WO2023084987A1 - 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法 - Google Patents
接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法 Download PDFInfo
- Publication number
- WO2023084987A1 WO2023084987A1 PCT/JP2022/038189 JP2022038189W WO2023084987A1 WO 2023084987 A1 WO2023084987 A1 WO 2023084987A1 JP 2022038189 W JP2022038189 W JP 2022038189W WO 2023084987 A1 WO2023084987 A1 WO 2023084987A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diamond
- wear
- less
- crystal diamond
- length
- Prior art date
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 213
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 213
- 239000013078 crystal Substances 0.000 title claims description 102
- 238000000034 method Methods 0.000 title claims description 22
- 239000002245 particle Substances 0.000 claims abstract description 41
- 231100000241 scar Toxicity 0.000 claims description 36
- 238000011156 evaluation Methods 0.000 claims description 27
- 238000003825 pressing Methods 0.000 claims description 17
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 238000012360 testing method Methods 0.000 description 57
- 239000011230 binding agent Substances 0.000 description 22
- 238000005520 cutting process Methods 0.000 description 9
- 208000032544 Cicatrix Diseases 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 230000037387 scars Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000002073 fluorescence micrograph Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000036573 scar formation Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/56—Investigating resistance to wear or abrasion
Definitions
- the present disclosure relates to a contactor and a method for evaluating microwear characteristics of single crystal diamond using the contactor.
- This application claims priority based on Japanese application No. 2021-183405 filed on November 10, 2021, and incorporates all the descriptions described in the Japanese application.
- single-crystal diamond for industrial use, the distribution of nitrogen impurities and crystal defects varies from crystal to crystal, and even within the same crystal, the wear characteristics differ from region to region when viewed in minute regions. Therefore, when using single-crystal diamond as a tool material for precision machining, it is important to fully understand the difference in wear characteristics between minute regions within the same crystal.
- Non-Patent Document 1 a method using a cast iron wheel having a small diameter and a V-shaped cutting edge or a metal-bonded diamond grinding wheel is known (Non-Patent Document 1, Non-Patent Document 2).
- the contacts of the present disclosure are A toric contact made of polycrystalline diamond containing a plurality of diamond grains, It is configured so that the rotation axis passes through the center, a first portion having a constant radial thickness and including an inner end; a second portion having a radially decreasing thickness and including an outer end; The second part is a first surface continuous with the top surface of the first portion; a second surface continuous with the bottom surface of the first portion; and a connection surface connecting the first surface and the second surface and including the outer end portion.
- the plurality of diamond particles have an average particle size of 0.1 ⁇ m or more and 100 ⁇ m or less.
- the evaluation method of the present disclosure is A method for evaluating wear characteristics in microregions of single crystal diamond, comprising: a first step of forming wear marks on the single-crystal diamond by pressing the single-crystal diamond against the outer end portion while rotating the contactor; and a second step of evaluating wear characteristics in a minute region of the single crystal diamond based on the length of the wear scar.
- FIG. 1 is a diagram showing the appearance of an example of a contactor according to an embodiment of the present disclosure.
- FIG. 2 is a top view of an example contact in accordance with an embodiment of the present disclosure; 3 is a cross-sectional view of the contact shown in FIG. 2, taken along line XI-XI. 4 is an enlarged view of a second portion of the contact shown in FIG. 3;
- FIG. 5 is a cross-sectional view of a second portion according to another embodiment of the present disclosure;
- FIG. 6 is an overview diagram of a wear test apparatus used in a method of evaluating wear characteristics in microregions of single crystal diamond according to an embodiment of the present disclosure.
- FIG. 1 is a diagram showing the appearance of an example of a contactor according to an embodiment of the present disclosure.
- FIG. 2 is a top view of an example contact in accordance with an embodiment of the present disclosure; 3 is a cross-sectional view of the contact shown in FIG. 2, taken along line XI-XI. 4 is an enlarged
- FIG. 7 is a diagram showing the ⁇ 100> direction and the ⁇ 110> direction of the (001) plane of single crystal diamond.
- FIG. 8 is a diagram substituting for a photograph showing wear scars formed in Example 1.
- FIG. 9 is a graph showing the relationship between the test number and the wear scar length in the (001) ⁇ 110> wear test of Example 2.
- FIG. 10 is a graph showing the relationship between the test number and the wear scar length in the (001) ⁇ 100> wear test of Example 2.
- FIG. FIG. 11 is a photograph substitute view in which wear marks observed with an optical microscope are superimposed on an ultraviolet-excited fluorescence image of the specimen of Example 3.
- FIG. 12 is a graph showing the relationship between the test number and the wear scar length in the wear test with the wear scar interval of 100 ⁇ m in Example 3.
- FIG. FIG. 13 is a graph showing the relationship between the test number and the length of the wear scar in the wear test with the wear scar interval of 50 ⁇ m in Example 3.
- Non-Patent Document 1 Since the cast iron wheel described in Non-Patent Document 1 is softer than the single crystal diamond, the cutting edge tends to lose its shape during the wear test, and wear marks are not left depending on the wear direction. In addition, the diamond powder of the abrasive is blown away, and the sharpness is quickly dulled. For this reason, it is difficult to quantitatively and appropriately evaluate wear characteristics in minute regions of single-crystal diamond.
- an object of the present disclosure is to provide a contactor used in a method for evaluating wear characteristics in a minute region of single crystal diamond and a method for evaluating wear characteristics in a minute region of single crystal diamond using the same.
- the contact of the present disclosure is A toric contact made of polycrystalline diamond containing a plurality of diamond grains, It is configured so that the rotation axis passes through the center, a first portion having a constant radial thickness and including an inner end; a second portion having a radially decreasing thickness and including an outer end; The second part is a first surface continuous with the top surface of the first portion; a second surface continuous with the bottom surface of the first portion; and a connection surface connecting the first surface and the second surface and including the outer end portion.
- the plurality of diamond particles have an average particle size of 0.1 ⁇ m or more and 100 ⁇ m or less.
- the Knoop hardness of the polycrystalline diamond may be 45 GPa or more. According to this, the accuracy of evaluation of microwear characteristics is improved.
- a line of intersection between the connecting surface and the cross section including the rotating shaft may be a straight line. According to this, the evaluation results of microwear characteristics are stabilized.
- the length from the rotating shaft to the outer end is longer than the length from the rotating shaft to the first boundary and is longer than the length from the rotating shaft to the second boundary. good. According to this, the evaluation results of microwear characteristics are stabilized.
