TW202018116A - 含矽膜的高溫原子層沉積 - Google Patents

含矽膜的高溫原子層沉積 Download PDF

Info

Publication number
TW202018116A
TW202018116A TW107120415A TW107120415A TW202018116A TW 202018116 A TW202018116 A TW 202018116A TW 107120415 A TW107120415 A TW 107120415A TW 107120415 A TW107120415 A TW 107120415A TW 202018116 A TW202018116 A TW 202018116A
Authority
TW
Taiwan
Prior art keywords
reactor
deposition
oxygen
silicon oxide
silicon
Prior art date
Application number
TW107120415A
Other languages
English (en)
Inventor
王美良
雷新建
馬里卡裘南艾紐帕馬
錢德拉哈里賓
韓冰
Original Assignee
美商慧盛材料美國責任有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商慧盛材料美國責任有限公司 filed Critical 美商慧盛材料美國責任有限公司
Publication of TW202018116A publication Critical patent/TW202018116A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Abstract

本發提供一種以原子層沉積製程於650°C或更高的一或更多溫度下沉積氧化矽膜的方法及組合物。於一態樣中,提供一種沉積氧化矽膜或材料的方法,其包含以下步驟:將基材提供於反應器中;將選自由本文所述的具有式I及II的化合物之群組中的至少一鹵基矽氧烷前驅物引進該反應器;以洗淨氣體洗淨該反應器;將氧來源引進該反應器;及以洗淨氣體洗淨該反應器;而且其中將該等步驟重複至沉積預期厚度的氧化矽為止而且該製程係於介於約650至1000°C的一或更多溫度下進行。

