TW202018386A - Quantum dot display panel - Google Patents

Quantum dot display panel Download PDF

Info

Publication number
TW202018386A
TW202018386A TW108109084A TW108109084A TW202018386A TW 202018386 A TW202018386 A TW 202018386A TW 108109084 A TW108109084 A TW 108109084A TW 108109084 A TW108109084 A TW 108109084A TW 202018386 A TW202018386 A TW 202018386A
Authority
TW
Taiwan
Prior art keywords
quantum dot
display panel
dot display
fluorine
electron transport
Prior art date
Application number
TW108109084A
Other languages
Chinese (zh)
Other versions
TWI710832B (en
Inventor
李俊育
郭雅佩
張瑤山
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to CN201910342630.XA priority Critical patent/CN110176545B/en
Publication of TW202018386A publication Critical patent/TW202018386A/en
Application granted granted Critical
Publication of TWI710832B publication Critical patent/TWI710832B/en

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A quantum dot display panel includes a control substrate, a plurality of hole-carrier layers, a plurality of Quantum Dot Emmiting Layers (QD EMLs), a plurality of Electron Transport Layers (ETLs), a cathode, and a fluorinated treatment material. The control substrate has a flat surface and a plurality of anodes formed on the flat surface. The hole-carrier layers cover the anodes respectively. The QD EMLs are formed on the hole-carrier layers respectively. The ETLs are formed on the QD EMLs respectively. Each QD EML is between the ETL and the hole-carrier layer, and each ETL is a metal oxide layer. The cathode covers the ETLs. The fluorinated treatment material covers the cathode, and the fluorinated treatment material contains semi-fluorinated polymer.

Description

量子點顯示面板Quantum dot display panel

本發明有關於一種顯示面板,且特別是有關於一種量子點顯示面板。The invention relates to a display panel, and in particular to a quantum dot display panel.

目前的顯示器技術已發展出量子點顯示面板,其具有比一般顯示器(例如傳統的液晶顯示器)較廣的色域(gamut),因此量子點顯示器能提供色飽和度(saturation)較佳的鮮豔影像。此外,目前有的量子點顯示面板屬於電致發光型(Electroluminescence,EL)顯示器,並具有發光層(Emitting Layer, EML)。當量子點顯示面板通電並運作時,電子與電洞會在發光層再結合(recombination)而產生光子,以使發光層發光,從而讓量子點顯示器顯示影像。The current display technology has developed a quantum dot display panel, which has a wider color gamut than a general display (such as a traditional liquid crystal display), so the quantum dot display can provide vivid images with better color saturation (saturation) . In addition, some current quantum dot display panels are electroluminescence (EL) displays, and have an emitting layer (Emitting Layer, EML). When the quantum dot display panel is powered on and operating, electrons and holes will recombine in the light-emitting layer to generate photons, so that the light-emitting layer emits light, so that the quantum dot display displays images.

本發明提供一種量子點顯示面板,其利用含氟改質材料(fluorinated treatment material)來提升量子點顯示面板的效能(efficiency)。The present invention provides a quantum dot display panel that utilizes a fluorinated treatment material to enhance the efficiency of the quantum dot display panel.

本發明所提供的量子點顯示面板包括包括控制基板、多個電洞載體層、多個量子點發光層、多個電子傳輸層、陰極以及含氟改質材料。控制基板具有平面以及多個形成於此平面的陽極。這些電洞載體層分別覆蓋這些陽極。這些量子點發光層分別形成於這些電洞載體層上。這些電子傳輸層分別形成於這些量子點發光層上。各個量子點發光層位於電子傳輸層與電洞載體層之間,而各個電子傳輸層為金屬氧化物層。陰極覆蓋這些電子傳輸層。含氟改質材料覆蓋陰極,且含氟改質材料含有半氟聚合物(semi-fluorinated polymer)。The quantum dot display panel provided by the present invention includes a control substrate, a plurality of hole carrier layers, a plurality of quantum dot light-emitting layers, a plurality of electron transport layers, a cathode, and a fluorine-containing modified material. The control substrate has a plane and a plurality of anodes formed on this plane. These hole carrier layers cover the anodes, respectively. These quantum dot light-emitting layers are formed on these hole carrier layers, respectively. These electron transport layers are formed on these quantum dot light-emitting layers, respectively. Each quantum dot light-emitting layer is located between the electron transport layer and the hole carrier layer, and each electron transport layer is a metal oxide layer. The cathode covers these electron transport layers. The fluorine-containing modified material covers the cathode, and the fluorine-containing modified material contains semi-fluorinated polymer.

在本發明至少一實施例中,上述含氟改質材料含有重量百分濃度(wt%)30%至50%的氟。In at least one embodiment of the present invention, the fluorine-containing modified material contains 30% to 50% fluorine by weight (wt%).

在本發明至少一實施例中,上述半氟聚合物包括以下化學結構:

Figure 02_image001
其中R1 為半過氟烷基(semi-perfluoroalkyl),而R2 為氫(H)或叔丁氧羰基(tert-butoxycarbonyl)。In at least one embodiment of the present invention, the aforementioned semi-fluoropolymer includes the following chemical structure:
Figure 02_image001
Wherein R 1 is semi-perfluoroalkyl (semi-perfluoroalkyl), and R 2 is hydrogen (H) or tert-butoxycarbonyl (tert-butoxycarbonyl).

在本發明至少一實施例中,各個量子點發光層具有第一中央區以及圍繞第一中央區的第一邊緣區。第一中央區相對於控制基板的平面的高度小於第一邊緣區相對於此平面的高度。In at least one embodiment of the present invention, each quantum dot light-emitting layer has a first central region and a first edge region surrounding the first central region. The height of the first central region relative to the plane of the control substrate is smaller than the height of the first edge region relative to this plane.

在本發明至少一實施例中,各個電子傳輸層具有第二中央區以及圍繞第二中央區的第二邊緣區。第二中央區相對於平面的高度小於第二邊緣區相對於平面的高度。In at least one embodiment of the present invention, each electron transport layer has a second central region and a second edge region surrounding the second central region. The height of the second central zone relative to the plane is smaller than the height of the second edge zone relative to the plane.

在本發明至少一實施例中,各個電子傳輸層的材料選自於由氧化鋅(ZnO)、銦錫氧化物(Indium Tin Oxide,ITO)以及銦鋅氧化物(Indium Zinc Oxide,IZO)所組成的族群。In at least one embodiment of the present invention, the material of each electron transport layer is selected from the group consisting of zinc oxide (ZnO), indium tin oxide (ITO), and indium zinc oxide (IZO) Ethnic group.

在本發明至少一實施例中,各個電子傳輸層包含多個金屬氧化物奈米顆粒。這些金屬氧化物奈米顆粒彼此堆疊,且各個金屬氧化物奈米顆粒的粒徑小於或等於10奈米。In at least one embodiment of the present invention, each electron transport layer includes a plurality of metal oxide nanoparticles. These metal oxide nanoparticles are stacked on each other, and the particle size of each metal oxide nanoparticle is less than or equal to 10 nanometers.

在本發明至少一實施例中,上述陰極為金屬層,且陰極的材料包括鋁、鎂或銀。In at least one embodiment of the present invention, the cathode is a metal layer, and the material of the cathode includes aluminum, magnesium, or silver.

在本發明至少一實施例中,各個量子點發光層的材料選自於鈣鈦礦(perovskite)、硫化鎘、硒化鎘、碲化鎘以及磷化銦所組成的族群。In at least one embodiment of the present invention, the material of each quantum dot light-emitting layer is selected from the group consisting of perovskite, cadmium sulfide, cadmium selenide, cadmium telluride, and indium phosphide.

在本發明至少一實施例中,上述量子點顯示面板還包括網狀隔牆與透明基板。網狀隔牆形成於控制基板的平面上,並具有多個網格,其中這些電洞載體層、這些量子點發光層以及這些電子傳輸層分別位於這些網格內,而陰極更覆蓋網狀隔牆。透明基板配置於含氟改質材料上,其中含氟改質材料位於透明基板與陰極之間。In at least one embodiment of the present invention, the quantum dot display panel further includes a mesh partition wall and a transparent substrate. The mesh partition wall is formed on the plane of the control substrate and has a plurality of grids, wherein the hole carrier layers, the quantum dot light-emitting layers, and the electron transport layers are located in the grids, respectively, and the cathode covers the mesh partitions wall. The transparent substrate is disposed on the fluorine-containing modified material, wherein the fluorine-containing modified material is located between the transparent substrate and the cathode.

本發明因採用含氟改質材料來改善量電子傳輸層以及與其鄰近的膜層(例如量子點發光層與陰極其中至少一者)之間的界面(interface),以減少被侷限(trapped)的電子,從而提升量子點顯示面板的效能。The present invention uses a fluorine-containing modified material to improve the interface between the electron transport layer and the film layer adjacent to it (such as at least one of the quantum dot light-emitting layer and the cathode) to reduce trapped (trapped) Electrons, thereby improving the performance of quantum dot display panels.

為讓本發明的特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下。In order to make the features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below, and in conjunction with the accompanying drawings, detailed descriptions are as follows.

在以下的內文中,將以相同的元件符號表示相同的元件。其次,為了清楚呈現本案的技術特徵,圖式中的元件(例如層、膜、基板以及區域等)的尺寸(例如長度、寬度、厚度與深度)會以不等比例的方式放大。因此,下文實施例的說明與解釋不受限於圖式中的元件所呈現的尺寸與形狀,而應涵蓋如實際製程及/或公差所導致的尺寸、形狀以及兩者的偏差。例如,圖式所示的平坦表面可以具有粗糙及/或非線性的特徵,而圖式所示的銳角可以是圓的。所以,本案圖式所呈示的元件主要是用於示意,並非旨在精準地描繪出元件的實際形狀,也非用於限制本案的申請專利範圍。In the following text, the same element will be denoted by the same element symbol. Secondly, in order to clearly present the technical features of the case, the dimensions (eg length, width, thickness, and depth) of elements (eg, layers, films, substrates, regions, etc.) in the drawings will be enlarged in unequal proportions. Therefore, the description and explanation of the following embodiments are not limited to the sizes and shapes presented by the elements in the drawings, but should cover the sizes, shapes, and deviations of the two due to actual manufacturing processes and/or tolerances. For example, the flat surface shown in the drawings may have rough and/or non-linear characteristics, and the acute angle shown in the drawings may be round. Therefore, the elements presented in the drawings in this case are mainly for illustration, and are not intended to accurately depict the actual shape of the elements, nor are they intended to limit the scope of patent applications in this case.

其次,本案內容中所出現的「約」、「近似」或「實質上」等這類用字不僅涵蓋明確記載的數值與數值範圍,而且也涵蓋發明所屬技術領域中具有通常知識者所能理解的可允許偏差範圍,其中此偏差範圍可由測量時所產生的誤差來決定,而此誤差例如是起因於測量系統或製程條件兩者的限制。此外,「約」可表示在上述數值的一個或多個標準偏差內,例如±30%、±20%、±10%或±5%內。本案文中所出現的「約」、「近似」或「實質上」等這類用字可依光學性質、蝕刻性質、機械性質或其他性質來選擇可以接受的偏差範圍或標準偏差,並非單以一個標準偏差來套用以上光學性質、蝕刻性質、機械性質以及其他性質等所有性質。Secondly, the words "about", "approximately", or "substantially" appearing in the content of this case not only cover the clearly stated values and range of values, but also include those with ordinary knowledge in the technical field to which the invention belongs. The allowable deviation range, which can be determined by the error generated during the measurement, and the error is caused by the limitation of both the measurement system or the process conditions, for example. In addition, "about" may be expressed within one or more standard deviations of the aforementioned values, for example, within ±30%, ±20%, ±10%, or ±5%. The words "about", "approximately" or "substantially" appearing in this text can choose acceptable deviation range or standard deviation according to optical properties, etching properties, mechanical properties or other properties, not just one Standard deviation to apply all the above optical properties, etching properties, mechanical properties and other properties.

圖1A是本發明至少一實施例的量子點顯示面板的剖面示意圖。請參閱圖1A,量子點顯示面板100包括控制基板110以及多個電洞載體層120,其中這些電洞載體層120皆形成於控制基板110的一側。詳細而言,控制基板110具有平面110s以及多個形成於平面110s的陽極111。這些電洞載體層120分別覆蓋這些陽極111,且可以接觸這些陽極111,但不限制於本發明至少一實施例。這些陽極111可呈陣列排列,並且可以是金屬層或透明導電膜(Transparent Conductive Film,TCF),其中陽極111可以是金屬層與透明導電膜至少一種彼此組合而成。例如,陽極111可以是由至少兩種膜層堆疊而成,其中這些膜層可皆為金屬層或透明導電膜,或者這些膜層可包括金屬層與透明導電膜。陽極111可以是透明(tranparent)或不透光(opaque)。陽極111可利用物理氣相沉積(Physical Vapor Deposition,PVD)來形成,例如濺鍍(sputtering)或蒸鍍(evaporation)。FIG. 1A is a schematic cross-sectional view of a quantum dot display panel according to at least one embodiment of the present invention. Referring to FIG. 1A, the quantum dot display panel 100 includes a control substrate 110 and a plurality of hole carrier layers 120, wherein the hole carrier layers 120 are all formed on one side of the control substrate 110. In detail, the control substrate 110 has a plane 110s and a plurality of anodes 111 formed on the plane 110s. The hole carrier layers 120 respectively cover the anodes 111 and can contact the anodes 111, but it is not limited to at least one embodiment of the present invention. The anodes 111 may be arranged in an array, and may be a metal layer or a transparent conductive film (Transparent Conductive Film, TCF), where the anode 111 may be a combination of at least one of a metal layer and a transparent conductive film. For example, the anode 111 may be formed by stacking at least two film layers, where these film layers may all be metal layers or transparent conductive films, or these film layers may include a metal layer and a transparent conductive film. The anode 111 may be tranparent or opaque. The anode 111 may be formed using physical vapor deposition (PVD), such as sputtering or evaporation.