- the evaluation method of the present disclosure is A method for evaluating wear characteristics in microregions of single crystal diamond, comprising: a first step of forming wear marks on the single-crystal diamond by pressing the single-crystal diamond against the outer end portion while rotating the contactor; and a second step of evaluating wear characteristics in a minute region of the single crystal diamond based on the length of the wear scar.
- the first step is A 1-1 step of arranging the single crystal diamond so that the plane faces the contact and is parallel to the rotation axis; a 1-2 step of pressing the single crystal diamond against the outer end portion by applying a load in the direction normal to the third plane to the single crystal diamond; may contain
- the plane of the single crystal diamond may be the (001) plane, and the wear scar may be parallel to the ⁇ 100> direction of the (001) plane. According to this, the accuracy of evaluation of microwear characteristics is improved.
- FIGS. 3, 4, and 5 are compressed in the vertical direction.
- the process of forming wear scars on a single crystal diamond using a contactor, which is performed to evaluate the microwear characteristics of the single crystal diamond is also referred to as a wear test.
- FIG. 1 A contact according to an embodiment of the present disclosure (hereinafter also referred to as "this embodiment") will be described with reference to FIGS. 1 to 5.
- FIG. The contact 1 of this embodiment is an annular contact 1 made of polycrystalline diamond containing a plurality of diamond particles, configured so that the rotation axis R passes through the center, a first portion 2 having a constant thickness in the radial direction and including an inner end; comprising a second portion 3 having a radially decreasing thickness and including an outer end 3A;
- the second part 3 is A first surface 31 continuous with the upper surface of the first portion 2, a second surface 32 continuous with the lower surface of the first portion 2, and a connection that connects the first surface 31 and the second surface 32 and includes the outer end portion 3A.
- An angle ⁇ formed by a first line segment indicating the first surface 31 and a second line segment indicating the second surface 32 in a cross section along the rotation axis R is 100° or more and 150° or less,
- the length between the first boundary portion 31A, which is the boundary between the first surface 31 and the connection surface 33, and the second boundary portion 32A, which is the boundary between the second surface 32 and the connection surface 33, is 1 ⁇ m or more and 10 ⁇ m or less.
- the length from the rotation axis R to the outer end portion 3A is 1 mm or more and 10 mm or less,
- the average particle size of the plurality of diamond particles is 0.1 ⁇ m or more and 100 ⁇ m or less.
- the contact of this embodiment is made of polycrystalline diamond containing a plurality of diamond grains.
- the polycrystalline diamond may comprise a plurality of diamond particles and a binder.
- the polycrystalline diamond may consist of a plurality of diamond particles and a binder. At least one selected from the group consisting of cobalt (Co), nickel (Ni) and iron (Fe) can be used as the binder.
- the polycrystalline diamond may contain a sintering aid such as WC or SiC. Polycrystalline diamond from which these binders and sintering aids are removed by acid treatment or the like may also be used.
- the lower limit of the diamond component content of the polycrystalline diamond may be 80% by volume or more, 83% by volume or more, or 85% by volume or more.
- the upper limit of the diamond component content of the polycrystalline diamond may be 99.9% by volume or less, 99% by volume or less, or 98% by volume or less.
- the content of the diamond component in the polycrystalline diamond may be 80% to 99.9% by volume, 83% to 99% by volume, or 85% to 98% by volume.
- the volume-based content of the diamond component in the polycrystalline diamond can be confirmed by the X-ray diffraction method. Specifically, it can be calculated from the intensity ratio between the diffraction peak of diamond and the diffraction peak of the binder.
- the lower limit of the binder content of the polycrystalline diamond may be 0.1% by volume or more, 1% by volume or more, or 2% by volume or more.
- the upper limit of the binder content of the polycrystalline diamond may be 20% by volume or less, 18% by volume or less, 17% by volume or less, or 15% by volume or less.
- the binder content of the polycrystalline diamond may be 0.1% by volume or more and 20% by volume or less, 1% by volume or more and 18% by volume or less, or 1% by volume or more and 17% by volume or less. It may be vol % or more and 15 vol % or less.
- the volume-based content of the binder in the polycrystalline diamond can be confirmed by the X-ray diffraction method. Specifically, it can be calculated from the intensity ratio of the diffraction peak of diamond and the diffraction peak of the binder. The composition of the binder can be confirmed by X-ray diffraction.
- the polycrystalline diamond may contain a diamond component, a binder, and inevitable impurities.
- the polycrystalline diamond may consist of a diamond component, a binder, and unavoidable impurities.
- the polycrystalline diamond may contain a diamond component of 80% by volume or more and 99.9% by volume or less and a binder of 0.1% by volume or more and 20% by volume or less.
- the polycrystalline diamond may contain 83% by volume or more and 99% by volume or less of a diamond component and 1% by volume or more and 17% by volume or less of a binder.
- the polycrystalline diamond may contain a diamond component of 85% by volume or more and 98% by volume or less and a binder of 2% by volume or more and 15% by volume or less.
- diamond particles may be directly bonded to each other.
- diamond grains may be strongly bonded to each other via neck growth. According to this, the deformation of the outer end due to use of the contact is further suppressed, and the life of the contact is improved.
- the average particle size of the plurality of diamond particles contained in the polycrystalline diamond (hereinafter also referred to as "average particle size of diamond particles") is 0.1 ⁇ m or more and 100 ⁇ m or less.
- the hardness of the polycrystalline diamond has no orientation dependence, and the polycrystalline diamond has high strength.
- the lower limit of the average particle size of the diamond particles is 0.1 ⁇ m or more. According to this, the mechanical strength peculiar to diamond can be obtained. In addition, since a large number of irregularities of about 0.1 ⁇ m to 1 ⁇ m are formed on the surface of the polycrystalline diamond, in a wear test using a contact made of the polycrystalline diamond, the contact has a good bite to the single crystal diamond. , a stable wear test can be performed.
- the lower limit of the average particle size of diamond particles is 0.1 ⁇ m or more, and can be 1 ⁇ m or more, 3 ⁇ m or more, 5 ⁇ m or more, 7 ⁇ m or more, 10 ⁇ m or more, and 20 ⁇ m or more.
- the upper limit of the average particle size of the diamond particles is 100 ⁇ m or less, 90 ⁇ m or less, 80 ⁇ m or less, and 70 ⁇ m from the viewpoint that the polycrystalline diamond can exhibit isotropic hardness and wear resistance in all directions. 50 ⁇ m or less, 30 ⁇ m or less, 10 ⁇ m or less, 5 ⁇ m or less, or 3 ⁇ m or less.