Description

含矽膜的高溫原子層沉積
本案請求2016年1月20日申請的美國申請案第62/280886號之權益。該申請案第62/280886號的揭示內容在此以引用的方式將其併入本文。
本文所述的是用於形成含矽膜的組合物及方法。更明確地說,本文所述的是於約500°C或更高的一或更多沉積溫度下運用原子層沉積(ALD)製程形成氧化矽膜的組合物及方法。
熱氧化係沉積高純度且高保形性氧化矽膜例如半導體應用的二氧化矽(SiO2 )常用的製程。然而,該熱氧化製程具有非常低的沉積速率,例如,於700⁰C下0.0007 Å/s (參見B. E. Deal and A. S. Grove "General Relationship for the Thermal Oxidation of Silicon." Journal of Applied Physics Vol 36, page 3770 (1965)),其使用該製程無法實際用於商業上所採用的大量製程。
原子層沉積(ALD)及電漿強化原子層沉積(PEALD)係用於低溫(<500⁰C)下沉積二氧化矽(SiO2 )保形性膜的製程。在ALD及PEALD製程中,以一定數目的周期分開地脈衝前驅物和反應性氣體(例如氧或臭氧)以於每一周期形成一個二氧化矽(SiO2 )單層。然而,於低溫下使用這些製程沉積的二氧化矽(SiO2 )可含有某程度的對半導體應用不利的雜質例如碳(C)、氮(N)或其二者。為了補救這個,一個可行的解決方法可能是將沉積溫度提高至高於500°C的溫度。然而,於這些較高溫度下,半導體產業所運用的習用前驅物傾向於起自身反應,熱分解,並且以CVD模式而非ALD模式沉積。該CVD模式沉積比起ALD沉積具有降低的保形性,尤其是於於半導體應用的高縱寬比結構例如NAND及V-NAND方面。除此之外,該CVD模式沉積比該ALD模式沉積較難以控制膜或材料厚度。
美國公開案第2014/0170858號描述一種藉由進行預定數次的周期將包括預定元素、氧及選自由氮、碳及硼所組成的群組中之至少一元素的膜形成於基材上之方法,該周期包括供應來源氣體給該基材,其中該來源氣體含有預定元素、氯及氧加上該預定元素與氧的化學鍵,並且供應反應性氣體給該基材,其中該反應性氣體含有選自由氮、碳及硼所組成的群組中之至少一元素。
美國公開案第2007/0111545號描述一種應用ALD形成二氧化矽層以提高沉積速率並且改善半導體裝置裝配時的步階覆蓋率(step coverage)之方法。
美國專利第7,498,273號描述一種以PECVD使用矽氧烷類將低-κ介電層沉積於形成於基材上的間隙之方法,其能得到帶低孔隙率、高蝕刻選擇性及較少裂痕的膜。該方法包括將有機矽前驅物及氧前驅物引進沉積艙。該有機矽前驅物的C:Si原子比為<8,而且該氧前驅物包含在該沉積艙外部產生的原子氧。
美國專利第7,084,076號描述一種應用原子層沉積(ALD)形成二氧化矽膜之方法,其中使用經鹵素-或NCO-取代的矽氧烷當作矽來源。
美國公開案第2013/0295779號描述一種於約500°C或更高的一或或更多沉積溫度下形成含有氧化矽的膜之組合物及ALD。
以引用的方式將先前分辨的專利及專利申請案併入本文。
因此,必須研發一種用於形成高品質、低雜質、高保形性氧化矽膜之方法,此方法使用原子層沉積(ALD)製程或類ALD製程,例如但不限於循環式化學氣相沉積製程,代替垂直NAND (V-NAND)記憶體技術於高於600°C溫度的以熱力為基礎的沉積製程。再者,吾人所欲為可以研發高溫沉積法(例如於650℃或更高的一或更多溫度下沉積)以便以用於裝配V-NAND記憶體的ALD或類ALD製程改良一或更多膜性質,例如純度及/或密度。
本文描述的是一種於高溫下,例如,於約650°C或更高的一或更多溫度下,以原子層沉積(ALD)或類ALD製程沉積氧化矽材料或膜之方法。使用本文所述的組合物及方法沉積的氧化矽膜包含下列特性中的至少一或多者:約2.1 g/cm3 或更高的密度;相對於熱氧化物約6或更小的於0.5重量%稀氫氟酸中的濕式蝕刻速率(WER);2x1019 原子/cm3 或更小的碳含量。
於一態樣中,提供一種沉積氧化矽膜或材料之方法,其包含以下步驟: a.  將基材提供於反應器中; b.  將選自由具有下列式I及II的化合物所組成的群組中之至少一鹵基矽氧烷前驅物引進該反應器: I          R3-n Xn Si-O-SiXn R3-n II         R3-n Xn Si-O-SiXm R1 p R2-m-p -O-SiXn R3-n 其中X=Cl、Br或I;R及R1 係各自獨立地選自氫原子、C1 至C3 烷基;n=1、2或3;m=0、1或2;而且p=0或1; c.  以洗淨氣體洗淨該反應器; d.  將氧來源引進該反應器;及 e.  以洗淨氣體洗淨該反應器;及 其中重複進行步驟b至e直到沉積得到所欲厚度的氧化矽為止;及其中此製程係於介於650至850℃的一或更多溫度下進行。在各個不同具體實施例中,該方法係於介於約50毫托耳(mTorr)至約760托耳的一或更多壓力下進行。在各個不同具體實施例中,該氧來源係選自由氧、過氧化物、氧電漿、二氧化碳電漿、一氧化碳電漿、包含氫和氧的組合物、包含氫和臭氧的組合物、包含二氧化碳和氧的組合物、包含水和氧的組合物、包含氮和氧的組合物(亦即一氧化二氮(N2 O)或一氧化氮(NO)、水蒸氣、水蒸氣電漿、包含水和臭氧的組合物、過氧化氫、臭氧來源及其組合所組成的群組中之至少一員。
在另一態樣中,提供一種沉積氧化矽膜或材料之方法,其包含以下步驟: a.  將基材提供於反應器中; b.  將選自由具有下列式I及II的化合物所組成的群組中之至少一鹵基矽氧烷前驅物引進該反應器: I      R3-n Xn Si-O-SiXn R3-n II    R3-n Xn Si-O-SiXm R1 p R2-m-p -O-SiXn R3-n 其中X=Cl、Br或I;R and R1 係各自獨立地選自氫原子、C1 至C3 烷基;n=1、2或3;m=0、1或2;而且p=0或1; c.  以洗淨氣體洗淨該反應器; d.  將氧來源引進該反應器; e.  以洗淨氣體洗淨該反應器; f. 將水蒸氣或羥基來源引進該反應器; g.  以洗淨氣體洗淨該反應器;及 其中重複進行步驟b至g直到沉積得到所欲厚度的氧化矽為止;而且其中該製程係於介於650至850°C的一或更多溫度下進行。
在上述方法的一或更多具體實施例中,該方法係於介於約50毫托耳(mT)至約760托耳的一或更多壓力下進行。