上述透明導電膜的材料可以是透明金屬氧化物(Transparent Conductive Oxide,TCO),例如氧化鋅(ZnO)、銦錫氧化物(ITO)或銦鋅氧化物(IZO),或是這些透明金屬氧化物的任意組合。例如,陽極111可以是氧化鋅層或銦錫氧化物層,或是氧化鋅與銦鋅氧化物混合而成的膜層。當然,陽極111也可由其他透明導電材料所形成,所以構成陽極111的材料不限定是氧化鋅、銦錫氧化物與銦鋅氧化物其中至少一者。The material of the transparent conductive film may be a transparent metal oxide (Transparent Conductive Oxide, TCO), such as zinc oxide (ZnO), indium tin oxide (ITO) or indium zinc oxide (IZO), or these transparent metal oxides Any combination. For example, the anode 111 may be a zinc oxide layer or an indium tin oxide layer, or a film layer formed by mixing zinc oxide and indium zinc oxide. Of course, the anode 111 may also be formed of other transparent conductive materials, so the material constituting the anode 111 is not limited to at least one of zinc oxide, indium tin oxide, and indium zinc oxide.

控制基板110例如是元件陣列基板(component array substrate),並具有多個控制元件(未繪示),其中控制元件可為二極體或電晶體,例如薄膜電晶體(Thin Film Transistor,TFT)。所以,控制基板110可為主動元件陣列基板(控制元件例如是電晶體)或被動元件陣列基板(控制元件例如是二極體)。The control substrate 110 is, for example, a component array substrate, and has a plurality of control elements (not shown), where the control elements may be diodes or transistors, such as thin film transistors (Thin Film Transistor, TFT). Therefore, the control substrate 110 may be an active element array substrate (the control element is, for example, a transistor) or a passive element array substrate (the control element is, for example, a diode).

控制基板110的結構實質上可相同於液晶顯示面板(Liquid Cryatal Display Panel,LCD Panel)與有機發光二極體顯示面板(Organic Light-Emitting Diode Display Panel,OLED Display Panel)兩者元件陣列基板的結構,且控制基板110的製造方法也相似於液晶顯示面板與有機發光二極體顯示面板兩者元件陣列基板的製造方法。所以,即使圖1A未繪示出控制元件,本發明所屬技術領域中具有通常知識者也知曉控制基板110的結構與製造方法。The structure of the control substrate 110 may be substantially the same as the structure of the element array substrate of the liquid crystal display panel (Liquid Cryatal Display Panel, LCD Panel) and the organic light-emitting diode display panel (Organic Light-Emitting Diode Display Panel, OLED Display Panel) And, the manufacturing method of the control substrate 110 is also similar to the manufacturing method of the element array substrate of both the liquid crystal display panel and the organic light emitting diode display panel. Therefore, even if the control element is not shown in FIG. 1A, those with ordinary knowledge in the technical field to which the present invention belongs will know the structure and manufacturing method of the control substrate 110.

量子點顯示面板100還包括多個量子點發光層130以及多個電子傳輸層140,其中這些量子點發光層130分別形成於這些電洞載體層120上,而這些多個電子傳輸層140分別形成於這些量子點發光層130上。所以,各個量子點發光層130會位於電子傳輸層140與電洞載體層120之間,其中各個量子點發光層130可以接觸電子傳輸層140與電洞載體層120,但不限制於本發明至少一實施例。電子傳輸層140為無機材料層。例如,各個電子傳輸層140為金屬氧化物層,其材料可以是透明金屬氧化物。The quantum dot display panel 100 further includes a plurality of quantum dot light emitting layers 130 and a plurality of electron transport layers 140, wherein the quantum dot light emitting layers 130 are respectively formed on the hole carrier layers 120, and the plurality of electron transport layers 140 are respectively formed On these quantum dot light emitting layers 130. Therefore, each quantum dot light emitting layer 130 will be located between the electron transport layer 140 and the hole carrier layer 120, wherein each quantum dot light emitting layer 130 may contact the electron transport layer 140 and the hole carrier layer 120, but it is not limited to the present invention. One embodiment. The electron transport layer 140 is an inorganic material layer. For example, each electron transport layer 140 is a metal oxide layer, and its material may be a transparent metal oxide.

例如,各個電子傳輸層140的材料可選自於由氧化鋅、銦錫氧化物以及銦鋅氧化物所組成的族群。也就是說,電子傳輸層140可以是氧化鋅層、銦錫氧化物層或銦鋅氧化物層,或是氧化鋅、銦錫氧化物與銦鋅氧化物其中至少兩者混合而成。當然,電子傳輸層140也可含有氧化鋅、銦錫氧化物與銦鋅氧化物以外的材料,所以構成電子傳輸層140的材料不限定是以上透明金屬氧化物。For example, the material of each electron transport layer 140 may be selected from the group consisting of zinc oxide, indium tin oxide, and indium zinc oxide. That is, the electron transport layer 140 may be a zinc oxide layer, an indium tin oxide layer, or an indium zinc oxide layer, or a mixture of at least two of zinc oxide, indium tin oxide, and indium zinc oxide. Of course, the electron transport layer 140 may also contain materials other than zinc oxide, indium tin oxide, and indium zinc oxide, so the material constituting the electron transport layer 140 is not limited to the above transparent metal oxide.

量子點顯示面板100還包括陰極150,其中陰極150覆蓋這些電子傳輸層140。陰極150也可接觸這些電子傳輸層140,如圖1A所示,但不限制於本發明至少一實施例。陰極150的材料可以包括鋁、鎂或銀,其中鎂以及銀能製作成可透光的薄金屬層,以使陰極150成為半透明(translucent)或透明的膜層。或者,陰極150也可以是由鋁所製成的不透光的厚金屬層。或者,陰極150也可以是由金屬氧化物所製成的透明導電電極。換句話說,陰極150可以是透明、半透明或不透光。此外,陰極150可以利用物理氣相沉積(例如濺鍍或蒸鍍)來形成。The quantum dot display panel 100 further includes a cathode 150, wherein the cathode 150 covers these electron transport layers 140. The cathode 150 may also contact these electron transport layers 140, as shown in FIG. 1A, but is not limited to at least one embodiment of the present invention. The material of the cathode 150 may include aluminum, magnesium, or silver, where magnesium and silver can be made into a thin metal layer that can transmit light, so that the cathode 150 becomes a translucent or transparent film layer. Alternatively, the cathode 150 may be an opaque thick metal layer made of aluminum. Alternatively, the cathode 150 may also be a transparent conductive electrode made of metal oxide. In other words, the cathode 150 may be transparent, translucent, or opaque. In addition, the cathode 150 may be formed using physical vapor deposition (eg, sputtering or evaporation).

電子傳輸層140的主要載子為電子,而電洞載體層120的主要載子為電洞。陰極150與陽極111能接收外部電源所輸入的電能,以使電子傳輸層140能注入電子至量子點發光層130,電洞載體層120能注入電洞至量子點發光層130。如此,電子與電洞可在量子點發光層130內再結合而產生光子,以使量子點顯示面板100發光,從而能顯示影像。The main carriers of the electron transport layer 140 are electrons, and the main carriers of the hole carrier layer 120 are holes. The cathode 150 and the anode 111 can receive electrical energy input from an external power source, so that the electron transport layer 140 can inject electrons into the quantum dot light emitting layer 130, and the hole carrier layer 120 can inject holes into the quantum dot light emitting layer 130. In this way, electrons and holes can be recombined in the quantum dot light emitting layer 130 to generate photons, so that the quantum dot display panel 100 emits light, so that an image can be displayed.

由於陰極150可為透明、半透明或不透光,因此量子點發光層130所發出的光線可從陰極150與陽極111其中至少一者出射。當陰極150透明或半透明時,量子點發光層130的光線可沿著方向U1傳遞,以使影像能顯示於量子點顯示面板100的第一側101。當陰極150不透光時,量子點發光層130的光線可沿著方向D1傳遞,以使影像能顯示於量子點顯示面板100的第二側102,其中第一側101相對於第二側102。此外,當陰極150透明或半透明時,量子點發光層130的多道光線可以沿著方向U1與方向D1傳遞,以使影像能同時顯示於量子點顯示面板100的第一側101與第二側102,即量子點顯示面板100可以製作成透明顯示器。Since the cathode 150 can be transparent, translucent, or opaque, the light emitted by the quantum dot light emitting layer 130 can be emitted from at least one of the cathode 150 and the anode 111. When the cathode 150 is transparent or translucent, the light of the quantum dot light emitting layer 130 can be transmitted along the direction U1, so that the image can be displayed on the first side 101 of the quantum dot display panel 100. When the cathode 150 is opaque, the light of the quantum dot light emitting layer 130 can be transmitted along the direction D1, so that the image can be displayed on the second side 102 of the quantum dot display panel 100, wherein the first side 101 is opposite to the second side 102 . In addition, when the cathode 150 is transparent or translucent, multiple light rays of the quantum dot light emitting layer 130 can be transmitted along the direction U1 and the direction D1, so that the image can be displayed on the first side 101 and the second side of the quantum dot display panel 100 at the same time The side 102, that is, the quantum dot display panel 100 can be made as a transparent display.

各個量子點發光層130含有多個量子點,且為無機材料層。各個量子點發光層130的材料可選自於鈣鈦礦、硫化鎘、硒化鎘、碲化鎘以及磷化銦所組成的族群。也就是說,量子點發光層130內的量子點材料可包括鈣鈦礦、硫化鎘、硒化鎘、碲化鎘以及磷化銦其中至少一種。此外,除了以上材料之外,量子點發光層130也可包括其他材料,所以量子點發光層130的材料不限定包括鈣鈦礦、硫化鎘、硒化鎘、碲化鎘與磷化銦其中任一種。Each quantum dot light-emitting layer 130 contains a plurality of quantum dots and is an inorganic material layer. The material of each quantum dot light emitting layer 130 may be selected from the group consisting of perovskite, cadmium sulfide, cadmium selenide, cadmium telluride, and indium phosphide. That is, the quantum dot material in the quantum dot light emitting layer 130 may include at least one of perovskite, cadmium sulfide, cadmium selenide, cadmium telluride, and indium phosphide. In addition to the above materials, the quantum dot light emitting layer 130 may also include other materials, so the material of the quantum dot light emitting layer 130 is not limited to include any of perovskite, cadmium sulfide, cadmium selenide, cadmium telluride, and indium phosphide. One kind.

當量子點發光層130的材料為硫化鎘、硒化鎘或碲化鎘、磷化銦或這些材料的任意結合時,可改變量子點發光層130內的量子點尺寸來得到預定的能隙,以使量子點發光層130能發出具預定波長的光線。當量子點發光層130的材料為鈣鈦礦時,量子點發光層130內的量子點可具有鍵結的鹵素離子(halogen ion),而量子點發光層130的能隙可由不同種類的鹵素離子來決定,以使量子點發光層130能發出預定波長的光線。舉例而言,具有氯離子的鈣鈦礦(CsPbCl3 )能發出藍光,具有溴離子的鈣鈦礦(CsPbBr3 )能發出綠光,而具有碘離子的鈣鈦礦(CsPbI3 )能發出紅光。When the material of the quantum dot light emitting layer 130 is cadmium sulfide, cadmium selenide or cadmium telluride, indium phosphide, or any combination of these materials, the size of the quantum dots in the quantum dot light emitting layer 130 can be changed to obtain a predetermined energy gap, Therefore, the quantum dot light emitting layer 130 can emit light with a predetermined wavelength. When the material of the quantum dot light emitting layer 130 is perovskite, the quantum dots in the quantum dot light emitting layer 130 may have bonded halogen ions, and the energy gap of the quantum dot light emitting layer 130 may be different kinds of halogen ions. It is determined so that the quantum dot light emitting layer 130 can emit light of a predetermined wavelength. For example, perovskite with chloride ion (CsPbCl 3 ) can emit blue light, perovskite with bromide ion (CsPbBr 3 ) can emit green light, and perovskite with iodine ion (CsPbI 3 ) can emit red light Light.

量子點顯示面板100還包括含氟改質材料160,其覆蓋陰極150。圖1A所示的含氟改質材料160可以全面性覆蓋陰極150,並可接觸陰極150,但不限制於本發明至少一實施例。含氟改質材料160可以是一種光阻材料,其基本上不會傷害有機發光二極體(OLED)的膜層。含氟改質材料160含有半氟聚合物,其中半氟聚合物是指部分氫原子被氟原子取代的聚合物。如果聚合物內的所有氫原子都被氟原子取代,則此聚合物為全氟聚合物(perfluorinated polymer)。The quantum dot display panel 100 further includes a fluorine-containing modified material 160, which covers the cathode 150. The fluorine-containing modified material 160 shown in FIG. 1A can fully cover the cathode 150 and can contact the cathode 150, but is not limited to at least one embodiment of the present invention. The fluorine-containing modified material 160 may be a photoresist material, which basically does not damage the film layer of the organic light emitting diode (OLED). The fluorine-containing modified material 160 contains a semi-fluoro polymer, wherein the semi-fluoro polymer refers to a polymer in which part of hydrogen atoms are replaced by fluorine atoms. If all hydrogen atoms in the polymer are replaced by fluorine atoms, the polymer is a perfluorinated polymer.

一般而言,半氟聚合物可以具有碳-氫鍵與碳-氟鍵。然而,全氟聚合物可以具有碳-氟鍵,但通常不具有碳-氫鍵。因此,半氟聚合物與全氟聚合物兩者的化學鍵(chemical bond)理應不相同,所以化學主結構都一樣的半氟聚合物與全氟聚合物兩者的拉曼光譜(Raman spectrum)會呈現彼此不同的結果。換句話說,在半氟聚合物與全氟聚合物兩者化學主結構相同的條件下,可以利用拉曼光譜來分辨半氟聚合物以及全氟聚合物。Generally speaking, the semi-fluoropolymer may have a carbon-hydrogen bond and a carbon-fluorine bond. However, perfluoropolymers may have carbon-fluorine bonds, but generally do not have carbon-hydrogen bonds. Therefore, the chemical bond between the semi-fluoropolymer and the perfluoropolymer should be different, so the Raman spectrum of the semi-fluoropolymer and the perfluoropolymer with the same chemical main structure will be Present different results to each other. In other words, Raman spectroscopy can be used to distinguish between semi-fluoropolymers and perfluoropolymers under the same chemical main structure.