- the average particle size of the diamond particles is 0.1 ⁇ m or more and 100 ⁇ m or less, 0.1 ⁇ m or more and 100 ⁇ m or less, 0.1 ⁇ m or more and 90 ⁇ m or less, 0.1 ⁇ m or more and 80 ⁇ m or less, 0.1 ⁇ m or more and 70 ⁇ m or less, or 0.1 ⁇ m or more.
- the average particle size of the diamond particles is obtained by a cutting method using a scanning electron microscope (SEM). Specifically, first, a scanning electron microscope is used to observe polycrystalline diamond at a magnification of 1,000 to 100,000 times to obtain an SEM image.
- SEM scanning electron microscope
- the number of crossings of the crystal grain boundaries of the diamond grains is counted for each of the above straight lines, and the average intercept length is obtained by dividing the length of the straight line by the number of crossings, and 1.128 is added to the average intercept length.
- the numerical value obtained by multiplication be an average particle diameter.
- the above measurements are performed on three SEM images, and the average particle size is obtained for each of the three SEM images.
- the average value of the average particle diameters of three SEM images is defined as the average particle diameter of diamond particles in this specification.
- the contactor 1 When the contactor 1 is used to evaluate the wear characteristics in a minute region of the single crystal diamond, the contactor 1 is rotated around the rotation axis R, and the outer end portion 3A of the contactor 1 is brought into contact with the single crystal diamond. to form wear marks on the single crystal diamond. Therefore, the polycrystalline diamond forming the contactor of the present embodiment may have a hardness and structure (voids) that can form wear marks on the single-crystal diamond 75 .
- the hardness of the single crystal diamond 75 varies from 70 to 120 GPa depending on the plane orientation. Therefore, the Knoop hardness of the polycrystalline diamond is preferably 45 GPa or more, and it is preferable that a large number of irregularities of 0.1 ⁇ m or more are formed on the surface of the contactor. According to this, in the wear test, the contactor 1 bites well into the single-crystal diamond 75, and a stable wear test can be performed. Further, the surface of the single-crystal diamond 75 can be ground by the high-hardness plane orientation of the single-crystal diamond particles exposed on the surface of the uneven portion of the contactor 1 .
- the Knoop hardness of the polycrystalline diamond may be 45 GPa or higher, 50 GPa or higher, or 60 GPa or higher.
- the upper limit of the Knoop hardness of the polycrystalline diamond is not particularly limited, it can be 100 GPa or less from the viewpoint of manufacturing.
- the Knoop hardness of the polycrystalline diamond can be from 45 GPa to 100 GPa, from 50 GPa to 100 GPa, from 60 GPa to 100 GPa, from 45 GPa to 90 GPa, from 50 GPa to 90 GPa, and from 60 GPa to 80 GPa.
- the contactor 1 includes a first portion 2 and a second portion 3 that is continuous with the second portion 2 and surrounds the outer circumference of the first portion 2.
- the length of the second portion 3 in the direction of the rotation axis R decreases toward the outer end portion 3A.
- L1, L2, and L3 are set in order from the rotation axis, it means that the relationship L1>L2>L3 is shown.
- the maximum length of the contactor 1 in the direction of the rotation axis R is not particularly limited, it can be, for example, 0.5 mm or more and 5 mm or less.
- the contactor 1 has a circular diameter when viewed from above.
- a length r1 in a direction perpendicular to the rotation axis R between the rotation axis R of the contactor 1 and the outer end portion 3A is 1 mm or more and 10 mm or less. According to this, the handling of the contactor 1 is easy, and a minute wear mark can be formed on the single-crystal diamond 75 .
- the lower limit of the length r1 is 1 mm or more, and can be 2 mm or more and 3 mm or more.
- the upper limit of the length r1 is 10 mm or less, and can be 7 mm or less, 5 mm or less, 3 mm or less, or 2 mm or less, from the viewpoint of forming minute abrasion marks.
- the length r1 is 1 mm or more and 10 mm or less, 2 mm or more and 10 mm or less, 3 mm or more and 10 mm or less, 1 mm or more and 7 mm or less, 2 mm or more and 7 mm or less, 3 mm or more and 7 mm or less, 1 mm or more and 5 mm or less, 2 mm or more and 5 mm or less, or 3 mm or more. It can be 5 mm or less, 1 mm or more and 3 mm or less, or 1 mm or more and 2 mm or less.
- the angle ⁇ formed by the first surface 31 and the second surface 32 of the contactor 1 is 100° or more and 150° or less.
- a length D in the direction of the rotation axis R between the second surface 32 and the second boundary portion 32A that is the boundary between the second surface 32 and the connection surface 33 is 1 ⁇ m or more and 10 ⁇ m or less.
- the angle ⁇ formed between the first surface 31 and the second surface 32 is an angle formed between virtual planes obtained by enlarging the first surface 31 and the second surface 32, as indicated by the dotted line in FIG. means According to this, the wear marks formed on the single crystal diamond become clear, and a stable wear test becomes possible. Therefore, variations in the evaluation results of microwear characteristics are suppressed, and the evaluation results are stabilized.
- the lower limit of the angle ⁇ is 100° or more, and may be 110° or more, from the viewpoint of maintaining the shape of the outer end (cutting edge) during the wear test.
- the upper limit of the angle ⁇ is 150° or less, and may be 140° or less, from the viewpoint of forming clear wear marks.
- the angle ⁇ is 100° or more and 150° or less, and may be 110° or more and 140° or less.
- the lower limit of the length D is 1 ⁇ m or more, and may be 2 ⁇ m or more, from the viewpoint of maintaining the shape of the outer end (cutting edge) during the wear test.
- the upper limit of the length D is 10 ⁇ m or less, and may be 8 ⁇ m or less, from the viewpoint of forming a clear wear scar.
- the length D is 1 ⁇ m or more and 10 ⁇ m or less, and may be 2 ⁇ m or more and 8 ⁇ m or less.
- the line of intersection between the connecting surface 33 and the cross section including the rotation axis R may be a straight line. According to this, a stable wear test becomes possible. Therefore, variations in the evaluation results of microwear characteristics are suppressed, and the evaluation results are stabilized.
- the length from the rotation axis R to the outer end 3A is greater than the length from the rotation axis R to the first boundary 31A, and the length from the rotation axis R to the second boundary 32A. It can be larger than the length. This makes it possible to carry out a stable wear test. Therefore, variations in the evaluation results of microwear characteristics are suppressed, and the evaluation results are stabilized.
