単結晶ダイヤモンドに対して、(001)面の<110>方向に平行に摩耗痕を形成して評価を行った。その結果を、図10のグラフの点線として示す。
 図10に示されるように、試験番号(摩耗痕の形成回数)の増加に従い、摩耗痕が短くなる。これは、多結晶ダイヤモンドの耐摩耗性は、単結晶ダイヤモンドの(001)面の<110>方向の耐摩耗性と同レベルであるため、接触子の外端部は、少しずつ摩滅し続けるためと推察される。
 実施例1及び実施例2より、結晶間の耐摩耗性の違いや結晶内の摩耗特性の分布状態を調べる目的では、単結晶ダイヤモンドの(001)面の<100>方向に平行な摩耗痕を形成して評価を行うことが好ましいことが確認された。
 [実施例3:合成IIa単結晶ダイヤモンドの(001)面の<100>と<110>方向の摩耗特性比較]
 実施例1では、合成IIa単結晶ダイヤモンドの(001)面の<100>方向の摩耗痕長(以下、「<100>摩耗痕長」とも記す。)の漸近値は145~150μm程度となっている。一方、実施例2では、試験開始時(試験番号1)の合成IIa単結晶ダイヤモンドの(001)面の<110>方向の摩耗痕長(以下、「<110>摩耗痕長」とも記す。)は110~120μm程度である。したがって、<100>摩耗痕長は<110>摩耗痕長の約1.3倍となり、摩耗体積に換算すると約2.2倍となる。
 上記の結果は、非特許文献2のメタルボンドダイヤモンド砥石ホイールによる実験結果と傾向は同じであるが、本実施形態の接触子は、外端部の摩耗(ヘタリ)が非常に小さいため、結晶による違いや、結晶内の場所による違いに関して、より正確に評価することが可能である。
 実施例1~実施例3より、本実施形態の接触子を用いた評価方法によれば、単結晶ダイヤモンドの摩耗特性(ダイヤモンド本来の耐摩耗性に関する特性)の面方位による違いを、数十μmレベルの微小領域においても正確に評価できることが確認された。
 [実施例4:合成Ib単結晶ダイヤモンドの成長セクターと微小摩耗特性との関係の評価]
 接触子として、実施形態1に記載の接触子を準備した。該接触子は、図3に示される断面形状を有し、長さr1が1.6mm(上面視において、直径φ3.2mmの円状、第2部分の周長約10mm)、角度θは120°、長さDは5μm、回転軸R方向の最大長さ(厚さ)0.6mmである。
 上記接触子を用いて、窒素不純物を100ppm前後含む合成Ib型単結晶ダイヤモンドの試験体に対して、(001)面の<100>方向に平行に摩耗痕を形成し、成長セクターと微小摩耗特性との関係を評価した。上記試験体は2つ準備した。以下、それぞれ試験体A及び試験体Bと記す。
 試験体A及び試験体Bにおける成長セクターの分布は、紫外線励起蛍光像観察により確認される。図11は、試験体Aの紫外線励起蛍光像を示す写真代用図である。図13は、試験体Bの紫外線励起蛍光像を示す写真代用図である。図13では、紫外線励起蛍光像に、光学顕微鏡で観察された摩耗痕を重ね合わせて示している。
 図12は、試験体Aにおける試験番号と摩耗痕長さとの関係を示すグラフである。図12において、試験番号7~試験番号12は(111)セクター内に形成された摩耗痕を示し、試験番号13~試験番号27は(100)セクター内に形成された摩耗痕を示し、試験番号28は(110)セクター内に形成された摩耗痕を示す。
 図14は、試験体Bにおける試験番号と摩耗痕長さとの関係を示すグラフである。図14において、試験番号5は(110)セクター内に形成された摩耗痕を示し、試験番号6~試験番号26は(100)セクター内に形成された摩耗痕を示し、試験番号27は(110)セクター内に形成された摩耗痕を示す。
 図12及び図14より、摩耗特性は成長セクターにより異なり、特に(110)セクターの耐摩耗性が非常に高いことが確認された。各成長セクター内の窒素量は通常、(111)>(100)>(113)>(110)であることが知られており、(110)セクターにはほとんど窒素は含まれない。このため、(110)セクター部の摩耗量が少ないと推察される。
 上記より、本実施形態の接触子を用いた単結晶ダイヤモンドの微小摩耗特性の評価方法により、不純物を含む単結晶ダイヤモンドの耐摩耗性は、成長セクターにより異なること、及び、不純物の分布状態によって少なからず影響を受けることが確認された。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 接触子
2 第1部分
3 第2部分
3A 外端部
31 第1面
32 第2面
31A 第1境界部
32A 第2境界部
33 接続面
R 回転軸
60 マシニングセンタ
61 スピンドル
62 固定ネジ
70 試料保持部
71 エアシリンダ
72 リニアガイド
75 単結晶ダイヤモンド
76 治具
77 平面 