在本實施例中,上述半氟聚合物可以包括以下化學式(一)所示的化學結構。在化學式(一)中,R1 為半過氟烷基,例如(CH2)n(CF2)m CF3 ,其中碳(C)的個數可為1至12,而n與m為正整數。R2 為氫(H)、叔丁氧羰基(tert-butoxycarbonyl)或甲基丙烯酸叔丁酯(tert-butyl methacrylate)。

Figure 02_image001
化學式(一)In this embodiment, the above semi-fluoropolymer may include the chemical structure shown in the following chemical formula (1). In the chemical formula (1), R 1 is a semi-perfluoroalkyl group, such as (CH2)n(CF2) m CF 3 , where the number of carbon (C) can be 1 to 12, and n and m are positive integers. R 2 is hydrogen (H), tert-butoxycarbonyl (tert-butoxycarbonyl) or tert-butyl methacrylate (tert-butyl methacrylate).
Figure 02_image001
Chemical formula (1)

此外,上述半氟聚合物還可包括共聚物(copolymer),其具有以下化學式(二)的化學主結構,其中R3 可為氫氧根(OH- )或以下化學式(三)或化學式(四)的化學結構。

Figure 02_image004
化學式(二)
Figure 02_image006
化學式(三)
Figure 02_image008
化學式(四)Further, the polymer may also comprise a semi-fluoro copolymer (Copolymer), which has the following chemical formula (II) main chemical structure wherein R 3 may be a hydroxyl (OH -) or the formula (III) or formula (IV ) Chemical structure.
Figure 02_image004
Chemical formula (2)
Figure 02_image006
Chemical formula (3)
Figure 02_image008
Chemical formula (4)

在本實施例中,量子點顯示面板100的效能可隨著含氟改質材料160中的氟的重量百分濃度變化而改變,如以下表格(一)所示。

Figure 108109084-A0304-0001
表格(一)In this embodiment, the performance of the quantum dot display panel 100 can be changed as the weight percentage concentration of fluorine in the fluorine-containing modified material 160 changes, as shown in the following table (1).
Figure 108109084-A0304-0001
Form (1)

樣品A、B以及C分別代表三種不同量子點顯示面板100的藍色畫素(blue pixel),且在樣品A、B與C中,三者的電子傳輸層140的材料皆為氧化鋅,而三者的含氟改質材料160含有不同重量百分濃度的氟,其中樣品A含有重量百分濃度約37%的氟,樣品B含有重量百分濃度小於30%的氟,而樣品C含有重量百分濃度大於50%的氟。所以,樣品C中的氟的重量百分濃度最高,而樣品B中的氟的重量百分濃度最低。樣品A中的氟的重量百分濃度介於樣品B與C之間。Samples A, B, and C respectively represent three different blue pixels of the quantum dot display panel 100, and in samples A, B, and C, the material of the electron transport layer 140 of the three is zinc oxide, and The three fluorine-containing modified materials 160 contain different weight percent concentrations of fluorine, where sample A contains about 37% by weight of fluorine, sample B contains less than 30% by weight of fluorine, and sample C contains weight Fluorine with a percentage concentration greater than 50%. Therefore, the weight percentage of fluorine in sample C is the highest, while the weight percentage of fluorine in sample B is the lowest. The weight percent concentration of fluorine in sample A is between samples B and C.

另外,在表格(一)中,「起始電壓」是指當樣品A、B與C的亮度達到1000坎德拉/每平方公尺(cd/m2 )時,輸入至樣品A、B與C的電壓值,其中坎德拉/每平方公尺也可稱為尼特(nit)。「CIE1931色度圖x」與「CIE1931色度圖y」分別代表CIE1931色度圖中的座標X值與Y值,並且表示樣品A、B與C所發出的光線的顏色(其為藍色)在CIE1931色度圖上的座標。「電流效率(LE)」所示的單位cd/A是指「坎德拉/安培」,而「電流效率/y值(LE/y)」是指「電流效率(LE)」與「CIE1931色度圖y」之間的比值。In addition, in the table (1), the "starting voltage" refers to the values input to samples A, B, and C when the brightness of samples A, B, and C reaches 1000 candela per square meter (cd/m 2 ). Voltage value, where candela per square meter can also be called nit. "CIE1931 chromaticity diagram x" and "CIE1931 chromaticity diagram y" represent the coordinate X and Y values in the CIE1931 chromaticity diagram, respectively, and represent the color of the light emitted by samples A, B, and C (which is blue) Coordinates on the CIE1931 chromaticity diagram. The unit cd/A shown in "current efficiency (LE)" means "candela/ampere", and "current efficiency/y value (LE/y)" means "current efficiency (LE)" and "CIE1931 chromaticity diagram The ratio between "y".

從表格(一)來看,樣品A、B以及C三者的峰值波長與半高寬((Full Width at Half Maximum, FWHM))十分相近,差異甚小。這表示含氟改質材料160的氟的重量百分濃度實質上不會影響量子點顯示面板100所發出的光線的波長,即上述氟的重量百分濃度實質上不會影響電子與電洞之間的再結合。其次,在樣品A、B與C中,樣品A具有最低的起始電壓以及最大的電流效率、電流效率/y值與外部量子效率。可見,樣品A的效能比樣品B與C佳。From Table (1), the peak wavelengths of samples A, B, and C are very similar to (Full Width at Half Maximum, FWHM), and the difference is very small. This means that the fluorine weight percent concentration of the fluorine-modified material 160 does not substantially affect the wavelength of the light emitted by the quantum dot display panel 100, that is, the fluorine weight percent concentration does not substantially affect the electrons and holes. Recombination. Secondly, among samples A, B and C, sample A has the lowest initial voltage and the largest current efficiency, current efficiency/y value and external quantum efficiency. It can be seen that the efficiency of sample A is better than that of samples B and C.

由此可知,含氟改質材料160所含的氟的重量百分濃度越多(例如樣品C)或越少(例如樣品B)並不能使量子點顯示面板100達到最佳化的效能,而在本實施例中,含氟改質材料160可以含有重量百分濃度30%至50%的氟,例如重量百分濃度約37%的氟,以使量子點顯示面板100在起始電壓、電流效率、電流效率/y值以及外部量子效率方面能有好的表現。不過,必須說明的是,含氟改質材料160也可含有上述重量百分濃度範圍以外的氟,所以含氟改質材料160內的氟不限定只能介於以上重量百分濃度的範圍內。It can be seen that the greater the weight percentage of fluorine contained in the fluorine-modified material 160 (such as sample C) or less (such as sample B), the quantum dot display panel 100 cannot be optimized, and In this embodiment, the fluorine-containing modified material 160 may contain 30% to 50% fluorine by weight, for example, about 37% fluorine by weight, so that the quantum dot display panel 100 is at a starting voltage and current The efficiency, current efficiency/y value and external quantum efficiency have good performance. However, it must be noted that the fluorine-containing modified material 160 may also contain fluorine outside the above weight percent concentration range, so the fluorine in the fluorine-containing modified material 160 is not limited to be within the above weight percent concentration range .

量子點顯示面板100可以還包括網狀隔牆180。網狀隔牆180形成於控制基板110的平面110s上,並具有多個網格181,其中這些網格181是從網狀隔牆180的一側(例如上側)延伸至相對側(例如下側),所以網格181為貫孔。這些網格181分別對準(aligning to)這些陽極111,所以這些網格181可呈陣列排列。這些電洞載體層120、這些量子點發光層130及這些電子傳輸層140分別位於這些網格181內,並在這些網格181內堆疊。The quantum dot display panel 100 may further include a mesh partition wall 180. The mesh partition wall 180 is formed on the plane 110s of the control substrate 110, and has a plurality of grids 181, wherein the meshes 181 extend from one side (eg, upper side) of the mesh partition wall 180 to the opposite side (eg, lower side) ), so the grid 181 is a through hole. The grids 181 are aligned to the anodes 111 respectively, so the grids 181 can be arranged in an array. The hole carrier layers 120, the quantum dot light-emitting layers 130, and the electron transport layers 140 are located in the grids 181, respectively, and are stacked in the grids 181.

由於各個網格181為貫孔,並且對準陽極111,所以網狀隔牆180不會全面覆蓋陽極111。以圖1A為例,網狀隔牆180僅覆蓋陽極111的邊緣區域,但不覆蓋陽極111的中央區域。此外,這些網格181能定義量子點顯示面板100的次畫素(sub-pixel),例如紅色畫素、綠色畫素及藍色畫素,而陰極150更全面性地覆蓋網狀隔牆180。Since each grid 181 is a through hole and is aligned with the anode 111, the mesh partition wall 180 does not completely cover the anode 111. Taking FIG. 1A as an example, the mesh partition 180 only covers the edge area of the anode 111, but does not cover the central area of the anode 111. In addition, these grids 181 can define sub-pixels of the quantum dot display panel 100, such as red pixels, green pixels, and blue pixels, and the cathode 150 covers the mesh partition 180 more comprehensively .

量子點顯示面板100可以還包括透明基板170,其可以是藍寶石基板、玻璃板或透明塑膠板,其中透明塑膠板例如是由聚甲基丙烯酸甲酯(Poly(methyl methacrylate),PMMA,即壓克力)所製成。透明基板170配置於含氟改質材料160上,而含氟改質材料160位於透明基板170與陰極150之間,其中含氟改質材料160會填滿透明基板170與陰極150之間的空間。此外,量子點顯示面板100可還包括擋牆(dam)190,其連接於透明基板170與控制基板110之間,其中擋牆190可位於控制基板110的邊緣區域,並且圍繞網狀隔牆180。The quantum dot display panel 100 may further include a transparent substrate 170, which may be a sapphire substrate, a glass plate, or a transparent plastic plate, where the transparent plastic plate is made of, for example, poly (methyl methacrylate) (PMMA, PMMA) Force). The transparent substrate 170 is disposed on the fluorine-containing modified material 160, and the fluorine-containing modified material 160 is located between the transparent substrate 170 and the cathode 150, wherein the fluorine-containing modified material 160 fills the space between the transparent substrate 170 and the cathode 150 . In addition, the quantum dot display panel 100 may further include a dam 190 connected between the transparent substrate 170 and the control substrate 110, wherein the dam 190 may be located in an edge area of the control substrate 110 and surround the mesh partition 180 .

圖1B是圖1A中的量子點顯示面板的放大示意圖。請參閱圖1A與圖1B,電洞載體層120、量子點發光層130以及電子傳輸層140皆可採用溶液製程(soluble process)來形成。也就是說,電洞載體層120、量子點發光層130與電子傳輸層140可用液態溶液來形成。例如,在形成網狀隔牆180之後,可將多種液態溶液依序噴入或滴入於這些網格181內,以依序形成電洞載體層120、量子點發光層130以及電子傳輸層140。由於這些液態溶液的內聚力(cohesion)小於這些液態溶液與網狀隔牆180之間的附著力(adhesion),因此這些用溶液製程所形成的膜層會出現中央區域較周圍區域凹下的特徵。FIG. 1B is an enlarged schematic diagram of the quantum dot display panel in FIG. 1A. Referring to FIGS. 1A and 1B, the hole carrier layer 120, the quantum dot light emitting layer 130, and the electron transport layer 140 can all be formed by a soluble process. That is, the hole carrier layer 120, the quantum dot light emitting layer 130, and the electron transport layer 140 can be formed with a liquid solution. For example, after the mesh partition wall 180 is formed, various liquid solutions can be sprayed or dropped into these grids 181 in sequence to form the hole carrier layer 120, the quantum dot light emitting layer 130, and the electron transport layer 140 in sequence . Since the cohesion of these liquid solutions is less than the adhesion between these liquid solutions and the mesh partition wall 180, the film layer formed by the solution process will have a characteristic that the central area is recessed compared to the surrounding area.

具體而言,在同一個電洞載體層120中,電洞載體層120的中央相對於控制基板110平面110s的高度H21小於該電洞載體層120的邊緣相對於平面110s的高度H22,如圖1B所示。同理,量子點發光層130與電子傳輸層140也具有中央比周圍低的特徵。各個量子點發光層130具有第一中央區131以及圍繞第一中央區131的第一邊緣區132,其中第一中央區131相對於平面110s的高度H31小於第一邊緣區132相對於平面110s的高度H32。各個電子傳輸層140具有第二中央區141以及圍繞第二中央區141的第二邊緣區142,其中第二中央區141相對於平面110s的高度H41小於第二邊緣區142相對於平面110s的高度H42。Specifically, in the same hole carrier layer 120, the height H21 of the center of the hole carrier layer 120 relative to the plane 110s of the control substrate 110 is smaller than the height H22 of the edge of the hole carrier layer 120 relative to the plane 110s, as shown in FIG. 1B. Similarly, the quantum dot light emitting layer 130 and the electron transport layer 140 also have the characteristic that the center is lower than the surroundings. Each quantum dot light-emitting layer 130 has a first central region 131 and a first edge region 132 surrounding the first central region 131, wherein the height H31 of the first central region 131 relative to the plane 110s is smaller than the first edge region 132 relative to the plane 110s Height H32. Each electron transport layer 140 has a second central region 141 and a second edge region 142 surrounding the second central region 141, wherein the height H41 of the second central region 141 relative to the plane 110s is smaller than the height of the second edge region 142 relative to the plane 110s H42.