- the radius of the arc is preferably 1 ⁇ m or more and 10 ⁇ m or less, more preferably 2 ⁇ m or more and 8 ⁇ m or less.
- the first portion 2 of the contactor 1 preferably includes a hole formed in a portion corresponding to the rotation axis R. According to this, a spindle can be inserted into the hole in a wear test.
- the contact 1 can also comprise a shaft fixed to the first part 2 .
- Diamond powder and Co powder which is the raw material of the binder, are mixed at a predetermined ratio, filled into capsules of cemented carbide or high-melting metal, and sintered under high pressure and high temperature to synthesize polycrystalline diamond. do.
- Sintering conditions can be, for example, a temperature of 1300 to 1600° C., a pressure of 5 to 6 GPa, and a sintering time of 1 to 30 minutes.
- the obtained polycrystalline diamond is formed into the shape of the contactor of this embodiment by grinding and polishing with a diamond grindstone or by electrical discharge machining to obtain the contactor.
- the polycrystalline diamond synthesized by the above method is relatively inexpensive and easy to process. Therefore, the contactor obtained by the above method is advantageous in terms of cost.
- FIG. 6 is a general view of a wear tester used in the method for evaluating minute wear characteristics of this embodiment.
- the wear test device includes a machining center 60 and a sample holder 70 .
- the machining center 60 has a spindle 61 and a fixing screw 62 for fixing the contactor 1 to the spindle 61 .
- the sample holder 70 includes a jig 76 for holding a single crystal diamond 75 , an air cylinder 71 for moving the jig 76 in the direction of the contactor 1 , and a linear guide 72 arranged around the air cylinder 71 .
- the evaluation method of the wear characteristics in the minute region of the single crystal diamond 75 of the present embodiment is as follows. A first step of forming wear marks on the single-crystal diamond 75 by pressing the single-crystal diamond 75 against the outer end portion 3A while rotating the contactor 1 according to Embodiment 1; and a second step of evaluating the wear characteristics in the minute region of the single-crystal diamond 75 based on the length of the wear scar.
- a spindle 61 of a machining center 60 is inserted into the hole of the contactor 1 and fixed with a fixing screw 62 . Since the contactor 1 is fixed to the spindle 61, when the spindle 61 is rotated, the contactor 1 rotates in synchronization therewith. From the viewpoint of suppressing thermal reaction wear, the rotation conditions are preferably 100 rpm or more and 3000 rpm or less and/or a peripheral speed of 1 m/min or more and 100 m/min or less.
- the contactor 1 is fixed to the spindle 61 by the fixing screw 62 in FIG. 6, the method of fixing the contactor 1 and the spindle 61 is not limited to this. For example, contactor 1 and spindle 61 can be fixed using an adhesive.
- a single crystal diamond 75 is fixed to the jig 76 of the sample holding part 70 .
- An air cylinder 71 is installed in the direction opposite to the direction in which the single crystal diamond 75 is fixed to the jig 76 .
- a load is applied to the air cylinder 71 in the direction of arrow b, causing the air cylinder 71 to move the contactor 1. move in the direction of As a result, the single-crystal diamond 75 is pressed against the outer end portion 3A, and a wear mark is formed on the single-crystal diamond 75.
- the pressing pressure is preferably 0.1 MPa or more and 0.2 MPa or less.
- the pressing time is preferably 1 to 10 minutes.
- the single-crystal diamond 75 has a plane 77, and the first step is to place the single-crystal diamond 75 so that the plane 77 faces the contactor 1 and is parallel to the rotation axis R. 1, and a 1-2 step of pressing the single-crystal diamond 75 against the outer end portion 3A by applying a load in the direction normal to the plane 77 to the single-crystal diamond 75 . According to this, the accuracy of the microwear test is improved.
- the plane 77 of the single-crystal diamond 75 is the (001) plane, and the wear scars are preferably parallel to the ⁇ 100> direction of the (001) plane. According to this, the accuracy of the microwear test is improved.
- the plurality of wear marks be substantially parallel and that the distance between the wear marks be 50 ⁇ m or more and 100 ⁇ m or less.
- the first surface and the second surface of the contact are directly connected to form a V-shape, and if there is no connecting surface, before forming the wear marks for evaluation.
- the ⁇ 100> direction of the (001) plane of the single crystal diamond is pretreated five times or more under the above wear scar formation conditions (rotation speed, pressing pressure, pressing time), and the length of the outer end is
- the thickness D is adjusted to be 1 ⁇ m or more and 10 ⁇ m or less.
- ⁇ Second step> the wear characteristics of the single crystal diamond are evaluated based on the length of the wear scar formed on the single crystal diamond in the first step.
- the wear characteristics can be evaluated by the amount of wear (amount removed), the area of the wear scar, or the length of the wear scar. In the present embodiment, evaluation is made based on the easily measurable wear scar length. The length of the wear scar is measured with an optical microscope at an observation magnification of 500 times.
- the evaluation method for minute wear characteristics of this embodiment can evaluate the wear characteristics (wear resistance) of minute regions of single crystal diamond with high precision. This makes it possible to investigate in detail the distribution of wear characteristics due to non-uniform distribution of impurities and crystal defects in single-crystal diamond. This evaluation method is useful for selection and quality evaluation of single-crystal diamond when using it for precision cutting tools such as precision cutting tools and small-diameter end mills.
- the contactor of the present embodiment may be made of polycrystalline diamond containing a plurality of diamond grains, and the content of the diamond component in the polycrystalline diamond may be 80% by volume or more.
- the contact of this embodiment is made of polycrystalline diamond containing a plurality of diamond particles, The diamond component content of the polycrystalline diamond may be 80% by volume or more and 99.9% by volume or less.
- the contact of this embodiment is made of polycrystalline diamond containing a plurality of diamond particles,
- the polycrystalline diamond comprises a plurality of diamond particles and a binder,
- the polycrystalline diamond has a diamond component content of 80% by volume or more and 99.9% by volume or less,
- the binder content of the polycrystalline diamond may be 0.1% by volume or more and 20% by volume or less.
- [Appendix 4] The contact of this embodiment is made of polycrystalline diamond containing a plurality of diamond particles,
- the polycrystalline diamond consists of a plurality of diamond particles and a binder,
- the polycrystalline diamond has a diamond component content of 80% by volume or more and 99.9% by volume or less,
- the binder content of the polycrystalline diamond may be 0.1% by volume or more and 20% by volume or less.