在上述方法的一或更多具體實施例中,該洗淨氣體係選自由氮、氦、氬及其組合所組成的群組。
在上述方法的一或更多具體實施例中,該氧來源包含選自由氧、過氧化物、氧電漿、二氧化碳電漿、一氧化碳電漿、包含氫和氧的組合物、包含氫和臭氧的組合物、包含二氧化碳和氧的組合物、包含水和氧的組合物、包含氮和氧的組合物(亦即一氧化二氮(N2 O)或一氧化氮(NO)、水蒸氣、水蒸氣電漿、包含水和臭氧的組合物、過氧化氫、臭氧來源及其組合所組成的群組中之至少一員。
於另一態樣中,提供一種一種用於沉積氧化矽膜之組合物,其包含選自由具有下列式I及II的化合物所組成的群組中之至少一鹵基矽氧烷前驅物: I   R3-n Xn Si-O-SiXn R3-n II  R3-n Xn Si-O-SiXm R1 p R2-m-p -O-SiXn R3-n 其中X=Cl、Br或I;R及R1 係各自獨立地選自氫原子、C1 至C3 烷基;n=1、2或3;m=0、1或2;而且p=0或1。這些鹵基矽氧烷前驅物的實例係列於下列表I中:   表I
Figure 107120415-A0304-0001
本發明之一具體實施例關於一種用於沉積含矽膜之組合物,其包含選自由具有下列式I及II的化合物所組成的群組中之至少一鹵基矽氧烷前驅物: I         R3-n Xn Si-O-SiXn R3-n II        R3-n Xn Si-O-SiXm R1 p R2-m-p -O-SiXn R3-n 其中X=Cl、Br或I;R及R1 係各自獨立地選自氫原子、C1 至C3 烷基;n=1、2或3;m=0、1或2;而且p=0或1。
本發明之另一具體實施例關於一種由任何前述方法所生產之含矽膜。本發明之另一具體實施例關於一種含矽膜,其具有約2.1 g/cm3 或更高的密度;相對於熱氧化物約6或更小的於0.5重量%稀氫氟酸中的濕式蝕刻速率(WER);2x1019 原子/cm3 或更小的碳含量。
本發明之不同態樣及具體實施例能單獨或相互結合應用。
本文描述的是一種用於形成氧化矽膜的方法及組合物。該措辭氧化矽膜或材料包括,但不限於,化學計量或非化學計量氧化矽膜、氧氮化矽膜、氧碳化矽膜、氧碳氮化矽膜及其組合的組合物及方法。在一特定具體實施例中,該氧化矽膜係以原子層沉積(ALD)或以類ALD沉積製程,例如但不限於循環式化學氣相沉積製程(CCVD),於約650°C或更高的一或更多溫度下沉積。在整個說明書中,該措辭“ALD或類ALD”表示包括,但不限於,下列製程的製程:a) 將包括鹵基矽烷前驅物及反應性氣體在內的各反應物連續引進反應器例如單晶圓ALD反應器、半批次ALD反應器或批次爐ALD反應器;b) 藉由將基材移動或旋轉至該反應器的不同區段而使包括鹵基矽烷前驅物及反應性氣體在內的各反應物暴露於該基材而且各區段由惰性氣體帘幕隔開,亦即空間ALD反應器或捲軸式ALD反應器(roll to roll ALD reactor)。
本文所述的方法於循環式製程中於介於約650至約950°C或約700至850°C的一或更多沉積溫度下使用至少一鹵基矽氧烷前驅物及氧來源以提供該氧化矽膜。在本文所述的沉積製程之一具體實施例中,該方法包含下列步驟: a.  將基材提供於反應器中; b.  將選自由具有下列式I及II的化合物所組成的群組中之至少一鹵基矽氧烷前驅物引進該反應器: I          R3-n Xn Si-O-SiXn R3-n II         R3-n Xn Si-O-SiXm R1 p R2-m-p -O-SiXn R3-n 其中X=Cl、Br或I;R及R1 係各自獨立地選自氫原子、C1 至C3 烷基;n=1、2或3;m=0、1或2;而且p=0或1; c.  以洗淨氣體洗淨該反應器; d.  將氧來源引進該反應器;及 e.  以洗淨氣體洗淨該反應器。 其中重複進行步驟b至e直到所欲厚度的氧化矽膜沉積於該基材的至少一表面上為止。
儘管不欲為理論或說明所束縛,咸相信本文所述的至少一鹵基矽氧烷前驅物理應具有至少一錨定官能基以及預先存在的Si-O-Si鍵聯,該預先存在的Si-O-Si鍵聯與該基材表面上的某些反應部位反應以錨定Si-O-Si物種的單層,該單層可扮作阻障層以防止該氧來源與該基材之間不欲的交互作用,尤其是與僅具有一個矽原子的習用矽前驅物例如四氯化矽或二甲胺基三甲基矽烷相比在最初幾層氧化矽形成的期間。該等錨定官能基能選自鹵基(Cl、Br、I)。該鹵基矽氧烷前驅物理應也具有化學安定性的鈍化官能基以便防止進一步表面反應而導致自限性製程(self-limiting process)。該鈍化官能基係選自不同烷基例如鹵基(例如Cl或Br)、甲基、苯基,較佳為Cl或甲基。表面上剩餘的基團能接著被氧化形成更多Si-O-Si鍵聯以及羥基。此外,羥基來源例如H2 O或水電漿也能被引進該反應器以形成更多羥基作為下一個ALD周期的反應性部位。
如先前提及的,提供一種用於沉積氧化矽膜之組合物,其包含選自由具有下列式I及II的化合物所組成的群組中之至少一鹵基矽氧烷前驅物: I        R3-n Xn Si-O-SiXn R3-n II       R3-n Xn Si-O-SiXm R1 p R2-m-p -O-SiXn R3-n 其中X=Cl、Br或I;R及R1 係各自獨立地選自氫原子、C1 至C3 烷基;n=1、2或3;m=0、1或2;而且p=0或1。具有式I或II的前驅物的實例包括但不限於:1,1,1,3,3,3-六氯二矽氧烷、1,1,3,3-四氯二矽氧烷、1,1,3,3-四氯-1,3-二甲基二矽氧烷、1,3-二氯-1,1,3,3-四甲基二矽氧烷、1,1,1,3,3,5,5,5-八氯三矽氧烷、1,1,3,5,5-五氯-1,3,5-三甲基三矽氧烷、1,5-二氯-1,1,3,3,5,5-六甲基三矽氧烷及1,5-五氯-1,3,5-三甲基三矽氧烷。
在一特定具體實施例中,該等鹵基矽氧烷前驅物係由至少一錨定官能基(例如,Si-Cl)及及至少一鈍化官能基(例如,Si-Me,其中Me係甲基)構成。此前驅物的實例係列於下列表II:   表II:
Figure 107120415-A0304-0002