特別一提的是,網狀隔牆180可由光阻材料來形成,所以網狀隔牆180可經過曝光與顯影之後的光阻,其中網格181是在曝光與顯影之後而形成,而各個網格181的寬度並不均勻。以圖1B為例,網格181的最小寬度W1位於鄰近陽極111的底部,而網格181的最大寬度W2位於陰極150處,其中網格181是從陰極150朝向陽極111逐漸變窄。所以,從圖1B來看,網格181具有下窄上寬的結構。In particular, the mesh partition wall 180 can be formed of a photoresist material, so the mesh partition wall 180 can be subjected to photoresist after exposure and development, in which the mesh 181 is formed after exposure and development, and each mesh The width of the grid 181 is not uniform. Taking FIG. 1B as an example, the minimum width W1 of the grid 181 is located near the bottom of the anode 111, and the maximum width W2 of the grid 181 is located at the cathode 150, where the grid 181 gradually narrows from the cathode 150 toward the anode 111. Therefore, from the perspective of FIG. 1B, the mesh 181 has a structure with a lower width and a lower width.

另外,各個電子傳輸層140可包含多個金屬氧化物奈米顆粒143,其中這些金屬氧化物奈米顆粒143彼此堆疊。各個金屬氧化物奈米顆粒143的粒徑小於或等於10奈米,例如5奈米,所以這些金屬氧化物奈米顆粒143具有量子侷限效應(quantum confinement effect)。因此,金屬氧化物奈米顆粒143具有明顯不同於一般金屬氧化物薄膜的特徵。例如,當電子傳輸層140的材料為氧化鋅時,電子傳輸層140可由多個彼此堆疊的氧化鋅奈米顆粒所形成,所以電子傳輸層140與一般物理氣相沉積或化學氣相沉積(Chemical Vapor Deposition,CVD)所形成氧化鋅薄膜兩者的物理及化學特徵明顯不相同。換句話說,即使材料相同,由多個金屬氧化物奈米顆粒143所形成的電子傳輸層140實質上不等同於一般物理氣相沉積或化學氣相沉積所形成的金屬氧化物薄膜。In addition, each electron transport layer 140 may include a plurality of metal oxide nanoparticles 143, wherein the metal oxide nanoparticles 143 are stacked on each other. The particle size of each metal oxide nanoparticle 143 is less than or equal to 10 nanometers, for example, 5 nanometers, so these metal oxide nanoparticles 143 have a quantum confinement effect. Therefore, the metal oxide nanoparticles 143 have characteristics significantly different from the general metal oxide thin film. For example, when the material of the electron transport layer 140 is zinc oxide, the electron transport layer 140 may be formed of a plurality of zinc oxide nanoparticles stacked on top of each other, so the electron transport layer 140 and the general physical vapor deposition or chemical vapor deposition (Chemical The physical and chemical characteristics of the zinc oxide film formed by Vapor Deposition (CVD) are obviously different. In other words, even if the materials are the same, the electron transport layer 140 formed by the plurality of metal oxide nanoparticles 143 is not substantially equivalent to the metal oxide thin film formed by general physical vapor deposition or chemical vapor deposition.

在本實施例中,電洞載體層120可包括有機材料層,且可為多層膜,即電洞載體層120可包括多層彼此堆疊的膜層。以圖1B為例,各個電洞載體層120包括第一電洞傳輸層121、第二電洞傳輸層122以及電洞注入層123,而在同一層電洞載體層120中,第一電洞傳輸層121、第二電洞傳輸層122以及電洞注入層123彼此堆疊,其中第一電洞傳輸層121、第二電洞傳輸層122與電洞注入層123皆可採用溶液製程來形成。此外,在圖1B所示的實施例中,第一電洞傳輸層121與第二電洞傳輸層122可皆為有機材料層,所以電洞載體層120可包括至少兩層有機材料層,但在其他實施例中,電洞載體層120可包括三層或三層以上的有機材料層。所以,圖1B所示的電洞載體層120僅供舉例說明,並非用於限制電洞載體層120所包括的有機材料層的數量。In this embodiment, the hole carrier layer 120 may include an organic material layer, and may be a multilayer film, that is, the hole carrier layer 120 may include multiple film layers stacked on top of each other. Taking FIG. 1B as an example, each hole carrier layer 120 includes a first hole transmission layer 121, a second hole transmission layer 122, and a hole injection layer 123, and in the same layer of hole carrier layer 120, the first hole The transmission layer 121, the second hole transmission layer 122 and the hole injection layer 123 are stacked on top of each other, wherein the first hole transmission layer 121, the second hole transmission layer 122 and the hole injection layer 123 can all be formed by a solution process. In addition, in the embodiment shown in FIG. 1B, the first hole transport layer 121 and the second hole transport layer 122 may both be organic material layers, so the hole carrier layer 120 may include at least two organic material layers, but In other embodiments, the hole carrier layer 120 may include three or more organic material layers. Therefore, the hole carrier layer 120 shown in FIG. 1B is for illustration only and is not intended to limit the number of organic material layers included in the hole carrier layer 120.

值得一提的是,含氟改質材料160能產生正向老化效應(positvie aging),以使在不實質改變量子點顯示面板100的發光波長的條件下,含氟改質材料160能提升量子點顯示面板100的效能,例如提升亮度、電流密度以及電流效率,如圖2A至圖2D所示,其中圖2A至圖2D皆是採用相同的材料組成與相同的製造方法所製成的量子點顯示面板100來進行測量。It is worth mentioning that the fluorine-containing modified material 160 can generate a positive aging effect (positvie aging), so that the fluorine-containing modified material 160 can enhance the quantum without substantially changing the emission wavelength of the quantum dot display panel 100 The performance of the dot display panel 100, such as improving the brightness, current density, and current efficiency, as shown in FIGS. 2A to 2D, wherein FIGS. 2A to 2D are all quantum dots made with the same material composition and the same manufacturing method The display panel 100 performs measurement.

圖2A是圖1A中的量子點顯示面板與對照量子點顯示面板兩者的電壓與電流密度之間的關係示意圖。請參閱圖1B與圖2A,在圖2A中,曲線A10代表量子點顯示面板100,而曲線A11代表對照量子點顯示面板,其中量子點顯示面板100與對照量子點顯示面板兩者之間的差異僅在於含氟改質材料160的有無。換句話說,曲線A10代表包括含氟改質材料160的量子點顯示面板100,而曲線A11代表未包括含氟改質材料160的量子點顯示面板100。2A is a schematic diagram of the relationship between the voltage and current density of the quantum dot display panel and the control quantum dot display panel in FIG. 1A. Please refer to FIGS. 1B and 2A. In FIG. 2A, curve A10 represents the quantum dot display panel 100, and curve A11 represents the control quantum dot display panel, where the difference between the quantum dot display panel 100 and the control quantum dot display panel It is only the presence or absence of fluorine-containing modified material 160. In other words, the curve A10 represents the quantum dot display panel 100 including the fluorine-containing modified material 160, and the curve A11 represents the quantum dot display panel 100 that does not include the fluorine-containing modified material 160.

從圖2A來看,在輸入相同電壓的條件下,量子點顯示面板100能達到較大的電流密度,而對照量子點顯示面板卻達到較小的電流密度。換句話說,在達到相同電流密度的條件下,量子點顯示面板100所需的電壓會低於對照量子點顯示面板所需的電壓。以圖2A為例,在同樣達到電流密度為10毫安培/平方公分(mA/cm2 )的條件下,量子點顯示面板100(曲線A10)需要約5.8伏特電壓,但是對照量子點顯示面板(曲線A11)卻需要7.3伏特電壓。From FIG. 2A, under the condition of inputting the same voltage, the quantum dot display panel 100 can achieve a larger current density, while the control quantum dot display panel achieves a smaller current density. In other words, under the condition that the same current density is reached, the voltage required by the quantum dot display panel 100 will be lower than the voltage required by the control quantum dot display panel. Taking FIG. 2A as an example, the quantum dot display panel 100 (curve A10) requires a voltage of about 5.8 volts under the condition that the current density is also 10 milliamperes per square centimeter (mA/cm 2 ), but in contrast to the quantum dot display panel ( Curve A11) requires 7.3 volts.

由此可見,包括含氟改質材料160的量子點顯示面板100顯然具有較佳的電流密度特性,即含氟改質材料160能改善電流密度。此外,圖2A所示的曲線A10是在含氟改質材料160完成後經過至少3分鐘所測量得到。也就是說,在形成含氟改質材料160之後,無須經過長時間的等待(例如1小時,甚至是超過1天),量子點顯示面板100在電流密度方面就有不錯的表現。It can be seen that the quantum dot display panel 100 including the fluorine-containing modified material 160 obviously has better current density characteristics, that is, the fluorine-containing modified material 160 can improve the current density. In addition, the curve A10 shown in FIG. 2A is measured at least 3 minutes after the fluorine-containing modified material 160 is completed. That is to say, after forming the fluorine-containing modified material 160, there is no need to wait for a long time (for example, 1 hour, or even more than 1 day), the quantum dot display panel 100 has a good performance in terms of current density.

圖2B是圖1A中的量子點顯示面板與對照量子點顯示面板兩者的電壓與亮度之間的關係示意圖。請參閱圖1B與圖2B,圖2B所示的曲線B10與B11分別代表量子點顯示面板100以及對照量子點顯示面板,其中曲線B10所代表的量子點顯示面板100包括含氟改質材料160,且曲線B10也是在含氟改質材料160完成後經過至少3分鐘所測量得到。曲線B11所代表的對照量子點顯示面板未包括含氟改質材料160,而圖2A與圖2B所測量的對照量子點顯示面板皆採用相同的材料組成以及相同的製造方法。從圖2B來看,在輸入相同電壓的條件下,量子點顯示面板100能達到較高的亮度,而對照量子點顯示面板卻達到較低的亮度。因此,含氟改質材料160可以在短時間內(至少3分鐘)改善量子點顯示面板100的亮度,從而提升量子點顯示面板100的發光效能。FIG. 2B is a schematic diagram of the relationship between the voltage and brightness of the quantum dot display panel and the control quantum dot display panel in FIG. 1A. Please refer to FIGS. 1B and 2B. Curves B10 and B11 shown in FIG. 2B respectively represent the quantum dot display panel 100 and the control quantum dot display panel. The quantum dot display panel 100 represented by the curve B10 includes a fluorine-containing modified material 160. And the curve B10 is also measured after at least 3 minutes after the fluorine-containing modified material 160 is completed. The control quantum dot display panel represented by the curve B11 does not include the fluorine-containing modified material 160, and the control quantum dot display panels measured in FIGS. 2A and 2B use the same material composition and the same manufacturing method. From FIG. 2B, under the condition of inputting the same voltage, the quantum dot display panel 100 can achieve higher brightness, while the control quantum dot display panel achieves lower brightness. Therefore, the fluorine-containing modified material 160 can improve the brightness of the quantum dot display panel 100 in a short time (at least 3 minutes), thereby improving the luminous efficacy of the quantum dot display panel 100.

圖2C是圖1A中的量子點顯示面板與對照量子點顯示面板兩者的電流密度與電流效率之間的關係示意圖,其中圖2C所示的曲線C10與C11分別代表量子點顯示面板100與對照量子點顯示面板。與圖2A相同,曲線C10所代表的量子點顯示面板100包括含氟改質材料160,而曲線C11所代表的對照量子點顯示面板未包括含氟改質材料160。此外,圖2C所示的曲線C10也是在含氟改質材料160完成後經過至少3分鐘所測量得到,而圖2A與圖2C所表示的對照量子點顯示面板也是採用相同的材料組成以及相同的製造方法。2C is a schematic diagram of the relationship between the current density and current efficiency of the quantum dot display panel and the control quantum dot display panel in FIG. 1A, wherein the curves C10 and C11 shown in FIG. 2C represent the quantum dot display panel 100 and the control, respectively. Quantum dot display panel. 2A, the quantum dot display panel 100 represented by the curve C10 includes the fluorine-containing modified material 160, while the control quantum dot display panel represented by the curve C11 does not include the fluorine-containing modified material 160. In addition, the curve C10 shown in FIG. 2C is also measured after at least 3 minutes after the fluorine-containing modified material 160 is completed, and the control quantum dot display panels shown in FIGS. 2A and 2C also use the same material composition and the same Manufacturing method.

從圖2C來看,在相同的電流密度下,相較於對照量子點顯示面板,量子點顯示面板100具有較高的電流效率。以圖2C為例,量子點顯示面板100(曲線C10)的最大電流效率為2.21cd/A,而對照量子點顯示面板(曲線C11)的最大電流效率為1.62cd/A。由此可見,含氟改質材料160也能在短時間內(至少3分鐘)改善量子點顯示面板100的電流效率。From FIG. 2C, under the same current density, the quantum dot display panel 100 has higher current efficiency than the control quantum dot display panel. Taking FIG. 2C as an example, the maximum current efficiency of the quantum dot display panel 100 (curve C10) is 2.21cd/A, while the maximum current efficiency of the control quantum dot display panel (curve C11) is 1.62cd/A. It can be seen that the fluorine-containing modified material 160 can also improve the current efficiency of the quantum dot display panel 100 in a short time (at least 3 minutes).

圖2D是圖1A中的量子點顯示面板與對照量子點顯示面板兩者的光譜示意圖。請參閱圖1B與圖2D,圖2D所示的光譜D10與D11分別代表量子點顯示面板100以及對照量子點顯示面板,其中圖2D所示的對照量子點顯示面板所採用的材料組成與製造方法皆相同於圖2A所示的對照量子點顯示面板。另外,光譜D10也是在含氟改質材料160完成後經過至少3分鐘所測量得到。2D is a schematic diagram of the spectrum of both the quantum dot display panel and the control quantum dot display panel in FIG. 1A. Please refer to FIGS. 1B and 2D. The spectra D10 and D11 shown in FIG. 2D respectively represent the quantum dot display panel 100 and the comparative quantum dot display panel. The material composition and manufacturing method used in the comparative quantum dot display panel shown in FIG. 2D Both are the same as the control quantum dot display panel shown in FIG. 2A. In addition, the spectrum D10 is also measured after at least 3 minutes after the fluorine-containing modified material 160 is completed.