Claims (7)

  1.  複数のダイヤモンド粒子で構成された多結晶ダイヤモンドからなる円環状の接触子であって、
    中心を回転軸が貫通するように構成され、
    径方向に一定の厚みを有し内端部を含む第1部分と、
    径方向に減少する厚みを有し外端部を含む第2部分を備え、
    前記第2部分は、
    前記第1部分の上面と連続する第1面と、前記第1部分の下面と連続する第2面と、前記第1面と前記第2面とを接続し前記外端部を含む接続面とを有し、
    前記回転軸に沿った断面において
    前記第1面を示す第1線分と前記第2面を示す第2線分とが成す角度θは100°以上150°以下であり、
    前記第1面と前記接続面との境界である第1境界部と、前記第2面と前記接続面との境界である第2境界部との間の長さは1μm以上10μm以下であり、
    前記回転軸から前記外端部までの長さは0.5mm以上5mm以下であり、
    前記複数のダイヤモンド粒子の平均粒径は、10nm以上300nm以下である、接触子。
  2.  前記多結晶ダイヤモンドのヌープ硬度は120GPa以上である、請求項1に記載の接触子。
  3.  前記接続面と前記回転軸を含む断面との交線が直線である、請求項1又は請求項2に記載の接触子。
  4.  前記回転軸から前記接触子の端部までの長さは、前記回転軸から前記第1境界部までの長さよりも大きく、かつ前記回転軸から第2境界部までの長さよりも大きい、請求項1又は請求項2に記載の接触子。
  5.  単結晶ダイヤモンドの微小領域における摩耗特性の評価方法であって、
     請求項1から請求項4のいずれか1項に記載の前記接触子を回転させながら、前記単結晶ダイヤモンドを前記外端部に押しつけることにより、前記単結晶ダイヤモンドに摩耗痕を形成する第1工程と、
     前記摩耗痕の長さに基づき、前記単結晶ダイヤモンドの微小領域における摩耗特性を評価する第2工程と、を備える、評価方法。
  6.  前記単結晶ダイヤモンドは平面を有し、
     前記第1工程は、
      前記単結晶ダイヤモンドを、前記平面が、前記接触子と対向し、かつ、前記回転軸と平行になるように配置する第1-1工程と、
      前記単結晶ダイヤモンドに対して前記平面の法線方向の荷重を加えることにより、前記単結晶ダイヤモンドを前記外端部に押しつける第1-2工程と、を含む、請求項5に記載の評価方法。
  7.  前記単結晶ダイヤモンドの前記平面は(001)面であり、
     前記摩耗痕は、前記(001)面の<100>方向に平行である、請求項6に記載の評価方法。
PCT/JP2022/038211 2021-11-10 2022-10-13 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法 WO2023084988A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023559497A JPWO2023084988A1 (ja) 2021-11-10 2022-10-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-183404 2021-11-10
JP2021183404 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023084988A1 true WO2023084988A1 (ja) 2023-05-19

Family

ID=86335628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038211 WO2023084988A1 (ja) 2021-11-10 2022-10-13 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法

Country Status (2)

