TW201912565A - 自熱性氨裂解製程 - Google Patents

自熱性氨裂解製程 Download PDF

Info

Publication number
TW201912565A
TW201912565A TW107126906A TW107126906A TW201912565A TW 201912565 A TW201912565 A TW 201912565A TW 107126906 A TW107126906 A TW 107126906A TW 107126906 A TW107126906 A TW 107126906A TW 201912565 A TW201912565 A TW 201912565A
Authority
TW
Taiwan
Prior art keywords
ammonia
nitrogen
hydrogen
gas
oxygen
Prior art date
Application number
TW107126906A
Other languages
English (en)
Other versions
TWI812634B (zh
Inventor
克里斯提恩 亨利克 史代夫
湯米 力克 溫德
培 尤爾 達爾
Original Assignee
丹麥商托普索公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63259535&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201912565(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 丹麥商托普索公司 filed Critical 丹麥商托普索公司
Publication of TW201912565A publication Critical patent/TW201912565A/zh
Application granted granted Critical
Publication of TWI812634B publication Critical patent/TWI812634B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/005Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out at high temperatures, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0221Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical shaped bed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • C01B21/26Preparation by catalytic or non-catalytic oxidation of ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00594Gas-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本發明係關於一種自氨製造含氮氣及氫氣之產物氣體之方法,其包含以下步驟:用含氧氣體將氨非催化性部分氧化成含氮氣、水、一定量之氮氧化物及餘量為氨之製程氣體;藉由與含鎳催化劑接觸,將至少部分餘量氨裂解成製程氣體中之氫氣及氮氣,同時藉由與在藉由將製程氣體與含鎳催化劑接觸來裂製程氣體期間所形成之部分氫氣反應,將一定量之氮氧化物還原成氮氣及水;及抽出含氫氣及氮氣之產物氣體。