從圖2D來看,量子點顯示面板100與對照量子點顯示面板兩者的光譜D10與D11相似。即使將位於峰值處的光譜放大成光譜圖D30,仍可以發現光譜D10與D11兩者差異很小。這表示含氟改質材料160實質上不會影響電子與電洞之間的再結合。因此,量子點顯示面板100所發出的光線的波長實質上是不受含氟改質材料160的影響。此外,特別一提的是,以上圖2A至圖2D中的曲線A10、B10、C10以及光譜D10所代表的量子點顯示面板100,其含氟改質材料160含有重量百分濃度約37%的氟,如同表格(一)的樣品A。From FIG. 2D, the spectra D10 and D11 of the quantum dot display panel 100 and the control quantum dot display panel are similar. Even if the spectrum at the peak is enlarged into the spectrum D30, it can still be found that the difference between the spectra D10 and D11 is very small. This means that the fluorine-containing modified material 160 does not substantially affect the recombination between electrons and holes. Therefore, the wavelength of the light emitted by the quantum dot display panel 100 is substantially unaffected by the fluorine-containing modified material 160. In addition, in particular, the quantum dot display panel 100 represented by the curves A10, B10, C10 and the spectrum D10 in FIGS. 2A to 2D above, the fluorine-containing modified material 160 contains a concentration of about 37% by weight Fluorine, as in sample A in table (1).

圖3A是圖1A中的量子點顯示面板的暫態電激發光分析的示意圖,而圖3B是對照量子點顯示面板的暫態電激發光分析的示意圖。請參閱圖3A與圖3B,圖3A的暫態電激發光分析是針對包括含氟改質材料160的量子點顯示面板100,其中此含氟改質材料160可含有重量百分濃度約37%的氟,而圖3A也是在含氟改質材料160完成後經過至少3分鐘所測量得到。圖3B的暫態電激發光分析是針對未包括含氟改質材料160的量子點顯示面板100,且圖3A所表示的量子點顯示面板100與圖3B所表示的對照量子點顯示面板兩者差異僅在於含氟改質材料160的有無。此外,圖3A所表示的量子點顯示面板100所採用的材料組成與製造方法皆相同於圖2A所表示的量子點顯示面板100。3A is a schematic diagram of transient electrical excitation light analysis of the quantum dot display panel in FIG. 1A, and FIG. 3B is a schematic diagram of transient electrical excitation light analysis of the quantum dot display panel. Please refer to FIGS. 3A and 3B. The transient electrical excitation light analysis of FIG. 3A is for a quantum dot display panel 100 including a fluorine-containing modified material 160, wherein the fluorine-containing modified material 160 may contain about 37% by weight. 3A is measured after at least 3 minutes after the fluorine-containing modified material 160 is completed. The transient electrical excitation light analysis of FIG. 3B is for a quantum dot display panel 100 that does not include the fluorine-containing modified material 160, and both the quantum dot display panel 100 shown in FIG. 3A and the control quantum dot display panel shown in FIG. 3B The difference is only the presence or absence of fluorine-containing modified material 160. In addition, the material composition and manufacturing method of the quantum dot display panel 100 shown in FIG. 3A are the same as those of the quantum dot display panel 100 shown in FIG. 2A.

在圖3A中,曲線V070、V075與V080分別代表為啟動量子點顯示面板100發光所輸入的不同電壓,其中曲線V070意指輸入7伏特電壓至量子點顯示面板100,曲線V075意指輸入7.5伏特電壓至量子點顯示面板100,而曲線V080意指輸入8伏特電壓至量子點顯示面板100。同理,在圖3B中,曲線V170意指輸入7伏特電壓至對照量子點顯示面板,曲線V175意指輸入7.5伏特電壓至對照量子點顯示面板,而曲線V180意指輸入8伏特電壓至對照量子點顯示面板。In FIG. 3A, curves V070, V075, and V080 respectively represent different voltages input to enable the quantum dot display panel 100 to emit light, where curve V070 means inputting 7 volts to the quantum dot display panel 100, and curve V075 means input 7.5 volts The voltage is to the quantum dot display panel 100, and the curve V080 means to input a voltage of 8 volts to the quantum dot display panel 100. Similarly, in FIG. 3B, curve V170 means inputting 7 volts to the control quantum dot display panel, curve V175 means inputting 7.5 volts to the control quantum dot display panel, and curve V180 means inputting 8 volts to the control quantum dot. Click the display panel.

比較圖3A與圖3B,在輸入相同電壓的條件下,不論是輸入電壓是7伏特、7.5伏特或8伏特,量子點顯示面板100從開始到發出飽和強度的光線的時間明顯少於對照量子點顯示面板從開始到發出飽和強度的光線的時間,其中飽和強度是指最大強度的光線,即飽和強度是指圖3A與圖3B中等於1的規一化光強度(normalized intensity)。以圖3A為例,當以7至8伏特電壓啟動量子點顯示面板100發光時,量子點顯示面板100在啟動後5微秒內所發出的光線的強度可大於50%的飽和強度,其中50%的飽和強度是指圖3A中等於0.5的規一化光強度。Comparing FIG. 3A and FIG. 3B, under the condition of the same input voltage, whether the input voltage is 7 volts, 7.5 volts, or 8 volts, the time from the beginning of the quantum dot display panel 100 to the emission of saturated intensity light is significantly less than that of the control quantum dots The time from the start of the display panel to the emission of saturated intensity light, where the saturation intensity refers to the maximum intensity light, that is, the saturation intensity refers to the normalized intensity equal to 1 in FIGS. 3A and 3B. Taking FIG. 3A as an example, when the quantum dot display panel 100 is activated with a voltage of 7 to 8 volts, the intensity of the light emitted by the quantum dot display panel 100 within 5 microseconds after activation may be greater than 50% of the saturation intensity, of which 50 The saturation intensity of% refers to the normalized light intensity equal to 0.5 in FIG. 3A.

反觀,在圖3B中,當以7至8伏特電壓啟動對照量子點顯示面板發光時,對照量子點顯示面板在啟動後5微秒內所發出的光線的強度仍不及50%的飽和強度。也就是說,與未包括含氟改質材料160的對照量子點顯示面板相比,包括含氟改質材料160的量子點顯示面板100能較快速地發出飽和強度的光線。由此可知,含氟改質材料160確實能縮短量子點顯示面板100發出飽和強度的光線的時間,以加速量子點顯示面板100的光線達到飽和強度。In contrast, in FIG. 3B, when the control quantum dot display panel is activated with a voltage of 7 to 8 volts, the intensity of the light emitted by the control quantum dot display panel within 5 microseconds after activation is still less than 50% of the saturation intensity. That is, compared to the control quantum dot display panel that does not include the fluorine-containing modified material 160, the quantum dot display panel 100 that includes the fluorine-containing modified material 160 can emit light of saturated intensity more quickly. It can be seen from this that the fluorine-containing modified material 160 can indeed shorten the time for the quantum dot display panel 100 to emit light of saturation intensity, so as to accelerate the light of the quantum dot display panel 100 to reach saturation intensity.

根據以上圖2A至圖2D、圖3A以及圖3B,含氟改質材料160確實能在實質上不改變量子點顯示面板100光譜的條件下,提升電流密度、發光功率以及電流效率,並能縮短達到飽和強度的時間。因此,合理推測含氟改質材料160有改善電子載體層(即陰極150與電子傳輸層140)界面的功效。例如,含氟改質材料160的半氟聚合物所擴散出來的離子或原子能修補陰極150與電子傳輸層140之間以及電子傳輸層140與量子點發光層130之間其中至少一處界面的缺陷(defect),以減少被侷限的電子。圖4A與圖5A提出兩種多層膜結構400與500來分別形成以上兩處的界面,以研究含氟改質材料160對上述兩處界面的影響。According to the above FIG. 2A to FIG. 2D, FIG. 3A and FIG. 3B, the fluorine-containing modified material 160 can indeed improve the current density, luminous power and current efficiency without substantially changing the spectrum of the quantum dot display panel 100, and can shorten The time to reach saturation intensity. Therefore, it is reasonable to speculate that the fluorine-containing modified material 160 has the effect of improving the interface of the electron carrier layer (ie, the cathode 150 and the electron transport layer 140). For example, ions or atoms diffused from the semi-fluoropolymer of the fluorine-modified material 160 can repair defects in at least one interface between the cathode 150 and the electron transport layer 140 and between the electron transport layer 140 and the quantum dot light emitting layer 130 (Defect) to reduce confined electronics. FIGS. 4A and 5A propose two types of multilayer film structures 400 and 500 to form the interface between the above two locations, respectively, to study the influence of the fluorine-containing modified material 160 on the above two interfaces.

圖4A是用於研究陰極與電子傳輸層之間界面的多層膜結構的剖面示意圖,而圖4B是圖4A中的多層膜結構的能隙示意圖。請參閱圖4A與圖4B,多層膜結構400是一種純電子載體元件(electron only device),即多層膜結構400內的主要載子為電子。多層膜結構400包括基板410、電子傳輸層140、陰極150以及含氟改質材料160。與圖1B所示的量子點顯示面板100相似,在圖4A所示的多層膜結構400中,電子傳輸層140、陰極150以及含氟改質材料160也是依序堆疊於基板410上,而電子傳輸層140位於基板410與陰極150之間。4A is a schematic cross-sectional view of a multilayer film structure used to study the interface between a cathode and an electron transport layer, and FIG. 4B is a schematic diagram of an energy gap of the multilayer film structure in FIG. 4A. 4A and 4B, the multilayer film structure 400 is a pure electron carrier device (electron only device), that is, the main carriers in the multilayer film structure 400 are electrons. The multilayer film structure 400 includes a substrate 410, an electron transport layer 140, a cathode 150, and a fluorine-containing modified material 160. Similar to the quantum dot display panel 100 shown in FIG. 1B, in the multilayer film structure 400 shown in FIG. 4A, the electron transport layer 140, the cathode 150, and the fluorine-containing modified material 160 are also sequentially stacked on the substrate 410, and the electrons The transmission layer 140 is located between the substrate 410 and the cathode 150.

在圖4A所示的實施例中,電子傳輸層140是由多個彼此堆疊的氧化鋅奈米顆粒所形成,而陰極150為鋁金屬層,其中電子傳輸層140(氧化鋅)具有較高的能階,而陰極150(鋁)具有較低的能階,如圖4B所示。由於多層膜結構400為純電子載體元件,所以圖4B僅繪示上半部供電子躍遷的能隙,省略繪示下半部供電洞躍遷的能隙。基板410為金屬氧化物基板,其具有一層金屬氧化物薄膜,而圖4A所示的基板410為銦錫氧化物基板,並具有一層銦錫氧化物薄膜(未繪示),其可以與電子傳輸層140接觸。從圖4B來看,基板410的能階(即銦錫氧化物的能階)低於陰極150的能階。此外,銦錫氧化物(基板410)的能階約為-5.2eV,而鋁金屬層(陰極150)的能階約為-4.3eV。In the embodiment shown in FIG. 4A, the electron transport layer 140 is formed of a plurality of zinc oxide nanoparticles stacked on top of each other, and the cathode 150 is an aluminum metal layer, wherein the electron transport layer 140 (zinc oxide) has a higher Energy level, and the cathode 150 (aluminum) has a lower energy level, as shown in FIG. 4B. Since the multilayer film structure 400 is a pure electron carrier device, FIG. 4B only shows the energy gap of the electron transition in the upper half, and omitting the energy gap of the transition of the power hole in the lower half. The substrate 410 is a metal oxide substrate with a layer of metal oxide film, and the substrate 410 shown in FIG. 4A is an indium tin oxide substrate with a layer of indium tin oxide film (not shown), which can communicate with electrons Layer 140 is in contact. 4B, the energy level of the substrate 410 (that is, the energy level of indium tin oxide) is lower than that of the cathode 150. In addition, the energy level of indium tin oxide (substrate 410) is approximately -5.2 eV, and the energy level of the aluminum metal layer (cathode 150) is approximately -4.3 eV.

圖4C是圖4A中的多層膜結構與對照多層膜結構兩者的電壓與電流密度之間的關係示意圖。請參閱圖4A與圖4C,圖4C中的曲線40c代表圖4A中的多層膜結構400,而曲線41c代表對照多層膜結構。對照多層膜結構與多層膜結構400相似,惟兩者差異僅在於含氟改質材料160的有無,即多層膜結構400包括含氟改質材料160,但對照多層膜結構未包括含氟改質材料160。從圖4C來看,對照多層膜結構與多層膜結構400兩者的電壓與電流密度之間的變化相似,即兩者在電流密度方面的表現沒有很大的差異,因此推測含氟改質材料160對於電子傳輸層140與陰極150之間的界面較無顯著的影響。4C is a schematic diagram showing the relationship between the voltage and current density of the multilayer film structure of FIG. 4A and the comparative multilayer film structure. Please refer to FIGS. 4A and 4C, the curve 40c in FIG. 4C represents the multilayer film structure 400 in FIG. 4A, and the curve 41c represents the comparative multilayer film structure. The control multilayer film structure is similar to the multilayer film structure 400, but the only difference is the presence or absence of the fluorine-containing modified material 160, that is, the multilayer film structure 400 includes the fluorine-containing modified material 160, but the control multilayer film structure does not include the fluorine-containing modified material Material 160. From FIG. 4C, the changes between the voltage and current density of the control multilayer film structure and the multilayer film structure 400 are similar, that is, the performance of the two in terms of current density is not very different, so it is speculated that the fluorine-containing modified material 160 has no significant effect on the interface between the electron transport layer 140 and the cathode 150.