- the (001) plane of a specimen made of single crystal diamond was parallel-polished with a metal-bonded diamond grindstone or a scaife plate to form a flat surface, and microwear characteristics were evaluated on the flat surface.
- the contacts are made of polycrystalline diamond containing a plurality of diamond grains.
- the polycrystalline diamond has a diamond component content of 90% by volume and a binder phase (composition: Co) content of 10% by volume.
- the average particle size of the plurality of diamond particles is 1 ⁇ m.
- the Knoop hardness of the polycrystalline diamond is 50 GPa.
- Example 1 Evaluation of microwear properties in ⁇ 100> direction of (001) plane of synthetic type IIa single crystal diamond
- the contactor has a cross-sectional shape shown in FIG. Maximum length (thickness) is 5 mm.
- the contactor was installed in the wear test apparatus shown in FIG. 6, and as shown in FIG. Evaluation was performed by forming wear marks.
- the conditions for forming wear marks are a contact rotation speed of 1000 rpm, a pressing pressure of 0.1 MPa, and a pressing time of 10 minutes.
- Fig. 8 shows an optical microscope image of the formed wear marks. As shown in FIG. 8, according to this wear test, it was confirmed that distinct wear scars were formed on the synthetic type IIa single crystal diamond.
- Example 2 Comparison of wear characteristics in ⁇ 110> direction and ⁇ 100> direction of (001) plane of synthetic IIa single crystal diamond]
- the contact is V-shaped at its outer end (i.e., the first plane and the second plane intersect to form an angle ⁇ , and there is no connecting surface 33). It has a cross-sectional shape shown in FIG. 3, with a length r1 of 1.6 mm (a circle with a diameter of ⁇ 3.2 mm when viewed from above), an angle ⁇ of 120°, and a maximum length (thickness) in the direction of the rotation axis R. 5 mm.
- the contactor was installed in the wear test apparatus shown in FIG. 6, and the ⁇ 110> direction of the (001) plane and the ⁇ 100> Evaluation was performed by forming wear marks parallel to the direction.
- the conditions for forming wear marks are a contact rotation speed of 313 rpm, a pressing pressure of 0.1 MPa, and a pressing time of 1 minute per wear mark.
- the wear scar spacing on the specimen is 200 ⁇ m.
- FIG. 9 shows the results of the wear test in the ⁇ 110> direction of the (001) plane of the synthetic IIa single crystal diamond (also referred to herein as the "(001) ⁇ 110> wear test”).
- FIG. 10 shows the results of a wear test in the ⁇ 100> direction of the (001) plane of the synthetic type IIa single crystal diamond (also referred to herein as a "(001) ⁇ 100> wear test”).
- the horizontal axis indicates the test number
- the vertical axis indicates the length ( ⁇ m) of the wear scar.
- the test number corresponds to the number of wear scar formations. For example, test number 5 means the formation of the fifth wear scar.
- the length of the wear scar gradually shortens until the formation of the fourth wear scar indicated by test number 4. From test number 5 onwards, the length of the abrasion scar is shortened by about 5 to 6 ⁇ m each time. After formation of wear marks 15 times indicated by Test No. 15, the outer end portion was worn and flattened, and the length D of the outer end portion in the direction of the rotation axis was 8 to 10 ⁇ m.
- the reason why the length of the wear marks shortens as the number of tests increases is that the outer edge before the wear test is in a V-shaped and sharp state, so wear marks are easily formed. , the outer end is worn, and wear scars are less likely to be formed.
- evaluation is performed by forming a wear scar parallel to the ⁇ 100> direction of the (001) plane of the single crystal diamond. was found to be preferable.
- Example 3 Evaluation of microwear characteristics in the ⁇ 110> direction of the (001) plane of natural Ia single crystal diamond
- the contactor has a cross-sectional shape shown in FIG.
- the maximum length (thickness) in the direction of the axis R is 5 mm.
- the contactor was installed in the wear test apparatus shown in FIG. 6, and as shown in FIG. Evaluation was performed by forming wear marks.
- the conditions for forming wear marks are a contact rotation speed of 313 rpm, a pressing pressure of 0.1 MPa, and a pressing time of 1 minute per wear mark.
- the interval of the wear marks on the test piece is 100 ⁇ m (wear marks in the left column of FIG. 11) for the formation of the 1st to 20th wear marks from the start of the test, and 50 ⁇ m for the 21st to 40th wear marks (Fig. 11 wear marks in the right column).
- the ⁇ 110> direction of the (001) plane of the natural Ia single crystal diamond is specified based on the growth fringes observed in the UV-excited fluorescence image of the natural Ia single crystal diamond.
- Fig. 12 shows the results of a wear test at an interval of 100 ⁇ m between wear marks.
- FIG. 13 shows the results of the wear test with a wear mark interval of 50 ⁇ m.
- the horizontal axis indicates the test number, and the vertical axis indicates the length ( ⁇ m) of the wear scar.
- the test number corresponds to the number of wear scar formations. For example, test number 5 means the formation of the fifth wear scar.
- FIGS. 11 and 12 the wear marks shown in the ellipses with symbol a correspond to the wear marks of the above-mentioned bluish-white growth stripe portions at an interval of 100 ⁇ m between the wear marks.