Description

自熱性氨裂解製程
本發明係關於一種含氮氣及氫氣之氣體之製造。更具體來說,本發明提供一種藉由一系列用含氧氣體將氣態氨非催化性部分氧化並且將部分氧化之製程氣體中所含之餘量氨裂解成氮氣及氫氣產物氣體來製造此氣體之方法。
液態氨為一種製造氫氣或重要能源載體之重要來源,尤其用於在具有少數或沒有燃料源之區域中產生電力。作為能源載體,液態氨亦可作為一種穩定由諸如風力、太陽能及水力發電等可再生能源技術所製造之波動電力之來源。氨作為能源載體之優點在於液態氨比例如天然氣或氫氣更易於運輸及儲存。
為了適合作為用於電力生產之燃料,需要將氨裂解成由氫氣及氮氣所組成之氣體混合物。
在氨裂解製程中,氣態氨在可逆反應中離解成氫氣及氮氣之混合物:2 NH3 N2+3 H2
該反應為吸熱,需要加熱來維持氨裂解反應。
已發現,藉由以下反應在氨之放熱非催化部分氧化中所產生之熱量當隨後進行氨之吸熱催化裂解時足以提供必要的熱量。
2 NH3+3/2 O2 → N2+3 H2O
亦觀察到,當藉由與含鎳催化劑接觸進行氨之裂解時,在部分氧化氣體中所形成之氮氧化物被還原成氮氣及水。藉由在氨裂解反應期間所形成之氫氣將氮氧化物還原成無害的氮氣及水,並且不需要進一步的步驟來移除經裂解之氣體之氮氧化物。
另一個優點為根據本發明之方法使得氫氣產物氣體中無CO2生成,其意指該方法不產生任何CO2。若使用空氣作為氧化劑,則少量二氧化碳會與空氣一起添加至製程中,但由於製程反應不會形成額外的CO2,因此相同量之CO2會再次被釋放。
根據上述觀察,本發明提供一種自氨製造含氮氣及氫氣之產物氣體之方法,其包含以下步驟:用含氧氣體將氨非催化性部分氧化成含氮氣、水、大量氮氧化物及餘量為氨之製程氣體;藉由與含鎳催化劑接觸,將至少部分餘量氨裂解成製程氣體中之氫氣及氮氣,同時藉由與在藉由將製程氣體與含鎳催化劑接觸來裂製程氣體期間所形成之部分氫氣反應,將大量氮氧化物還原成氮氣及水;及抽出含氫氣及氮氣之產物氣體。
藉由本發明之方法,由於藉由與含鎳催化劑接觸而將氮氧化物與氫氣反應,該非催化性部分氧化步驟中所產生之氮氧化物之量受到熱力學平衡之限制係減少80%,實際上減少高達100%。
1‧‧‧流
2‧‧‧流
3‧‧‧流
4‧‧‧流
5‧‧‧流
6‧‧‧流
7‧‧‧流
8‧‧‧流
9‧‧‧流
圖1為根據本發明特定具體實例之氨裂解製程之示意圖,其包括自熱氨裂解反應器、氨分離步驟、產物氣體調節及氨回收。
圖2說明已知的自熱重組反應器。
在本發明一個較佳具體實例中,氨之非催化性部分氧化係藉由用低於化學計量之氧氣以氣態形式燃燒氨而在燃燒器中進行。
在另一個較佳具體實例中,非催化性部分氧化步驟及裂解步驟係在單一反應器容器中進行。由此,最佳化地保存來自放熱部分氧化之反應熱,以進行吸熱氨裂解反應。
單一反應器容器較佳經組態為自熱裂解反應器,其具有位於反應器容器入口側之燃燒器及位於燃燒器下游之催化劑床,類似於圖2所示之已知自熱重組反應器。
與含鎳催化劑接觸之後的平衡溫度可藉由改變進入非催化性部分氧化步驟中之氧氣與氨饋入流速而調節。此相當於改變λ值,該λ值為實際氧氣饋入流量與氨饋入成為氮氣及水之完全化學計量燃燒所需之流量之間之比例。對於固定的氨流速,可藉由增加含氧氣體中之氧濃度及/或藉由增加含氧氣體之流速來增加平衡溫度。
較佳地,調節非催化性部分氧化步驟之氧氣與氨饋入流速以在與含鎳催化劑接觸之後測量到產物氣體之平衡溫度在700至1100℃之間。
因此,在本發明一個具體實例中,含氧氣體中之氧含量以相應於λ=0.18至λ=0.30之間之λ值而變化,致使平衡溫度Teq=700-1100℃。
較佳地,在非催化性部分氧化步驟中所使用之含氧氣體含有10至100體積%之間的氧。
因此,用於含氧氣體之合適來源可為煙道氣至純氧或其混合物範圍內。
離開裂解步驟之所得產物氣體混合物係由氫氣、氮氣及水以及一定量之殘餘未裂解的氨所構成。
因此,在一個具體實例中,根據本發明之方法包含另一個步驟:將產物氣體中另外所含之未裂解的氨分離。
較佳地,該分離步驟係藉由水洗滌該產物氣體來進行。在此分離步驟中,來自熱裂解反應器之水之主要部分會與氨一起離開分離步驟。
在氨分離步驟中自產物氣體所分離之一定量之氨可在氨回收步驟(諸如蒸餾)中回收,並且經回收之氨較佳在該製程中再循環至非催化性部分氧化步驟。同時,該氨回收步驟會清潔製程冷凝物。
取決於最終氫氣/氮氣產物氣體之用途,可調節產物氣體中氫氣與氮氣之莫耳比以用於預期用途。
因此,在本發明另一個具體實例中,該方法包含另一個步驟:調節產物氣體調節單元中產物氣體之氫氣與氮氣莫耳比。該產物氣體調節步驟可包含膜或變壓吸附單元(Pressure Swing Adsorption;PSA)。
本發明一個較佳具體實例進一步含有將氫氣源添加至氨饋入中或直接添加至裂解反應器中之燃燒器中之可能性。將氫氣添加至氨饋入可將自燃溫度降低多達100℃,從而在較低的預熱溫度下自動點燃氨,並且在正常操作期間增加可燃性。氫氣源較佳為產物氣體或調節氨含量、水及/或氫氣/氮氣比之產物氣體。亦可使用來自各種公用事業來源及其他方法之氫氣。
用於裂解步驟之含氧氣體(諸如環境空氣)可含有少量CO2。眾所皆知,CO2及氨在水溶液中反應,此會致使氨回收區之結垢及/或腐蝕。此外,若不採取措施,CO2可能會在此製程中累積。本發明之較佳具體實例含有 自氧化劑移除CO2之措施,例如藉由用NaOH溶液洗滌氧化劑,或者在氨回收區中添加NaOH溶液至蒸餾塔以達到在汽提冷凝物中移除以Na2CO3形式表示之CO2之目的。
在該製程中避免CO2累積之另一種方法為在自熱氨裂解器與氨分離步驟之間包括甲烷化反應器。藉由此方法,利用自上游裂解反應器所獲得之氫氣將CO2轉化成甲烷:CO2+4 H2 CH4+2 H2O
含鎳或貴金屬之催化劑可催化此反應。優點為甲烷不與水溶液中之氨反應,此意指在甲烷化反應器中藉由CO2轉化避免了CO2累積,並且所產生之甲烷隨後自氨分離步驟與產物氣體一起離開製程,而不挾帶冷凝物至回收區。
根據本發明之方法之特定具體實例展示於圖式中。
實施例
以下表1展示對應於λ值=0.21之用於氨裂解製程之製程氣體流量及組成物,以及在自熱氨裂解反應器中與含鎳催化劑接觸之後產物氣體所得之平衡溫度為800℃。流編號參見圖1。