圖4D是圖4A中的多層膜結構與對照多層膜結構兩者光激發光的光譜示意圖,其中圖4D是用紫外光雷射光束照射於圖4A中的多層膜結構400與上述對照多層膜結構來達到光激發光的現象,而上述紫外光雷射光束的波長可介於380奈米至400奈米之間。請參閱圖4A與圖4D,圖4D中的光譜40d代表圖4A中的多層膜結構400,而光譜41d代表上述對照多層膜結構。從圖4D來看,光譜40d與光譜41d相似,甚至兩者大部分區段彼此重疊。這表示含氟改質材料160實質上不會影響陰極150與電子傳輸層140之間界面的能階。4D is a schematic diagram of the light excitation spectrum of both the multilayer film structure of FIG. 4A and the comparative multilayer film structure, wherein FIG. 4D is the multilayer laser film structure 400 of FIG. 4A irradiated with an ultraviolet laser beam and the aforementioned comparative multilayer film structure To achieve the phenomenon of light excitation light, the wavelength of the above-mentioned ultraviolet laser beam can be between 380 nm and 400 nm. Please refer to FIG. 4A and FIG. 4D, the spectrum 40d in FIG. 4D represents the multilayer film structure 400 in FIG. 4A, and the spectrum 41d represents the control multilayer film structure described above. From FIG. 4D, the spectrum 40d is similar to the spectrum 41d, and even most of the two sections overlap each other. This means that the fluorine-containing modified material 160 does not substantially affect the energy level of the interface between the cathode 150 and the electron transport layer 140.

圖5A是用於研究電子傳輸層與量子點發光層之間界面的多層膜結構的剖面示意圖,而圖5B是圖5A中的多層膜結構的能隙示意圖。請參閱圖5A與圖5B,多層膜結構500也是純電子載體元件,並包括基板410、兩層電子傳輸層140、量子點發光層130、陰極150以及含氟改質材料160,其中這兩層電子傳輸層140、量子點發光層130以及陰極150皆配置於基板410上。量子點發光層130形成於這兩層電子傳輸層140之間,其中一層電子傳輸層140形成在基板410上,而陰極150形成在另一層電子傳輸層140上。此外,除了量子點發光層130外,圖5A中的多層膜結構500與圖4A中的多層膜結構400兩者膜層的構成材料都相同。FIG. 5A is a schematic cross-sectional view of a multilayer film structure used to study an interface between an electron transport layer and a quantum dot light-emitting layer, and FIG. 5B is a schematic diagram of an energy gap of the multilayer film structure in FIG. 5A. 5A and 5B, the multi-layer film structure 500 is also a pure electron carrier device, and includes a substrate 410, two electron transport layers 140, quantum dot light emitting layer 130, cathode 150 and fluorine-containing modified material 160, of which two layers The electron transport layer 140, the quantum dot light emitting layer 130, and the cathode 150 are all disposed on the substrate 410. The quantum dot light emitting layer 130 is formed between the two electron transport layers 140, one of the electron transport layers 140 is formed on the substrate 410, and the cathode 150 is formed on the other electron transport layer 140. In addition, except for the quantum dot light emitting layer 130, the multi-layer film structure 500 in FIG. 5A and the multi-layer film structure 400 in FIG. 4A are both made of the same material.

圖5C是圖5A中的多層膜結構與對照多層膜結構兩者的電壓與電流密度之間的關係示意圖。請參閱圖5A與圖5C,圖5C中的曲線50c代表圖5A中的多層膜結構500,而曲線51c代表對照多層膜結構,其中多層膜結構500包括含氟改質材料160,而對照多層膜結構未包括含氟改質材料160,即多層膜結構500與對照多層膜結構兩者差異僅在於含氟改質材料160的有無。5C is a schematic diagram showing the relationship between the voltage and current density of the multilayer film structure of FIG. 5A and the comparative multilayer film structure. Please refer to FIG. 5A and FIG. 5C, the curve 50c in FIG. 5C represents the multilayer film structure 500 in FIG. 5A, and the curve 51c represents the comparative multilayer film structure, wherein the multilayer film structure 500 includes fluorine-containing modified material 160, and the comparative multilayer film The structure does not include the fluorine-containing modified material 160, that is, the difference between the multilayer film structure 500 and the control multilayer film structure is only the presence or absence of the fluorine-containing modified material 160.

從圖5C來看,當輸入相同電壓至多層膜結構500與對照多層膜結構時,多層膜結構500所達到的電流密度明顯大於對照多層膜結構所達到的電流密度。由此可見,含氟改質材料160確實能改善電子傳輸層140與量子點發光層130之間的界面。例如,含氟改質材料160可能會修復存在於電子傳輸層140與量子點發光層130之間界面的缺陷,以減少被侷限的電子,從而提升電流密度。From FIG. 5C, when the same voltage is input to the multilayer film structure 500 and the control multilayer film structure, the current density achieved by the multilayer film structure 500 is significantly greater than that achieved by the control multilayer film structure. It can be seen that the fluorine-containing modified material 160 can indeed improve the interface between the electron transport layer 140 and the quantum dot light-emitting layer 130. For example, the fluorine-containing modified material 160 may repair defects present at the interface between the electron transport layer 140 and the quantum dot light emitting layer 130 to reduce confined electrons, thereby increasing current density.

圖5D是圖5A中的多層膜結構與對照多層膜結構兩者光激發光的光譜示意圖,其中圖5D是用紫外光雷射光束照射於圖5A中的多層膜結構500與上述對照多層膜結構來達到光激發光,而圖5D所採用的紫外光雷射光束相同於圖4D所採用的紫外光雷射光束。請參閱圖5A與圖5D,圖5D中的光譜50d代表圖5A中的多層膜結構500,而光譜51d代表上述對照多層膜結構。從圖5D來看,光譜50d的峰值波長與光譜51d的峰值波長兩者實質上相同,且在峰值以外的區段,光譜50d與光譜51d相當相似,甚至重疊。換句話說,含氟改質材料160實質上也不會影響電子傳輸層140以及量子點發光層130之間界面的能階。FIG. 5D is a schematic diagram of the light excitation spectrum of both the multilayer film structure of FIG. 5A and the comparative multilayer film structure, where FIG. 5D is the ultraviolet laser beam irradiating the multilayer film structure 500 of FIG. 5A with the aforementioned comparative multilayer film structure To achieve the photo-excitation light, the ultraviolet laser beam used in FIG. 5D is the same as the ultraviolet laser beam used in FIG. 4D. Please refer to FIG. 5A and FIG. 5D, the spectrum 50d in FIG. 5D represents the multilayer film structure 500 in FIG. 5A, and the spectrum 51d represents the control multilayer film structure described above. From FIG. 5D, the peak wavelength of the spectrum 50d and the peak wavelength of the spectrum 51d are substantially the same, and in the section other than the peak, the spectrum 50d and the spectrum 51d are quite similar, or even overlap. In other words, the fluorine-containing modified material 160 does not substantially affect the energy level of the interface between the electron transport layer 140 and the quantum dot light emitting layer 130.

不過,光譜50d的峰值強度明顯高於光譜51d的峰值強度。這表示在多層膜結構500中,對應峰值強度的能隙可被紫外光雷射光束激發出更多的光子。相較於對照多層膜結構,在多層膜結構500中,電子傳輸層140與量子點發光層130之間的界面存有較多未被侷限的電子,所以紫外光雷射光束能激發出較多電子,以產生更多光子,從而提高光譜50d的峰值強度。由此可知,含氟改質材料160能改善電子傳輸層140與量子點發光層130之間的界面,例如修復上述界面內的缺陷,以減少被侷限的電子,從而提升電流密度等效能。However, the peak intensity of spectrum 50d is significantly higher than that of spectrum 51d. This means that in the multilayer film structure 500, the energy gap corresponding to the peak intensity can be excited by the ultraviolet laser beam to generate more photons. Compared with the control multilayer film structure, in the multilayer film structure 500, the interface between the electron transport layer 140 and the quantum dot light emitting layer 130 contains more unrestricted electrons, so the ultraviolet laser beam can excite more Electrons to generate more photons, thereby increasing the peak intensity of the spectrum 50d. It can be seen that the fluorine-modified material 160 can improve the interface between the electron transport layer 140 and the quantum dot light-emitting layer 130, for example, to repair defects in the above interface, so as to reduce the confined electrons, thereby improving current density and other performance.

根據以上圖4C、圖4D、圖5C以及圖5D所示的結果,含氟改質材料160確實能改善電子傳輸層140與量子點發光層130之間的界面,但對於電子傳輸層140與陰極150之間的界面沒有顯著的影響。然而,必須強調的是,圖4C、圖4D、圖5C與圖5D所示的結果是基於電子傳輸層140由多個彼此堆疊的氧化鋅奈米顆粒所形成以及陰極150為鋁金屬層的前提下。According to the results shown in FIG. 4C, FIG. 4D, FIG. 5C, and FIG. 5D above, the fluorine-containing modified material 160 does improve the interface between the electron transport layer 140 and the quantum dot light emitting layer 130, but for the electron transport layer 140 and the cathode The interface between 150 has no significant effect. However, it must be emphasized that the results shown in FIGS. 4C, 4D, 5C and 5D are based on the premise that the electron transport layer 140 is formed of a plurality of zinc oxide nanoparticles stacked on top of each other and the cathode 150 is an aluminum metal layer under.

倘若電子傳輸層140與陰極150兩者採用其他材料,含氟改質材料160也能影響並改善電子傳輸層140與陰極150之間的界面。因此,在圖4A至圖5D的實施例中,含氟改質材料160能改善電子傳輸層140與量子點發光層130之間的界面,但在其他實施例中,含氟改質材料160也能改善電子傳輸層140與陰極150之間的界面,或是一起改善這兩界面。所以,含氟改質材料160不限定只能改善電子傳輸層140與量子點發光層130之間的界面。If other materials are used for both the electron transport layer 140 and the cathode 150, the fluorine-containing modified material 160 can also affect and improve the interface between the electron transport layer 140 and the cathode 150. Therefore, in the embodiments of FIGS. 4A to 5D, the fluorine-containing modified material 160 can improve the interface between the electron transport layer 140 and the quantum dot light-emitting layer 130, but in other embodiments, the fluorine-containing modified material 160 also The interface between the electron transport layer 140 and the cathode 150 can be improved, or both interfaces can be improved together. Therefore, the fluorine-containing modified material 160 is not limited to only improve the interface between the electron transport layer 140 and the quantum dot light emitting layer 130.

綜上所述,利用上述含氟改質材料,能產生正向老化效應,以改善量電子傳輸層以及與其鄰近的膜層之間的界面,例如修補存在於電子傳輸層與量子點發光層之間界面的缺陷,以減少被侷限(trapped)的電子。如此,上述含氟改質材料得以提升量子點顯示面板的效能。In summary, the use of the fluorine-containing modified material can produce a positive aging effect to improve the interface between the electron transport layer and the adjacent film layer, such as repairing the existing between the electron transport layer and the quantum dot light-emitting layer Interface defects to reduce trapped electrons. In this way, the above-mentioned fluorine-containing modified material can improve the performance of the quantum dot display panel.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明精神和範圍內,當可作些許更動與潤飾,因此本發明保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make some modifications and retouching without departing from the spirit and scope of the present invention. The scope of protection of invention shall be subject to the scope defined in the appended patent application.

40c、41c、50c、51c、A10、A11、B10、B11、C10、C11、V070、V075、V080、V170、V175、V180:曲線40d、41d、50d、51d:光譜100:量子點顯示面板101:第一側102:第二側110:控制基板110s:平面111:陽極120:電洞載體層121:第一電洞傳輸層122:第二電洞傳輸層123:電洞注入層130:量子點發光層131:第一中央區132:第一邊緣區140:電子傳輸層141:第二中央區142:第二邊緣區143:金屬氧化物奈米顆粒150:陰極160:含氟改質材料170:透明基板180:網狀隔牆181:網格190:擋牆400、500:多層膜結構410:基板D1、U1:方向D10、D11:光譜D30:光譜圖H21、H22、H31、H32、H41、H42:高度W1:最小寬度W2:最大寬度40c, 41c, 50c, 51c, A10, A11, B10, B11, C10, C11, V070, V075, V080, V170, V175, V180: curve 40d, 41d, 50d, 51d: spectrum 100: quantum dot display panel 101: First side 102: Second side 110: Control substrate 110s: Plane 111: Anode 120: Hole carrier layer 121: First hole transport layer 122: Second hole transport layer 123: Hole injection layer 130: Quantum dots Light emitting layer 131: first central region 132: first edge region 140: electron transport layer 141: second central region 142: second edge region 143: metal oxide nanoparticles 150: cathode 160: fluorine-containing modified material 170 : Transparent substrate 180: Mesh partition 181: Grid 190: Retaining wall 400, 500: Multi-layer film structure 410: Substrate D1, U1: Direction D10, D11: Spectrum D30: Spectrogram H21, H22, H31, H32, H41 , H42: height W1: minimum width W2: maximum width