在某些具體實施例中,運用本文所述方法所沉積的氧化矽膜係於氧存在之下使用氧來源、試劑或包含氧的前驅物形成。氧來源可以至少一氧來源的形式引進該反應器及/或可附帶存在於該沉積製程所用的其他前驅物中。適合的氧來源氣體可包括,舉例來說,氧、過氧化物、氧電漿、二氧化碳電漿、一氧化碳電漿、包含氫和氧的組合物、包含氫和臭氧的組合物、包含二氧化碳和氧的組合物、包含水和氧的組合物、包含氮和氧的組合物(亦即一氧化二氮(N2 O)或一氧化氮(NO)、水蒸氣、水蒸氣電漿、包含水和臭氧的組合物、過氧化氫、臭氧來源及其組合。在某些具體實施例中,該氧來源包含於介於約1至約10000每分鐘標準立方公分(sccm)或約1至約2000每分鐘標準立方公分(sccm)或約1至約1000 sccm的流速下引進該反應器的氧來源氣體。該氧來源能被引進介於約0.1至約100秒的時間。在一特定具體實施例中,該氧來源包含具有10°C或更高溫度的水。在藉由ALD或循環式CVD製程沉積該膜的具體實施例中,該前驅物脈衝可具有大於0.01秒的脈衝期間,而且該氧來源可具有小於0.01秒的脈衝期間,而該水脈衝期間可具有小於0.01秒的脈衝期間。在又另一具體實施例中,該等脈衝之間的洗淨期間可低到0秒或連續脈衝而於其間沒有洗淨。
在某些具體實施例中,該等氧化矽膜另外包含氮。在這些具體實施例中,使用文中所述方法所沉積的膜係於含氮來源存在之下形成。含氮來源可以至少一氮來源的形式引進該反應器及/或可附帶存在於該沉積製程中所用的其他前驅物中。適合的含氮來源氣體可包括,舉例來說,氨、肼、單烷基肼、二烷基肼、氮、氮/氫、氨電漿、氮電漿、氮/氫電漿及其混合物。在某些具體實施例中,該含氮來源包含氨電漿或氫/氮電漿來源氣體,該來源氣體係於介於約1至約2000每分鐘標準立方公分(sccm)或約1至約1000 sccm的流速下引進該反應器。該含氮來源能被引進介於約0.1至約100秒的時間。在藉由ALD或循環式CVD製程沉積該膜的具體實施例中,該前驅物脈衝可具有大於0.01秒的脈衝期間,而且該含氮來源可具有小於0.01秒的脈衝期間,而該水脈衝期間可具有小於0.01秒的脈衝期間。在又另一具體實施例中,該等脈衝之間的洗淨期間可低到0秒或連續脈衝而於其間沒有洗淨。
在此所揭示的沉積方法可能涉及一或更多洗淨氣體。該洗淨氣體,其係用以洗淨未消耗的反應物及/或反應副產物,為不會與該等前驅物反應的惰性氣體。示範洗淨氣體包括,但不限於,氬(Ar)、氮(N2 )、氦(He)、氖、氫(H2 )及其混合物。在某些具體實施例中,洗淨氣體例如Ar係於介於約10至約6000 sccm的流速下歷經約0.1至1000秒供應至該反應器中,藉以洗掉可能留在該反應器中的未反應的材料及任何副產物。
供應該等前驅物、氧來源、該含氮來源及/或其他前驅物、來源氣體及/或試劑的分別步驟可藉由改變供應彼等的時間以改變所得介電膜的化學計量組成而進行。
該洗淨氣體能與來自先前步驟的殘餘氣體合併形成一組合物。舉例來說,該組合物能包含該洗淨氣體及獨創性前驅物中之至少其一。該洗淨氣體能佔該組合物的約1%至約95%。
將能量施於該矽前驅物、含氧來源或其組合中之至少其一以引發反應並且將該介電膜或塗層形成於該基材上。此能量可經由,但不限於,熱力、電漿、脈衝電漿、螺旋電漿(helicon plasma)、高密度電漿、誘導耦合電漿、X-射線、電子束、光子、遠距電漿方法及其組合來提供。在某些具體實施例中,可使用二次RF頻率來源以改變該基材表面的電漿特性。在沉積涉及電漿的具體實施例中,該電漿產生製程可包含於該反應器中直接產生電漿的直接電漿產生製程,或選擇性地在該反應器外側產生電漿而且供應至該反應器中的遠距電漿產生製程。
該至少一鹵基矽氧烷前驅物可以各式各樣的方式輸送至該反應艙例如循環式CVD或ALD反應器。有一具體實施例中,可利用液體輸送系統。有一可供選擇的具體實施例中,可運用合併液體輸送及閃蒸汽化加工單元,例如,舉例來說,明尼蘇達州,休爾瓦的MSP有限公司所製造的渦輪汽化器使低揮發性材料能夠以大量輸送,導致可再現的運送及沉積而不會使該前驅物熱分解。在液體輸送配方中,文中所述的前驅物可以純液體形態遞送,或者,可以溶劑配方或包含該前驅物的組合物加以運用。因此,在某些具體實施例中該等前驅物配方可包括指定的最終用途應用可能想要及有益的適合特性的溶劑組分以在基材上形成膜。
在本文所述的方法之一具體實施例中,循環式沉積製程例如類ALD、ALD或PEALD皆可運用,其中沉積係利用該至少一鹵基矽氧烷前驅物及氧來源進行。該類ALD製程被定義成循環式CVD製程但是仍能提供高保形性氧化矽膜。
在某些具體實施例中,從該等前驅物藥罐連至該反應艙的氣體管道係依據製程要求加熱至一或更多溫度而且該至少一鹵基矽氧烷前驅物的容器係維持於能供起泡的一或更多溫度。在其他具體實施例中,把包含至少一鹵基矽氧烷之溶液注入保持於一或更多供直接液體注射用的溫度下之汽化器。
氬及/或其他惰性氣體流可當成載運氣體運用以協助在該前驅物脈衝的期間將該至少一鹵基矽氧烷的蒸氣輸送至該反應艙。在某些具體實施例中,該反應艙製程壓力係約1托耳。
在典型的ALD或類ALD製程例如CCVD製程中,在最初暴露於該矽前驅物的反應艙中之加熱器段上加熱氧化矽基材以便使該前驅物以化學方式吸附於該基材表面上。
洗淨氣體例如氬,從該加工艙洗掉沒被吸附的過量錯合物。經過充分洗淨以後,氧來源可被引進反應艙以與該被吸附的表面反應,接著另一氣體洗淨以從該艙移除反應副產物。此製程周期能重複進行以達成期望的膜厚度。在某些案例中,泵抽能代替利用惰性氣體洗淨或能同時併用該二者來移除未反應的矽前驅物。
該獨創性ALD製程能達成介於約0.5 Å/周期至約4 Å/周期、約0.8 Å/周期至約3.5 Å/周期而且在某些較佳案例中約1 Å/周期至約3.5 Å/周期的膜生長速率。所沉積的膜的折射率(RI)能介於約1.35至約1.55、約1.40至約1.50而且在某些案例中約1.44至約1.48。所沉積的膜的稀氫氟酸(約0.5重量%去離子水中HF)相對蝕刻速率能介於約0.5至約8.0、約1.0至約6.0而且在某些案例中約1.0至約4.0。
在各個不同具體實施例中,咸了解本文所述方法的步驟可以多變的順序進行,可依序地或同時地(例如,於另一步驟的至少一部分期間)及其任何組合進行。供應該等前驅物和該等氧來源氣體的個別步驟可藉由變化供應彼等的時期來進行以改變所產生的介電膜的化學計量組成。所沉積的膜的介電常數(k)能介於約3.0至約6.0、約3.5至約5.0而且於某些較佳案例中約3.8至約4.2。
於約650或更高的一或更多沉積溫度下將氧化矽膜沉積於基材上的本文所述方法之一特定具體實施例包含下列步驟: a.  將基材提供於反應器中; b.  將至少一本文所述的具有式I及II的鹵基矽氧烷前驅物引進該反應器; I        R3-n Xn Si-O-SiXn R3-n II       R3-n Xn Si-O-SiXm R1 p R2-m-p -O-SiXn R3-n c.  以洗淨氣體洗淨該反應器; d.  將氧來源引進該反應器;及 e.  以洗淨氣體洗淨該反應器 其中重複進行步驟b至e直到沉積得到所欲厚度的氧化矽膜為止。