Claims (18)

  1. 一種自氨製造含氮氣及氫氣之產物氣體之方法,其包含以下步驟:用含氧氣體將氨非催化性部分氧化成含氮氣、水、一定量之氮氧化物及餘量為氨之製程氣體;藉由與含鎳催化劑接觸,將至少部分餘量氨裂解成該製程氣體中之氫氣及氮氣,同時藉由與在藉由將該製程氣體與該含鎳催化劑接觸來裂該製程氣體期間所形成之部分氫氣反應,將一定量之氮氧化物還原成氮氣及水;及抽出含氫氣及氮氣之產物氣體。
  2. 如請求項1所述之方法,其中藉由與該含鎳催化劑接觸而將氮氧化物與氫氣反應,非催化性部分氧化步驟中所產生之氮氧化物之量受到熱力學平衡之限制係減少大於80%,及高達100%。
  3. 如請求項1或請求項2所述之方法,其中該氨之非催化性部分氧化係藉由用低於化學計量之含氧氣體在燃燒器中以氣態形式燃燒氨來進行。
  4. 如請求項1至3中任一項所述之方法,其中該非催化性部分氧化步驟及該裂解步驟係在單一反應器容器中進行。
  5. 如請求項4所述之方法,其中該單一反應器容器經組態為自熱裂解反應器。
  6. 如請求項1至5中任一項所述之方法,其中調節該非催化性部分氧化步驟之氧氣與氨饋入流速以在與該含鎳催化劑接觸之後得到該產物氣體之700至1100℃之間之平衡溫度。
  7. 如請求項1至6中任一項所述之方法,其中含氧氣體中之氧含量以相應於λ=0.18至λ=0.30之間之λ值而變化,其中λ為實際氧氣饋入流量與氨成為氮氣及水之完全化學計量燃燒所需之流量之間之比例。
  8. 如請求項1至6中任一項所述之方法,其中含氧氣體含有10至100 體積%之間的氧。
  9. 如請求項1至8中任一項所述之方法,其包含另一個步驟:藉由自該氨裂解步驟所獲得之氫氣在甲烷化反應器中將CO 2轉化為甲烷。
  10. 如請求項1至9中任一項所述之方法,其包含另一個步驟:將該產物氣體中另外所含之未裂解的氨分離。
  11. 如請求項8所述之方法,其中該未裂解的氨係藉由水洗滌自該產物氣體分離。
  12. 如請求項10或請求項11所述之方法,其中所分離之氨係在氨回收步驟中回收,並且再循環至該非催化性部分氧化步驟。
  13. 如請求項10至12中任一項所述之方法,其包含添加NaOH至該氨回收步驟中。
  14. 如請求項1至13中任一項所述之方法,其包含另一個步驟:調節產物氣體調節單元中該產物氣體之氫氣與氮氣莫耳比。
  15. 如請求項1至14中任一項所述之方法,其包含將氫氣源添加至氨饋入中或直接添加至裂解反應器中之燃燒器中。
  16. 如請求項15所述之方法,其中該氫氣源為氨裂解產物氣體或調節氨含量及/或氫氣與氮氣比之產物氣體。
  17. 如請求項15所述之方法,其中該氫氣源為公用事業供應或來自其他方法。
  18. 如請求項1至17中任一項所述之方法,其包含含氧氣體之CO 2移除洗滌。
TW107126906A 2017-08-24 2018-08-02 自熱性氨裂解製程 TWI812634B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DKPA201700462 2017-08-24
??PA201700462 2017-08-24
DKPA201700462 2017-08-24
??PA201700551 2017-10-02
DKPA201700551 2017-10-02
DKPA201700551 2017-10-02

Publications (2)

Publication Number Publication Date
TW201912565A true TW201912565A (zh) 2019-04-01
TWI812634B TWI812634B (zh) 2023-08-21

Family

ID=63259535

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107126906A TWI812634B (zh) 2017-08-24 2018-08-02 自熱性氨裂解製程

Country Status (11)