圖1A是本發明至少一實施例的量子點顯示面板的剖面示意圖。 圖1B是圖1A中的量子點顯示面板的放大示意圖。 圖2A是圖1A中的量子點顯示面板與對照量子點顯示面板兩者的電壓與電流密度(current density)之間的關係示意圖。 圖2B是圖1A中的量子點顯示面板與對照量子點顯示面板兩者的電壓與亮度(luminance)之間的關係示意圖。 圖2C是圖1A中的量子點顯示面板與對照量子點顯示面板兩者的電流密度與電流效率(current efficiency)之間的關係示意圖。 圖2D是圖1A中的量子點顯示面板與對照量子點顯示面板兩者的光譜示意圖。 圖3A是圖1A中的量子點顯示面板的暫態電激發光分析(Transient Electroluminescence Analysis,TrEL Analysis)的示意圖。 圖3B是對照量子點顯示面板的暫態電激發光分析的示意圖。 圖4A是用於研究陰極與電子傳輸層之間界面的多層膜結構的剖面示意圖。 圖4B是圖4A中的多層膜結構的能隙(energy gap)示意圖。 圖4C是圖4A中的多層膜結構與對照多層膜結構兩者的電壓與電流密度之間的關係示意圖。 圖4D是圖4A中的多層膜結構與對照多層膜結構兩者光激發光(Photoluminescence,PL)的光譜示意圖。 圖5A是用於研究電子傳輸層與量子點發光層之間界面的多層膜結構的剖面示意圖。 圖5B是圖5A中的多層膜結構的能隙示意圖。 圖5C是圖5A中的多層膜結構與對照多層膜結構兩者的電壓與電流密度之間的關係示意圖。 圖5D是圖5A中的多層膜結構與對照多層膜結構兩者光激發光的光譜示意圖。FIG. 1A is a schematic cross-sectional view of a quantum dot display panel according to at least one embodiment of the present invention. FIG. 1B is an enlarged schematic diagram of the quantum dot display panel in FIG. 1A. FIG. 2A is a schematic diagram of the relationship between the voltage and current density of the quantum dot display panel and the control quantum dot display panel in FIG. 1A. FIG. 2B is a schematic diagram of the relationship between the voltage and the luminance of the quantum dot display panel and the control quantum dot display panel in FIG. 1A. FIG. 2C is a schematic diagram of the relationship between the current density and the current efficiency of the quantum dot display panel and the control quantum dot display panel in FIG. 1A. 2D is a schematic diagram of the spectrum of both the quantum dot display panel and the control quantum dot display panel in FIG. 1A. FIG. 3A is a schematic diagram of transient electroluminescence analysis (TrEL Analysis) of the quantum dot display panel in FIG. 1A. FIG. 3B is a schematic diagram of the transient electrical excitation light analysis of the display panel compared with the quantum dot. 4A is a schematic cross-sectional view of a multilayer film structure used to study the interface between a cathode and an electron transport layer. 4B is a schematic diagram of the energy gap of the multilayer film structure in FIG. 4A. 4C is a schematic diagram showing the relationship between the voltage and current density of the multilayer film structure of FIG. 4A and the comparative multilayer film structure. FIG. 4D is a schematic diagram of the photoluminescence (PL) spectrum of both the multilayer film structure of FIG. 4A and the control multilayer film structure. 5A is a schematic cross-sectional view of a multilayer film structure used to study the interface between an electron transport layer and a quantum dot light-emitting layer. 5B is a schematic diagram of the energy gap of the multilayer film structure in FIG. 5A. 5C is a schematic diagram showing the relationship between the voltage and current density of the multilayer film structure of FIG. 5A and the comparative multilayer film structure. FIG. 5D is a schematic diagram of the light excitation spectrum of both the multilayer film structure of FIG. 5A and the comparative multilayer film structure.

100:量子點顯示面板 100: Quantum dot display panel

101:第一側 101: first side

102:第二側 102: second side

110:控制基板 110: control board

110s:平面 110s: flat

111:陽極 111: anode

120:電洞載體層 120: hole carrier layer

130:量子點發光層 130: Quantum dot light emitting layer

140:電子傳輸層 140: electron transport layer

150:陰極 150: cathode

160:含氟改質材料 160: Fluorine modified materials

170:透明基板 170: Transparent substrate

180:網狀隔牆 180: mesh partition

181:網格 181: Grid

190:擋牆 190: Retaining wall

D1、U1:方向 D1, U1: direction

Claims (10)

一種量子點顯示面板,包括: 一控制基板,具有一平面以及多個形成於該平面的陽極; 多個電洞載體層,分別覆蓋該些陽極; 多個量子點發光層,分別形成於該些電洞載體層上; 多個電子傳輸層,分別形成於該些量子點發光層上,其中各該量子點發光層位於該電子傳輸層與該電洞載體層之間,而各該電子傳輸層為金屬氧化物層; 一陰極,覆蓋該些電子傳輸層;以及 一含氟改質材料,覆蓋該陰極,其中該含氟改質材料含有一半氟聚合物。A quantum dot display panel includes: a control substrate having a plane and a plurality of anodes formed on the plane; a plurality of hole carrier layers covering the anodes respectively; a plurality of quantum dot light-emitting layers formed on the planes On the hole carrier layer; a plurality of electron transport layers are formed on the quantum dot light-emitting layers, wherein each of the quantum dot light-emitting layers is located between the electron transport layer and the hole carrier layer, and each of the electron transport layers It is a metal oxide layer; a cathode covering the electron transport layers; and a fluorine-containing modified material covering the cathode, wherein the fluorine-containing modified material contains half of the fluoropolymer. 如請求項1所述的量子點顯示面板,其中該含氟改質材料含有重量百分濃度30%至50%的氟。The quantum dot display panel according to claim 1, wherein the fluorine-containing modified material contains 30% to 50% fluorine by weight.
Figure 03_image001
如請求項1所述的量子點顯示面板,其中該半氟聚合物包括以下化學結構:                 其中R1 為半過氟烷基,而R2 為氫或叔丁氧羰基。
Figure 03_image001
The quantum dot display panel of claim 1, wherein the semi-fluoropolymer includes the following chemical structure: wherein R 1 is a semi-perfluoroalkyl group, and R 2 is hydrogen or t-butoxycarbonyl.
如請求項1所述的量子點顯示面板,其中各該量子點發光層具有一第一中央區以及一圍繞該第一中央區的第一邊緣區,該第一中央區相對於該控制基板的該平面的高度小於該第一邊緣區相對於該平面的高度。The quantum dot display panel of claim 1, wherein each of the quantum dot light-emitting layers has a first central region and a first edge region surrounding the first central region, the first central region relative to the control substrate The height of the plane is smaller than the height of the first edge region relative to the plane. 如請求項4所述的量子點顯示面板,其中各該電子傳輸層具有一第二中央區以及一圍繞該第二中央區的第二邊緣區,該第二中央區相對於該平面的高度小於該第二邊緣區相對於該平面的高度。The quantum dot display panel of claim 4, wherein each of the electron transport layers has a second central region and a second edge region surrounding the second central region, the height of the second central region relative to the plane is less than The height of the second edge region relative to the plane. 如請求項1所述的量子點顯示面板,其中各該電子傳輸層的材料選自於由氧化鋅、銦錫氧化物以及銦鋅氧化物所組成的族群。The quantum dot display panel of claim 1, wherein the material of each electron transport layer is selected from the group consisting of zinc oxide, indium tin oxide, and indium zinc oxide. 如請求項1所述的量子點顯示面板,其中各該電子傳輸層包含多個金屬氧化物奈米顆粒,該些金屬氧化物奈米顆粒彼此堆疊,且各該金屬氧化物奈米顆粒的粒徑小於或等於10奈米。The quantum dot display panel of claim 1, wherein each of the electron transport layers includes a plurality of metal oxide nanoparticles, the metal oxide nanoparticles are stacked on each other, and each of the metal oxide nanoparticle particles The diameter is less than or equal to 10 nm. 如請求項1所述的量子點顯示面板,其中該陰極為金屬層,且該陰極的材料包括鋁、鎂或銀。The quantum dot display panel of claim 1, wherein the cathode is a metal layer, and the material of the cathode includes aluminum, magnesium, or silver. 如請求項1所述的量子點顯示面板,其中各該量子點發光層的材料選自於鈣鈦礦、硫化鎘、硒化鎘、碲化鎘以及磷化銦所組成的族群。The quantum dot display panel according to claim 1, wherein the material of each quantum dot light emitting layer is selected from the group consisting of perovskite, cadmium sulfide, cadmium selenide, cadmium telluride, and indium phosphide. 如請求項1所述的量子點顯示面板,還包括: 一網狀隔牆,形成於該控制基板的該平面上,並具有多個網格,其中該些電洞載體層、該些量子點發光層以及該些電子傳輸層分別位於該些網格內,而該陰極更覆蓋該網狀隔牆;以及 一透明基板,配置於該含氟改質材料上,其中該含氟改質材料位於該透明基板與該陰極之間。The quantum dot display panel according to claim 1, further comprising: a mesh partition wall formed on the plane of the control substrate and having a plurality of grids, wherein the hole carrier layers and the quantum dots The light-emitting layer and the electron transport layers are respectively located in the grids, and the cathode further covers the mesh partition wall; and a transparent substrate is disposed on the fluorine-containing modified material, wherein the fluorine-containing modified material is located Between the transparent substrate and the cathode.
TW108109084A 2018-06-22 2019-03-18 Quantum dot display panel TWI710832B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910342630.XA CN110176545B (en) 2018-06-22 2019-04-26 Quantum dot display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862688635P 2018-06-22 2018-06-22
US62/688,635 2018-06-22

Publications (2)

Publication Number Publication Date
TW202018386A true TW202018386A (en) 2020-05-16
TWI710832B TWI710832B (en) 2020-11-21

Family

ID=69188922

Family Applications (18)

Application Number Title Priority Date Filing Date
TW107137602A TWI678009B (en) 2018-06-22 2018-10-24 Display panel and manufacturing method thereof
TW107138760A TWI684810B (en) 2018-06-22 2018-11-01 Display panel
TW107142834A TWI679789B (en) 2018-06-22 2018-11-30 Organic light emitting diode display apparatus
TW107142955A TWI684815B (en) 2018-06-22 2018-11-30 Display panel and method of fabricating the same
TW107143785A TWI685702B (en) 2018-06-22 2018-12-05 Display apparatus
TW107144587A TWI678802B (en) 2018-06-22 2018-12-11 Display panel and method for manufacturing the same
TW107144975A TWI679765B (en) 2018-06-22 2018-12-13 Display device and manufacturing method thereof
TW107146598A TWI695527B (en) 2018-06-22 2018-12-22 Display panel
TW107146906A TWI679792B (en) 2018-06-22 2018-12-25 Display panel and method of fabricating the same
TW108101440A TWI733078B (en) 2018-06-22 2019-01-15 Display device
TW108102163A TWI696870B (en) 2018-06-22 2019-01-19 Display device
TW108102272A TWI683375B (en) 2018-06-22 2019-01-21 Light emitting device
TW108103467A TWI690753B (en) 2018-06-22 2019-01-30 Display panel and method of fabricating the same
TW108104630A TWI694626B (en) 2018-06-22 2019-02-12 Pixel structure
TW108104827A TWI683168B (en) 2018-06-22 2019-02-13 Pixel structure and manufacturing method thereof
TW108106211A TWI680589B (en) 2018-06-22 2019-02-25 Light-emitting device and manufacturing method thereof
TW108109084A TWI710832B (en) 2018-06-22 2019-03-18 Quantum dot display panel
TW108119483A TWI714115B (en) 2018-06-22 2019-06-05 Display panel

Family Applications Before (16)

Application Number Title Priority Date Filing Date
TW107137602A TWI678009B (en) 2018-06-22 2018-10-24 Display panel and manufacturing method thereof
TW107138760A TWI684810B (en) 2018-06-22 2018-11-01 Display panel
TW107142834A TWI679789B (en) 2018-06-22 2018-11-30 Organic light emitting diode display apparatus
TW107142955A TWI684815B (en) 2018-06-22 2018-11-30 Display panel and method of fabricating the same
TW107143785A TWI685702B (en) 2018-06-22 2018-12-05 Display apparatus
TW107144587A TWI678802B (en) 2018-06-22 2018-12-11 Display panel and method for manufacturing the same
TW107144975A TWI679765B (en) 2018-06-22 2018-12-13 Display device and manufacturing method thereof
TW107146598A TWI695527B (en) 2018-06-22 2018-12-22 Display panel
TW107146906A TWI679792B (en) 2018-06-22 2018-12-25 Display panel and method of fabricating the same
TW108101440A TWI733078B (en) 2018-06-22 2019-01-15 Display device
TW108102163A TWI696870B (en) 2018-06-22 2019-01-19 Display device
TW108102272A TWI683375B (en) 2018-06-22 2019-01-21 Light emitting device
TW108103467A TWI690753B (en) 2018-06-22 2019-01-30 Display panel and method of fabricating the same
TW108104630A TWI694626B (en) 2018-06-22 2019-02-12 Pixel structure
TW108104827A TWI683168B (en) 2018-06-22 2019-02-13 Pixel structure and manufacturing method thereof
TW108106211A TWI680589B (en) 2018-06-22 2019-02-25 Light-emitting device and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108119483A TWI714115B (en) 2018-06-22 2019-06-05 Display panel

Country Status (1)

Country Link
TW (18) TWI678009B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738430B (en) * 2020-07-22 2021-09-01 友達光電股份有限公司 Organic light emitting diode display panel
TWI742977B (en) * 2020-08-21 2021-10-11 友達光電股份有限公司 Stretchable pixel array substrate
TWI762136B (en) * 2020-12-31 2022-04-21 財團法人工業技術研究院 Display apparatus
CN115362556A (en) * 2021-01-28 2022-11-18 京东方科技集团股份有限公司 Array substrate and display device
TWI769817B (en) * 2021-05-17 2022-07-01 友達光電股份有限公司 Display device and manufacturing method thereof
TWI779631B (en) * 2021-05-27 2022-10-01 友達光電股份有限公司 Light emitting device
CN113363302B (en) * 2021-06-02 2023-09-08 南京昀光科技有限公司 Display panel and manufacturing method thereof
TWI793921B (en) * 2021-12-13 2023-02-21 友達光電股份有限公司 Display panel