- a comparison of FIGS. 12 and 13 reveals that the change in the length of the wear scars is more pronounced at the wear scar spacing of 50 ⁇ m than at the wear scar spacing of 100 ⁇ m.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Carbon And Carbon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Measuring Leads Or Probes (AREA)
Abstract
Description
したがって、特に精密加工用の工具材料として単結晶ダイヤモンドを用いる場合は、同一結晶内での微小領域毎の摩耗特性の相違を十分に把握しておくことが重要である。
複数のダイヤモンド粒子を含む多結晶ダイヤモンドからなる円環状の接触子であって、
中心を回転軸が貫通するように構成され、
径方向に一定の厚みを有し内端部を含む第1部分と、
径方向に減少する厚みを有し外端部を含む第2部分を備え、
前記第2部分は、
前記第1部分の上面と連続する第1面と、前記第1部分の下面と連続する第2面と、前記第1面と前記第2面とを接続し前記外端部を含む接続面とを有し、
前記回転軸に沿った断面において
前記第1面を示す第1線分と前記第2面を示す第2線分とが成す角度θは100°以上150°以下であり、
前記第1面と前記接続面との境界である第1境界部と、前記第2面と前記接続面との境界である第2境界部との間の長さは1μm以上10μm以下であり、
前記回転軸から前記外端部までの長さは1mm以上10mm以下であり、
前記複数のダイヤモンド粒子の平均粒径は、0.1μm以上100μm以下である、接触子である。
単結晶ダイヤモンドの微小領域における摩耗特性の評価方法であって、
上記の接触子を回転させながら、前記単結晶ダイヤモンドを前記外端
部に押しつけることにより、前記単結晶ダイヤモンドに摩耗痕を形成する第1工程と、
前記摩耗痕の長さに基づき、前記単結晶ダイヤモンドの微小領域における摩耗特性を評
価する第2工程と、を備える、評価方法である。
非特許文献1に記載の鋳鉄ホイールは単結晶ダイヤモンドに対して柔らかいため、摩耗試験中に刃先が型崩れしやすく摩耗方向によっては摩耗痕が付かない。また、研磨材のダイヤモンド粉末が飛ばされ、切れ味がすぐに鈍化してしまう。このため、単結晶ダイヤモンドの微小領域における摩耗特性を定量的に、適切に評価することは難しい。
本開示によれば、単結晶ダイヤモンドの微小領域における摩耗特性に用いられる接触子を提供することが可能となる。更に該接触子を用いて単結晶ダイヤモンドの微小領域における摩耗特性を評価することが可能となる。
最初に本開示の実施態様を列記して説明する。
(1)本開示の接触子は、
複数のダイヤモンド粒子を含む多結晶ダイヤモンドからなる円環状の接触子であって、
中心を回転軸が貫通するように構成され、
径方向に一定の厚みを有し内端部を含む第1部分と、
径方向に減少する厚みを有し外端部を含む第2部分を備え、
前記第2部分は、
前記第1部分の上面と連続する第1面と、前記第1部分の下面と連続する第2面と、前記第1面と前記第2面とを接続し前記外端部を含む接続面とを有し、
前記回転軸に沿った断面において
前記第1面を示す第1線分と前記第2面を示す第2線分とが成す角度θは100°以上150°以下であり、
前記第1面と前記接続面との境界である第1境界部と、前記第2面と前記接続面との境界である第2境界部との間の前記中心軸方向の長さは1μm以上10μm以下であり、
前記回転軸から前記外端部までの長さは1mm以上10mm以下であり、
前記複数のダイヤモンド粒子の平均粒径は、0.1μm以上100μm以下である、接触子である。
単結晶ダイヤモンドの微小領域における摩耗特性の評価方法であって、
上記の接触子を回転させながら、前記単結晶ダイヤモンドを前記外端部に押しつけることにより、前記単結晶ダイヤモンドに摩耗痕を形成する第1工程と、
前記摩耗痕の長さに基づき、前記単結晶ダイヤモンドの微小領域における摩耗特性を評価する第2工程と、を備える、評価方法である。
前記第1工程は、
前記単結晶ダイヤモンドを、前記平面が、前記接触子と対向し、かつ、前記回転軸と平行になるように配置する第1-1工程と、
前記単結晶ダイヤモンドに対して前記第3の平面の法線方向の荷重を加えることにより、前記単結晶ダイヤモンドを前記外端部に押しつける第1-2工程と、
を含んでいてもよい。
本開示の接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法について、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。なお、説明の都合上、図3、図4、図5は縦方向に圧縮されている。
本開示の一実施形態(以下、「本実施形態」とも記す。)の接触子について、図1~図5を用いて説明する。
本実施形態の接触子1は、複数のダイヤモンド粒子を含む多結晶ダイヤモンドからなる円環状の接触子1であって、
中心を回転軸Rが貫通するように構成され、
径方向に一定の厚みを有し内端部を含む第1部分2と、
径方向に減少する厚みを有し外端部3Aを含む第2部分3を備え、
第2部分3は、
第1部分2の上面と連続する第1面31と、第1部分2の下面と連続する第2面32と、第1面31と第2面32とを接続し外端部3Aを含む接続面33とを有し、
回転軸Rに沿った断面において
第1面31を示す第1線分と第2面32を示す第2線分とが成す角度θは100°以上150°以下であり、
第1面31と接続面33との境界である第1境界部31Aと、第2面32と接続面33との境界である第2境界部32Aとの間の長さは1μm以上10μm以下であり、
回転軸Rから外端部3Aまでの長さは1mm以上10mm以下であり、
前記複数のダイヤモンド粒子の平均粒径は、0.1μm以上100μm以下である、接触子1である。
該多結晶体ダイヤモンドは、複数のダイヤモンド粒子と、結合材とを含んでいてもよい。該多結晶ダイヤモンドは、複数のダイヤモンド粒子と、結合材とからなっていてもよい。結合材としては、コバルト(Co)、ニッケル(Ni)及び鉄(Fe)からなる群より選ばれる少なくとも1種を用いることができる。該多結晶ダイヤモンドには、WCやSiCなどの焼結助剤が含まれていてもよい。また、これら結合材や焼結助剤を酸処理等で除去した多結晶ダイヤモンドでもよい。
HK=14229×F/a2 式(1)
本実施形態の単結晶ダイヤモンドの微小領域における摩耗特性の評価方法について、図6を用いて説明する。図6は、本実施形態の微小摩耗特性の評価方法に用いられる摩耗試験装置の概観図である。摩耗試験装置は、マシニングセンタ60と、試料保持部70とを備える。マシニングセンタ60は、スピンドル61と、接触子1をスピンドル61に固定するための固定ネジ62とを備える。試料保持部70は、単結晶ダイヤモンド75を保持するための治具76と、治具76を接触子1方向へ移動させるエアシリンダ71と、エアシリンダ71の周囲に配置されるリニアガイド72とを備える。
実施形態1に記載の接触子1を回転させながら、単結晶ダイヤモンド75を外端部3Aに押しつけることにより、単結晶ダイヤモンド75に摩耗痕を形成する第1工程と、
該摩耗痕の長さに基づき、単結晶ダイヤモンド75の微小領域における摩耗特性を評価する第2工程と、を備える、評価方法である。
接触子1の穴にマシニングセンター60のスピンドル61を挿入し、固定ネジ62で固定する。接触子1はスピンドル61に固定されているため、スピンドル61を回転させると、これに同期して接触子1が回転する。回転条件は、熱的反応摩耗の抑制の観点から、回転数100rpm以上3000rpm以下、及び/又は、周速1m/min以上100m/min以下が好ましい。図6では、接触子1は固定ネジ62によりスピンドル61に固定されているが、接触子1とスピンドル61との固定方法はこれに限定されない。例えば、接触子1とスピンドル61とを接着剤を用いて固定することができる。
単結晶ダイヤモンド75が平面77を有するように加工する際は、単結晶ダイヤモンド75の(001)面を、メタルボンドダイヤモンド砥石又はスカイフで平行研磨することが好ましい。