本文所述方法的另一具體實施例包含在該氧化步驟以後將羥基(例如,該沉積製程期間形成的OH斷片)的氧來源例如H2 O蒸氣或H2 O電漿。在此具體實施例中,咸相信該等羥基重建該表面而產生供鹵基矽氧烷前驅物用的反應性部位,該鹵基矽氧烷前驅物錨定於該表面上而形成單層。該等沉積步驟包含: a.  將基材提供於反應器中; b.  將上述至少一具有式I及II的鹵基矽氧烷引進該反應器; c.  以洗淨氣體洗淨該反應器; d.  將包含選自水、過氧化氫或包含水的電漿中之至少其一的氧來源引進該反應器; e.  以洗淨氣體洗淨該反應器; f. 將氧來源引進該反應器;及 g.  以洗淨氣體洗淨該反應器 其中重複進行步驟b至e直到沉積得到所欲厚度的氧化矽膜為止。
在本文所述方法之一可供選擇的具體實施例中,該等沉積步驟包含: a.  將基材提供於反應器中; b.  將 引進該反應器 鹵基矽氧烷 at least 本文所述的具有式I及II的鹵基矽氧烷前驅物; c.  以洗淨氣體洗淨該反應器; d.  將氧來源引進該反應器; e.  以洗淨氣體洗淨該反應器; f.   將含OH-的來源引進該反應器;及 g.  以洗淨氣體洗淨該反應器 其中重複進行步驟b至e直到沉積得到所欲厚度的氧化矽膜為止。
又另一具體實施例運用過氧化氫、臭氧、包含氫和氧的組合物或氧電漿移除鈍化官能基或基團例如甲基或氯基。該等沉積步驟如下: a.  將基材提供於反應器中; b.  將至少一本文所述的具有式I及II的鹵基矽氧烷前驅物引進該反應器; c.  以洗淨氣體洗淨該反應器; d.  將包含選自臭氧、過氧化氫、包含氫和氧的組合物及氧電漿中之至少其一的來源引進該反應器;及 e.  以洗淨氣體洗淨該反應器 其中重複進行步驟b至e直到沉積得到所欲厚度的氧化矽膜為止。
在本文所述的方法中,該至少一沉積溫度介於下列端點之任一或多者:650、675、600、700、725、750、775、800、825、850、875、900、925、950、975或1000°C。在某些具體實施例中,該至少一沉積溫度介於約650⁰C至約1000⁰C;或約650°C至約750°C;或約700⁰C至約850⁰C;或約750°C至約850°C。
在整個說明書中,本文所用的措辭“步階覆蓋率”係定義成沉積於具有導孔或溝槽或二者的結構化或特徵化基材中的金屬摻雜氮化矽介電膜之二厚度的百分比,其中底部步階覆蓋率的比率為(以%表示):該特徵底部處的厚度除以該特徵頂部處的厚度,而且中間步階覆蓋率的比率為(以%表示):該特徵側壁的厚度除以該特徵頂部處的厚度。使用本文所述方法沉積的膜顯現約60%或更高、約70%或更高、約80%或更高或約90%或更高的步階覆蓋率,其指示該等膜是保形的。
在整個說明書中,本文所用的措辭“含羥基的來源”表示具有羥基的氧來源。實例包括,但不限於,水、水電漿、包含氫和氧的組合物、包含氫和臭氧的組合物、包含水和氧的組合物、包含水和二氧化碳的組合物、包含水和氧的組合物、包含水和臭氧的組合物、包含水和一氧化二氮的組合物、包含水和一氧化氮的組合物、過氧化氫(H2 O2 )、由氫和氧所產生的電漿及其組合。
沉積壓力範圍係介於50毫托耳(mT)至760托耳或500 mT至100托耳的一或更多壓力。洗淨氣體能選自惰性氣體例如氮、氦或氬。氧化劑係選自來自電漿製程的氧、過氧化物、氧和氫的混合物、臭氧或分子氧。
在一特定具體實施例中,本文所述的方法實質上不用觸媒,例如有機胺(例如,吡啶、三甲基胺,參見美國專利第7,084,076號;在此以引用的方式將其併入本文)進行。在各個不同具體實施例中,本文所述的方法不需一或更多退火步驟便進行。
下列實施例係供舉例說明本發明的某些具體實施例而且不得限制後附申請專利範圍的範疇。   工作實施例 比較例1a:利用四氯化矽進行氧化矽膜的原子層沉積
氧化矽膜的原子層沉積係利用下列前驅物進行:四氯化矽(SiCl4)。該等沉積靠實驗室級ALD加工設備進行。該矽前驅物藉由蒸氣牽引(vapor draw)運輸至該艙。所有氣體(例如,洗淨及反應物氣體或前驅物及氧來源)係於進入該沉積帶以前被加熱至100°C。氣體及前驅物流速係利用高速制動的ALD隔片膜來控制。沉積時使用的基材係12吋長的矽細長條。在該樣品固持器上裝設熱電耦以確保基材溫度。沉積使用臭氧或H2O當作氧來源氣體進行。沉積參數係列於表III,其中該措辭脈衝或注入(dose)可互相交換,代表將矽前驅物或氧來源引進該反應器的步驟。   表III:使用SiCl4 配合氧來源進行氧化矽膜的原子層沉積製程
Figure 107120415-A0304-0003
步驟1至6重複進行至達到期望厚度為止。藉由將該膜的反射數據擬合於預定物理模型(例如,Lorentz Oscillator模型)使用FilmTek 2000SE橢圓儀來測量膜的厚度及折射率。濕式蝕刻速率係利用49%氫氟酸(HF)於去離子水中的1%溶液(約0.5重量% HF)。拿熱氧化物晶圓當成各批次的參考物使用以確認溶液濃度。關於0.5重量% HF去離子水水溶液的典型熱氧化物晶圓濕式蝕刻速率(WER)係0.5 Å/s。蝕刻前後的膜厚度係用以計算濕式蝕刻速率。表IV彙總藉著固定注入(2秒) SiCl4前驅物配合臭氧或H2O當作氧來源於800⁰C的晶圓溫度下沉積的SiO2膜性質。生長速率或每周期生長量(GPC)係定義成以埃(Å)為單位的氧化矽厚度除以周期數。   表IV. 藉著SiCl4 及臭氧或H2 O當作氧來源沉積的氧化矽膜性質
Figure 107120415-A0304-0004
也使用臭氧及H2O二者當作氧來源氣體進行沉積。沉積參數係列於表V。   表V:藉著SiCl4 及臭氧加上H2 O當作氧來源進行氧化矽膜的原子層沉積製程
Figure 107120415-A0304-0005
步驟1至9重複進行至達到期望厚度為止。表VI彙總藉著固定注入(2秒) SiCl4前驅物於800⁰C的晶圓溫度下沉積的SiO2膜性質。   表VI. 藉著SiCl4 及臭氧加上H2 O製程沉積的氧化矽膜性質
Figure 107120415-A0304-0006
為了確認ALD型沉積,在氧來源引進該反應器以前先使用雙重前驅物注入以確保沉積係自限性。沉積步驟係列於以下表VII中而且膜性質係列於表VIII。   表VII. 用於確認使用SiCl4 的ALD型式的ALD條件
Figure 107120415-A0304-0007