Country Link
US (1) US11511991B2 (zh)
EP (1) EP3672906B1 (zh)
JP (1) JP7319965B2 (zh)
CN (1) CN110799451B (zh)
AU (1) AU2018320335A1 (zh)
CA (1) CA3067780A1 (zh)
DK (1) DK3672906T3 (zh)
ES (1) ES2941070T3 (zh)
PL (1) PL3672906T3 (zh)
TW (1) TWI812634B (zh)
WO (1) WO2019038251A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4304980A1 (en) 2021-03-11 2024-01-17 Topsoe A/S Method and system for producing hydrogen from ammonia cracking
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US20220389864A1 (en) 2021-05-14 2022-12-08 Amogy Inc. Systems and methods for processing ammonia
KR20240020274A (ko) 2021-06-11 2024-02-14 아모지 인크. 암모니아의 가공처리를 위한 시스템 및 방법
KR20240021944A (ko) 2021-06-18 2024-02-19 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 그린 수소를 위한 암모니아 분해
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
DE102021127515A1 (de) 2021-10-22 2023-04-27 Karl-Hermann Busse Kompakte Vorrichtung für emissionsfreie Antriebe
WO2023107084A2 (ru) * 2021-12-06 2023-06-15 Олэксанр Олэксандровыч РЕПКИН Способ получения с использованием возобновляемых источников энергии и транспортировки "зеленого" водорода в составе аммиака для дальнейшего его использования в энергетических системах и/или в промышленности, и/или для питания транспортных средств, и/или для хранения
DE102022200903A1 (de) 2022-01-27 2023-07-27 Thyssenkrupp Ag Verfahren und Anlage zur Herstellung von Wasserstoff aus Ammoniak
BE1030221B1 (de) 2022-01-27 2023-08-28 Thyssenkrupp Ind Solutions Ag Verfahren und Anlage zur Herstellung von Wasserstoff aus Ammoniak
WO2023144335A1 (de) 2022-01-27 2023-08-03 Thyssenkrupp Industrial Solutions Ag Verfahren und anlage zur herstellung von wasserstoff aus ammoniak
NL2030905B1 (en) 2022-02-11 2023-08-18 Proton Ventures B V Hybrid ammonia decomposition system
CN115254865A (zh) * 2022-08-25 2022-11-01 中原环保股份有限公司 一种反硝化滤池脱氮气体的处理方法
WO2024056843A1 (en) 2022-09-16 2024-03-21 Basf Se Process for performing an endothermic reaction in a reactor with less co2 emissions
WO2024056859A1 (en) 2022-09-16 2024-03-21 Basf Se A process for increasing the h2 content of syngas
WO2024056894A1 (en) 2022-09-16 2024-03-21 Basf Se High pressure and low temperature recycled nh3 reforming process
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2617089C2 (de) * 1976-04-17 1984-03-29 Caloric Gesellschaft für Apparatebau mbH, 8032 Gräfelfing Verfahren zur katalytischen Spaltung von Ammoniak
DE4217921A1 (de) 1992-05-30 1993-12-02 Huels Chemische Werke Ag Verfahren zur Rückgewinnung von Ammoniak und organischen Verbindungen aus mit organischen Stoffen, Kohlendioxid und Ammoniak beladenen Abgasen
NL1012296C2 (nl) * 1999-06-11 2000-12-12 Gastec Nv Werkwijze voor het verwijderen van stikstofoxiden.
GB9929332D0 (en) 1999-12-10 2000-02-02 Boc Group Plc Destruction of waste gas
EP1286914A4 (en) * 2000-05-12 2006-05-17 Gradient Technology HYDROGEN PRODUCTION BY AUTOTHERMIC DECOMPOSITION OF AMMONIA
AU2001281329A1 (en) * 2000-07-25 2002-02-05 Apollo Energy Systems, Incorporated Ammonia cracker for production of hydrogen
US7875089B2 (en) 2001-03-02 2011-01-25 Intelligent Energy, Inc. Ammonia-based hydrogen generation apparatus and method for using same
JP4364022B2 (ja) * 2003-03-25 2009-11-11 メタウォーター株式会社 有機性廃棄物からのエネルギー回収方法
AU2007265477A1 (en) 2006-06-27 2008-01-03 Fluor Technologies Corporation Configurations and methods of hydrogen fueling
CN101715362A (zh) 2007-04-04 2010-05-26 沃利帕森斯集团股份有限公司 用于克劳斯尾气处理单元中的氨破坏方法
JP2009035458A (ja) 2007-08-03 2009-02-19 Tama Tlo Kk 水素生成装置
JP5352323B2 (ja) 2009-04-07 2013-11-27 トヨタ自動車株式会社 水素生成装置及び水素生成方法
US20130058862A1 (en) 2010-03-31 2013-03-07 Junji Okamura Catalyst for decomposing ammonia, method for producing the catalyst and method for producing hydrogen using the catalyst
US8691182B2 (en) 2010-05-27 2014-04-08 Shawn Grannell Ammonia flame cracker system, method and apparatus
US8961923B2 (en) * 2010-05-27 2015-02-24 Shawn Grannell Autothermal ammonia cracker
JP2012066945A (ja) * 2010-09-21 2012-04-05 Hitachi Zosen Corp アンモニアからの水素の製造方法
WO2012130258A1 (en) * 2011-03-29 2012-10-04 Haldor Topsøe A/S Method for the purification of raw gas
JP2012213682A (ja) * 2011-03-31 2012-11-08 Nippon Shokubai Co Ltd アンモニア分解触媒および当該触媒を用いたアンモニア分解方法
DK2928819T3 (da) * 2012-11-08 2019-05-06 Stamicarbon B V Acting Under The Name Of Mt Innovation Center FREMGANGSMÅDE TIL SVOVLGENVINDING MED SAMTIDIG HYDROGENFREMSTILLING UD AF NH3- og H2S-HOLDIG TILFØRSESLGAS
EP2796198A1 (en) * 2013-04-23 2014-10-29 Danmarks Tekniske Universitet Catalysts for selective oxidation of ammonia in a gas containing hydrogen
JP2014208352A (ja) * 2014-07-10 2014-11-06 株式会社日本触媒 アンモニア分解触媒および触媒を用いたアンモニア分解方法
EP3059206B1 (de) 2015-02-20 2017-08-09 Gerhard Wannemacher Verfahren zur Herstellung eines Brennstoffs in Form einer brennbaren, wasserstoffhaltigen Gasmischung durch Ammoniakspaltung
GB2539021A (en) * 2015-06-04 2016-12-07 Advanced Plasma Power Ltd Process for producing a substitute natural gas
AU2016398360B2 (en) * 2016-03-14 2022-01-27 Equinor Energy As Ammonia cracking