第2工程では、第1工程において単結晶ダイヤモンドに形成された摩耗痕の長さに基づき、単結晶ダイヤモンドの摩耗特性を評価する。摩耗特性は、摩耗量(除去量)や摩耗痕の面積、あるいは摩耗痕の長さで評価することができる。本実施形態では、簡易に測定可能な摩耗痕の長さで評価する。摩耗痕の長さは、光学顕微鏡にて、観察倍率500倍で計測される。
本実施形態の接触子は、複数のダイヤモンド粒子を含む多結晶ダイヤモンドからなり、 前記多結晶ダイヤモンドのダイヤモンド成分の含有率は、80体積%以上であってもよい。
[付記2]
本実施形態の接触子は、複数のダイヤモンド粒子を含む多結晶ダイヤモンドからなり、
前記多結晶ダイヤモンドのダイヤモンド成分の含有率は、80体積%以上99.9体積
%以下であってもよい。
[付記3]
本実施形態の接触子は、複数のダイヤモンド粒子を含む多結晶ダイヤモンドからなり、
前記多結晶ダイヤモンドは、複数のダイヤモンド粒子と、結合材とを含み、
前記多結晶ダイヤモンドのダイヤモンド成分の含有率は、80体積%以上99.9体積
%以下であり、
前記多結晶ダイヤモンドの結合材の含有率は、0.1体積%以上20体積%以下であってもよい。
[付記4]
本実施形態の接触子は、複数のダイヤモンド粒子を含む多結晶ダイヤモンドからなり、
前記多結晶ダイヤモンドは、複数のダイヤモンド粒子と、結合材とからなり、
前記多結晶ダイヤモンドのダイヤモンド成分の含有率は、80体積%以上99.9体積
%以下であり、
前記多結晶ダイヤモンドの結合材の含有率は、0.1体積%以上20体積%以下であってもよい。
接触子として、実施形態1に記載の接触子を準備した。該接触子は、図3に示される断面形状を有し、長さr1が5mm(上面視において、直径φ10mmの円状)、角度θは120°、長さDは1μm、回転軸R方向の最大長さ(厚さ)5mmである。
接触子として、実施形態1に記載の接触子を準備した。該接触子は、外端部がV字形状である(すなわち、第1の平面と第2の平面とが交差して角度θを形成しており、接続面33は存在しない)こと以外は、図3に示される断面形状を有し、長さr1が1.6mm(上面視において、直径φ3.2mmの円状)、角度θは120°、回転軸R方向の最大長さ(厚さ)5mmである。
い、外端部が摩耗し、摩耗痕が形成されにくくなるためと推察される。
接触子として、実施形態1に記載の接触子を準備した。該接触子は、図3に示される断面形状を有し、長さr1が1.6mm(上面視において、直径φ3.2mmの円状)、角度θは120°、長さDは5μm、回転軸R方向の最大長さ(厚さ)5mmである。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
2 第1部分
3 第2部分
3A 外端部
31 第1面
32 第2面
31A 第1境界部
32A 第2境界部
33 接続面
R 回転軸
60 マシニングセンタ
61 スピンドル
62 固定ネジ
70 試料保持部
71 エアシリンダ
72 リニアガイド
75 単結晶ダイヤモンド
76 治具
77 平面
Claims (7)
- 複数のダイヤモンド粒子を含む多結晶ダイヤモンドからなる円環状の接触子であって、
中心を回転軸が貫通するように構成され、
径方向に一定の厚みを有し内端部を含む第1部分と、
径方向に減少する厚みを有し外端部を含む第2部分を備え、
前記第2部分は、
前記第1部分の上面と連続する第1面と、前記第1部分の下面と連続する第2面と、前記第1面と前記第2面とを接続し前記外端部を含む接続面とを有し、
前記回転軸に沿った断面において
前記第1面を示す第1線分と前記第2面を示す第2線分とが成す角度θは100°以上150°以下であり、
前記第1面と前記接続面との境界である第1境界部と、前記第2面と前記接続面との境界である第2境界部との間の長さは1μm以上10μm以下であり、
前記回転軸から前記外端部までの長さは1mm以上10mm以下であり、
前記複数のダイヤモンド粒子の平均粒径は、0.1μm以上100μm以下である、接触子。 - 前記多結晶ダイヤモンドのヌープ硬度は45GPa以上である、請求項1に記載の接触子。
- 前記接続面と前記回転軸を含む断面との交線が直線である、請求項1又は請求項2に記載の接触子。
- 前記回転軸から前記外端部までの長さは、前記回転軸から前記第1境界部までの長さよりも大きく、かつ前記回転軸から第2境界部までの長さよりも大きい、請求項1又は請求項2に記載の接触子。
- 単結晶ダイヤモンドの微小領域における摩耗特性の評価方法であって、
請求項1から請求項4のいずれか1項に記載の前記接触子を回転させながら、前記単結晶ダイヤモンドを前記接触子の前記外端部に押しつけることにより、前記単結晶ダイヤモンドに摩耗痕を形成する第1工程と、
前記摩耗痕の長さに基づき、前記単結晶ダイヤモンドの微小領域における摩耗特性を評価する第2工程と、を備える、評価方法。 - 前記単結晶ダイヤモンドは平面を有し、
前記第1工程は、
前記単結晶ダイヤモンドを、前記平面が、前記接触子と対向し、かつ、前記回転軸と平行になるように配置する第1-1工程と、
前記単結晶ダイヤモンドに対して前記平面の法線方向の荷重を加えることにより、前記単結晶ダイヤモンドを前記外端部に押しつける第1-2工程と、を含む、請求項5に記載の評価方法。 - 前記単結晶ダイヤモンドの前記平面は(001)面であり、
前記摩耗痕は、前記(001)面の<100>方向に平行である、請求項6に記載の評価方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22892487.4A EP4431905A1 (en) | 2021-11-10 | 2022-10-13 | Contactor and method for evaluating microabrasion characteristics of single-crystal diamond using same |
JP2023559496A JP7556478B2 (ja) | 2021-11-10 | 2022-10-13 | 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法 |
CN202280073685.5A CN118235035A (zh) | 2021-11-10 | 2022-10-13 | 接触件及使用该接触件的单晶金刚石的微小磨损特性的评价方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021183405 | 2021-11-10 | ||
JP2021-183405 | 2021-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023084987A1 true WO2023084987A1 (ja) | 2023-05-19 |
Family
ID=86335599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/038189 WO2023084987A1 (ja) | 2021-11-10 | 2022-10-13 | 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4431905A1 (ja) |
JP (1) | JP7556478B2 (ja) |
CN (1) | CN118235035A (ja) |
WO (1) | WO2023084987A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110146372A1 (en) * | 2009-12-18 | 2011-06-23 | Varel Europe S.A.S. | Synthetic Materials for PDC Cutter Testing or for Testing Other Superhard Materials |
JP2014091661A (ja) * | 2012-11-06 | 2014-05-19 | Sumitomo Electric Ind Ltd | ダイヤモンド多結晶体およびその製造方法 |
CN105158098A (zh) * | 2015-08-26 | 2015-12-16 | 南京航空航天大学 | 一种磨粒位姿可控的单颗磨粒磨削试验平台及其试验方法 |
WO2019069888A1 (ja) * | 2017-10-03 | 2019-04-11 | 英二 草野 | 試料保持台 |