表VIII. 藉著臭氧或H2 O製程配合SiCl4 雙倍注入所沉積的SiO2 膜之沉積速率及膜性質
Figure 107120415-A0304-0008
比較例1b. 於600o C或更低溫度下藉著HCDSO進行氧化矽膜的原子層沉積
氧化矽膜的原子層沉積係利用HCDSO及臭氧當作反應物使用表III所列的步驟進行。GPC於550o C下為0.23 Å/周期而且於600o C下為0.26 Å/周期。與熱氧化物相比於稀氫氟酸中的相對WER (約0.5重量% HF於去離子水中)係於550o C下的約9.2及於600o C下的7.8。   實施例1:利用六氯二矽氧烷於高於600o C的基材溫度下進行氧化矽膜的原子層沉積
氧化矽膜的原子層沉積係藉著六氯二矽氧烷(HCDSO)配合不同氧來源運用比較例1a的表III及表V所列的步驟進行。現在參照圖1,圖1舉例說明顯示自限性質的生長速率而且隨著前驅物脈衝數增加而飽和,其能確認於760⁰C下的ALD型沉積。表IX彙總於介於650至800⁰C的溫度下所沉積的氧化矽之沉積條件及物理性質,其證實在類似的ALD條件之下HCDSO具有比SiCl4更高許多的生長速率。 表IX. 藉著HCDSO及不同氧來源製程所沉積的SiO2 膜之沉積速率及膜性質
Figure 107120415-A0304-0009
為了確認ALD型沉積,在氧來源引進該反應器以前先使用雙重前驅物注入以確保沉積係自限性。沉積係利用實施例1的表VII中所列的步驟完成。沉積速率及所沉積的膜性質係列於表X。   表X. 利用雙重HCDSO注入所沉積的SiO2 膜之沉積速率及膜性質
Figure 107120415-A0304-0010
該等沉積速率顯示自限性質而且隨著前驅物脈衝數增加而飽和,其能確認於800⁰C下的ALD型沉積。
為了確認ALD型沉積及於800⁰C下沒有前驅物分解,僅利用HCDSO而沒用氧來源進行沉積。沉積步驟係列於以下表XI:   表XI. 用於確認僅使用HCDSO的ALD型式之ALD條件
Figure 107120415-A0304-0011
沉積時沒獲得膜,其確認於800⁰C下進行ALD沉積期間沒發生前驅物分解。
為了確認該氧來源步驟沒將該基材氧化至顯著程度,沒用該鹵基矽氧烷前驅物當作矽前驅物而是僅用氧來源步驟流進行沉積。沉積參數係列於表XII。僅使該氧來源流動並未觀察到氧化矽生長,其使人聯想到氧不會在實驗條件之下將該基材氧化而形成氧化矽。   表XII:藉著氧來源沉積的製程
Figure 107120415-A0304-0012
實施例2:利用六氯二矽氧烷於760°C的基材溫度下進行氧化矽膜的原子層沉積
氧化矽膜的原子層沉積係藉著六氯二矽氧烷(HCDSO)配合臭氧來源運用表III所列的步驟進行。現在參照圖1,該沉積溫度係760⁰C。運用多重前驅物脈衝來研究使用HCDSO加臭氧反應物的沉積飽和曲線(亦即在生長速率對比於前驅物脈衝數的的圖形中該生長速率達到平坦區域)。該等沉積步驟係列於表XIII。關於多重脈衝,步驟2a至2c重複進行多次,接著利用臭氧反應物持續進行步驟3及步驟4。再參照圖1,圖1顯示有自限性質的生長速率與前驅物脈衝數的對比關係而且達到飽和,(亦即飽和意指在GPC對比於前驅物脈衝數的圖形中隨著前驅物注入增加而達到平坦區域,其確認於760⁰C下的ALD型沉積)。能見到藉著2矽前驅物注入的脈衝使該GPC飽和,添加更多前驅物並沒有使GPC更進一步提高。   表XIII:利用HCDSO及臭氧反應物進行氧化矽膜的原子層沉積製程
Figure 107120415-A0304-0013
現在參照圖2,圖2顯示所沉積的氧化矽的厚度與ALD周期數之間的線性關係,典型ALD性質的特徵。   實施例3:在圖案化矽基材上藉著HCDSO進行氧化矽膜的原子層沉積
氧化矽膜係藉著HCDSO於760o C下沉積於圖案化矽晶圓上。該沉積製程係使用臭氧當作該氧來源氣體及前驅物一次脈衝進行。該圖案具有約60 nm的寬度、約600 nm的深度、1:10的深寬比。該沉積於基材上的膜係利用穿透式電子顯微鏡來測量。現在參照圖3,圖3係該氧化矽膜的TEM截面,其指示優良的步階覆蓋率(>95%) (如以上定義的)而且確認實施例3的製程的確是ALD製程。   實施例4:藉由HCDSO搭配臭氧的ALD沉積製程所沉積的氧化矽膜之膜組成
氧化矽膜的原子層沉積係利用六氯二矽氧烷(HCDSO)搭配臭氧來源運用表III所列的步驟於不同溫度下進行。膜雜質藉由二次離子質譜儀(SIMS)來分析而且將膜雜質顯示於圖4。現在參照圖4,圖4舉例說明該等沉積膜的氯化物含量。現在參照圖5,圖5顯示於不同基材溫度下藉著HCDSO及臭氧沉積的氧化矽膜對比於熱氧化物的相對WER,其證明溫度越高,該WER越低。   實施例5. 利用八氯三矽氧烷進行氧化矽膜的原子層沉積
氧化矽膜的原子層沉積係利用矽前驅物八氯三矽氧烷(OCTSO)搭配臭氧當作反應物運用表III所列的步驟進行。不同數目的前驅物脈衝係於750o C下運用以證明圖1所示的自限性質,其使人聯想到OCTSO適用於氧化矽的高溫沉積。該OCTSO的GPC比HCDSO的GPC相對較高。與熱氧化物相比的相對WER係約2。   實施例6. 利用1,1,3,3-四氯-1,3-二甲基二矽氧烷進行氧化矽膜的原子層沉積
氧化矽膜的原子層沉積係利用1,1,3,3-四氯-1,3-二甲基二矽氧烷搭配臭氧當作反應物運用表III所列的步驟進行。GPC於700o C下為1.18 Å/周期。膜折射率為1.46。
儘管本發明已經參照特定較佳具體實施例描述過,咸了解熟悉此技藝者皆可完成不同變化而且等效物可替換其構成部分而不會悖離本發明的範疇。除此之外,可使特定情況或材料順應本發明的教導以完成許多修飾而不會悖離其基本範疇。因此,咸認為本發明不限於特定具體實施例,而是本發明能將所有落在後附申請專利範圍以內的具體實施例皆包括在內。
圖1舉例說明以Å/周期為單位測到的每周期沉積氧化矽膜生長量與六氯二矽氧烷(HCDSO)及八氯三矽氧烷(OCTSO)分別於760o C及750o C的基材溫度下的矽前驅物脈衝時間(以秒為單位測量)之間的關係。 圖2舉例說明如實施例1所述於760°C下使用六氯二矽氧烷(HCDSO)及臭氧之以Å為單位測得的氧化矽膜厚度對比於周期數的關係。 圖3係於760°C下使用六氯二矽氧烷(HCDSO)及臭氧所沉積的氧化矽膜之穿透式電子顯微鏡(TEM)影像。 圖4舉例說明如實施例4所述於不同溫度下使用HCDSO及臭氧所沉積的氧化矽膜之氯化物含量。 圖5舉例說明如實施例4所述於不同基材溫度下利用HCDSO及臭氧所沉積的氧化矽膜對比於熱氧化物的相對WER。