Also Published As

Publication number Publication date
WO2019038251A1 (en) 2019-02-28
JP7319965B2 (ja) 2023-08-02
CN110799451A (zh) 2020-02-14
US20200123006A1 (en) 2020-04-23
US11511991B2 (en) 2022-11-29
JP2020531388A (ja) 2020-11-05
AU2018320335A1 (en) 2020-01-23
CN110799451B (zh) 2023-08-08
EP3672906B1 (en) 2023-02-15
EP3672906A1 (en) 2020-07-01
PL3672906T3 (pl) 2023-05-15
ES2941070T3 (es) 2023-05-16
CA3067780A1 (en) 2019-02-28
TWI812634B (zh) 2023-08-21
DK3672906T3 (da) 2023-02-27

Similar Documents

Publication Publication Date Title
TWI812634B (zh) 自熱性氨裂解製程
KR102599461B1 (ko) 암모니아 합성 가스 제조 방법
CN101905867B (zh) 二氧化碳排放减少的蒸汽-烃重整
AU765825B2 (en) Recovery of sulfur from H2S and concurrent production of H2 using short contact time cpox
RU2011110497A (ru) Системы и способы производства сверхчистого водорода при высоком давлении
CN110869314A (zh) 用于制备氨合成气的方法
CA2761073A1 (en) Process for the purification of a carbon dioxide stream with heating value and use of this process in hydrogen producing processes
KR20230085907A (ko) 일산화탄소를 포함하는 가스 스트림을 생성하기 위한 공정
CN110958988A (zh) 用于改善氨合成气装置的效率的方法
JPH06505692A (ja) 高純度一酸化炭素の製造方法
JP4473223B2 (ja) 改良されたシフト転化の構成と方法
RU2664526C2 (ru) Энергосберегающий унифицированный способ генерации синтез-газа из углеводородов
WO2017065613A1 (en) Process for the production of methanol
WO2021251471A1 (ja) Coの選択的酸化触媒を備えたco2メタネーション反応装置およびガス中のcoの除去方法
US10513435B2 (en) Systems and methods for controlling on-board generation and use of hydrogen fuel mixtures
CA3217663A1 (en) Method for production of blue ammonia
JP2007320779A (ja) アンモニア合成用素ガスの製造方法および製造装置
JP2021138912A (ja) 燃料ガスの製造方法