Country Link
JP (1) JPWO2023084988A1 (ja)
WO (1) WO2023084988A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110146372A1 (en) * 2009-12-18 2011-06-23 Varel Europe S.A.S. Synthetic Materials for PDC Cutter Testing or for Testing Other Superhard Materials
JP2014091661A (ja) * 2012-11-06 2014-05-19 Sumitomo Electric Ind Ltd ダイヤモンド多結晶体およびその製造方法
CN105158098A (zh) * 2015-08-26 2015-12-16 南京航空航天大学 一种磨粒位姿可控的单颗磨粒磨削试验平台及其试验方法
WO2019069888A1 (ja) * 2017-10-03 2019-04-11 英二 草野 試料保持台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110146372A1 (en) * 2009-12-18 2011-06-23 Varel Europe S.A.S. Synthetic Materials for PDC Cutter Testing or for Testing Other Superhard Materials
JP2014091661A (ja) * 2012-11-06 2014-05-19 Sumitomo Electric Ind Ltd ダイヤモンド多結晶体およびその製造方法
CN105158098A (zh) * 2015-08-26 2015-12-16 南京航空航天大学 一种磨粒位姿可控的单颗磨粒磨削试验平台及其试验方法
WO2019069888A1 (ja) * 2017-10-03 2019-04-11 英二 草野 試料保持台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE MASAKAZU, MANABE, KEISUKE. TERAMOTO. MINORI. H AR ANO. KATSUKO. KOBAYASHI. YULAKA. SUMI YA. HITOSHI: "Wear characteristics of various diamonds", LECTURE PROCEEDINGS OF ACADEMIC LECTURE CONFERENCE OF 2019 JSPE SPRING CONFERENCE, 13 March 2019 (2019-03-13), pages 646 - 647, XP093065188 *

Also Published As

Publication number Publication date
JPWO2023084988A1 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
JP6489281B2 (ja) 窒化ホウ素多結晶体の製造方法
CN107207364B (zh) 立方氮化硼多晶体、切削工具、耐磨工具、研磨工具、和立方氮化硼多晶体的制造方法
JP6387897B2 (ja) ダイヤモンド多結晶体、切削工具、耐摩工具、および研削工具
JPS596275B2 (ja) アルミナ及びアルミニウムオキシ炭化物から構成された高硬度研摩剤製品及びその製法
US11383306B2 (en) Method for producing polycrystalline diamond body, polycrystalline diamond body, cutting tool, wear-resistance tool and grinding tool
WO2016143391A1 (ja) ダイヤモンド多結晶体、切削工具、耐摩工具、研削工具、およびダイヤモンド多結晶体の製造方法
JP2015205789A (ja) 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法
TWI704105B (zh) 鑽石多晶體及具備其之工具
WO2018092364A1 (ja) ナノ多結晶ダイヤモンドまたは気相合成単結晶ダイヤモンドを備えるダイヤモンド工具を用いた、被加工材の加工方法、工作機械、及び、部材の製造方法
WO2020174922A1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
Harano et al. Cutting performance of nano-polycrystalline diamond
WO2023084988A1 (ja) 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法
TWI690488B (zh) 鑽石多晶體及具備其之工具
WO2019030970A1 (ja) 多結晶ダイヤモンドからなる圧子、それを用いた亀裂発生荷重の評価方法及びその評価装置
JP2014055078A (ja) 立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具、ならびに耐摩工具
JP6772743B2 (ja) ダイヤモンド多結晶体の製造方法、ダイヤモンド多結晶体、切削工具、耐摩工具および研削工具
WO2023084987A1 (ja) 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法
JP6720816B2 (ja) 窒化ホウ素多結晶体の製造方法、窒化ホウ素多結晶体、切削工具、耐摩工具および研削工具
JP2020011887A (ja) ダイヤモンド多結晶体及びそれを備えた工具
JP2013052488A (ja) ダイヤモンド材料研磨用の研磨盤及びダイヤモンド材料の研磨方法
JP2020011886A (ja) ダイヤモンド多結晶体及びそれを備えた工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559497

Country of ref document: JP