Claims (2)

  1. 一種含矽膜,其具有約2.1 g/cm3 或更高的密度;相對於熱氧化物約6或更小的於0.5重量%稀氫氟酸中的濕式蝕刻速率(WER);2x1019 原子/cm3 或更小的碳含量。
  2. 如請求項1的含矽膜,其中碳存在的量小於5原子%,其係以X光光電子能圖譜技術(XPS)進行測量。
TW107120415A 2016-01-20 2017-01-19 含矽膜的高溫原子層沉積 TW202018116A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662280886P 2016-01-20 2016-01-20
US62/280,886 2016-01-20
US15/404,376 US10283348B2 (en) 2016-01-20 2017-01-12 High temperature atomic layer deposition of silicon-containing films
US15/404,376 2017-01-12

Publications (1)

Publication Number Publication Date
TW202018116A true TW202018116A (zh) 2020-05-16

Family

ID=57860744

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107120415A TW202018116A (zh) 2016-01-20 2017-01-19 含矽膜的高溫原子層沉積
TW106101964A TWI639723B (zh) 2016-01-20 2017-01-19 含矽膜的高溫原子層沉積

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW106101964A TWI639723B (zh) 2016-01-20 2017-01-19 含矽膜的高溫原子層沉積

Country Status (7)

Country Link
US (1) US10283348B2 (zh)
EP (1) EP3196336A1 (zh)
JP (2) JP6856388B2 (zh)
KR (1) KR102013412B1 (zh)
CN (2) CN106992114B (zh)
SG (1) SG10201700452RA (zh)
TW (2) TW202018116A (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016205196A2 (en) 2015-06-16 2016-12-22 Air Products And Chemicals, Inc. Halidosilane compounds and compositions and processes for depositing silicon-containing films using same
US9786492B2 (en) 2015-11-12 2017-10-10 Asm Ip Holding B.V. Formation of SiOCN thin films
US9786491B2 (en) 2015-11-12 2017-10-10 Asm Ip Holding B.V. Formation of SiOCN thin films
KR102378021B1 (ko) * 2016-05-06 2022-03-23 에이에스엠 아이피 홀딩 비.브이. SiOC 박막의 형성
US11591692B2 (en) * 2017-02-08 2023-02-28 Versum Materials Us, Llc Organoamino-polysiloxanes for deposition of silicon-containing films
US10847529B2 (en) 2017-04-13 2020-11-24 Asm Ip Holding B.V. Substrate processing method and device manufactured by the same
US10504901B2 (en) 2017-04-26 2019-12-10 Asm Ip Holding B.V. Substrate processing method and device manufactured using the same
CN110546302B (zh) 2017-05-05 2022-05-27 Asm Ip 控股有限公司 用于受控形成含氧薄膜的等离子体增强沉积方法
US10950454B2 (en) * 2017-08-04 2021-03-16 Lam Research Corporation Integrated atomic layer passivation in TCP etch chamber and in-situ etch-ALP method
US10991573B2 (en) 2017-12-04 2021-04-27 Asm Ip Holding B.V. Uniform deposition of SiOC on dielectric and metal surfaces
WO2019118019A1 (en) * 2017-12-12 2019-06-20 Dow Silicones Corporation Method of depositing a silicon-containing film on a substrate using organo(halo) siloxane precursors
US10431695B2 (en) 2017-12-20 2019-10-01 Micron Technology, Inc. Transistors comprising at lease one of GaP, GaN, and GaAs
US10825816B2 (en) 2017-12-28 2020-11-03 Micron Technology, Inc. Recessed access devices and DRAM constructions
US10319586B1 (en) * 2018-01-02 2019-06-11 Micron Technology, Inc. Methods comprising an atomic layer deposition sequence
US10734527B2 (en) 2018-02-06 2020-08-04 Micron Technology, Inc. Transistors comprising a pair of source/drain regions having a channel there-between
US11521849B2 (en) * 2018-07-20 2022-12-06 Applied Materials, Inc. In-situ deposition process
US20200040454A1 (en) * 2018-08-06 2020-02-06 Lam Research Corporation Method to increase deposition rate of ald process
US20210380418A1 (en) * 2018-10-05 2021-12-09 Versum Materials Us, Llc High temperature atomic layer deposition of silicon-containing film
KR102157137B1 (ko) * 2018-11-30 2020-09-17 주식회사 한솔케미칼 실리콘 전구체 및 이를 이용한 실리콘 함유 박막의 제조방법
JP7227122B2 (ja) 2019-12-27 2023-02-21 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7386732B2 (ja) * 2020-03-06 2023-11-27 東京エレクトロン株式会社 成膜方法
JP7254044B2 (ja) * 2020-03-25 2023-04-07 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
KR102364476B1 (ko) * 2020-05-08 2022-02-18 주식회사 한솔케미칼 실리콘 전구체 및 이를 이용한 실리콘 함유 박막의 제조방법
CN116057667A (zh) * 2020-06-03 2023-05-02 朗姆研究公司 特征内的湿式蚀刻速率比减小
KR20230152731A (ko) * 2021-03-02 2023-11-03 버슘머트리얼즈 유에스, 엘엘씨 실리콘 유전체 필름의 선택적 증착