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153353A (en) * 1988-07-25 1990-06-13 Matsushita Electric Ind Co Ltd Colored photopolymerization composition and color filter
JP3899566B2 (en) * 1996-11-25 2007-03-28 セイコーエプソン株式会社 Manufacturing method of organic EL display device
JP2848371B2 (en) * 1997-02-21 1999-01-20 日本電気株式会社 Organic EL display device and manufacturing method thereof
JP3628997B2 (en) * 2000-11-27 2005-03-16 セイコーエプソン株式会社 Method for manufacturing organic electroluminescence device
CN1557020A (en) * 2001-09-24 2004-12-22 �ʼҷ����ֵ��ӹɷ����޹�˾ Assembly for a thin-film optical device, organic electroluminescent display device and method of manufaturing same
US7378124B2 (en) * 2002-03-01 2008-05-27 John James Daniels Organic and inorganic light active devices and methods for making the same
JP4014901B2 (en) * 2002-03-14 2007-11-28 セイコーエプソン株式会社 Method of arranging material by droplet discharge and method of manufacturing display device
JP4252297B2 (en) * 2002-12-12 2009-04-08 株式会社日立製作所 LIGHT EMITTING ELEMENT AND DISPLAY DEVICE USING THE LIGHT EMITTING ELEMENT
SG142140A1 (en) * 2003-06-27 2008-05-28 Semiconductor Energy Lab Display device and method of manufacturing thereof
JP4479381B2 (en) * 2003-09-24 2010-06-09 セイコーエプソン株式会社 Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
JP3915806B2 (en) * 2003-11-11 2007-05-16 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
US7019331B2 (en) * 2004-01-22 2006-03-28 Eastman Kodak Company Green light-emitting microcavity OLED device using a yellow color filter element
JP2006222071A (en) * 2005-01-17 2006-08-24 Seiko Epson Corp Light emitting device, manufacturing method thereof, and electronic equipment
DE112006002220B4 (en) * 2005-08-23 2018-05-24 Cambridge Display Technology Ltd. Organic electronic device structures and manufacturing processes
JP2007103349A (en) * 2005-09-08 2007-04-19 Seiko Epson Corp Method of forming film pattern, and manufacturing method for organic electroluminescent device, color filter substrate and liquid crystal display device
JP2007103032A (en) * 2005-09-30 2007-04-19 Seiko Epson Corp Light-emitting device and manufacturing method of light-emitting device
JP2007188653A (en) * 2006-01-11 2007-07-26 Seiko Epson Corp Light emitting unit and electronic apparatus
JP2007311235A (en) * 2006-05-19 2007-11-29 Seiko Epson Corp Device, film forming method, and manufacturing method of device
JP2009104969A (en) * 2007-10-25 2009-05-14 Seiko Epson Corp Light-emitting device and electronic apparatus
JP4953166B2 (en) * 2007-11-29 2012-06-13 カシオ計算機株式会社 Manufacturing method of display panel
JP5266823B2 (en) * 2008-03-21 2013-08-21 セイコーエプソン株式会社 Electro-optical display device, electrophoretic display device, and electronic apparatus
WO2011027712A1 (en) * 2009-09-07 2011-03-10 凸版印刷株式会社 Organic el display device, color filter substrate, and process for production of organic el display device
KR101084176B1 (en) * 2009-11-26 2011-11-17 삼성모바일디스플레이주식회사 Organic light emitting display
KR101074809B1 (en) * 2009-12-22 2011-10-19 삼성모바일디스플레이주식회사 Organic light emitting display apparatus
KR101084191B1 (en) * 2010-02-16 2011-11-17 삼성모바일디스플레이주식회사 Organic light emitting diode display apparatus and method of manufacturing the same
WO2012007996A1 (en) * 2010-07-15 2012-01-19 パナソニック株式会社 Organic electroluminescence display panel, organic electroluminescence display device, and method of manufacturing same
KR101650518B1 (en) * 2010-09-13 2016-08-23 에피스타 코포레이션 Light-emitting structure
CN102577612B (en) * 2010-10-15 2015-11-25 株式会社日本有机雷特显示器 Organic luminous panel and manufacture method thereof and organic display device
JP5935238B2 (en) * 2011-04-20 2016-06-15 Nltテクノロジー株式会社 Image display device and terminal device including the same
KR20130007006A (en) * 2011-06-28 2013-01-18 삼성디스플레이 주식회사 Organic light emitting display device and method of manufacturing an organic light emitting display device
CN103620805B (en) * 2011-07-15 2016-03-30 株式会社日本有机雷特显示器 Organic illuminating element
JP5927476B2 (en) * 2011-10-03 2016-06-01 株式会社Joled Display device and electronic device
JPWO2013069233A1 (en) * 2011-11-07 2015-04-02 パナソニック株式会社 Organic EL display panel and organic EL display device
US8648337B2 (en) * 2012-04-03 2014-02-11 Au Optronics Corporation Active matrix organic light-emitting diode
TWI469194B (en) * 2012-05-16 2015-01-11 Au Optronics Corp Pixel structure of organic electroluminescence device
JP6013067B2 (en) * 2012-07-26 2016-10-25 株式会社ジャパンディスプレイ Display device and manufacturing method thereof
TWI610112B (en) * 2012-09-17 2018-01-01 友達光電股份有限公司 Display panel and method of making the same
JP2014119705A (en) * 2012-12-19 2014-06-30 Sony Corp Moisture-proof structure and display device
JP6314451B2 (en) * 2012-12-27 2018-04-25 大日本印刷株式会社 Color filter forming substrate and organic EL display device
JP2014137489A (en) * 2013-01-17 2014-07-28 Dainippon Printing Co Ltd Display panel
KR102021027B1 (en) * 2013-02-28 2019-09-16 삼성디스플레이 주식회사 Organic luminescence emitting display device
WO2014159267A1 (en) * 2013-03-14 2014-10-02 Applied Materials, Inc. Thin film encapsulation - thin ultra high barrier layer for oled application
KR102028680B1 (en) * 2013-03-20 2019-11-05 삼성디스플레이 주식회사 Organic light emitting diode display
KR102055683B1 (en) * 2013-03-29 2019-12-16 삼성디스플레이 주식회사 Organic light emitting display apparatus
KR20140133053A (en) * 2013-05-09 2014-11-19 삼성디스플레이 주식회사 Organic light emitting diode display
TWI515890B (en) * 2013-06-03 2016-01-01 友達光電股份有限公司 Organic light emitting diode display panel and manufacture method thereof
KR102122380B1 (en) * 2013-07-10 2020-06-15 삼성디스플레이 주식회사 Organic light emitting display device
KR102148935B1 (en) * 2013-11-21 2020-08-31 삼성디스플레이 주식회사 Organic light emitting diode display device and method of manufacturing the same
US9431463B2 (en) * 2014-04-30 2016-08-30 Lg Display Co., Ltd. Display apparatus
CN104021735B (en) * 2014-05-23 2016-08-17 京东方科技集团股份有限公司 A kind of quantum dot light emitting display screen and preparation method thereof
JP2016004053A (en) * 2014-06-13 2016-01-12 株式会社ジャパンディスプレイ Display device
KR20150145525A (en) * 2014-06-20 2015-12-30 엘지디스플레이 주식회사 Organic light emitting display device
CN104157671B (en) * 2014-06-25 2018-02-23 京东方科技集团股份有限公司 A kind of electroluminescence display panel, its preparation method and display device
KR102205700B1 (en) * 2014-07-16 2021-01-21 삼성전자주식회사 Organic electro-luminescent display and method of fabricating the same
KR102246294B1 (en) * 2014-08-04 2021-04-30 삼성디스플레이 주식회사 organic light emitting display apparatus and manufacturing method thereof
KR102151475B1 (en) * 2014-09-04 2020-09-04 엘지디스플레이 주식회사 Organic light emitting display panel and method for fabricating the same
KR102201827B1 (en) * 2014-09-16 2021-01-13 엘지디스플레이 주식회사 Organic light emitting display device, organic light emitting display panel and method for fabricating the same
KR101640803B1 (en) * 2014-09-26 2016-07-20 엘지디스플레이 주식회사 Organic Light Emitting Diode Display Device and Method of Fabricating the Same
TWI572025B (en) * 2015-01-15 2017-02-21 財團法人工業技術研究院 Semiconductor light-emitting device and fabricating method thereof
CN104882468B (en) * 2015-06-09 2017-12-15 京东方科技集团股份有限公司 Organic electroluminescent display substrate and preparation method thereof, display device
KR102418009B1 (en) * 2015-06-25 2022-07-05 엘지디스플레이 주식회사 Organic light emitting display device
KR102489836B1 (en) * 2015-06-30 2023-01-18 엘지디스플레이 주식회사 Organic light emitting display device
TW201703248A (en) * 2015-07-06 2017-01-16 友達光電股份有限公司 Pixel structure and manufacturing method thereof
CN105118928B (en) * 2015-07-29 2018-02-09 京东方科技集团股份有限公司 Color membrane substrates, its preparation method, OLED display panel and display device
KR101808715B1 (en) * 2015-09-23 2017-12-14 엘지디스플레이 주식회사 Organic light emitting display device
WO2017064593A1 (en) * 2015-10-12 2017-04-20 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
KR102528294B1 (en) * 2015-11-12 2023-05-04 삼성디스플레이 주식회사 Organic light emitting display and manufacturing method thereof
KR101739771B1 (en) * 2015-11-30 2017-05-26 엘지디스플레이 주식회사 Organic light emitting display device and method for manufacturing the same
CN105449111B (en) * 2016-01-08 2018-03-20 京东方科技集团股份有限公司 Light emitting diode with quantum dots substrate with binder course and preparation method thereof
KR102466191B1 (en) * 2016-01-15 2022-11-11 삼성디스플레이 주식회사 Method of manufacturing light emitting display device
KR102628849B1 (en) * 2016-03-24 2024-01-25 삼성디스플레이 주식회사 Organic light-emitting display apparatus
CN105870346B (en) * 2016-04-15 2018-07-03 深圳市华星光电技术有限公司 The manufacturing method and LED display of LED display
JP2018006212A (en) * 2016-07-05 2018-01-11 株式会社ジャパンディスプレイ Display device
KR102603593B1 (en) * 2016-07-29 2023-11-20 엘지디스플레이 주식회사 Display device having a white light emitting layer
KR102518130B1 (en) * 2016-08-04 2023-04-06 삼성디스플레이 주식회사 Organic light emitting diode display
KR20180020091A (en) * 2016-08-17 2018-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
CN106206970A (en) * 2016-08-31 2016-12-07 深圳市华星光电技术有限公司 A kind of luminescent panel and preparation method thereof
CN106338857B (en) * 2016-11-08 2019-06-14 深圳市华星光电技术有限公司 A kind of quantum dot liquid crystal display device
KR20180066556A (en) * 2016-12-09 2018-06-19 엘지디스플레이 주식회사 Organic light emitting display device and method of manufacturing the same
CN106601922B (en) * 2016-12-15 2020-05-26 Tcl科技集团股份有限公司 Quantum dot display panel and manufacturing method thereof
CN106601774B (en) * 2016-12-16 2020-05-12 深圳市Tcl高新技术开发有限公司 Printing type pixel bank structure and preparation method thereof
CN107329314A (en) * 2017-08-24 2017-11-07 深圳市华星光电半导体显示技术有限公司 Color membrane substrates and preparation method thereof, display panel and display
CN107402416B (en) * 2017-08-31 2020-10-30 深圳市华星光电技术有限公司 Quantum diffusion membrane and manufacturing method thereof
CN107731881A (en) * 2017-11-06 2018-02-23 武汉华星光电半导体显示技术有限公司 Flexible display panels and its manufacture method, flexible display apparatus

Also Published As

Publication number Publication date
TWI679792B (en) 2019-12-11
TW202001853A (en) 2020-01-01
TWI684810B (en) 2020-02-11
TWI710832B (en) 2020-11-21
TW202001374A (en) 2020-01-01
TWI683168B (en) 2020-01-21
TW202001385A (en) 2020-01-01
TWI733078B (en) 2021-07-11
TW202001373A (en) 2020-01-01
TW202002352A (en) 2020-01-01
TWI685702B (en) 2020-02-21
TWI690753B (en) 2020-04-11
TW202002354A (en) 2020-01-01
TW202002096A (en) 2020-01-01
TW202002276A (en) 2020-01-01
TWI680589B (en) 2019-12-21
TWI678009B (en) 2019-11-21
TW202002329A (en) 2020-01-01
TW202002351A (en) 2020-01-01
TWI714115B (en) 2020-12-21
TW202001386A (en) 2020-01-01
TW202001389A (en) 2020-01-01
TWI684815B (en) 2020-02-11
TW202002275A (en) 2020-01-01
TWI679765B (en) 2019-12-11
TW202002353A (en) 2020-01-01
TW202002277A (en) 2020-01-01
TW202002356A (en) 2020-01-01
TWI683375B (en) 2020-01-21
TWI696870B (en) 2020-06-21
TWI694626B (en) 2020-05-21
TW202001363A (en) 2020-01-01
TWI679789B (en) 2019-12-11
TWI695527B (en) 2020-06-01
TWI678802B (en) 2019-12-01

Similar Documents

Publication Publication Date Title
TWI710832B (en) Quantum dot display panel
US10566577B2 (en) Organic light emitting display device and organic light emitting display apparatus
US20200287153A1 (en) Single-doped white oleds with extraction layer doped with down-conversion red emitters
WO2020015173A1 (en) Oled display
US10692941B2 (en) Organic light emitting diode display
TWI242389B (en) Organic EL display panel
KR102016072B1 (en) Organic light emitting display and method for fabricating the same
JP2015128065A (en) Organic electroluminescent device and organic electroluminescent display device
JP2021533520A (en) OLED display board and its manufacturing method, display device
JP2004022438A (en) Display device
JP2013037138A (en) Self-luminous display device
JP2007115645A (en) Organic light emitting element and its manufacturing method
Zhang et al. Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering
JP2013037139A (en) Self-luminous display device
KR20110118277A (en) Transmission type organic light emitting diode and transmission type light device using the same
JP2016004775A (en) Organic light emission diode display panel
CN110176545B (en) Quantum dot display panel
KR20140046728A (en) Metallic oxide thin film substrate, method of fabricating thereof and oled including the same
JP2010056211A (en) Organic el device and process of reproducing the same
Acharya et al. Full color-tunable vertically stacked quantum dot light emitting diodes for next-generation displays and lighting
US11283036B2 (en) Organic electroluminescent element, lighting device, and display device
JP2004311421A (en) Organic electroluminescent element
KR101604495B1 (en) Organic light emitting diode display device and method of manufacturing the same
JP2009088526A (en) Organic light emitting device
JP2015095383A (en) Light-emitting device