JP2021183405A (ja) | 2020-05-22 | 2021-12-02 | セイコーエプソン株式会社 | 三次元造形物の製造装置 |
-
2022
- 2022-10-13 EP EP22892487.4A patent/EP4431905A1/en active Pending
- 2022-10-13 CN CN202280073685.5A patent/CN118235035A/zh active Pending
- 2022-10-13 WO PCT/JP2022/038189 patent/WO2023084987A1/ja active Application Filing
- 2022-10-13 JP JP2023559496A patent/JP7556478B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110146372A1 (en) * | 2009-12-18 | 2011-06-23 | Varel Europe S.A.S. | Synthetic Materials for PDC Cutter Testing or for Testing Other Superhard Materials |
JP2014091661A (ja) * | 2012-11-06 | 2014-05-19 | Sumitomo Electric Ind Ltd | ダイヤモンド多結晶体およびその製造方法 |
CN105158098A (zh) * | 2015-08-26 | 2015-12-16 | 南京航空航天大学 | 一种磨粒位姿可控的单颗磨粒磨削试验平台及其试验方法 |
WO2019069888A1 (ja) * | 2017-10-03 | 2019-04-11 | 英二 草野 | 試料保持台 |
JP2021183405A (ja) | 2020-05-22 | 2021-12-02 | セイコーエプソン株式会社 | 三次元造形物の製造装置 |
Non-Patent Citations (3)
Title |
---|
E M WILKSJ WILKS: "The resistance of diamond to abrasion", JOURNAL OF PHYSICS D: APPLIED PHYSICS, vol. 5, 1972, pages 1902 - 1919 |
EILEEN M.WILKSJ.WILKS: "The Resistance of Diamond to Abrasion", PHILOSOPHICAL. MAGAZINE, vol. 4, no. 38, 1959, pages 158 - 170 |
LEE MASAKAZU, MANABE, KEISUKE. TERAMOTO. MINORI. H AR ANO. KATSUKO. KOBAYASHI. YULAKA. SUMI YA. HITOSHI: "Wear characteristics of various diamonds", LECTURE PROCEEDINGS OF ACADEMIC LECTURE CONFERENCE OF 2019 JSPE SPRING CONFERENCE, 13 March 2019 (2019-03-13), pages 646 - 647, XP093065188 * |
Also Published As
Publication number | Publication date |
---|---|
CN118235035A (zh) | 2024-06-21 |
EP4431905A1 (en) | 2024-09-18 |
JP7556478B2 (ja) | 2024-09-26 |
JPWO2023084987A1 (ja) | 2023-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5197383B2 (ja) | 切削工具 | |
TWI781164B (zh) | 包含多晶鑽石之壓頭、使用其之龜裂產生荷重之評估方法及其評估裝置 | |
JP2015096294A (ja) | Cmpパッドのコンディショニングのための平坦かつ一貫した表面トポグラフィーを有する研磨工具及びその製造方法 | |
CN105088339A (zh) | 多晶金刚石体、切削工具、耐磨工具、磨削工具以及用于制造多晶金刚石体的方法 | |
KR20150138302A (ko) | Pcbn 물질, 이의 제조 방법, 이를 포함한 도구, 및 이의 사용 방법 | |
Tsai | Polycrystalline diamond shaving conditioner for CMP pad conditioning | |
SG190811A1 (en) | Cmp pad conditioning tool | |
TWI704105B (zh) | 鑽石多晶體及具備其之工具 | |
JP2007268666A (ja) | Cmpパッドコンディショナー | |
Harano et al. | Cutting performance of nano-polycrystalline diamond | |
WO2023084987A1 (ja) | 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法 | |
TWI690488B (zh) | 鑽石多晶體及具備其之工具 | |
Shen et al. | Grinding characteristics of CVD diamond grits in single grit grinding of SiC ceramics | |
JP2012533172A (ja) | 砥粒の懸濁物 | |
JP7556479B2 (ja) | 接触子及びそれを用いた単結晶ダイヤモンドの微小摩耗特性の評価方法 | |
JP2008200780A (ja) | 混合砥粒砥石 | |
Liu et al. | Numerical simulation and experimental researches on different abrasive grain arrangements of monolayer diamond grinding tools fabricated by HFCVD method | |
KR20160031546A (ko) | 총형 드레싱 롤러 | |
TWI779728B (zh) | 鑽石修整碟及其製造方法 | |
WO2024009938A1 (ja) | セラミックスボール用素材、セラミックス成形体の加工装置、および、セラミックス成形体の加工方法 | |
SUMIYA et al. | Microfracture Strength Evaluation Technique Using Nano-polycrystalline Diamond Spherical Indenter | |
Gao et al. | Ultra-low damage processing of silicon wafer with an innovative and optimized nonwoven grind-polishing wheel | |
JP2020011886A (ja) | ダイヤモンド多結晶体及びそれを備えた工具 | |
via Chemically | Magnetorheological Finishing of Chemical-Vapor–Deposited Zinc Sulfide via Chemically and Mechanically Modified Fluids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22892487 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023559496 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280073685.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022892487 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022892487 Country of ref document: EP Effective date: 20240610 |