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642851A (en) 1968-12-27 1972-02-15 Union Carbide Corp Preparation of linear halosiloxanes and compounds derived therefrom
JP3229419B2 (ja) * 1993-02-10 2001-11-19 ダウ・コ−ニング・コ−ポレ−ション 酸化ケイ素膜の形成方法
JPH08165294A (ja) 1994-12-15 1996-06-25 Shin Etsu Chem Co Ltd 1,3−ジクロロ−1,1,3,3−テトラメチルジシロキサンの製造方法
US5989998A (en) * 1996-08-29 1999-11-23 Matsushita Electric Industrial Co., Ltd. Method of forming interlayer insulating film
US6013740A (en) 1998-08-27 2000-01-11 Dow Corning Corporation Sheet and tube polymers with pendant siloxane groups
KR100505668B1 (ko) 2002-07-08 2005-08-03 삼성전자주식회사 원자층 증착 방법에 의한 실리콘 산화막 형성 방법
US7084076B2 (en) * 2003-02-27 2006-08-01 Samsung Electronics, Co., Ltd. Method for forming silicon dioxide film using siloxane
TWI262960B (en) * 2003-02-27 2006-10-01 Samsung Electronics Co Ltd Method for forming silicon dioxide film using siloxane
US7022864B2 (en) * 2003-07-15 2006-04-04 Advanced Technology Materials, Inc. Ethyleneoxide-silane and bridged silane precursors for forming low k films
JP2006060066A (ja) * 2004-08-20 2006-03-02 Mitsubishi Electric Corp シリコン酸化膜の成膜方法および成膜装置
KR20060019868A (ko) * 2004-08-30 2006-03-06 삼성코닝 주식회사 이중 유기 실록산 전구체를 이용한 절연막의 제조방법
JP4341560B2 (ja) * 2005-01-31 2009-10-07 東ソー株式会社 Si含有膜形成材料、Si含有膜、Si含有膜の製法、及び、半導体デバイス
JP5019742B2 (ja) * 2005-01-31 2012-09-05 東ソー株式会社 環状シロキサン化合物、Si含有膜形成材料、およびその用途
WO2006088015A1 (ja) * 2005-02-18 2006-08-24 Nec Corporation 有機シリコン系膜の形成方法、当該有機シリコン系膜を有する半導体装置及びその製造方法
KR100660890B1 (ko) 2005-11-16 2006-12-26 삼성전자주식회사 Ald를 이용한 이산화실리콘막 형성 방법
US7498273B2 (en) * 2006-05-30 2009-03-03 Applied Materials, Inc. Formation of high quality dielectric films of silicon dioxide for STI: usage of different siloxane-based precursors for harp II—remote plasma enhanced deposition processes
US8129555B2 (en) * 2008-08-12 2012-03-06 Air Products And Chemicals, Inc. Precursors for depositing silicon-containing films and methods for making and using same
US7935643B2 (en) * 2009-08-06 2011-05-03 Applied Materials, Inc. Stress management for tensile films
JP2011165657A (ja) * 2010-01-15 2011-08-25 Semiconductor Energy Lab Co Ltd 蓄電装置
US8592294B2 (en) * 2010-02-22 2013-11-26 Asm International N.V. High temperature atomic layer deposition of dielectric oxides
US9460912B2 (en) * 2012-04-12 2016-10-04 Air Products And Chemicals, Inc. High temperature atomic layer deposition of silicon oxide thin films
JP6415808B2 (ja) 2012-12-13 2018-10-31 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US9796739B2 (en) * 2013-06-26 2017-10-24 Versum Materials Us, Llc AZA-polysilane precursors and methods for depositing films comprising same
US20150275355A1 (en) * 2014-03-26 2015-10-01 Air Products And Chemicals, Inc. Compositions and methods for the deposition of silicon oxide films
JP6545093B2 (ja) 2015-12-14 2019-07-17 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム

Also Published As

Publication number Publication date
CN112899648A (zh) 2021-06-04
US10283348B2 (en) 2019-05-07
CN106992114A (zh) 2017-07-28
TW201736633A (zh) 2017-10-16
KR20170087425A (ko) 2017-07-28
JP2017130665A (ja) 2017-07-27
US20170207082A1 (en) 2017-07-20
KR102013412B1 (ko) 2019-08-22
EP3196336A1 (en) 2017-07-26
JP6856388B2 (ja) 2021-04-07
CN106992114B (zh) 2021-02-19
JP7092709B2 (ja) 2022-06-28
TWI639723B (zh) 2018-11-01
SG10201700452RA (en) 2017-08-30
JP2019186562A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
JP7092709B2 (ja) ケイ素含有膜の高温原子層堆積
TWI683025B (zh) 用於形成碳摻雜的含矽膜的方法
KR102135799B1 (ko) 보론 및 카본 함유 물질들의 퇴적
TWI557259B (zh) 用於沉積氧化矽膜的組合物及方法
TWI762809B (zh) 具有高碳含量的含矽膜的製造方法
JP2002343793A (ja) ヘキサクロロジシランおよびアンモニアを用いた原子層蒸着によるシリコン含有固体薄膜の製造方法
TWI721588B (zh) 含矽膜的高溫原子層沉積
TWI792947B (zh) 熱沉積含矽膜的組合物及方法
TWI814264B (zh) 用於含有矽及硼的膜之組合物及使用其之方法
TW202348590A (zh) 用於碳摻雜的含矽膜的組合物及使用其的方法
TWI673761B (zh) 摻雜半導體基板的方法及沈積含硼及碳的膜的方法